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Universal contact of strongly interacting fermions at finite temperatures
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The recently discovered universal thermodynamic behaviour of dilute, strongly interacting Fermi
gases also implies a universal structure in the many-body pair-correlation function at short distances,
as quantified by the contact I. This quantity is an excellent indicator of the presence of strong
correlations in these systems, which provide a highly accessible physical model for other strongly
correlated quantum fluids. Here we theoretically calculate the temperature dependence of this
universal contact for a Fermi gas in free space and in a harmonic trap. At high temperatures above
the Fermi degeneracy temperature, T & TF , we obtain a reliable non-perturbative quantum virial
expansion up to third order. At low temperatures we compare different approximate strong coupling
theories. These make different predictions, which need to be tested either by future experiments or
advanced quantum Monte Carlo simulations. We conjecture that in the universal unitarity limit, the
contact or correlation decreases monotonically with increasing temperature, unless the temperature
is significantly lower than the critical temperature, T ≪ Tc ∼ 0.2TF . We also discuss briefly how to
measure the universal contact either in homogeneous or harmonically trapped Fermi gases.

PACS numbers: 03.75.Hh, 03.75.Ss, 05.30.Fk

I. INTRODUCTION

Understanding strongly interacting fermions is one of
the most challenging problems in present-day physics [1].
While the behavior of interacting fermions can be under-
stood in some well-defined regions of parameter space,
it remains elusive in the correlated strongly interacting
regime [2, 3]. A better understanding of strongly inter-
acting fermions has wide-ranging implications for sys-
tems such as quark matter in neutron stars and high-
temperature superconductors. An important generic idea
in this field is fermionic universality [4, 5]: all strongly
interacting, dilute Fermi gases should behave identically,
depending only on a scaling factor equal to the average
particle separation, but not on the details of the interac-
tion.

The recent realization of broad collisional (Feshbach)
resonances with an interaction potential range r0 small
relative to the inter-particle spacing in ultracold atomic
Fermi gases provides a highly controlled environment
for studying the general problem of strongly interact-
ing fermions [2, 3]. By applying an external magnetic
field across the resonance, the interparticle interaction
can be accurately tuned from weak to infinitely strong
[6]. This has led to the observation of crossover from
Bardeen-Cooper-Schrieffer (BCS) superfluids to Bose-
Einstein condensations (BEC) [7–9].

The most strongly interacting regime lies at the reso-
nance, where the s-wave scattering length as diverges and
the two-body scattering amplitude reaches its maximum
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value allowed by quantum mechanics, i.e., it becomes
unitarity limited [4]. A number of properties in the uni-
tarity limit have been characterized. In particular the
universal thermodynamic behavior [5, 10–15] has been
experimentally observed, and agrees with approximate
analytic theories and Monte Carlo simulations. However,
it is still nontrivial to calculate these universal properties
quantitatively, as there is no small interaction parameter
in a perturbation theory expansion.

In 2008, Tan gave new insight into this difficult prob-
lem by deriving a set of relations which link the short-
distance, large momentum correlations to the bulk ther-
modynamic properties of a fermion system with short-
range interparticle interactions [16–28]. These relations
generically apply to any dilute Fermi gas with an inter-
particle spacing much larger than r0. All of these Tan re-
lations are exact in the limit of a vanishingly small range
of the interaction potential, so that kF r0 → 0, where
kF is the Fermi momentum. They are connected by a
single coefficient I, referred to as the integrated contact
intensity or “contact”. For instance, the pair correlation
function is predicted to diverge as I/(16πr2) at short dis-
tance r(≫ r0) → 0 [16] and the momentum distribution
will fall off as I/k4 at large momentum k(≪ 1/r0) [17].
The original definition of the contact given by Tan is,

I = lim
k→∞

k4ρσ(k), (1)

where ρσ(k) is the momentum distribution in one spin
component. The contact I is an extensive quantity and
has the unit of NkF , where N is the total number of
atoms of the system. For a homogeneous Fermi gas, it
is also convenient to use a contact intensity, C = I/V ,
where V is the volume of the system.

The immediate significance of the Tan relations can
be seen most clearly from Tan’s adiabatic sweep theorem
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[17],
[

∂E

∂
(

a−1
s

)

]

S,N

= − ~
2I

4πm
, (2)

which states that the rate of adiabatic change of the to-
tal energy with respect to the inverse scattering length is
proportional to the contact. While it is surprising that
the short-range, high-energy correlations can be related
so seamlessly to the low-energy equation of state, this
result is closely related to the Feynman-Hellman theo-
rem which has been used to calculate correlations in one-
dimensional Bose gases.

In the strongly interacting regime, universal thermody-
namics implies a universal contact. The determination of
the contact therefore provides a very important means of
characterizing the many-body properties and phases of
strongly interacting fermions, complementary to existing
measurements of the equation of state. As it is related
to the derivative of the observed energy, the contact is
a more sensitive test of theoretical predictions than di-
rect thermodynamic measurements. We note that some
of the Tan relations have been confirmed experimentally
at JILA in the USA [29] and at Swinburne University of
Technology in Australia [30].
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Figure 1. (Color online) The experimental measured contact
for a trapped interacting Fermi gas (symbols) is shown as a
function of the dimensionless coupling constant 1/(kF as). It
is compared with a zero-temperature perturbation prediction
(solid line) [30] and a finite-temperature second-order virial
expansion calculation at 0.5TF (dashed line) [25]. The mea-
surements include Bragg spectroscopy (empty squares) [30],
momentum distributions (solid or empty circles) [29], rf spec-
troscopy (stars) [29], and molecular fraction (triangles) [32].

Experimentally, the contact is obtained by a number
of methods, including measuring:

• the molecular fraction [31, 32],

• the momentum distribution tail [29],

• the radio-frequency (rf) spectroscopy signal at large
frequencies [29, 33], or

• the spin-antiparallel static structure factor at large
momenta, using two-photon Bragg spectroscopy
[25, 30].

Figure 1 summarizes all the measured contact data to
date for a trapped interacting Fermi gas (symbols). The
experimental results are compared with our earlier pre-
dictions of a zero-temperature result from an approxi-
mate Gaussian pair fluctuation theory (solid line) [30]
and from a finite-temperature calculation using the quan-
tum virial expansion (dashed line) [25]. The data agree
reasonably well with the zero-temperature curve, al-
though near the unitarity limit they seem to lie system-
atically lower, possibly due to the nonzero temperature
in these experiments. A similar theoretical calculation at
zero temperature has been reported by Werner and col-
laborators [32] by interpolating the known perturbation
results in the BEC and BCS limits.

In this paper, following the pioneering studies by Yu,
Palestini and co-workers, we systematically investigate
the temperature dependence of the contact for the most
interesting case of a unitary Fermi gas. Yu et al. es-
timated the finite-temperature behavior of the universal
contact [34], based on an assumption of phonon excita-
tions at low temperatures and a second-order quantum
virial expansion at high temperatures; while Palestini et

al. presented ab-initio results using a non-self-consistent
T -matrix approximation [35]. Both studies predicted
a pronounced maximum in the contact at finite tem-
peratures of about 0.6TF and 0.2TF , respectively. The
present investigation, however, calls into question this
prediction of a temperature-dependent peak in the uni-
versal contact. Our main results are summarized below,
following a two-fold motivation.

