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Abstract. The theory of phase transitions is based on the consideration of "idealized" models, such as the
Ising model: a system of magnetic moments living on a cubic lattice and having only two accessible states.
For simplicity the interaction is supposed to be restrictedto nearest–neighbour sites only. For these models,
statistical physics gives a detailed description of the behaviour of various thermodynamic quantities in the
vicinity of the transition temperature. These findings are confirmed by the most precise experiments. On
the other hand, there exist other cases, where one must account for additional features, such as anisotropy,
defects, dilution or any effect that may affect the nature and/or the range of the interaction. These features
may have impact on the order of the phase transition in the ideal model or smear it out. Here we address
two classes of models where the nature of the transition is altered by the presence of anisotropy or dilution.

1. Introduction
Materials in Nature can be found in qualitatively differentphases having distinct properties. The change
from one phase to another is the consequence of a variation ofan intensive thermodynamic quantity, e.g.,
the temperatureT , the pressureP , external electric or magnetic fieldsE or H. Phase transitions are
accompanied by abrupt changes in a number of macroscopic thermodynamic quantities. Some familiar
examples of phase transitions include the gas–liquid transition (condensation), the liquid–solid transition
(freezing), the normal–superconducting transition in conductors, the paramagnet–ferromagnet transition
in magnetic materials, and the superfluid transition in liquid helium. Further examples are transitions
involving amorphous or glassy structures, spin glasses, liquid crystals, charge–density waves, and spin–
density waves.

In many cases, the two phases above and below the transition point, sayTc for a temperature driven
phase transition, may be discerned from each other in terms of some ordering that occurs in the phase
belowTc. For example in the liquid–solid transition the molecules of the liquid get “ordered” in space
when they form the solid phase. In a paramagnet, the magneticmoments of each atom can point in
any random direction (in the absence of an external magneticfield), but in the ferromagnetic phase the
moments are lined up in a particular direction of ordering. Thus in the high temperature phase (above
Tc), the degree of ordering is smaller than in the low temperature phase (belowTc). To quantify the
amount of ordering in a system one uses the so calledorder parameter, which is usually a vanishing
quantity in the high temperature (disordered) phase.
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The phase diagram shows regions within which homogeneous equilibrium states exist as a function of
temperature and other thermodynamic variables likeP , E, H. For some physical systems the chemical
potentialµ or composition variables are also involved. The different regions of the phase diagram
are delimited by phase boundaries that mark conditions under which multiple phases can coexist at
equilibrium. Phase transitions take place along phase boundaries marked by lines of equilibrium.

The theoretical framework that aims at describing phase transitions and related phenomena as a result
from cooperative effects over macroscopic scales is a part of the realm of equilibrium statistical physics
[1–3]. Statistical physics is based on probabilistic models of the interactions of microscopic entities
forming large assemblages (macroscopic bodies). The probability a macroscopic system of volumeV ,
havingN particles, in a stateS with energyE at a temperatureT , is given by

P(S) =
e−E(S)/(kBT )

Z (T )
, (1.1)

wherekB is the Boltzmann constant, andZ (T ) is the partition function

Z (T ) =
∑

S

e−E(S)/(kBT ), (1.2)

relating microscopic degrees of freedom to macroscopic thermodynamic quantities. The functionZ (T )
depends upon any parameters that might affect the value ofE(S). The expectation value of any statistical
operatorO is defined via

〈O(S)〉 =
∑

S

O(S)P(S). (1.3)

For example the internal energyU is obtained by averagingE(S) over all the accessible states of the
system. This is given by

U = 〈E(S)〉.

A fundamental thermodynamic quantity related to the partition function is thefree energy

f(T ) = −kBT lnZ (T ), (1.4)

which contains all the information on the thermodynamics ofthe considered system.
According to the Ehrenfest classification scheme there are different kinds of phase transitions

depending on the nature of the singularities of the thermodynamic quantities at the transition. Such
transitions are categorized as first–, second–, or higher order transitions if the lowest derivative of the free
energy that exhibit nonanalytic behaviour with a finite jumpis the first, second or higher one. Within this
classification the Berezinskiı̌–Kosterlitz–Thouless (BKT) [4, 5] may be considered as being of infinite
order.

