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Fast computation of multi-scale combustion systems
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In the present work, we illustrate the process of constructing a simplified model for complex
multi-scale combustion systems. To this end, reduced models of homogeneous ideal gas mixtures
of methane and air are first obtained by the novel Relaxation Redistribution Method (RRM) and
thereafter used for the extraction of all the missing variables in a reactive flow simulation with a

global reaction model.
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INTRODUCTION AND MOTIVATION

Solution of the full set of equations as required in nu-
merical simulations of reactive flows with detailed chem-
ical kinetics represents a quite challenging task even for
today super-computers. The one reason is the large num-
ber of kinetic equations needed for tracking each chemical
species. On the other side, detailed combustion mech-
anisms are typical multi-scale problems where different
chemical processes, characterized by disparate timescales
ranging over several orders of magnitude (from seconds
down to nanoseconds) are present. As a result, model-
ing detailed combustion fields comes with a tremendous
cost where intensive long simulations are needed to re-
solve the fastest processes, though one is often interested
in the slow dynamics. Thus simplification methodologies
become, other than highly desirable, mandatory in com-
bustion problems where detailed mechanisms for heavy
hydrocarbons (with hundreds chemical species) are used
in 2- and 3D simulations.

Notice that, there exist often chemical processes that
are much faster than the fluid dynamic phenomena, so if
we are only interested in computing the system behavior
on the time-scale of the fluid mechanics, some chemical
processes will be already equilibrated and thus slaved to
the remaining dynamics.

In fact, modern simplification techniques are based on
a systematic decoupling of the fast equilibrating chemical
processes from the rest of the dynamics, and are typically
implemented by seeking a low dimensional manifold of
slow motions in the solution space of the detailed system.

Much effort has been devoted to setting up such au-
tomated model reduction procedures. The method of
invariant grids (MIG) [3, 4], the computational singu-
lar perturbation (CSP) method [6], the intrinsic low di-
mensional manifold (ILDM) [7], the invariant constrained
equilibrium edge preimage curve method (ICE-PIC) [10],
and the method of minimal entropy production trajecto-
ries (MEPT) [d] are a few popular techniques.

In this work, we introduce an approximated procedure
for the fast computation of detailed combustion fields.

To this end we adopt the novel Relaxation Redistribu-
tion Method (RRM) [1] for the construction of a reduced
model of the mechanism GriMech 3.0 describing ideal
mixtures of air and methane (53 chemical species, 4 ele-
ments and 325 reactions) in a closed system under fixed
pressure and mixture-averaged enthalpy. The latter de-
scription serves, at a later time, for reconstructing all the
missing chemical species in a computationally efficient
reactive flow simulation performed with a single-step re-
action model.

The paper is organized in sections as follows. The no-
tion of slow invariant manifold and the chemical kinetics
equations are briefly reviewed in section . and . respec-
tively. The relaxation redistribution method is discussed
in section. A reduced model for air and methane is used
in a planar counter-flow flame simulation in section. and
conclusions are drawn in section .

SLOW INVARIANT MANIFOLD (SIM)

In this section, we briefly discuss the notions of slow
imvariant manifold for a system of autonomous ordinary
differential equations in a domain U in R",

v = f(y) (1)

For more details, the interested reader is delegated to the
dedicated literature [3,4]. A manifold Q C U is invariant
with respect to the system () if inclusion y(tg) € Q
implies that y(¢) € Q for all future time ¢ > .

Equivalently, if the tangent space T}, to €2 is defined at
y, invariance requires: f(y) € Ty. In order to transform
the latter condition into an equation, it proves conve-
nient to introduce projector operators. Let for any sub-
space Ty a projector P onto T, be defined with image
imP = T,. Then the necessary differential condition can
be expressed by:

(1-P)f =0, (2)

where the left-hand side of equation Bl is often called
defect of invariance A. Tt is worth stressing that, al-
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Basic idea behind the Relaxation Redistribution

though the notion of invariance discussed above is rel-
atively straightforward, slowness instead is much more
delicate. We just notice that the most part of invariant
manifolds are not suitable for model reduction (all semi-
trajectory are, by a definition, 1D invariant manifold).
In this respect, we should also point out that slow man-
ifolds are not uniquely defined in the literature and, in
general, different methods delivers different objects.

Here, we follow the approach of the Method of Invari-
ant Grid (MIG) [2,[3], where slowness is intended as sta-
bility, thus SIM are the stable stationary solution of a
relaxation process (film equation)

dF(S)
dt

We notice that the unknown of both ([2) and (&) is the
manifold €2, which can be conveniently represented in a
parametric form, as mapping F' : W — U of a domain W
(reduced space or parameter space in the following) into
the phase-space U; 2 being the image of this mapping:
Q=FW).