Firstly, we wish to improve the high-temperature quan-
tum virial expansion study of the contact up to the third
order. This improvement provides us a general idea of
how the expansion converges with decreasing tempera-
ture and therefore enables us to estimate the tempera-
ture window for its applicability. We find that the virial
expansion of the contact is quantitatively accurate down
to the Fermi degenerate temperature TF and 0.5TF for a
homogeneous and trapped Fermi gas at unitarity, respec-
tively. We show that, in exact analogy with the virial ex-
pansion of thermodynamic potential [36], the contact at
unitarity can also be expanded in terms of universal, tem-
perature independent coefficients, cn = ∂∆bn/∂(λ/as),
referred to as the contact coefficients later on. Here, ∆bn
is the n-th virial coefficient and λ is the thermal wave-
length. This is a direct consequence of fermionic uni-
versality. We predict that for a uniform unitary Fermi
gas, the second and third contact coefficients are given
by, respectively, c2,∞ = 1/π ≃ 0.318 and c3,∞ ≃ −0.141.
Here, the subscript “∞” stands for the unitarity limit
with as = ±∞.

Secondly, we are interested in the low-temperature be-
havior of the universal contact. In the strongly interact-
ing regime, as there is no controllable small interaction
parameter, a comparative study using different strong
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coupling theories is necessary [37–39]. We find that the
theoretical descriptions of the finite-temperature contact
from different strong coupling theories show considerable
discrepancies near the critical temperature Tc (∼ 0.2TF )
for the onset of superfluidity. In particular, the enhance-
ment (peak structure) of the contact near Tc, found ear-
lier in the non-self-consistent T -matrix calculation [35],
is completely absent in other strong coupling theories.
Therefore, we conjecture that the universal contact de-

creases monotonically with increasing temperature, un-

less the temperature is much smaller than the critical

temperature. This discrepancy remains to be resolved by
future experiments and advanced quantum Monte Carlo
simulations [40–42], exploring the critical temperature
regime close to resonance.

Our paper is organized as follows: in Sec. II we present
the quantum virial expansion for the contact and calcu-
late the universal contact coefficient at unitarity, for both
trapped and homogeneous Fermi gases. We then discuss
how to determine the contact from strong-coupling the-
ories in Sec. III, using different means via the tail of
momentum distribution, Tan’s adiabatic sweep relation
and pressure relation. Theoretical predictions for the
uniform universal contact from different strong-coupling
theories are compared with each other and compared as
well with the accurate virial expansion results in the high-
temperature regime. In the next section (Sec. IV), we
introduce how to calculate the trapped universal contact
from the homogeneous data and report the results of dif-
ferent strong-coupling theories and virial expansion. In
Sec. V, we discuss briefly the measurement of the tem-
perature dependence of the universal contact in a homo-
geneous Fermi gas. A summary and outlook is given in
Sec. VI.

II. QUANTUM VIRIAL EXPANSION OF THE

CONTACT

The quantum virial expansion has proved to be an ef-
ficient method for studying the high-temperature prop-
erties of ultracold atomic Fermi gases [36, 43–48]. This
method utilizes the fact that in the high temperature
limit, the chemical potential µ diverges to −∞ and the
fugacity z ≡ exp(µ/kBT ) ≪ 1 is a well-defined small ex-
pansion parameter. Thus, one may expand any physical
quantities of interest in powers of fugacity, no matter how
strong the interaction is.

For the grand thermodynamic potential of a two-
component Fermi gas, the expansion is given by [36, 46],

Ω = −kBTQ1

[

z + b2z
2 + · · ·+ bnz

n + · · ·
]

, (3)

where Qn = Trn[exp(−H/kBT )] is the partition function
of a cluster containing n particles and bn is the n-th virial
expansion coefficient. The trace Trn takes into account
all the quantum states of n-particles with a proper sym-
metry. The virial coefficient bn can be calculated from

the cluster partition functions [36, 46], for instance,

b2 = Q2/Q1 −Q1/2 (4)

and

b3 = Q3/Q1 −Q2 +Q2
1/3, etc. (5)

In practice, it is often convenient to separate out a
background, non-interacting thermodynamic potential,

Ω(1) = −kBTQ1[z + b
(1)
2 z2 + · · · + b

(1)
n zn + · · · ]. Here,

we have used the superscript “1” to indicate the non-
interacting systems. The thermodynamic potential of in-
teracting Fermi gases can then be rewritten as,

Ω = Ω(1) − kBTQ1

[

∆b2z
2 + · · ·+∆bnz

n + · · ·
]

, (6)

where ∆bn = bn − b
(1)
n . For a homogeneous Fermi gas,

Q1 = 2V/λ3 with volume V and thermal wavelength λ ≡
[2π~2/(mkBT )]

1/2 .
The essential assumption of the quantum virial expan-

sion is that the above expansion of Ω − Ω(1) converges
for temperatures down to Tc, the critical temperature
for the onset of superfluidity. We note that the fugac-
ity in the expansion may be larger than unity at these
low temperatures. However, convergence is still possible
given small enough virial coefficients ∆bn. For a homo-
geneous unitary Fermi gas, the second virial coefficient
∆b2,∞ = 1/

√
2 was known 70 years ago [49]. The third

virial coefficient, ∆b3,∞ ≃ −0.35501298, was recently cal-
culated by the present authors [36] and confirmed experi-
mentally in an accurate thermodynamic measurement by
Nascimbène and co-workers [13].

The virial expansion of the contact follows directly
from an alternative representation of Tan’s adiabatic
sweep theorem in the grand-canonical ensemble,

[

∂Ω

∂
(

a−1
s

)

]

T,µ

= − ~
2I

4πm
. (7)

This is simply because the adiabatic sweep theorem im-
plies the first law of thermodynamics,

∆E = ~
2I/(4πm)∆(−a−1

s ) + T∆S + µ∆N , (8)

which can alternatively be written as

∆Ω = ~
2I/(4πm)∆(−a−1

s )− S∆T −N∆µ . (9)

Therefore, using Eq. (6) we immediately obtain a quan-
tum virial expansion for the contact:

I =
4πm

~2
kBTQ1λ

[

c2z
2 + · · ·+ cnz

n + · · ·
]

, (10)

where we have defined the dimensionless contact coeffi-
cient, cn ≡ ∂∆bn/∂(λ/as). For a homogeneous system,
we sometime use the contact intensity, C = I/V .

In general, the contact coefficient should be a func-
tion of λ/as and hence is temperature dependent. In the
unitarity limit where λ/as = 0, however, we anticipate
a constant, universal contact coefficient, similar to the
universal virial coefficient ∆bn,∞ [36, 43]. This is a man-
ifestation of fermionic universality, shared by all systems
of strongly interacting fermions [4, 5].
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A. Universal relation between the homogeneous

and trapped contact coefficients

In exact analogy with the virial coefficient [36],
fermionic universality leads to a very simple relation be-
tween the trapped and homogeneous contact coefficients
at unitarity. Let us consider the contact of a harmon-
ically trapped Fermi gas with the trapping potential,
VT (r) = mω2r2/2 or VT (r) = mω2

⊥(x
2 + y2)/2 + ω2

zz
2/2

with ω ≡ (ω2
⊥ωz)

1/3. In the thermodynamic limit of
ω → 0, we may use the local density approximation
and neglect the discrete energy levels. The whole Fermi
system is treated as many cells with a local chemi-
cal potential µ(r) = µ − VT (r) and a local fugacity
z(r) = eµ(r)/kBT ≡ z exp(−VT /kBT ). Due to the con-
stant contact coefficients, the spatial integration in the
total contact IT =

´

dr[C(r)] can be easily performed.
Here, we use the subscript “T ” to indicate explicitly the
trapped system. We find that,

IT =
4πm

~2
kBTQ1,Tλ

[

c2,∞,T z
2 + c3,∞,T z

3 + · · ·
]

,

(11)
where the trapped contact coefficient is given by a uni-
versal relation,

cn,∞,T =
cn,∞
n3/2

, (12)

and Q1,T = 2(kBT )
3/(~ω)3 is the single-particle parti-

tion function in harmonic traps and in the local density
approximation.