To describe universal features of phase transitions one uses relatively “simple” microscopic models
such as the magnetic model involving interaction between magnetic degrees of freedom. In aclassical
model for a magnet, the spins (magnetic moments) may be represented byn–component unit vectorssi
located at sitesi, with coordinatesxi, belonging to a finite subset of a genericd–dimensional latticeΛd,
i.e. L ⊂ Λd, with |L| = N . We are considering here saturated lattice models, where each lattice site
hosts one spin. The simplest and probably most extensively studied cases considered in the literature
assume a hypercubic latticeΛd = Z

d and isotropically interacting spins, thus the (nearest–neighbour)
Hamiltonian

HL = −
J

2

∑

〈i,j〉

si · sj −H

∑

i

si, (1.5)

where the couplingJ is restricted to nearest–neighbouring sitesi andj, with each distinct pair being
counted once.H stands for an uniform magnetic field.



In the absence of the magnetic field, i.e.H = 0, a ferromagnetic coupling,J > 0, favours a parallel
orientation of the spins in the ground state, whereas thermal fluctuations tend to create an orientational
disorder. On the other hand an interaction,J < 0, would be the precursor of an antiferromagnetic order
at low temperatures. Actually, in the specific case considered here, i.e. nearest–neighbour coupling and
bipartite lattice, and withH = 0, the sign of the coupling constant is immaterial, i.e. models defined by
+J and−J yield the same partition function, whereas the two correlation functions are connected by
suitable sign factors.

For n = 1, 2, 3, the model corresponds to the Ising, planar rotator (PR) andHeisenberg (He),
respectively. The Ising model is known to have aZ2 discrete symmetry, while systems withn ≥ 2,
like PR and He, are said to possess a continuousO(n) symmetry. It has become customary to refer to the
number of componentn of the order parameter as symmetry index. The interaction with an external field
breaks this symmetry and establishes a preferred directionfor spin alignment. By reducing the external
field to zero in the thermodynamic limit, the system may exhibit spontaneous magnetization pointing
in the initial direction of the field. It has been shown [6] that the limitn → ∞ leads to the spherical
model [7] obtained by requiring the spins to be continuous variablessubject to a global relaxed constraint
(
∑N

i=1 s
2
i = N ) rather than forcing them to take unit lengths i.e.|si|

2 = 1. The formal limitn → 0 is
relevant to the study of self–avoiding walk problem, which can be applied to polymers.

By now a number of rigorous results, assuming translationalinvariance, have been worked out,
entailing existence or absence of a phase transition in the thermodynamic limit, depending on lattice
dimensionalityd and number of spins componentsn [8, 9].

Model (1.5) with different values ofn and d is extensively studied in the literature via different
methods and its behaviour as a function of the temperature isvery well known. For a review with a
rich list of references see [10]. At H = 0, it exhibits a second order phase transition,1 for anyd > 1
and with discrete spin variables, i.e.n = 1. Such a transition is characterized by a significant growth
of the nearest–neighbour correlations for orientational fluctuations, and also the onset for long–range
orientational correlations. On the other hand, according to the Mermin–Wegner theorem [11] in O(n)
symmetric models (n ≥ 2) there can be no spontaneous symmetry breaking at finite temperatures for
d ≤ 2 meaning that the system remains orientationally disordered at any finite temperature. Ford > 2
andn ≥ 2 a second order phase transition takes place in the system. Inthe two–dimensional cased = 2
andn = 2 the system exhibits a BKT transition from a high temperaturedisordered phase to a low
temperature phase with slow decay of the correlation function and an infinite magnetic susceptibility
[12].

In the vicinity of a continuous phase transition, such as second order or BKT transition, there is only
one dominating length scale related to the growth of fluctuations: Thecorrelation length. Because of the
diverging nature of the correlation length as the critical point is approached the microscopic details of
the system becomes irrelevant. Thus the description of the singular behaviour of many thermodynamic
observables requires a small number of universal variables: critical exponents, amplitudes and functions.
This allows the arrangement of a great variety of different microscopic systems in universality classes
of equivalent critical behaviour. A universality class depends upon the number of components of the
order parameter and the dimensionality of the system. For more details the reader is invited to consult
references [13, 14].

