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Magnetotransport and spin dynamics in an electron gas formed at oxide interfaces

Chenglong Jia and Jamal Berakdar
Institut für Physik, Martin-Luther Universität Halle-Wittenberg, 06099 Halle (Saale), Germany

We investigate the spin-dependent transport properties of a two-dimensional electron gas formed
at oxides’ interface in the presence of a magnetic field. We consider several scenarios for the oxides’
properties, including oxides with co-linear or spiral magnetic and ferroelectric order. For spiral
multiferroic oxides, the magnetoelectric coupling and the topology of the localized magnetic moments
introduce additional, electric field controlled spin-orbit coupling that affects the magneto-oscillation
of the current. An interplay of this spin-orbit coupling, the exchange field, and of the applied
magnetic field results in a quantum, gate-controlled spin and charge Hall conductance.

PACS numbers: 75.70.Cn, 73.40.-c, 72.25.-b, 68.47.Gh, 73.20.-r, 85.75.-d

I. INTRODUCTION

The transport properties of a semiconductor-based
two-dimensional electron gas (2DEG) by external elec-
tric and magnetic fields is at the heart of mesoscopic
and spintronic research with a wide range of applica-
tions. A new impetus has been the recent discovery
of 2DEG formed at the interface of insulating oxides1,2.
This 2DEG can be laterally confined and patterned to
achieve new functionalities such as oxide-based field effect
transistors3,4. In view of the remarkable phenomena ob-
served in the conventional 2DEG under a magnetic field,
including the Shubnikov-de Hass (SdH) effect5,6, and the
spin/charge Hall effect7 in the presence of spin-orbit in-
teractions (SOI)8,9, it is timely to consider the properties
of oxide-based 2DEG in a magnetic field. Generally, the
relatively large effective mass m∗ together with a high
carrier concentration Ne at the oxide interfaces (for in-
stance m∗/me ≈ 3.2 with me being the free electron
mass and Ne ≈ 5− 9× 1013cm−2 at the LaAlO3/SrTiO3

interface10) imply a strong magnetic field for the SdH
oscillation and for the quantized Hall conductance to be
observable. In addition, oxide interfaces have a multi-
tude of inherent properties such as multiferroicity and
strong electronic correlations11,12. It is our aim here to
inspect how such properties affect the magnetotransport
in 2DEG. One of the exciting results is that, utilizing
2DEG formed at multiferroic oxides (e.g., RMnO3

11,13)
the magnetotransport can be modulated by both a mag-
netic field and also with a small transverse electric field
(∼ 1kV/cm). The topology of the local helical magnetic
moments in multiferroics results in an induced effective
SOI3 that is electrically14 and/or magnetically15 tunable.
Consequently, we find a large magnetic and electric field-
dependence of the quantum oscillations in the longitudi-
nal conductance, as well as a spin/charge Hall conduc-
tance. Furthermore, the cases of collinear order and/or
weak on-site correlations are also considered.

II. THEORETICAL FORMALISM

We start from the general case by considering a 2DEG
formed at the intersurface of a spiral multiferroic oxide
(e.g., RMnO3) with a polar oxide (cf. Fig.1). In a homo-
geneous, static magnetic field B = (0, 0, Bz) the single-
particle 2DEG Hamiltonian reads

H = hk + hex, with (1)

hk =
1

2m∗
[P+ eAB]

2, hex = Unr · σ + gµBB · σ.

Here g is the gyromagnetic constant, µB is the Bohr mag-
neton, and σ are the Pauli matrices. Unr is the exchange
field determined by Coulomb repulsion and Hund’s rule
coupling at the oxides ionic sites, and can be described
by an effective unit-vector field nr and a strength U . A
useful parameterizations is

nr = (sin θr, 0, cos θr)

FIG. 1. (a) Schematic view of 2DEG at the interface of a
multiferroic oxide with a polar oxide and in the presence of
a magnetic field B. The spiral (x− z) plane is perpendicular
to 2DEG. (b) The 2DEG energy levels as functions of the
scaled spin-orbit interaction α with ∆/~ω = 20. The spin-
down (gray) and the spin-up (black) subbands are separated
by the exchange energy.
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with

θr = qm · r

and qm = (q, 0, 0) is the spin wave vector of the
spiral13,14.

AB = (−Bzy, 0, 0)

in the Landau gauge. The case of a collinear order and/or
weak electronic correlations follow as special cases, as
discussed below. Upon a unitary gauge transformation

Ug = exp(−iθrσy/2)

the local quantization axis becomes aligned with nr on
the expense of introducing the topological vector poten-
tial

Ag = −i~U †
g∇Ug = (−~qσy/2, 0, 0).