In the following, using the known solution of two- and
three-fermion problems, we calculate the universal second
and third contact coefficients, in both homogeneous and
trapped configurations.

B. Second universal contact coefficient

The second contact coefficient of a homogeneous inter-
acting Fermi gas can be obtained from the well-known
phase-shift expression for the second virial coefficient
[43, 49],

∆b2√
2

=
∑

i

e−Ei
b/(kBT ) +

1

π

∞̂

0

dk
dδ0
dk

e−λ2k2/(2π). (13)

Here, Ei
b is the energy of the i-th bound state of the

two-body attractive interaction and δ0(k) is the s-wave
scattering phase shift, given by k cot δ0 ≃ −1/as+r0k

2/2.
To obtain the derivative ∂∆b2/∂(λ/as), let us choose the
BCS side with as < 0, on which the two-body bound
state is absent. As the range of the interaction potential
r0 is vanishingly small so that kBT ≪ ~

2/(mr20) and
k ≪ 1/r0, we find that dδ0(k)/dk ≃ −as/[1 + k2a2s] and,

∆b2(as < 0) =

√
2

π

∞̂

0

dt
1

1 + t2
e−λ2t2/(2πa2

s). (14)

Near to the resonance, it is readily seen that ∆b2 ≃
1/

√
2 + λ/(πas), giving rise to a homogeneous contact

coefficient,

c2,∞ =
1

π
. (15)

To calculate the trapped second contact coefficient, we
consider the second virial sufficient in an isotropic har-
monic trap, which is given by [36, 46],

∆b2,T =
1

2

∑

n

[

e−ǫrel,n/kBT − e−ǫ
(1)
rel,n/kBT

]

. (16)

Here, ǫrel,n = (2νn+3/2)~ω is the n-th relative energy of
two fermions with unlike spins and νn satisfies the secu-
lar equation, 2Γ(−νn)/Γ(−νn − 1/2) = d/as, with Γ the

gamma function and d =
√

2~/(mω) the characteristic
length scale of the harmonic trap. The non-interacting

relative energy is ǫ
(1)
rel,n = (2n + 3/2)~ω (n = 0, 1, 2, ...)

and in the unitarity limit, the solution of νn is known
analytically, νn,∞ = n− 1/2. It is easy to show that,

[

∂ǫrel,n
∂ (λ/as)

]

λ/as=0

= −~ωd

πλ

Γ (n+ 1/2)

n!
. (17)

Thus, we find that in the unitarity limit,

c2,∞,T =
d

2πλ
ω̃

∞
∑

n=0

Γ (n+ 1/2)

n!
e−(2n+1/2)ω̃, (18)

where ω̃ ≡ ~ω/(kBT ) ≪ 1 is the reduced trapping fre-
quency. The sum over n can be exactly performed, lead-
ing to,

c2,∞,T =
1

2
√
2π

[

2ω̃

e+ω̃ − e−ω̃

]1/2

=
1

2
√
2π

[

1− ω̃2

12
+O

(

ω̃4
)

]

. (19)

The leading term in the above equation is universal, sat-
isfying the universal relation Eq. (12). The second term
(∝ ω̃2) is non-universal and is caused by the length scale
of the harmonic trap [36]. It represents the finite-size cor-
rection to the local density approximation that we have
adopted above. This correction however is extremely
small if ω̃ → 0, as anticipated. At the Fermi degen-
erate temperature, TF = (3N)1/3~ω/kB, we find that
ω̃2 ∝ N−2/3 ∼ 10−4, for the typical number of atoms
N ∼ 105 in the current experiments [2].

C. Third universal contact coefficient

The determination of the third contact coefficient is
more cumbersome. In the homogeneous case, it is ex-
tremely difficult to use the conventional method em-
ploying the three-particle scattering matrix to obtain



5

the third virial coefficient. Therefore, it is more prac-
tical to determine firstly the trapped contact coefficient
c3,∞,T , and then to use the universal relations at low
trap frequency to obtain the homogeneous result, c3,∞ =

3
√
3c3,∞,T . We note that this method relies on exact

three-body solutions to the energy eigenvalues in a trap.
These are known analytically for all eigenstates, and can
be summed numerically to any required accuracy.

An estimate of c3,∞,T can already be obtained by the
known results of ∆b3,T as a function of the coupling con-
stant 1/kFas at different temperatures T/TF and at a
small ω̃ ∼ 0.1 (see, for example, Fig. 3b in Ref. [36]),
simply because,

c3,T ≡ 1

kFλ

∂∆b3,T
∂(1/kFas)

=

√

T

4πTF

∂∆b3,T
∂(1/kFas)

. (20)

We find that the coefficient c3,∞,T at resonance is indeed
nearly temperature independent and estimate from the
slope of ∆b3,T that, c3,∞,T (estimate) ≃ −0.0265 at ω̃ ∼
0.1.

An accurate determination of c3,∞,T requires a sys-
tematic extrapolation to the limit of ω̃ = 0. For this pur-
pose, we calculate numerically the derivative c3,∞,T (ω̃) =
[∂∆b3,T /∂(λ/as)]λ/as=0 as a function of ω̃. Using the
small ω̃ data, a numerical extrapolation to ω̃ = 0 gives
rise to the trapped third virial contact coefficient,

c3,∞,T ≃ −0.0271. (21)

Thus, we obtain immediately from the universal relation,
Eq. (12), the homogeneous third contact coefficient,

c3,∞ = −0.141. (22)

D. Large-T contact: the homogeneous case

We are now ready to calculate the universal contact in
the high temperature regime. For a homogeneous Fermi
system, the single-particle partition function Q1 = 2V/λ3

and the dimensionless contact I/(NkF ) is given by,

I
NkF

≡ C
ρkF

= 3π2

(

T

TF

)2
[

c2,∞z2 + c3,∞z3 + · · ·
]

.

(23)
Here N ≡ ρV is the total number of atoms with the
homogeneous density ρ.

The fugacity z is determined by the number equation
[46],

ρ̃ = ρ̃(1) (z) +
[

2∆b2,∞z2 + 3∆b3,∞z3 + · · ·
]

, (24)

where we have defined a dimensionless density ρ̃ ≡
ρλ3/2 = [4/(3

√
π)](TF /T )

3/2 and the density of a non-
interacting Fermi gas as

ρ̃(1)(z) ≡ (2/
√
π)

ˆ ∞

0

dt
√
t/(1 + z−1et) . (25)

In practice, for a given fugacity, we calculate the di-
mensionless density using Eq. (24) and hence the re-
duced temperature T/TF . The dimensionless contact is
then obtained from Eq. (23), as a function of T/TF or
the inverse fugacity z−1.
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Figure 2. (Color online) Universal contact of a homogeneous
unitary Fermi gas at high temperatures, as predicted by the
quantum virial expansion method up to the second order
(dashed line) and the third order (solid line). Dashed verti-
cal line indicates the Fermi degenerate temperature TF . The
inset shows the contact as a function of the inverse fugacity.