The model (1.5) can describe the properties of a wide variety of physical situations in the vicinity
of their transition point, however, it may happen that the very experimental situation at hand requests
the interaction model to be complicated (made physically richer and theoretically more challenging) in
various ways. On the one hand, there exist different possible lattice typesΛd, in addition toZd. On
the other hand, as for the orientational dependence, more elaborate potential models involve (in some
combination or other) isotropic or anisotropic linear couplings between spin components, sometimes
higher powers of scalar products among the interacting spins, multipolar (usually dipolar) interactions,

1 Here and below the temperature will be measured in units ofJ/kB .



Dzyaloshinski–Moriya terms, single–site anisotropy fields. Notice also that more distant neighbours are
sometimes involved, or even, in principle, all neighbours may be coupled by long–range interactions. In
some specific favourable cases one has even been able to matchthe model and its potential parameters to
a specific experimental system [15]. The ferromagnetic ordering transition observed experimentally in
the absence of an external field is more frequently second order, but first–order transitions are also known.
They might, for example, result from doping by nonmagnetic impurities, anisotropy of interactions in
spin space, or coupling to the lattice [16]. Other interaction models for different physical systemscan be
found in [17].

This review is devoted to the description and analysis of effects related to the nature of the interaction.
This aims at gaining insights in the thermodynamics of some specific systems. The models considered
here are some of the most popular models in the theory of phasetransitions. They involve different kind
of interactions that hopefully might be adapted to the characteristics of a given material. They describe
ferromagnetism with anisotropic coupling, systems with random dilution and may to some extent be used
to investigate fluids. Special attention is paid to the construction of the phase diagrams of these models
that are determined from the investigation of different thermodynamic quantities such as: the free energy,
the susceptibility, specific heat etc.

The review is organised as follows: In Section2 we discuss the transitional behaviour ofgeneralised
XY models introduced in reference [18]. These are generalization of the XY model with a nontrivial
coupling along thez components of the spins. We construct the phase diagrams of the models in two
and three dimensions and determine the effect of the nontrivial coupling on the nature and location of
transition temperature. In Section3 we review the effect of dilution of ferromagnets by the introduction
of random impurities and present the phase diagram of the diluted Heisenberg in three dimensions and
the diluted plane rotator in two dimensions. We conclude with Section4, where we discuss the results
and comment on other models sharing similar transitional behaviour.

2. Generalised XY models
Let us first consider interactions being anisotropic in spinspace with nonvanishing and equal
ferromagnetic couplings involvingm < n components of the partner spins only, while still keeping
the interaction restricted to nearest neighbours. In this case the model reads

Hanis. = −
J

2

∑

〈i,j〉

∑

α,β≤m

δα,βs
α
i s

β
j . (2.1)

Among these models we may mention thecontinuous Ising (m = 1 andn arbitrary) and the various
versions of XY models (m = 2 andn arbitrary), where the interaction is restricted to only onecomponent
and two components of the magnetic moments, respectively

In general the transitional behaviour of such models is analogous to that of theirO(m) isotropic
counterparts: On the one hand, the universal critical behaviour of these models in the vicinity of their
corresponding transition temperature is equivalent to their isotropicO(m) counterparts i.e. the models
share the same universal features (critical exponents and amplitudes). on the other hand, the transition
temperature is a typical non–universal quantity, and is recognizably affected by the anisotropy.

A more general class of anisotropic spin models may be constructed by introducing some kind of
extreme anisotropy coupling only a part of the spin components in some nontrivial manner in addition to
the anisotropic interaction in the spin space. A model that will be discussed in this study is the so called
“generalised” XY model introduced in reference [18]. This model involves3−component unit vectors,
and is defined by

H
p
XY = −

J

2

∑

〈i,j〉

(sin θi sin θj)
p cos(φi − φj), (2.2)

where p ∈ N is a parameter controlling the strength of anisotropy alongthe z–spin direction,
and the spins are expressed in terms of the usual spherical coordinates θi and φi i.e. si =



(sin θi cosφi, sin θi sinφi, cos θi). Notice that by settingp = 1 (p = 0) we recover the familiar XY
model (planar rotator). In this case of the planar rotator model, theθ–dependence only survives in the
free–spin measure. The Hamiltonian (2.2) can also be written in terms of spin components, in the more
complicated form

H
p
XY = −

J

2

∑

〈i,j〉

[

1− (szi )
2 − (szj)

2 + (szi s
z
j)

2
](p−1)/2

(

sxi s
x
j + s

y
i s

y
j

)

. (2.3)

As for the role ofp in Eq. (2.2), notice that it could be taken to be a real positive number, say ranging
between0 and1 (and hence continuously interpolating between planar rotator and XY models). On the
other hand, larger values ofp reinforce the out–of–plane fluctuations. This makes it possible to widely
vary the anchoring of spins with respect to the horizontal plane which might have direct experimental
relevance. As for the present model, this change of anchoring is ultimately reflected by the significant
changes in transition behaviour.