The transformed kinetic energy3 reads

h̃k =
1

2m∗
[P̃+ eAB +Ag]

2

(hereafter, transformed quantities are marked by a tilde).
Ag depends only on the geometry of the local magnetiza-
tion at the oxide and acts as a helicity q and momentum-
dependent effective SOI ∼ qP̃xσ̃y . The transformed term

h̃ex turns however diagonal, h̃ex = ∆σ̃z (after omitting a
small periodic modulation on the spins16). The value of
∆ depends on the system under study:
i) For a strong local correlation compared to the external
Zeeman field we find ∆ ≈ U . This is the case of spiral
multiferriocs.
ii) The case of a collinear n(r) (no ferroelectric order)
corresponds to q → 0, and hence Ag → 0.
iii) For a weak local correlation field U → 0 and/or un-
der a strong magnetic field we find ∆ ≈ gµBBz , i.e. the
conventional 2DEG in a magnetic field.
The cases i)- iii) correspond to different combinations
of the oxides at which interface the 2DEG is formed. We
will focus here on i) and ii). Predictions for the case
iii) are readily deduced, the physics however in this case
resembles the well-known situation in a semi-conductor-
based 2DEG (without SOI).
For the transformed system we infer

[P̃x, h̃k + h̃ex] = 0.

Introducing the bosonic operator

a = [P̃x − eBzy − iP̃y]/
√
2m~ω (2)

and scaling all energies in unit of the cyclotron energy

~ω = ~eBz/m
∗,

we obtain the dimensionless harmonic Hamiltonian

H̄ = (a†a+ 1/2)− ασ̃y(a
† + a) + α2 + ∆̄σ̃z (3)

where

∆̄ = ∆/~ω, α =
qlB

2
√
2ā
, lB =

√

~/eBz.

ā is the lattice constant, and lB is the magnetic length.
In the limit of a collinear spin order, the eigenstates of

the Hamiltonian are the Landau levels,

|n, s〉 = (a†)n√
n!

|0〉 ⊗ |s〉

with the energy

ǫns = (n+ 1/2) + s∆̄ + α2, n = 0, 1, 2, · · · , s = ±.
However, in most cases, the state |n, s〉 is coupled to
|n ± 1, s̄〉 via SOI. The case of a weak exchange (local
correlation) field follows for ∆̄ = 0 (cf. [16]). Expanding
the eigenstate

|ψ〉 =
∑

nσ

Csn|n, s〉

in the Landau space, the secular equation

H̄|ψ〉 = Eψ |ψ〉
leads to the following matrix form,

Eψ
[

... C s̄n−1 C
s
n C

s̄
n+1 ...

]T
= (4)











... ... ... ... ...

... ǫn−1,s̄ iαs̄
√
n 0 ...

... iαs
√
n ǫn,s iαs

√
n+ 1 ...

... 0 iαs̄
√
n+ 1 ǫn+1,s̄ ...

... ... ... ... ...





















...
C s̄n−1

Csn
C s̄n+1

...











.

The Hamiltonian in the Landau space reduces then to
two independent, infinitely dimensional tridiagonal ma-
trices with reference to two groups17 |n, (−1)n〉 and
|n,−(−1)n〉. The energy spectrum can be obtained nu-
merically by truncating the matrix dimensions while in-
cluding a sufficient number of Landau levels (up to 1000
energy levels were taken during the calculations of the
transport coefficients).
Fig.1b shows the energy levels as a function of the SOI α
with ∆̄ = 20. Two spin subbands (parallel or antiparallel
to the exchange field) are shown. Hence, the electronic
structure varies strongly with α which is tunable by a
small transverse electric field due to the magnetoelectric
coupling14. The high density of states around α ≈ 5 fol-
lows from a perturbation considerations:
Let SOI be smaller than the exchange splitting, α ≪ ∆̄.
Up to a second order in α the two energy branches read

Ens(α) = ǫns + s
(n+ 1)α2

2∆̄− s
+ s

nα2

2∆̄ + s
. (5)

At critical value

αc = [(4∆̄2 − 1)/4∆̄]1/2,

we find infinitely degenerate states, Ens=−1(αc) ≡ 0. For
large α and/or n, the degeneracy is lifted and distributed
around αc, e.g. αc = 4.47 with a given ∆̄ = 20.
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FIG. 2. The persistent spin current 〈Ĵy
s 〉 in units of Js0 =

√

~ω/2m vs. SOI strength α with ∆/~ω = 43. Solid line:
EF < ∆, only the spin-down subband intersects the Fermi
level. Dotted line: EF > ∆, both spin subbands are occupied
when |α| <∼ 4.