Figure 2 reports the temperature (main figure) or fu-
gacity (inset) dependence of the homogeneous contact in
the unitarity limit, calculated by virial expanding to the
second order (dashed line) or third order (solid line). The
close agreement between the second and third predictions
strongly indicates that the virial expansion works quan-

titatively well down to the Fermi degenerate temperature
TF , as indicated by the vertical dashed line. At sufficient
high temperatures, where

z ≃ ρ̃ = [4/(3
√
π)](TF /T )

3/2 , (26)

the leading temperature dependence of the contact is
given by,

I
NkF

(T ≫ TF ) =
16

3

(

T

TF

)−1

, (27)

as predicted by Yu and co-workers [34]. We note however
that the prefactor there is smaller by a factor of 4π2, due
to a different definition for the contact.

E. Large-T contact: the trapped case

For a trapped Fermi gas at unitarity, the dimensionless
contact can be written as,

IT
NkF

= 24π
3/2

(

T

TF

)7/2
[

c2,∞,T z
2 + c3,∞,T z

3 + · · ·
]

.

(28)



6

The number equation takes the form [46],

ρ̃T = ρ̃
(1)
T (z) +

[

2∆b2,∞,T z
2 + 3∆b3,∞,T z

3 + · · ·
]

, (29)

where ρ̃T ≡ (N/2)(~ω)3/(kBT )
3 = (TF /T )

3/6 and the

density of a non-interacting trapped Fermi gas ρ̃
(1)
T (z) ≡

(1/2)
´∞

0
dtt2/(1 + z−1et). The trapped virial coefficient

is given by ∆bn,∞,T = ∆bn,∞/n3/2. In analogy with the
homogeneous case, for a given fugacity we determine the
reduced temperature T/TF from the number equation
(29) and then calculate the trapped contact using Eq.
(28).
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Figure 3. (Color online) Universal contact of a trapped uni-
tary Fermi gas at high temperatures, obtained by expanding
the virial series to the second order (dashed line) and the third
order (solid line). The inset shows the contact as a function
of the inverse fugacity.

Figure 3 presents the virial expansion prediction for the
trapped universal contact, expanding up to the second or-
der (dashed line) or third order (solid line). Amazingly,
because of the factor of n−3/2 reduction for the n-th con-
tact coefficient in harmonic traps, the convergence of the
expansion is much improved. The expansion now seems
to be quantitatively reliable down to 0.5TF . The asymp-
totic behavior of the contact at very high temperatures
can be determined by setting

z ≃ ρ̃T = (TF /T )
3/6 . (30)

We find that,

( I
NkF

)

T

(T ≫ TF ) =

√
2π

6

(

T

TF

)−5/2

, (31)

in agreement with our previous result from the large mo-
mentum behavior of static structure factor [25]. Thus,
the contact in harmonic traps decays at high tempera-
tures much faster than in homogeneous space, due to the
reduction of the peak density at the trap center at high
temperatures.

III. LOW-T HOMOGENEOUS CONTACT FROM

STRONG COUPLING THEORIES

At low temperatures, we have to resort to strong cou-
pling theories to determine the contact. In the absence
of a controllable small interaction parameter, however,
there is no known a priori theoretical justification for
which strong coupling theory is the most appropriate
[39]. Here we consider three different theories within
the many-body T -matrix approximation: the Nozières
and Schmitt-Rink (NSR) Gaussian pair fluctuation the-
ory [7, 50–53], non-self-consistent G0G0 theory [54–56],
and self-consistent GG theory [57–59].

A. Brief review of T -matrix approximations

The T -matrix approximation is also referred to as lad-
der approximation, which involves infinite set of Feyn-
man diagrams — the ladder sum in the particle-particle
channel. It is now generally accepted that this ladder sum
is necessary for accounting for strong pair fluctuations in
the strongly interacting regime and is the leading class
of all sets of diagrams [60, 61]. The need for including
infinite sets of Feynman diagrams is self-evident, since we
are dealing with a strongly interacting theory in which
there is no small coupling constant that would allow a
truncation of perturbation theory to finite order.

There are several T -matrix theories, differing in the di-
agrammatic structure of the T -matrix t(Q), the particle-
particle propagator χ (Q), and the self-energy Σ (K).
The ones we consider here are respectively given by the
following form [60, 61],

t(Q) =
U

[1 + Uχ (Q)]
, (32)

χ (Q) =
∑

K
Gα (K)Gα (Q−K) , (33)

Σ (K) =
∑

Q
t (Q)Gα (Q−K) . (34)

Here and throughout, Q = (q, iνn), K = (k, iωm), while
U−1 = m/(4π~2as) −

∑

k
1/(2ǫk) is the bare contact in-

teraction renormalized in terms of the s-wave scattering
length. We follow the conventional notations and use
ǫk = ~

2k2/(2m) and
∑

K = kBT
∑

m

∑

k
, where q and

k are wave vectors, while νn and ωm are bosonic and
fermionic Matsubara frequencies. The Greek subscript α
in the expressions for the propagator χ (Q) and the self-
energy Σ (K) may either be set to “0”, indicating a non-
interacting Green’s function G0(K), or be absent, indi-
cating a full interacting Green’s function G (K). The lat-
ter can be calculated once the self-energy is determined,
using the Dyson equation,

G (K) =
G0 (K)

[1−G0 (K)Σ (K)]
. (35)

By taking different values of α, two different T -matrix
approximations are obtained: either self-consistent (no
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α), or non-selfconsistent (α = 0) . We note that, in the
superfluid phase the Green’s function has to be a 2 × 2
matrix, accounting for the U(1) symmetry breaking.

The simplest choice in the T -matrix approximation
is to take a non-interacting Green function G0(K) ev-
erywhere in χ (Q) and Σ (K). This idea was pioneered
by Nozières and Schmitt-Rink (NSR) for an interacting
Fermi gas in its normal state [7]. In addition, an approx-
imate Dyson equation for the Green’s function, i.e.,

G (K) = G0 (K) +G0 (K)Σ (K)G0 (K) , (36)

was used. Interestingly, this non-self-consistent NSR ap-
proach combined with a truncated Dyson equation can be
reformulated using the functional path-integral language
for the grand thermodynamic potential [50], expanded to
second order to include Gaussian fluctuations. From this
perspective, the NSR theory is the first step in an order-
by-order expansion in path-integral fluctuations, which
has a systematic path to including higher-order terms.

The NSR theory was extended recently to the broken-
symmetry superfluid phase by several authors in differ-
ent manners [51, 53, 63–65], some of which involve as-
sumptions in order to ease the computational workload.
A full extension following the original idea of Nozières
and Schmitt-Rink was reported by the present authors
in 2006 [51], with the use of a mean-field (2 × 2 matrix)
BCS Green’s function as “G0”. Hereafter we shall refer
to this extension as a Gaussian pair fluctuation theory or
the GPF approach.

The truncation of the Dyson equation, Eq. (36), can
be avoided, as shown by Strinati [54, 55] and Combescot
[56] and their co-workers. In particular, in the superfluid
state the coupled T -matrix equations have been solved
[55]. In the following, we shall refer to this non-self-
consistent T -matrix approximation with no truncation in
the Dyson equation as the G0G0 theory. However, since
this approach is no longer part of a systematic expansion
of the path integral, it is an open question as to whether
it is more or less accurate than the NSR theory.

More sophisticated strong-coupling theories can also be
obtained by using the full (dressed) Green function G (K)
in χ (Q) and Σ (K). This modification, referred to as the
self-consistent GG theory, was investigated in detail at
the BEC-BCS crossover by Haussmann and collabora-
tors [57, 59], above and below the superfluid transition
temperature. One advantage of the GG approximation
is that the theory satisfies the so-called Φ−derivability
and is thus conserving, although the conservation is at
the single-particle level only. The GG theory has also
been intensively studied in the condensed matter physics,
particularly for high-temperature materials, under the
name of the fluctuation exchange (FLEX) approxima-
tion [60, 61]. Below threshold the GG approximation is
difficult to treat at unitarity, and generally involves ad-
ditional assumptions in order to obtain a scale-invariant
theory.

