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Abstract. The theory of phase transitions is based on the consideratitdealized" models, such as the
Ising model: a system of magnetic moments living on a culifckaand having only two accessible states.
For simplicity the interaction is supposed to be restrittedearest—neighbour sites only. For these models,
statistical physics gives a detailed description of thealihur of various thermodynamic quantities in the
vicinity of the transition temperature. These findings arefitmed by the most precise experiments. On
the other hand, there exist other cases, where one mustradooadditional features, such as anisotropy,
defects, dilution or any effect that may affect the natur@/anthe range of the interaction. These features
may have impact on the order of the phase transition in thel id@del or smear it out. Here we address
two classes of models where the nature of the transitioniéseal by the presence of anisotropy or dilution.

1. Introduction

Materials in Nature can be found in qualitatively differ@hases having distinct properties. The change
from one phase to another is the consequence of a variat@mmiofensive thermodynamic quantity, e.g.,
the temperaturd’, the pressure’, external electric or magnetic fields or H. Phase transitions are
accompanied by abrupt changes in a number of macroscopimakgnamic quantities. Some familiar
examples of phase transitions include the gas—liquidittangcondensation), the liquid—solid transition
(freezing), the normal—superconducting transition indeartors, the paramagnet—ferromagnet transition
in magnetic materials, and the superfluid transition initiquelium. Further examples are transitions
involving amorphous or glassy structures, spin glassasidicrystals, charge—density waves, and spin—
density waves.

In many cases, the two phases above and below the transdiot gayT. for a temperature driven
phase transition, may be discerned from each other in tefrasme ordering that occurs in the phase
belowT.. For example in the liquid—solid transition the moleculéshe liquid get “ordered” in space
when they form the solid phase. In a paramagnet, the magmatiments of each atom can point in
any random direction (in the absence of an external magfielit), but in the ferromagnetic phase the
moments are lined up in a particular direction of orderingpud in the high temperature phase (above
T,), the degree of ordering is smaller than in the low tempeeapihase (belovl.). To quantify the
amount of ordering in a system one uses the so caltder parameter, which is usually a vanishing
quantity in the high temperature (disordered) phase.
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The phase diagram shows regions within which homogeneaukbemym states exist as a function of
temperature and other thermodynamic variables kkd”, H. For some physical systems the chemical
potential . or composition variables are also involved. The differeagions of the phase diagram
are delimited by phase boundaries that mark conditions ruwthich multiple phases can coexist at
equilibrium. Phase transitions take place along phasedarigs marked by lines of equilibrium.

The theoretical framework that aims at describing phasesitians and related phenomena as a result
from cooperative effects over macroscopic scales is a paneaealm of equilibrium statistical physics
[1-3]. Statistical physics is based on probabilistic modelshaf interactions of microscopic entities
forming large assemblages (macroscopic bodies). The pilidpa macroscopic system of volunig,
having N particles, in a stat& with energyFE at a temperaturé’, is given by

P& e~ E(8)/(kpT) 11
(6) = 71 (1.1)
wherek is the Boltzmann constant, ar#f(T") is the partition function

Z(T) = ZB*E(G)/(P«‘BT), (1.2)
S

relating microscopic degrees of freedom to macroscopigrthdynamic quantities. The functio#f (T")
depends upon any parameters that might affect the valBé®f. The expectation value of any statistical
operator is defined via

(D(6)) =) _9(8)2(8). (1.3)
(G}

For example the internal enerdy is obtained by averaging (&) over all the accessible states of the
system. This is given by
U= (E(6)).

A fundamental thermodynamic quantity related to the partifunction is thefree energy
f(T)=—=kpTln Z(T), (1.4)

which contains all the information on the thermodynamicthefconsidered system.

According to the Ehrenfest classification scheme there #fereht kinds of phase transitions
depending on the nature of the singularities of the thermanhic gquantities at the transition. Such
transitions are categorized as first—, second—, or higlier dransitions if the lowest derivative of the free
energy that exhibit nonanalytic behaviour with a finite juisphe first, second or higher one. Within this
classification the BerezingkiKosterlitz—Thouless (BKT)4, 5] may be considered as being of infinite
order.