III. PERSISTENT SPIN CURRENT

As pointed out in Ref.[3] without a magnetic field, a
nonzero spin current 〈Jys 〉 is generated when only the
spin-down subband is below the Fermi level EF . With a
magnetic field Bz the spin current is

〈Ĵys 〉 = 1/ν
∑

ψ

〈ψ|Ĵys |ψ〉f(Eψ), (6)

where ν is the filling factor and f is the Fermi distribu-
tion function. The spin current operator Ĵys for the y
component of the spin is defined as

Ĵys =
1

2
(σ̃y v̂x + v̂xσ̃y), (7)

v̂x =
[x, H̄ ]

i~
=

√

~ω

2m
[(a† + a)− 2ασ̃y]. (8)

Note, σ̃y = σy because [σy, Ug] ≡ 0. An overall α-
dependence of the amplitude of spin current is related
to the electron density through the filling factor (Fig.2).
In the case of EF /~ω = 60, two subbands are both occu-
pied only when |α| <∼ 4. It is then numerically confirmed
that the persistent spin current vanishes when two spin
subbands are intersected by the Fermi level3. No charge
current is generated, i.e. 〈Ĵcx〉 = 〈−ev̂x〉 = 0 in the ab-
sence of an in-plane electric field. The spin polarization
vanishes as well 〈σy〉 = 0 under a normal magnetic field;
only a pure, electrically tunable persistent spin current
exists.

IV. LONGITUDINAL CONDUCTIVITY

The topological SOI is exactly analogous to the
semiconductor-based 2DEG with the Rashba and Dres-
selhaus spin-orbit couplings being equal in strength.
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FIG. 3. The longitudinal conductivity σxx as functions of (a)
magnetic field ωτ and (b) SOI strength α at a fixed Fermi
energy EF τ/~ = 60. The exchange energy is ∆τ/~ = 43.

Insets show the contributions from the different subband, σ(±)
xx

is re-scaled with respected to the total conductivity σxx at (a)
ωτ = 0.5 and (b) α = 0.

Therefore, the spin beats in the magneto-oscillation at
the helimagnetic interface are completely suppressed18.
However, the oscillatory magnetoresistance contains at
least two components: SdH oscillations of the spin-down
and spin-up subbands, respectively19. ∆̄ ≫ 1 means
a large energy separation between the two subbands,
∼ 2〈σ̃z〉∆̄, which results in negligible off-diagonal terms
of the Green function20. The longitudinal conductivity

is then given by σxx = σ
(−)
xx + σ

(+)
xx with

σ(±)
xx =

mω

4π2

∑ 〈ψ±|Ĵcx|ψ′
±〉〈ψ′

±|Ĵcx|ψ±〉
(Eψ±

− µ± + i~/τ±)(Eψ′
±
− µ± + i~/τ±)

where 〈ψ±|Ĵcx|ψ′
±〉 is the matrix elements of the charge

current density operator. µ± is the energy distance be-
tween the Fermi energy and the bottom of the spin-
up(down) subband. τ± is the total relaxation time in-
cluding the intrasubband and intersubband scattering
at a short-range random potential. Experiments on
semiconductor-based 2DEG21 suggest a Lorentzian shape
as an excellent fit for the disorder-induced broadening
of Laudau levels; we assume this to hold in our case,
i.e. τ± = τ . Fig.3a demonstrates the dependence of
σxx on the magnetic field for the following parameters:
EF τ/~ = 60, ∆τ/~ = 43, and α = 0. The spectrum of
σxx consists of two harmonics: The oscillating part of the

partial conductivities σ
(±)
xx is described well analytically

by cos(2π µ±

~ω + π). The magnitudes are proportional to
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the carrier concentrations in the spin-up and spin-down
subbands, respectively. On the other hand, assuming a
fixed Fermi energy the carrier concentration varies with
the electrically tunable spin-orbit interaction parameter
α, the quantum oscillation of the longitudinal conduc-
tance σxx is caused then by a crossing of the chemical
potential and the energy levels, see also in Fig.3b. The
harmonics stem from a change of the energy distance µ±,

which induces an equivalent frequency of σ
(±)
xx . As α > 4,

only the low subband is occupied however, σ
(+)
xx → 0.