It is clear that in both the NSR or G0G0 approxi-
mations one omits infinite classes of diagrams that are

responsible for multiparticle interactions. The fully self-
consistent GG theory attempts to correct for this, by
modifying the single-particle Green function in the lad-
der diagram. However, the more crucial interaction ver-
tices remain unchanged. At this stage, there are no gen-
eral grounds for deciding which strong-coupling theory
is the most appropriate. Therefore, any theoretical pre-
dictions produced by different strong coupling theories
should be treated conservatively and be examined criti-
cally using more accurate ab-initio quantum Monte Carlo
simulations or future experiments. We note that, for the
equation of state of strongly interacting fermions, a com-
prehensive comparison between different strong-coupling
theories and most recent experimental results was re-
ported by the present authors [39]. In this earlier compar-
ison we also included intermediate (GG0) theories which
are partially self-consistent[62]. These are omitted here
for simplicity.

In the following, we calculate the universal contact at
unitarity by using the GPF or NSR theory and compare
our results with these reported by Strinati and co-workers
(G0G0) [35] and with the predictions provided by Hauss-
mann and co-workers (GG) [59, 66, 67].

B. Determination of the contact
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Figure 4. (Color online) Large wave-vector power-law behav-
ior in the momentum distribution ρσ(k), obtained using differ-
ent strong-coupling theories. The temperature T = 0.3TF is
larger than the critical temperature Tc ∼ 0.2TF . The dashed
lines indicate the asymptotic value of 3π2k4ρσ(k)/k

4
F , which

gives rise to the dimensionless contact I/(NkF ). The inset
shows the full distribution.

There are a number of ways to calculate the contact
from T -matrix theories according to the different Tan
relations, as follows:

1. Following Tan’s original definition [16], the most
direct way seems to be the use of the large wave-
vector asymptotic behavior of the fermionic mo-
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mentum distribution, Eq. (1). The theoretical con-
tact from the G0G0 theory was obtained in this
manner by Strinati and co-workers [35]. In the
JILA experiment, the contact was extracted by av-
eraging k4ρσ(k) over an interval at kC,expt ∼ 2kF
[29]. Figure 4 shows k4ρσ(k) for a unitary Fermi
gas in its normal state at T = 0.3TF , obtained
by solving (iteratively) the coupled T -matrix equa-
tions [58], Eqs. (32), (33), (34), and (35). The
power-law k−4 tail is clearly identified since k4ρσ(k)
approaches a constant above a characteristic wave-
vector kC ∼ 20kF .
However, this value of kC is an order larger in mag-
nitude than what was used experimentally [29]. Ac-
tually, we observe a pronounced damped oscilla-
tion in the distribution k4ρσ(k) at lower values of
k ≃ 3kF . Therefore, in extracting the contact from
momentum distribution an improper choice of the
characteristic wave-vector kC could lead to system-
atic errors. We note that the power-law tail of k−4

in the momentum distribution was first pointed out
by Haussmann [57], using the self-consistent GG
theory for a normal interacting Fermi gas. In the
GG theory, the tail in ρσ(k) implies that the con-
tact can be directly calculated from the order pa-
rameter ∆ and the vertex function Γ(x, τ),

I
NkF

=
3π2

4

[

∆2 − Γ11 (x = 0, τ = 0−)
]

ǫ2F
. (37)

A brief explanation of this expression is given in
the Appendix A. We also refer to Sec. IID of Ref.
[66] for more details.

2. Another way to calculate the contact is to use Tan’s
pressure relation [17],

PV − 2

3
E =

~
2I

12πmas
, (38)

which results directly from the adiabatic sweep
relation. As discussed in Ref. [17], this is ev-
ident if we write the total energy in the form,
E = NǫFfE [1/(kFas), S/(NkB)], where fE is a
dimensionless function. The adiabatic sweep re-
lation leads to, ~2I/(4πm) = −NǫFf

′
E/kF , where

the derivative is taken with respect to the variable
1/(kFas). We then find that,

PV ≡ −V

[

∂E

∂V

]

S,N,a−1
s

, (39)

= −N

[

V
∂ǫF
∂V

]

fE −NǫFf
′
E

[

V
∂k−1

F

∂V

]

1

as
, (40)

=
2

3
E +

~
2I

12πmas
. (41)

A direct application of the pressure relation in the
unitarity limit is prohibited as a−1

s = 0 and there-
fore the dependence on the contact is lost. How-
ever, we can use the pressure relation to calculate

the contact around the unitarity and then do a
smooth interpolation to the limit of 1/(kFas) = 0.

3. Finally, the contact can also be calculated from the
entropy by using,

(

∂I
∂T

)

=
4πm

~2

[

∂S

∂
(

−a−1
s

)

]

T,µ

, (42)

which can be obtained directly by taking tempera-
ture derivative in Eq. (7). This important relation
was first shown by Yu and co-workers [34]. Thus,
the temperature dependence of the contact is deter-
mined by the variation in the entropy with respect
to the coupling constant.

0.0 0.5 1.0 1.5
1.5

2.0

2.5

3.0

3.5

4.0

4.5

 Variation in the entropy
 Tan's pressure relation
 n (k) tail

T/T
F

/(N
k F

)

Figure 5. (Color online) Temperature dependence of the con-
tact in the unitarity limit, obtained by using the variation in
the entropy Eq. (42), Tan’s pressure relation Eq. (38), and
the momentum distribution tail Eq. (1). Here we use the
Gaussian pair fluctuation theory [51].

Figure 5 reports the universal contact calculated using
the above mentioned methods, within the GPF (NSR)
theory. There is an apparently discontinuous behaviour
at the critical temperature Tc, due to the breakdown of
the NSR approach just above Tc [38, 39]. We find that all
three theoretical methods yield nearly the same predic-
tion, although we expect that this is probably simply due
to a breakdown in the T-matrix approximations near the
critical point. We note that, for a particular strong cou-
pling theory, there is no guarantee that all the methods
of determining the contact would give rise to the same
result, because of the particular approximations used.

C. Universal homogeneous contact from

strong-coupling theories

Figure 6 presents the comparison of different theoret-
ical predictions for the temperature dependence of the
contact of a homogeneous Fermi gas at unitarity. The
zero temperature results are listed in the Table I, as well
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Figure 6. (Color online) Universal contact of a homogeneous
Fermi gas in the unitarity limit. The predictions from differ-
ent strong coupling theories are compared with each other. At
high temperatures, they are compared with the virial expan-
sion results as well. The symbols at low temperature indicate
the predictions calculated by using the measured equation of
state (star) [14] and by using the quantum Monte Carlo re-
sult for pair correlation function (circle) [68]. In the inset,
the temperature dependence of the contact is shown for a
BCS Fermi gas at the interaction strength 1/(kF as) = −1.

I/(NkF ) Methods

3.51± 0.19 ENS equation of state data (Ref. [14])

3.40 QMC pair correlation function (Ref. [68])

3.34 GPF (present work)

3.02 GG (Ref. [66])

3.23 G0G0 (Ref. [35])

Table I. Zero temperature contact in the unitarity limit. The
contact I/(NkF ) = 6πζ/5 can be calculated from the ground
state energy of an interacting Fermi gas near unitarity [17]:
E/(NǫF ) = (3/5)[ξ − ζ/(kF as) + · · · ], where ξ and ζ are two
universal parameters. The contact may also be determined
from the tail of spin-antiparallel static structure factor [25],
S↑↓(q) = I/(4Nq). Here, we compare different results ob-
tained from the three strong-coupling theories with the pre-
dictions by using ζ, either measured at ENS (ζ = 0.93(5)) [14]
or extracted from quantum Monte simulation for the static
structure factor or pair correlation function (ζ = 0.90) [68].

as the contact calculated by using the low temperature
experimental data of the equation of state [14] and by
using the quantum Monte Carlo data for pair correlation
function [68]. The experimental data of course is not at
zero temperature, as this is not experimentally achiev-
able. In these measurements, low temperature thermom-
etry was difficult. Similar experiments carried out else-
where have reported lowest achievable temperatures of
around T/TF ≃ 0.05.