To describe universal features of phase transitions ong nesatively “simple” microscopic models
such as the magnetic model involving interaction betweegnec degrees of freedom. Inckassical
model for a magnet, the spins (magnetic moments) may be represbypte-component unit vectors;
located at sites, with coordinatese;, belonging to a finite subset of a genediedimensional lattice\ ;,
ie. £ C Ay with |[£] = N. We are considering here saturated lattice models, whete latiice site
hosts one spin. The simplest and probably most extensivetliesi cases considered in the literature
assume a hypercubic lattice; = Z? and isotropically interacting spins, thus the (nearestmur)
Hamiltonian

J

%:—EZSZ'-S]'—HZSZ', (15)
(i,3) i

where the coupling/ is restricted to nearest—neighbouring sitesdj, with each distinct pair being

counted once.H stands for an uniform magnetic field.



In the absence of the magnetic field, ild. = 0, a ferromagnetic coupling] > 0, favours a parallel
orientation of the spins in the ground state, whereas thdtaotuations tend to create an orientational
disorder. On the other hand an interactidng< 0, would be the precursor of an antiferromagnetic order
at low temperatures. Actually, in the specific case coneiéere, i.e. nearest—neighbour coupling and
bipartite lattice, and wittd = 0, the sign of the coupling constant is immaterial, i.e. mediefined by
+J and—J yield the same patrtition function, whereas the two cori@bafunctions are connected by
suitable sign factors.

Forn = 1,2,3, the model corresponds to the Ising, planar rotator (PR) ldedenberg (He),
respectively. The Ising model is known to haveZa discrete symmetry, while systems with> 2,
like PR and He, are said to possess a continddias) symmetry. It has become customary to refer to the
number of component of the order parameter as symmetry index. The interactidm avi external field
breaks this symmetry and establishes a preferred direfdiogpin alignment. By reducing the external
field to zero in the thermodynamic limit, the system may eitspontaneous magnetization pointing
in the initial direction of the field. It has been show8] fhat the limitn — oo leads to the spherical
model [7] obtained by requiring the spins to be continuous variabldgect to a global relaxed constraint
(Zﬁvzl s? = N) rather than forcing them to take unit lengths i.&;/?> = 1. The formal limitn — 0 is
relevant to the study of self-avoiding walk problem, whieim de applied to polymers.

By now a number of rigorous results, assuming translatiemariance, have been worked out,
entailing existence or absence of a phase transition inhtemiodynamic limit, depending on lattice
dimensionalityd and number of spins component$8, 9].

Model (1.5 with different values ofn and d is extensively studied in the literature via different
methods and its behaviour as a function of the temperatueriswell known. For a review with a
rich list of references sed (]. At H = 0, it exhibits a second order phase transitiofor anyd > 1
and with discrete spin variables, i.e.= 1. Such a transition is characterized by a significant growth
of the nearest—neighbour correlations for orientationatélations, and also the onset for long-range
orientational correlations. On the other hand, accordinthé Mermin—Wegner theoremi ] in O(n)
symmetric modelsr{ > 2) there can be no spontaneous symmetry breaking at finitectextypes for
d < 2 meaning that the system remains orientationally disotdateany finite temperature. Fdr> 2
andn > 2 a second order phase transition takes place in the systdime two—dimensional cask= 2
andn = 2 the system exhibits a BKT transition from a high temperatisordered phase to a low
temperature phase with slow decay of the correlation fancéind an infinite magnetic susceptibility
[12].

In the vicinity of a continuous phase transition, such assémrder or BKT transition, there is only
one dominating length scale related to the growth of fluadaat Thecorrelation length. Because of the
diverging nature of the correlation length as the criticaihp is approached the microscopic details of
the system becomes irrelevant. Thus the description ofitigiler behaviour of many thermodynamic
observables requires a small number of universal variabtégal exponents, amplitudes and functions.
This allows the arrangement of a great variety of differeidroscopic systems in universality classes
of equivalent critical behaviour. A universality class dags upon the humber of components of the
order parameter and the dimensionality of the system. Faemetails the reader is invited to consult
references13, 14].

The model 1.5 can describe the properties of a wide variety of physidalasions in the vicinity
of their transition point, however, it may happen that theyvexperimental situation at hand requests
the interaction model to be complicated (made physicalljai and theoretically more challenging) in
various ways. On the one hand, there exist different passitttice types\,, in addition toZ?. On
the other hand, as for the orientational dependence, mabardte potential models involve (in some
combination or other) isotropic or anisotropic linear clings between spin components, sometimes
higher powers of scalar products among the interactingsspimultipolar (usually dipolar) interactions,

! Here and below the temperature will be measured in unitg/éf.