The transitional behaviour of the model in two and three dimensions has been investigated by different
approaches. First, it was proven rigorously [18], on the basis of the known behaviour of PR, that when
d = 2 and for all values ofp, the named potential models produce orientational disorder at all finite
temperatures, and support a BKT–like transition. On the other hand, whend = 3, these models support
ordering transitions taking place at finite temperatures. In both cases, the transition temperatures are
bounded from above by the corresponding values for the PR counterpart. It was later proven [19], again
rigorously, that the transition turns first–order for sufficiently largep. Notice that the threshold values
had to be estimated by other means.

2.1. Two dimensions
Using Monte Carlo simulations, the thermodynamics of model(2.2) has been investigated in details in
reference [20] for d = 2 and values ofp ranging from 2 to 5. Analysis of Monte Carlo data, showed that
the model produces a BKT–(like) transition, possibly changing to a first–order transition for largerp, due
to the large number of vortices and strong out–of–plane fluctuations. It has been found that the transition
temperature is indeed decreasing with increasingp.

To gain insight into the transitional behaviour of the modelfor large values ofp we performed further
Monte Carlo simulations atp = 6. Our analysis shows that the transition is most likely to have a weak
first order nature. Unfortunately more simulations are required and different approaches are needed to
be more conclusive.

In figure 1 we show the phase diagram of the two dimensional generalisedXY model in the(p, T )
plane. It is seen that the model exhibits a phase transition from a paramagnetic phase to a BKT–like phase
as the temperature decreases. The transition temperature is evaluated using Monte Carlo simulations
according to reference [20]. The value of the transition temperature corresponding top = 1 is taken
from reference [21].

2.2. Three dimensions
Ford = 3, different analytical approximations, such as a Mean Field(MF) approach, as well as its Two–
Site Cluster (TSC) refinement have been used in reference [18] to estimate transition temperatures for
p = 2, 3, 4, and then for higher values ofp in subsequent papers (see below). Notice also that(sin θ)p,
and hence the absolute value of the interaction potential, decreases with increasingp, and this aspect is
reflected by thep–dependence of the estimated transition temperature. Transition temperatures have been
estimated in reference [22] by self–consistent harmonic approximation, both ford = 2 andd = 3, and it
was found that the transition temperature is decreasing against p. A study of the model in its continuum
limit, carried out in reference [22] also showed that out–of–plane fluctuations, and consequently the
magnon density, decrease with increasingp.
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Figure 1. (p, T ) phase diagram of the two–dimensional generalised XY model. Full circles indicate a
Berezinskǐı–Kosterlitz–Thouless like phase transition, while the square is believed to corresponds to a
weak first order phase transition.

We have also addressed the three dimensional generalised XYmodels for various values ofp, by
means of Monte Carlo (MC) simulation. We have investigated the transitional behaviour of various
thermodynamic functions, such as the susceptibility and the specific heat, and made comparisons with
MF and TSC predictions. MF yielded a tricritical behaviour with tricritical points having real (non–
integer) values of the parameterp. As for simulation results, transitional behaviour characetristic of the
XY model was found forp = 2, 3, 4, 8, the casep = 12 suggested tricritical behaviour, whereas evidence
of first–order transitions was obtained forp = 16, 20.

In Figure2 we present the(p, T ) phase diagram, where we can read off the behaviour of the transition
temperature as a function ofp for 1 ≤ p ≤ 20. MF and TSC data can be found in references
[18, 19, 23, 24], while Monte carlo data are taken from references [23–25]. Notice that, forp ≤ 4,
TSC gives better estimates ofTc than MF, then the two roles are exchanged forp = 8, 12, and finally
the three methods give very similar answers whenp ≥ 16, i.e. where the transition has a pronounced
first–order character.

3. Annealed dilution in ferromagnets
Another class of systems that has been extensively studied in the literature spans those with random
impurities (disorder). For a review on diluted magnetism see reference [26]. The interest in these
systems stems from the fact that in nature no system is reallypure. Indeed, the presence of cavities,
grain boundaries, lattice defects, chemical impurities (i.e. of other chemical individuals) or some other
kind of disorder may affect the properties of the pure system, and result in different effects. To consider
a simple but rather important example, in a system of magnetically coupled spins, some lattice sites may
be occupied by nonmagnetic constituents (site–dilution).Both in experimental and theoretical terms, one
can distinguish between annealed and quenched disorder.