When accounting explicitly for intersubband transi-
tions, the total relaxation time τ∓ reads22

τ− = τ [1 + (1− τ

τ ′
)F− +

τ

τ ′
F+] (9)

τ+ = τ [1 + (1− τ

τ ′
)F+ +

τ

τ ′
F−] (10)

with the times τ and τ ′ for intra- and inter-subband scat-
tering at a short-range random potential, respectively.
F± is oscillatory as inferred from

F± = 2 cos(2π
µ±

~ω
+ π) exp(− π

ωτ
) (11)

to the first order of the parameter exp(− π
ωτ ). Fig.4

presents the dependencies of the σxx on the magnetic
field under the condition that only the lower subband
is below the Fermi level: EF τ/~ = 0 and ∆τ/~ = 43.
A high-frequency oscillation component emerges (termed
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FIG. 4. The longitudinal conductivity σxx vs. magnetic field
ωτ for various intersubband scattering intensities: (a) τ/τ ′ =
0.0, (b) τ/τ ′ = 0.1 at a fixed Fermi energy EF τ/~ = 0. The
exchange energy is ∆τ/~ = 43 and the SOI α = 0.
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(Bottom): The spin Hall conductivity, σs under By/Bz = 5.
The exchange energy is ∆/~ω = 43.

magneto-intersubband scattering (MIS) effect19), which

behaves as cos(4π 〈σ̃z〉∆
~ω ) and is distinguishable from the

background harmonic cos(2π µ−

~ω + π). Upon increasing
the temperature, MIS dominates the oscillatory magne-
toresistance due to its weak-temperature damping com-
pared to SdH oscillations6.

V. HALL EFFECT

Following Rashba23, the charge(spin) Hall conductiv-
ity is given by Kubo-Greenwood formula,

σxy,s = − e

πl2B

′
∑ ℜ〈ψ|ŷ|ψ′〉〈ψ′|Ĵcx,s|ψ〉

Eψ′ − Eψ
. (12)

The prime over the sum indicates a summation only over
the state |ψ′〉 below the Fermi level (Eψ′ < EF ) and
|ψ〉 above the Fermi level (Eψ > EF ). The numerical
evaluation shows a quantization of the charge Hall con-
ductance, σxy = ve2/2π~ (see in Fig.5a), for the charge
current carried by each state is not changed by SOI7.
A similar electric-field effect on the charge Hall conduc-
tivity has been reported in Graphene p-n junctions24, in
which the carrier type and density can be controlled by
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external gates as well. Different from a semiconductor
2DEG, where a resonant spin Hall conductance is predi-
cated for equal Rashba and Dresselhaus SOI25, the spin
Hall conductivity is zero in our system in the presence of
only a perpendicular magnetic field due to the absence
of a crossing of any adjacent energy-levels.

When the magnetic field is tilted in the y − z plane
with respected to the z axis, the in-plane y compo-
nent By induces a nonzero spin polarization 〈σy〉 =
1/ν

∑

ψ〈ψ|σ̂y |ψ〉, which renders the oxide magnetic or-
der not exactly coplanar. A nonzero Berry’s curvature
is expected in the momentum space26, and so is the spin
Hall conductivity σs. The α-dependence of σs is dif-
ferent from that of σxy (see Fig.5b), which implies that
the spin Hall conductance is not totally dominated by
the spin-polarized charge current. A step-like structure
is found in the spin-Hall conductivity for EF < ∆. It
should be noted that the filling factor ν, the persistent
spin current 〈Jys 〉, and the charge Hall conductivity σxy
are not sensitive to the in-plane magnetic field By. How-
ever, the competition between the Zeeman energy and
the SOI results in sharp changes of the spin polarization
〈σy〉, which gives rise to resonant peaks around the de-
generate point αc (for EF = 0) and to a quick oscillations
(for EF = 60~ω) of the spin Hall conductivity σs .

VI. SUMMARY

In summary, we studied the spin current, the magneto-
oscillations, and the spin/charge Hall effect in 2DEG at
oxide interfaces exposed to magnetic fields. The trans-
port behavior is determined by an interplay between the
exchange interaction, the magnetic field, and the effective
SOI induced by the spiral geometry of the local magnetic
order. The electrically tunable topological SOI allows
a control of the system’s magnetotransport by a small
transverse electric field. Our predictions are accessible
experimentally. In fact, very recently, the SdH effect
has been experimentally observed for SrTiO3/LaAlO3

27,
where an intense magnetic field up to 31.5T was applied.
A collinear spin phase is thus achieved, and the spin helic-
ity q → 0, which corresponds to a special case described
by the Hamiltonian Eq.3 with α = 0 and ∆ = gµBBz .
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