Dzyaloshinski—-Moriya terms, single—site anisotropy felNotice also that more distant neighbours are
sometimes involved, or even, in principle, all neighboues/rbe coupled by long—range interactions. In
some specific favourable cases one has even been able tothmtobdel and its potential parameters to
a specific experimental systerhy. The ferromagnetic ordering transition observed expentally in

the absence of an external field is more frequently secoret,ddt first—order transitions are also known.
They might, for example, result from doping by nonmagnetipirities, anisotropy of interactions in
spin space, or coupling to the latticeg]. Other interaction models for different physical systesan be
found in [17].

This review is devoted to the description and analysis @&fotéfrelated to the nature of the interaction.
This aims at gaining insights in the thermodynamics of sopeeific systems. The models considered
here are some of the most popular models in the theory of ghasstions. They involve different kind
of interactions that hopefully might be adapted to the ottaréstics of a given material. They describe
ferromagnetism with anisotropic coupling, systems witidi@m dilution and may to some extent be used
to investigate fluids. Special attention is paid to the aosibn of the phase diagrams of these models
that are determined from the investigation of differentt@dynamic quantities such as: the free energy,
the susceptibility, specific heat etc.

The review is organised as follows: In Sectidwe discuss the transitional behaviourgeheralised
XY models introduced in referenc&d]. These are generalization of the XY model with a nontrivial
coupling along the: components of the spins. We construct the phase diagranine shodels in two
and three dimensions and determine the effect of the naitdeupling on the nature and location of
transition temperature. In Secti@we review the effect of dilution of ferromagnets by the iglwotion
of random impurities and present the phase diagram of tiwedilHeisenberg in three dimensions and
the diluted plane rotator in two dimensions. We concludén@iéectiond4, where we discuss the results
and comment on other models sharing similar transitionbabieur.

2. Generalised XY models

Let us first consider interactions being anisotropic in sppace with nonvanishing and equal
ferromagnetic couplings involvingn < n components of the partner spins only, while still keeping
the interaction restricted to nearest neighbours. In thée¢he model reads

y/;nis.:—%z > bapss!. (2.1)

(4,4) B<m

Among these models we may mention ttantinuous Ising (m = 1 andn arbitrary) and the various
versions of XY modelsie = 2 andn arbitrary), where the interaction is restricted to only coagponent
and two components of the magnetic moments, respectively

In general the transitional behaviour of such models isagmls to that of thei)(m) isotropic
counterparts: On the one hand, the universal critical iebawf these models in the vicinity of their
corresponding transition temperature is equivalent to teetropic O(m) counterparts i.e. the models
share the same universal features (critical exponents mpiitades). on the other hand, the transition
temperature is a typical non—universal quantity, and iegeizably affected by the anisotropy.

A more general class of anisotropic spin models may be amtstt by introducing some kind of
extreme anisotropy coupling only a part of the spin comptsnsome nontrivial manner in addition to
the anisotropic interaction in the spin space. A model thlitbe discussed in this study is the so called
“generalised” XY model introduced in referencE8]. This model involves3—component unit vectors,
and is defined by

J
Ay = 5 Z(sin 6;sin 6;) cos(¢; — ¢;), (2.2)
(i,4)
wherep € N is a parameter controlling the strength of anisotropy aldimg z—spin direction,
and the spins are expressed in terms of the usual sphericatlicatesd; and ¢; i.e. s; =



(sin 6; cos ¢;, sin ; sin ¢;, cos 6;). Notice that by settingg = 1 (p = 0) we recover the familiar XY
model (planar rotator). In this case of the planar rotatodehathef—dependence only survives in the
free—spin measure. The Hamiltonigh3) can also be written in terms of spin components, in the more
complicated form

J z z zZ Z —1)/2 xr T
Ay = =5 > (L= (572 = (552 + (s7)7]) "% (g + sl ). (2.3)
(4,9

As for the role ofp in Eg. @.2), notice that it could be taken to be a real positive numbagr,ranging
betweer) and1 (and hence continuously interpolating between planataptnd XY models). On the
other hand, larger values pfreinforce the out—of—plane fluctuations. This makes it ipbsgo widely
vary the anchoring of spins with respect to the horizontahplwhich might have direct experimental
relevance. As for the present model, this change of andpasinltimately reflected by the significant
changes in transition behaviour.