In quenched systems, impurities are held frozen in randomlydistributed fixed positions, without
the possibility of overcoming potential barriers for diffusing into the host material: in this case the
relaxation time is very long and thermal equilibrium between impurities and the constituents of the host
is never reached. In annealed materials, impurities are allowed to diffuse randomly and to reach thermal
equilibrium with the other constituents of the host material. One can also think of a two–component
solution being very dilute with respect to one of the components. When the system is in the liquid phase,
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Figure 2. Phase diagram of the three dimensional generalised XY model. The solid and dashed lines
stand for transition temperatures estimated via mean–fieldand two–site–cluster treatments, respectively.
Full circles and squares indicate second and first order phase transitions temperatures evaluated via
Monte Carlo simulations, respectively. Full diamonds shows the locations of tricritical points.

molecules of the two types can exchange their positions, anddiffuse throughout the sample. Let then
the system crystallize, at sufficiently low temperature. Inthe resulting solid, particles of the minority
component are fixed in certain lattice sites only.

The simplest extension of equation (1.5) taking these situations into account reads

Hdis. = −
J

2

∑

〈i,j〉

νiνj si · sj. (3.1)

where the occupation numbersνi equal “zero” for a sitei hosting a nonmagnetic impurity and “one” for
a magnetic particle. The density of magnetic particles in the system is defined via

ρ =
1

N

N
∑

i

〈νi〉.

Within this notation the pure system, i.e. without impurities, corresponds toρ = 1.
In the annealed case, Hamiltonian (3.1) can be interpreted as describing a two–component system

consisting of interconverting “real” (νi = 1) and “ghost”, “virtual” or ideal–gas particles (νi = 0). Both
kinds of particles have the same kinetic energy, and the total number of particles equals the number of
available lattice sites. In this case one works in the Grand–Canonical Ensemble where the probability
(1.1) for a configuration, now involving the occupation numbers{νi}, as well as the spins{si}, is defined
by

P ∝ exp

[

−β

(

Hdis. − µ
∑

i

νi

)]

, (3.2)

whereµ denotes the excess chemical potential of “real” particles over “ideal” ones. Of course, the
interaction may be anisotropic in spin space, as in the casesoutlined above, or involve more distant
neighbours. The system remains translationally invarianton average. This model bears some similarity



with the Blume–Emery–Griffiths model [27] for 3He impurities in superfluid4He. More precisely, notice
also that, starting from an assigned model, its lattice gas extensions can be written in general as

HLG = −
J

2

∑

〈i,j〉

νiνj si · sj +
λ

2

∑

〈i,j〉

νiνj , (3.3)

where the purely positionalλ term only becomes immaterial in the pure limitµ → +∞. In equation
(3.1) we have chosen the simplest caseλ = 0. Lattice gas models can be used to model adsorption, and,
in general, the variable occupation numbers produce some fluidity of the system. One can also set the
couplingJ term to zero, so that the resulting model becomes isomorph with an Ising model in external
field. In general, the interplay betweenJ andλ can produce a richer phase diagram: for example, when
λ > 0 andµ is sufficiently large, the ground state may exhibit checkerboard positional order but no
orientational one.

It is very well known that a small amount of annealed disorderdoes not affect the way the singularities
take place in pure systems i.e. the phase transition remainsa second order one. Theρ–dependent critical
temperature is shifted towardsTc(ρ) < Tc(1). If the chemical potentialµ is held fixed, the properties of
the phase transition are the same as those known for the pure system, corresponding toµ → ∞ andρ = 1.
If, however, the concentrationρ is kept fixed during the transition, care must taken in characterising the
transition. For details see reference [28].

A significant amount of impurities may alter the order of the phase transition or make it disappear.
Investigations of the XY model, as a protype for He3 – He4 mixtures, in three dimensions, via high
temperature series expansion of the partition function, show that by increasing the density of randomness
the transition temperature decreases. At a certain value ofρ the transition changes its nature and turns
into a first order one [29]. The second order phase transition line ends at a tricritical point, which marks
the begining of a line of fisrt–oder phase transition temperature that keeps decreasing as the concentration
of impurities increases.