At low temperatures, we observe two distinct predic-
tions for the behavior of the contact with increasing tem-

perature: while the G0G0 theory predicts an increase of
the contact and hence a maximum around the critical
temperature Tc, both the GPF and GG theory suggest
that the contact decreases monotonically as the temper-
ature increases, unless T ≪ Tc. This qualitative discrep-
ancy deserves a careful analysis.

There are known arguments for the presence of a max-
imum in the contact at low temperature, as follows:

• The enhancement of the contact just above Tc in
the G0G0 theory was interpreted to be related to
the strengthening of local pairing correlations in the
absence of long-range order [35].

• As shown by Yu and co-workers [34], phonon exci-
tations at low temperatures will enhance the con-
tact as T 4, causing a growth in the contact with
temperature.

• The assumption of Fermi-liquid behavior for a
weakly coupled Fermi gas [34] would also lead to
a maximum in the contact at T ∼ TF .

These arguments, however, are not convincing enough to
conclude there is a real maximum in the low-temperature
contact in the unitarity limit, as we discuss below.

The difficulty is that all the strong coupling theories
are less accurate near criticality, suffering from strong
pair fluctuations. Thus, the enhancement of the contact
just above Tc in the G0G0 theory might be related to
the breakdown of the approximations in this approach.
Indeed, we observe a very similar enhancement of the
contact in the NSR theory. However, we know that the
NSR approach simply breaks down in the temperature
region just above criticality.
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Figure 7. (Color online) (a) In the unitarity limit, the low
temperature contact calculated from the GPF theory (solid
line) is compared with the T 4 power-law of phonon excitations
(dot-dashed line). The inset shows the comparison in a larger
temperature window. (b) The contact for a weakly interacting
Fermi gas at the coupling constant 1/(kF as) = −2. The NSR
result (solid line) is contrasted with a prediction from the
Fermi-liquid theory (dashed line).
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On the other hand, while phonon excitations are im-
portant at low temperatures, our realistic calculation us-
ing the GPF theory at low temperatures suggests that
the power-law of T 4 due to phonons is exhibited at
T < 0.07TF ≪ Tc only, as clearly shown in Fig. 7a. At
such low temperatures, the contribution from phonons is
of relative order 10−3 . This is so nearly negligible that
it might be easily be compensated by other excitations
in this strongly interacting superfluid at unitarity.

We have also investigated the Fermi-liquid theory of
the contact for a weak-coupling Fermi gas, as reported in
Fig. 7b, where we compare the Fermi-liquid result with
the NSR prediction for a weakly interacting Fermi gas
with kF a = −0.5. The essential idea of the Fermi-liquid
theory is that at low temperatures, the entropy density is
given by s = m∗kF k

2
BT/(3~

2), where the effective mass
m∗ = m[1+8(7 ln2−1)/(15π2)k2F a

2
s]. Therefore, by using

Eq. (42), the derivative of the contact with temperature
is given by,

∂ [I/ (NkF )]

∂ (T/TF )
= −16(7 ln2− 1)π

15
(kF as)

3 T

TF
> 0. (43)

This leads to,

I
NkF

=
I0

NkF
− 8(7 ln 2− 1)π

15
(kFas)

3

(

T

TF

)2

, (44)

where the zero temperature homogeneous contact I0 can
be calculated using the Lee and Yang’s ground state en-
ergy (up to (kF as)

2) and has the form [17],

I0
NkF

=
4

3
(kF as)

2

[

1 +
12 (11− 2 ln 2)

35π
kF as

]

. (45)

It is clear from Fig. 7b that the weak-coupling Fermi-
liquid prediction works at very low temperatures only
and strongly over-estimates the contact once T > 0.2TF ,
although the theory describes qualitatively the correct
behavior of an increasing contact up to T ∼ TF . Near
the unitarity limit, the use of Eq. (44) and hence its
support for an enhancement of the contact is certainly
doubtful.

In brief, we feel that in the unitarity limit it is more
reasonable to expect a monotonically decreasing contact
as the temperature increases. It is interesting to note
that, for a weaker coupling constant, 1/(kFas) = −1,
all the strong-coupling theories give the same qualitative
behavior of the contact, as shown in the inset of Fig. 6.
In particular, the contact is predicted to decrease with
temperature in the superfluid phase. It is natural to as-
sume that the same decrease would happen as well for a
unitary Fermi superfluid.

At high temperatures, we find that the NSR and G0G0

theories predict essentially the same result, as the dif-
ference between the two theories becomes rather small
in the high-temperature regime. However, both predic-
tions lie systematically below the quantum virial expan-
sion result, indicating the inaccuracies of these theories.

In contrast, at high temperatures the self-consistent GG
result approaches the second-order virial expansion pre-
diction. None of the strong-coupling theories can pro-
duce correctly the third-order expansion result, since the
many-body T -matrix approach fails to account for the
three-particle scattering process.

IV. LOW-T TRAPPED CONTACT FROM

STRONG COUPLING THEORIES

Let us now turn to the contact of a unitary Fermi gas in
a harmonic trap. Under the local density approximation
this is given by

IT =

ˆ

drC(r) = (3π2)1/3
ˆ

dr[C/(ρkF )](r)ρ4/3(r) ,
(46)

where ρ(r) is the density distribution and kF (r) =
[3π2ρ(r)]−1/3.

In the unitarity limit, the local contact [C/(ρkF )](r)
is a function of the density only, through the reduced
temperature T/TF (r). The density may be expressed
using ρ = 8/(3

√
π)λ−3(TF /T )

3/2, so that the trapped
contact is given by,

IT =
4

3λ4

∞̂

0

4πr2dr

( C
ρkF

)

(r)
T 2
F (r)

T 2
. (47)

Here, for simplicity, we assume an isotropic trap. In the
local density approximation, it is convenient to use a local
inverse fugacity ζ (r) = e−µ(r)/kBT ≡ ζ0 exp[VT (r) /kBT ]
with ζ0 = e−µ/kBT . The integration over the radius r
can then be converted to an integration about the in-
verse fugacity, by using r =

√

(2kBT/mω2)ℓ(ζ) with
ℓ(ζ) ≡ ln(ζ/ζ0). In a harmonic trap, the total num-
ber of atoms is related to the Fermi temperature by
N = (1/3)(kBTF )

3/(~ω)3 and the Fermi wave-vector is

given by kF =
√

2mkBTF/~2. Thus, we find that,

( I
NkF

)

T

=
32

π

T 7/2

T
7/2
F

∞̂

ζ0

dζ
d
√

ℓ(ζ)

dζ
ℓ(ζ)

Ĩ (ζ)

T̃ 2 (ζ)
, (48)

where the inputs, the local dimensionless contact Ĩ ≡
C/(ρkF ) and the local reduced temperature T̃ ≡ T/TF ,
are functions of the inverse fugacity ζ, and can be de-
termined using the homogeneous equation of state. The
temperature T/TF in the above equation (48) is yet to
be related to the inverse fugacity ζ0. For this purpose,
we rewrite the number equation N =

´

drρ(r) into the
form,

(

TF

T

)3

=
32

π

∞̂

ζ0

dζ
d
√

ℓ (ζ)

dζ

ℓ (ζ)

T̃ (ζ)3/2
. (49)

For a given ζ0, we use Eqs. (49) and (48) to calculate
the reduced temperature T/TF and the trapped contact
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[I/(NkF )]T , respectively, and in turn express the contact
as a function of the reduced temperature. The detailed
procedure of numerical calculations can be found in the
Appendix B.