The transitional behaviour of the model in two and three disi@ns has been investigated by different
approaches. First, it was proven rigorously]] on the basis of the known behaviour of PR, that when
d = 2 and for all values op, the named potential models produce orientational discadall finite
temperatures, and support a BKT-like transition. On thertland, wherl = 3, these models support
ordering transitions taking place at finite temperaturesbdth cases, the transition temperatures are
bounded from above by the corresponding values for the PRtemart. It was later proveri], again
rigorously, that the transition turns first—order for suéfitly largep. Notice that the threshold values
had to be estimated by other means.

2.1. Two dimensions

Using Monte Carlo simulations, the thermodynamics of m@@ed) has been investigated in details in
reference 20] for d = 2 and values op ranging from 2 to 5. Analysis of Monte Carlo data, showed that
the model produces a BKT—(like) transition, possibly chiagdo a first—order transition for largetr due

to the large number of vortices and strong out—of—planeudatiins. It has been found that the transition
temperature is indeed decreasing with increaging

To gain insight into the transitional behaviour of the mddellarge values op we performed further
Monte Carlo simulations at = 6. Our analysis shows that the transition is most likely toehaweak
first order nature. Unfortunately more simulations are imegland different approaches are needed to
be more conclusive.

In figure 1 we show the phase diagram of the two dimensional generak¥ethodel in the(p, T")
plane. Itis seen that the model exhibits a phase transition & paramagnetic phase to a BKT-like phase
as the temperature decreases. The transition temperateraluated using Monte Carlo simulations
according to reference(]. The value of the transition temperature corresponding te 1 is taken
from reference %1].

2.2. Three dimensions

Ford = 3, different analytical approximations, such as a Mean KglH) approach, as well as its Two—
Site Cluster (TSC) refinement have been used in referelfjed estimate transition temperatures for
p = 2,3,4, and then for higher values ofin subsequent papers (see below). Notice also(tiat)?,
and hence the absolute value of the interaction potengakedses with increasing and this aspect is
reflected by the—dependence of the estimated transition temperaturesitimntemperatures have been
estimated in referenc?%] by self—consistent harmonic approximation, bothdee 2 andd = 3, and it
was found that the transition temperature is decreasingsiga A study of the model in its continuum
limit, carried out in reference2p] also showed that out—of—plane fluctuations, and consdiyuthre
magnon density, decrease with increaging
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Figure 1. (p,T) phase diagram of the two—dimensional generalised XY mdgell circles indicate a
Berezinski-Kosterlitz—Thouless like phase transition, while theag is believed to corresponds to a
weak first order phase transition.

We have also addressed the three dimensional generaliseshotéls for various values qf, by
means of Monte Carlo (MC) simulation. We have investigatesl transitional behaviour of various
thermodynamic functions, such as the susceptibility aedsgiecific heat, and made comparisons with
MF and TSC predictions. MF vyielded a tricritical behaviouithwtricritical points having real (non—
integer) values of the parameter As for simulation results, transitional behaviour chatéstic of the
XY model was found fop = 2, 3,4, 8, the case = 12 suggested tricritical behaviour, whereas evidence
of first—order transitions was obtained foe 16, 20.

In Figure2 we present thép, T') phase diagram, where we can read off the behaviour of thsiti@m
temperature as a function gffor 1 < p < 20. MF and TSC data can be found in references
[18, 19, 23, 24], while Monte carlo data are taken from referenc3-p5]. Notice that, forp < 4,
TSC gives better estimates ©f than MF, then the two roles are exchangedfoe 8,12, and finally
the three methods give very similar answers whpen 16, i.e. where the transition has a pronounced
first—order character.

3. Annealed dilution in ferromagnets

Another class of systems that has been extensively studi¢iaei literature spans those with random
impurities (disorder). For a review on diluted magnetisme seference 46]. The interest in these
systems stems from the fact that in nature no system is rpally. Indeed, the presence of cavities,
grain boundaries, lattice defects, chemical impurities. (0f other chemical individuals) or some other
kind of disorder may affect the properties of the pure systmd result in different effects. To consider
a simple but rather important example, in a system of maggiticoupled spins, some lattice sites may
be occupied by nonmagnetic constituents (site—dilutiBath in experimental and theoretical terms, one
can distinguish between annealed and quenched disorder.