In the three–dimensional case, the topology of the phase diagram of model (3.1) had been investigated
by MF and TSC approximations for the Ising [30], as well as PR cases [31] in the presence of a magnetic
field, and for He at zero magnetic field [32]. These investigations were later extended [33] to the
extremely anisotropic (Ising–like) two–dimensional model, and in the absence of a magnetic field, as
well. The studied models were found to exhibit a tricriticalbehaviour i.e. the ordering transition turned
out to be of first order forµ below an appropriate threshold, and of second order above it. When the
transition is of first order, the orientationally ordered phase is also denser than the disordered one.

To check the predictions of the molecular–field–like treatments used to construct the phase diagrams,
extensive Monte Carlo simulations has been performed [31–33] for particular values of the chemical
potential. A number of thermodynamic and structural properties had been investigated. It had been
found that there is asecond order ferromagnetic phase transition manifested by a significantgrowth
of magnetic and density fluctuations. The transition temperatures were found to be smaller than those
of the corresponding values for the pure systems and the critical behaviour of the investigated models
to be consistent with that of their pure counterparts. Furthermore it had been found that MF yields a
qualitatively correct picture, and the quantitative agreement with simulation could be improved by TSC,
which has the advantage of predicting two–site correlations. In general we found that simulations results
are consistent with the molecular–field like treatments.

In figure 3 we report the phase diagrams in the chemical potential – temperature and density –
temperature planes. We show the behaviour of the transitiontemperatureTc versus chemical potential
µ. The plot also shows a fast, approximately linear, increaseof Tc with µ up toµ ≈ 0, and a slower one
above this value. Moreover, MF and TSC results essentially coincide up toµ ≈ 0. In the phase diagram
in the (ρ, T ) plane the existence of a first–order transition is reflectedby a biphasic region. We found
that the system exhibits a first–order phase transition froma dense BKT phase to a paramagnetic one. In
the temperature–density phase diagram, both phases are expected to coexist over some range of densities
and temperatures.
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Figure 3. Phase diagrams of the three–dimensional Heisenberg model in the chemical potential –
temperature and density – temperature planes. Solid and dashed lines correspond to mean–field and
two–site–cluster results, respectively. Circles and squares stand, respectively, for estimates of the second
and first order transition temperatures using Monte Carlo simulations. Diamonds mark the locations
of tricritical points. The dotted line marks the transitiontemperature of the model in the absence of
impurities.

Two–dimensional annealed lattice models were investigated [34, 35] as well, and the obtained results
for µ = 0 or a moderately negativeµ were found to support a BKT phase transition with a transition
temperature lower than that of the pure parent due to the presence of impurities. For negative and
sufficiently large in magnitudeµ we found evidence of a first order phase transition in agreement with
renormalization group treatments [36, 37].

In figure 4 we show the phase diagram in the(ρ, T ) plane. The existence of a first–order transition
is reflected here by a biphasic (binodal) region. The phase diagram obtained here is similar to the one
resulting from the study of the diluted planar rotator model[31].

So far, we have discussed isotropic models. As we have mentioned, in addition to dilution one
can consider anisotropic interactions as well. In reference [33] we have investigated two–dimensional
continuous Ising spin models with two and tree component spins. The phase diagrams of these models
were found to be topologically similar to those found for theHeisenberg model shown in figure3. The
main differences come from the locations of the phase boundaries.

4. Conclusion
The Statistical Mechanics of lattice systems is essentially based on the study of a number of relatively
“simple” models which are gradually made more complicated.We have shown here some examples,
involving generalized XY models and annealed magnetic systems, where rigorous results have been
produced to prove existence and type of transition, supplemented by a variety of techniques (MF or
TSC approximation and Monte Carlo simulation) for elucidating the resulting physical behaviour and
estimating numerical values.

We obtained the phase diagram in two and three dimensions of ageneralized version of the lattice XY
model, where the out–of–plane fluctuations of the spins are controlled by a parameterp. Our investigation
shows that the nature of the transition is highly affected bythe strength of the out–of–plane fluctuations.
Forp ≥ 12 at three dimensions andp & 6 at two dimensions, it is first order, whereas for small valuesits
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for estimates of the second and first order transition temperatures using Monte Carlo simulations.
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transitional behaviour coincides with that of the originalXY model. The transition temperature is found
to decrease asp increases at any dimension.

We constructed the phase diagrams of the annealed lattice plane rotator in two dimensions and the
Heisenberg model in three dimensions. It is found that the transition changes from a second order at
three dimensions and Berezinskiı̌–Kosterlitz–Thouless at two dimensions into a first order transition as
the concentration of impurities is increased. In turn the transition temperature is found to decrease with
increasing impurity density.
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