A. Trapped contact at zero temperature

At zero temperature, the trapped contact at unitarity
can be found analytically. In this case, the density profile
is known exactly,

ρ (r) = ρ0

(

1− r2

R2
TF

)3/2

, (50)

where the peak density n0 and the Thomas-Fermi RTF

are respectively given by,

ρ0 = ξ−3/4 (24N)1/2

3π2

(

~

mω

)−3/2

, (51)

RTF = ξ1/4(24N)1/6
√

~

mω
, (52)

where ξ ≃ 0.41(1) is the universal parameter of a unitary
Fermi gas [14]. Because the temperature is zero, the local
dimensionless contact [C/(Nρk)]hom is spatially indepen-
dent, as it can only depend on a scale factor which has
already been included in the definition of this quantity.
Here, for clarity we explicitly indicate the homogeneous
contact by the suffix “hom”.

Thus, the trapped zero-temperature contact is given
by,

IT = (3π2)1/3
( C
ρkF

)

hom

ˆ

drρ4/3(r), (53)

=
32π

105
(3π2)1/3

( C
ρkF

)

hom

ρ
4/3
0 R3

TF . (54)

Using kF =
√

2mkBTF /~2 in harmonic traps with

kBTF = (3N)1/3~ω, we find then,

( I
NkF

)

T

=
256

105π
ξ−1/4

( C
ρkF

)

hom

=
512ζ

175ξ1/4
, (55)

where the two universal parameters ξ and ζ are related to
the ground state energy of an interacting Fermi gas near
unitarity [17], E/(NǫF ) = (3/5)[ξ − ζ/(kF as) + · · · ].

Table II lists the zero-temperature contact of a uni-
tary Fermi in harmonic traps. The theoretical predic-
tion from different strong-coupling theories are compared
with the experimental measurements at the Swinburne
University of Technology, Melbourne [30] and at ENS,
Paris [14]. We note that, the Swinburne data point is
determined from spin-antiparallel static structure factor
measured by Bragg spectroscopy. The lowest tempera-
ture in the Bragg measurement is about 0.10 ± 0.02TF ,
which could explain in part the slightly lower value ob-
tained for the contact. For the ENS data point, we

(I/(NkF ))T Methods

3.00± 0.12 Swinburne Bragg spectroscopy (Ref. [30])

3.40± 0.18 ENS equation of state data (Ref. [14])

3.26 GPF (present work)

3.03 GG (Ref. [66])

3.05 G0G0 (Ref. [35])

Table II. Zero temperature trapped contact in the unitarity
limit. We compare different results obtained from the three
strong-coupling theories with the experimental measurements
at Swinburne [30] and ENS [14].

have used ξ = 0.41(1) and ζ = 0.93(5), as determined
from the experimental data for ground state energy. The
temperature of this measurement was below the limits
of the thermometry used, but we can estimate this as
0.05± 0.05TF from comparisons with related experimen-
tal measurements.

B. Universal trapped contact from strong-coupling

theories
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Figure 8. (Color online) Universal contact of a trapped Fermi
gas in the unitarity limit, calculated from different strong-
coupling theories as well as from the quantum virial expansion
method. The symbols indicate the measurements at ENS,
Paris (star) [14] and at the Swinburne University of Technol-
ogy, Melbourne (square) [30].

Figure 8 reports the temperature dependence of the
contact of a trapped Fermi gas at unitarity, obtained from
different strong-coupling theories. We compare the the-
oretical results with two experimental data points mea-
sured at low temperatures, while at high temperatures,
the results are contrasted with the accurate quantum
virial expansion prediction.

At low temperatures, T < 0.3TF , there is a sizable dis-
crepancy between the predictions from different strong-
coupling theories. Nevertheless, all the predictions are
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now in qualitative agreement, as the maximum in the
homogeneous contact found previously in the G0G0 the-
ory is washed out by the trap averaging [35]. At high
temperatures, the difference between different theories
become much smaller. This is in line with our obser-
vation for the n-th contact coefficient, which receives a
factor of n3/2 reduction in harmonic traps.

The trapped contact of a unitary Fermi gas can be
measured readily in experiment, by extending the exist-
ing low-temperature measurements of either the momen-
tum distribution [29] or Bragg spectroscopy of a unitary
Fermi gas [30] to the high-temperature regime. The pre-
cise determination of the temperature in the unitarity
limit is a challenging problem [12]. However, this can
be overcome by using the known equation of state in the
unitarity limit [13, 37, 39]. We anticipate that the quanti-
tative discrepancy between different strong-coupling the-
ories shown in Fig. 8 will be clarified by future experi-
ments.

V. EXPERIMENTAL MEASUREMENT OF THE

HOMOGENEOUS CONTACT AT UNITARITY

It would be very useful to determine the contact of a
homogeneous unitary Fermi gas, without the complica-
tion caused by the trap averaging. The result would pro-
vide a unique opportunity to test quantum many-body
theories of strongly interacting Fermi gases that we have
discussed above. However, an in-situ measurement is
generally required, which is difficult to setup experimen-
tally. The determination of the universal homogeneous
contact could be achieved as follows, by:

• Measurement of homogeneous equation of state
near unitarity. The Salomon group at ENS, Paris
has already demonstrated the accurate measure-
ments of uniform equation of state either in the
unitarity limit [13] or at zero temperature [14]. The
measurement could be extended straightforwardly
to the general case with arbitrary coupling con-
stant and temperature, say, for example, the en-
tropy S(T/TF , 1/kFa). The homogeneous contact
can then be determined directly using Eq. (42).

• Measurement of the tail of the spatially-resolved
RF spectrum at unitarity. Tomographic RF spec-
troscopy was recently developed at MIT to measure
the local pairing gap of a unitary Fermi gas of 6Li
atoms at finite temperatures [69]. Ideally, the lo-
cal universal contact could be retrieved from the
tail of RF-spectrum that obeys a ω−3/2 power-law.
However, the analysis of the tail structure is com-
plicated for 6Li atoms due to a strong final state
effect. It would be desirable to develop a spatially-
resolved RF-spectroscopy for 40K atoms, for which
the final state effect may be negligible.

• Measurement of the spatially-resolved Bragg scat-
tering spectrum at unitarity [30, 70]. Thus, one

obtains the local spin-antiparallel static structure
factor at large momentum q, which at unitar-
ity satisfies the asymptotic behavior of S↑↓(q) =
[I/(NkF )]/(4q/kF ). The local universal contact is
then determined.
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Figure 9. (Color online) The universal contact of a homoge-
neous unitary Fermi gas as a function of the inverse fugacity,
calculated using the Gaussian pair fluctuation theory, self-
consistent GG theory and quantum virial expansion.

All of these measurements are based on the local den-
sity approximation. The local contact is then to be deter-
mined as a function of the local chemical potential µ(r)
or local inverse fugacity ζ(r) = exp(−µ(r)/kBT ). In Fig.
9, we show the inverse fugacity dependence of the uni-
versal contact of a unitary Fermi gas, to be confronted
with future experiments.