In guenched systems, impurities are held frozen in randatigiributed fixed positions, without
the possibility of overcoming potential barriers for diéfag into the host material: in this case the
relaxation time is very long and thermal equilibrium betwémapurities and the constituents of the host
is never reached. In annealed materials, impurities asevad to diffuse randomly and to reach thermal
equilibrium with the other constituents of the host materi@ne can also think of a two—component
solution being very dilute with respect to one of the compe.eWhen the system is in the liquid phase,
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Figure 2. Phase diagram of the three dimensional generalised XY mddwed solid and dashed lines
stand for transition temperatures estimated via mean-dreddwo—site—cluster treatments, respectively.
Full circles and squares indicate second and first ordereptrassitions temperatures evaluated via
Monte Carlo simulations, respectively. Full diamonds skitiee locations of tricritical points.

molecules of the two types can exchange their positions,diffuse throughout the sample. Let then
the system crystallize, at sufficiently low temperature.the resulting solid, particles of the minority
component are fixed in certain lattice sites only.

The simplest extension of equatidh %) taking these situations into account reads

J
His. = ~3 ; ViVj 8; - 8. (3.1)
0]

where the occupation numbersequal “zero” for a sité hosting a nonmagnetic impurity and “one” for
a magnetic particle. The density of magnetic particles ingystem is defined via

1 N
P=N Z(Vi>-

Within this notation the pure system, i.e. without impu&gtj corresponds o= 1.

In the annealed case, Hamiltonia® ) can be interpreted as describing a two—component system
consisting of interconverting “real’{ = 1) and “ghost”, “virtual” or ideal-gas particles;(= 0). Both
kinds of particles have the same kinetic energy, and thé notaber of particles equals the number of
available lattice sites. In this case one works in the Gr&aahenical Ensemble where the probability
(1.1 for a configuration, now involving the occupation numbgrs}, as well as the spinss; }, is defined

by
P o exp [—ﬁ (%ﬁi& —ny u)] : (3.2)

where ;i denotes the excess chemical potential of “real” partichesr dideal” ones. Of course, the
interaction may be anisotropic in spin space, as in the caséimed above, or involve more distant
neighbours. The system remains translationally invaidenaverage. This model bears some similarity



with the Blume—Emery—Griffiths mode2] for 3He impurities in superfluidHe. More precisely, notice
also that, starting from an assigned model, its lattice gtensions can be written in general as

. = —g Z ViVj 8i - 85 + % Z VilVj , (33)
(i,3) (i,5)

where the purely positional term only becomes immaterial in the pure limpit— +oco. In equation
(3.1 we have chosen the simplest case: 0. Lattice gas models can be used to model adsorption, and,
in general, the variable occupation numbers produce sonuitylof the system. One can also set the
coupling J term to zero, so that the resulting model becomes isomorfghami Ising model in external
field. In general, the interplay betwednand A can produce a richer phase diagram: for example, when
A > 0 andp is sufficiently large, the ground state may exhibit checkartl positional order but no
orientational one.

It is very well known that a small amount of annealed disoriers not affect the way the singularities
take place in pure systems i.e. the phase transition reraaiasond order one. Thedependent critical
temperature is shifted toward3(p) < T.(1). If the chemical potentigk is held fixed, the properties of
the phase transition are the same as those known for theymiesrs corresponding @ — oo andp = 1.

If, however, the concentratiomis kept fixed during the transition, care must taken in charaging the
transition. For details see referen@s]

A significant amount of impurities may alter the order of thege transition or make it disappear.
Investigations of the XY model, as a protype for3He He! mixtures, in three dimensions, via high
temperature series expansion of the partition functioowshat by increasing the density of randomness
the transition temperature decreases. At a certain valyettod transition changes its nature and turns
into a first order oneZ9]. The second order phase transition line ends at a triatipioint, which marks
the begining of a line of fisrt—oder phase transition temipeegthat keeps decreasing as the concentration
of impurities increases.

In the three—dimensional case, the topology of the phaggaliaof model 8.1) had been investigated
by MF and TSC approximations for the Ising()], as well as PR case87] in the presence of a magnetic
field, and for He at zero magnetic fiel@7J]. These investigations were later extend&d][to the
extremely anisotropic (Ising—like) two—dimensional mipdmd in the absence of a magnetic field, as
well. The studied models were found to exhibit a tricritibahaviour i.e. the ordering transition turned
out to be of first order foy. below an appropriate threshold, and of second order abow¥liten the
transition is of first order, the orientationally orderedaph is also denser than the disordered one.

To check the predictions of the molecular—field—like treatits used to construct the phase diagrams,
extensive Monte Carlo simulations has been perforn8ddd3] for particular values of the chemical
potential. A number of thermodynamic and structural progesrhad been investigated. It had been
found that there is @econd order ferromagnetic phase transition manifested by a signifigaoivth
of magnetic and density fluctuations. The transition temjpees were found to be smaller than those
of the corresponding values for the pure systems and thieatriiehaviour of the investigated models
to be consistent with that of their pure counterparts. Furtiore it had been found that MF yields a
qualitatively correct picture, and the quantitative agreat with simulation could be improved by TSC,
which has the advantage of predicting two—site correlatidém general we found that simulations results
are consistent with the molecular—field like treatments.

In figure 3 we report the phase diagrams in the chemical potential —destyre and density —
temperature planes. We show the behaviour of the trangitimmperaturel,. versus chemical potential
u. The plot also shows a fast, approximately linear, incredge with ;. up top = 0, and a slower one
above this value. Moreover, MF and TSC results essentiallycade up tou =~ 0. In the phase diagram
in the (p, T") plane the existence of a first—order transition is reflettga biphasic region. We found
that the system exhibits a first—order phase transition fxalanse BKT phase to a paramagnetic one. In
the temperature—density phase diagram, both phases a&tectpo coexist over some range of densities
and temperatures.
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Figure 3. Phase diagrams of the three—dimensional Heisenberg modékichemical potential —
temperature and density — temperature planes. Solid artddimes correspond to mean—field and
two—site—cluster results, respectively. Circles and segistand, respectively, for estimates of the second
and first order transition temperatures using Monte Cartwkitions. Diamonds mark the locations
of tricritical points. The dotted line marks the transitimmperature of the model in the absence of
impurities.

Two—dimensional annealed lattice models were investit@®4 35| as well, and the obtained results
for 4 = 0 or a moderately negative were found to support a BKT phase transition with a transitio
temperature lower than that of the pure parent due to thespcesof impurities. For negative and
sufficiently large in magnitudg we found evidence of a first order phase transition in agreémveh
renormalization group treatment3g 37].

In figure 4 we show the phase diagram in tfyg T') plane. The existence of a first-order transition
is reflected here by a biphasic (binodal) region. The phaasgrain obtained here is similar to the one
resulting from the study of the diluted planar rotator mdadl.

So far, we have discussed isotropic models. As we have nmeutjoin addition to dilution one
can consider anisotropic interactions as well. In refeegB8] we have investigated two—dimensional
continuous Ising spin models with two and tree componemtssprhe phase diagrams of these models
were found to be topologically similar to those found for theisenberg model shown in figuBe The
main differences come from the locations of the phase baiexla

4. Conclusion

The Statistical Mechanics of lattice systems is essentibked on the study of a number of relatively
“simple” models which are gradually made more complicat®de have shown here some examples,
involving generalized XY models and annealed magneticesyst where rigorous results have been
produced to prove existence and type of transition, supgtéed by a variety of techniques (MF or

TSC approximation and Monte Carlo simulation) for eludidgtthe resulting physical behaviour and

estimating numerical values.

We obtained the phase diagram in two and three dimensiongaxieralized version of the lattice XY
model, where the out—of—plane fluctuations of the spins@méralled by a parametex. Our investigation
shows that the nature of the transition is highly affectedh®ystrength of the out—of—plane fluctuations.
Forp > 12 at three dimensions and> 6 at two dimensions, it is first order, whereas for small vaites
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Figure 4. Phase diagrams of the two—dimensional planar rotatorleéSiand squares stand, respectively,
for estimates of the second and first order transition teatpers using Monte Carlo simulations.

Diamonds mark the locations of tricritical points. The ddtiine marks the transition temperature of
the model in the absence of impurities.

transitional behaviour coincides with that of the origiXd model. The transition temperature is found
to decrease gsincreases at any dimension.

We constructed the phase diagrams of the annealed lathoe pbtator in two dimensions and the
Heisenberg model in three dimensions. It is found that thesition changes from a second order at
three dimensions and Berezinsk{osterlitz—Thouless at two dimensions into a first ordansition as
the concentration of impurities is increased. In turn t@dition temperature is found to decrease with
increasing impurity density.
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