VI. CONCLUSIONS

To summarize, we have presented a comparative the-
oretical study of the universal contact for a strongly in-
teracting Fermi gas at unitarity. The contact at high
temperature has been accurately determined by using a
quantum virial expansion method, while at low temper-
atures, we have employed different strong-coupling the-
ories to try to estimate the temperature dependence of
the contact.

The temperature dependence of the contact near the
critical temperature, however, remains unresolved, since
one of the strong-coupling theories, the G0G0 theory,
predicts an enhancement or a maximum near criticality,
which is not observed in the other two strong-coupling
theories. We believe that this enhancement could be due
to the inaccuracy of the G0G0 approach and conjecture
that the universal contact should decrease monotonically
with increasing temperature, except possibly at very low
temperatures T ≪ Tc.

As there is no solid justification for any of these strong-
coupling theories, our conjecture should be examined
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critically by future experiments or advanced quantum
Monte Carlo simulations. Therefore, we have proposed
several experimental ways to determine the homogeneous
contact of a unitary Fermi gas, using measurements of
equation of state, tomographic RF-spectroscopy, and
spatially-resolved Bragg spectroscopy. All of these mea-
surements are within reach of current experimental tech-
niques.

We note finally that fermionic universality and the
detailed behavior of a strongly interacting Fermi gas
near the normal-superfluid transition is of great interest.
Tan’s contact provides an entirely new means to char-
acterize the universal properties and phases of strongly
interacting fermions, in addition to the equation of state.
This novel diagnostic tool is particularly sensitive to
strong correlations. In this way, experiments and the-
oretical work on ultra-cold atomic gases provide a model
system that can give universal information on strong cor-
relations in a wide range of physical systems. Our com-
prehensive study of the universal contact, built on the
most recent theoretical methods, should provide useful
insights for future research.
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Appendix A: Contact from the vertex function

In the many-body theory, the contact is given by the
vertex function in the limits of short distance and time.

For a normal Fermi gas, this can be understood by
calculating the large-frequency tail of the momentum
distribution ρσ (k). For this purpose, we consider the
diagram contribution to ∆G(x, τ = 0−) = G(x, τ =
0−) − G(1)(x, τ = 0−), as shown in Fig. 10, where
G(1)(x, τ) is the finite-temperature Green function of an
ideal Fermi gas. In the limit of large momentum k → ∞
or short distance x → 0, we may assume that the vertex
function Γ(x, τ = 0−) is a smooth function and there-
fore set Γ(x, τ = 0−) ≃ Γ(0, 0−). According to Fig. 10,
the finite temperature Green function in the momentum
space is then given by (µ = 0),

∆G (k, iωm) ≃ −Γ(0, 0−)
1

[iωm − ǫk]
2

1

(iωm + ǫk)
, (A1)

where ωm = (2m+ 1)πkBT is the fermionic Matasubara

Figure 10. Diagram contribution to ∆G(x, τ ) = G(x, τ ) −

G(1)(x, τ ) at short distance and time. The shadow region
indicates the vertex function at x = 0 and τ = 0−.

frequency and ǫk ≡ ~
2k2/(2m). The momentum distri-

bution ∆ρσ (k) = kBT
∑

m ∆G (k, iωm) takes the form,

∆ρσ (k) ≃ −Γ(0, 0−)
1

[

e−ǫk/(kBT ) + 1
]

1

4ǫ2k
, (A2)

≃ −m2

~4
Γ(0, 0−)

1

k4
. (A3)

Thus, the contact is given by, I = −m2Γ(0, 0−)/~4 or

I
NkF

= −3π2

4

Γ (x = 0, τ = 0−)

ǫ2F
. (A4)

In the superfluid phase, we should explicitly introduce
the pairing gap and use a 2 by 2 matrix for the Green
function and vertex function. This leads to Eq. (37).

Appendix B: Calculation of the integrals in the local

density approximation

The two integrand functions in Eqs. (48) and (49),
which involve the local reduced temperature, are ill-
behaved at low temperatures. Therefore, we regularize
the reduced temperature by its non-interacting value and
define,

t (ζ) ≡ T̃ (ζ)

T̃IG (ζ)
, (B1)

where T̃IG (ζ) is the reduced temperature of an ideal,
non-interacting Fermi gas, defined by:

T̃IG (ζ) = [f (ζ)]
−2/3

, (B2)

where:

f (ζ) =
3

2

∞̂

0

dt
√
t

ζ−1e−t

1 + ζ−1e−t
. (B3)

The coupled equations then take the form,
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IT
NkF

=
32

π

T 7/2

T
7/2
F

∞̂

ζ0

dζ
d
√

ℓ (ζ)

dζ
ℓ (ζ) f4/3 (ζ)

Ĩ (ζ)

t2 (ζ)
,(B4)

T 3
F

T 3
=

32

π

∞̂

ζ0

dζ
d
√

ℓ (ζ)

dζ
ℓ (ζ) f (ζ) [t (ζ)]

−3/2
, (B5)

where ℓ (ζ) ≡ ln(ζ/ζ0), and Ĩ (ζ) /t2 (ζ) and [t (ζ)]−3/2

are now smooth functions of ζ.

To do the integration, for instance, for the integral in
the number equation (B5),

A =

∞̂

ζ0

dζ
d
√

ℓ (ζ)

dζ
ℓ (ζ) f (ζ) [t (ζ)]

−3/2
, (B6)

we use the following discretized version,

A =
∑

ζN−1>ζi>ζ0

I (ζi) + I∞, (B7)

where the two types of integrals I (ζi) and I∞ are defined
by,

A (ζi) =

ζi+1
ˆ

ζi

dζ
d
√

ℓ (ζ)

dζ
ℓ (ζ) f (ζ) [t (ζ)]−3/2 , (B8)

A∞ =

∞̂

ζN

dζ
d
√

ℓ (ζ)

dζ
ℓ (ζ) f (ζ) [t (ζ)]

−3/2
, (B9)

respectively. Here, {ζi} (i = 1, ..., N) are the set of points
where t (ζ) has values. We shall let ζ0 run over all the
points of {ζi}. To calculate A (ζi), because of the smooth-
ness of t (ζ) we approximate it by,

A (ζi) ≈ [t (ζ)]
−3/2

ζi+1
ˆ

ζi

dζ
d
√

ℓ (ζ)

dζ
ℓ (ζ) f (ζ) , (B10)

= [t (ζ)]−3/2

√
ℓ(ζi+1)
ˆ

√
ℓ(ζi)

dxx2f
(

ζ0e
x2
)

, (B11)

where [t (ζ)]
−3/2 ≡ [t−3/2 (ζi) + t−3/2 (ζi+1)]/2, and in

the second line we have changed to a new variable x ≡
√

ℓ (ζ). For the integral A∞, where ζN is sufficiently
large, we may use the virial expansion result, i.e.,

[tve (ζ)]
−3/2

= 1 +
3
√
π

4

∆b2,∞ζ−2 +∆b3,∞ζ−3

f (ζ)
, (B12)

with ∆b2,∞ = 1/
√
2 and ∆b3,∞ = −0.35510298. Thus,

we have,

A∞ =

∞̂

√
ℓ(ζN )

dxf
(

ζ0e
x2
) [

tve

(

ζ0e
x2
)]−3/2

. (B13)

The integral in the trapped contact equation (B4) can be
done in a similar way. We note that at high temperatures,

[

Ĩ (ζ)

t2 (ζ)

]

ve

=
3π2

[

c2,∞ζ−2 + c3,∞ζ−3 + · · ·
]

[f (ζ)]
4/3

, (B14)

with c2,∞ = 1/π and c3,∞ = −0.141.
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