—(1-P)f. (3)

REACTION KINETICS EQUATIONS

Here, we consider closed reactive systems with fixed
mixture-averaged enthalpy A, and total pressure p where
n chemical species and d elements participate in a com-
plex network of elementary reactions. Species compo-
sitions are represented in terms of mass fractions Y; =
m;/Myot, with m; and my,; denoting the mass of species
i and the total mass, respectively. The mixture en-
thalpy, at a temperature T, can be expressed as h =
o hi(T)Y;, while the governing equations in a closed
reactor take the form [13]:

ol Gl (4)

v =f(y) = ( > >

where p is the mixture density, while W, w;, h;(T) de-
note the molecular weight the molar concentration rate

and specific enthalpy of species 7, respectively. Following
ChemKin ﬂﬂ], the specific enthalpy can be approximated
by a polynomial fit as follows:
ay, T a3 T?  ayT? a5 T ae

y ty tr Tt )

()

where aj; are the tabulated Nasa coefficient and R the
universal gas constant. Molar concentration rates take
the explicit form:

h; (T) = RT(CLU +

S

w; = Z (Bij — aij) 1y, (6)

J=1

where «;; and 3;; are the stoichiometric coefficients of
the j-th elementary reaction >\ ; a;; X; = > 1, i Xi.
The j-th reaction rate r; is expressed using the popular
mass action law:

rj =k [LIXI — k5

i=1 3

n
X7 (7)

=1

with [X;] denoting the molar concentration of the ith

species and kji the j-th reaction rate constant typically

expressed in the Arrhenius form ]

MODEL REDUCTION TECHNIQUE

In the following, we use a discrete representation for
manifolds referred to as grids M], consisting of a set of in-
terconnected nodes, where it is assumed that the nearest
neighbors of an arbitrary node y can be identified. A grid
is defined by the restriction of mapping F on the discrete
subset of the parameter space GC W into the phase space
U, whereas and invariant grid satisfies the grid version of
the invariance equation: f(F(&))—Pf(F(£)) =0,V e g
M] Notice that, thanks to the node connectivity, it is pos-
sible to compute local tangent space hence the projector
P (e.g. using approximated differential operators).

Relaxation methods

Here, construction of one-dimensional invariant grids is
accomplished by the Relaxation Redistribution Method
(RRM) which has proven an efficient method for solving
the film equation (@) starting from an initial grid Go. The
interested reader can find further details in ﬁ] Referring
to Fig. [ for simplicity, in this work Gy is chosen regular
in terms of the parameter .

Let a numerical scheme (Euler, Runge-Kutta, etc.) be
chosen for solving the system of kinetic equations (@),
and let all the grid nodes relax towards the slow invari-
ant manifold (SIM) under the detailed dynamics f dur-
ing one time step. The fast component of f brings a grid
node closer to the SIM while, at the same time, the slow
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FIG. 2: Relaxation redistribution method where an explicit
first order Euler scheme is adopted during relaxation with an
adaptive time step 6t < 1.5 x 1078,

component causes a contraction towards the steady state
of {@). As a result, the grid becomes dense in a neigh-
borhood of the steady state and coarse far from it, when
keeping relaxing. The slow motion can be neutralized
by a node redistribution after the grid relaxation (thus
mimicking the term —Pf in ([B])). In other words, as il-
lustrated in Fig. [ the relaxed states are redistributed
on a regular grid in terms of the parameter £ via linear
interpolation.

Notice that, all intermediate grids are, by construction,
regular in terms of ¢ and, in the case of an invariant grid,
the overall effect due to relaxation and redistribution is
null and the invariance condition satisfied.

In our study, we consider a detailed combustion mech-
anism for air and methane (GriMech 3.0), where n = 53
chemical species and 4 elements participate in 325 ele-
mentary reactions ﬂﬂ] Here, at a fixed mixture-averaged
enthalpy h and pressure p, Gy represents the mizing line
between the two states y/"*" (stoichiometric fresh mix-
ture) and y°? (stoichiometric chemical equilibrium state)
discretized by N = 200 nodes. Iterations have carried
out until dy/dy < € at every grid node, where dy is the
overall movement due to the relaxation and redistribu-
tion while §7 is the movement due to relaxation alone of
an arbitrary node y with a tolerance € = 0.001. To the
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FIG. 3: Yoo coordinate. Two-dimensional invariant grid via

the relaxation redistribution method.

end of constructing a two-dimensional invariant grid pa-
rameterized with respect to & = Yooo and h, the above

construction is performed over a range of enthalpies —415
[kJ/kg] < h < —5 [kJ/kg] with a step Ah = =5 [kJ/kg].
In Figure[3] a projection of the above invariant grid in the
three-dimensional sub-space h — Yoo2 — Yoo is reported.

REACTIVE FLOW SIMULATION
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FIG. 4: Planar counter-flow configuration. Symmetry is as-
sumed with respect to the line y = L.

Let us consider the planar stagnation point flow, where
a well premixed stoichiometric mixture of air and fuel,
initially at room condition (T = 300K, p = lbar), im-
pinges against a stream of hot products. Due to sym-
metry, a flat flame can be established in this flow at
0 < y < L as schematically depicted in Figure @l Al-
though the above is effectively a two dimensional prob-
lem, under the assumptions of symmetry, boundary layer
approximation and low Mach number regime, it is possi-
ble to consider the following one dimensional system of
governing equations imposing conservation of mass, mo-
mentum, energy and chemical species, respectively, along
the symmetry-line (z = 0):

%+%—‘;+pU6_o, (8)
ﬁ%— +pU% + V% - aﬁw% plreshe =0, (9)
ﬁ%—erng ép%(,\g—f)—i%ﬁzzo, (10)
Y Ly 9 oYy wi—0, i=1,.m,

o TV, ay(p 18y)

(11)
where the ideal gas law, p = pW /RT, can be used for the
closure. Moreover, p1, A, D; and p"®*" are the dynamic
viscosity, thermal conductivity, the diffusion coefficient of



species i and the density of the fresh mixture at the inlet,
respectively. The mean specific heat C, (under constant

pressure) and the mean molecular weight W take the
explicit form:

Op = i Cpi}/i, W =
=1

with ¢,; being the specific heat of species ¢ (mass unit).
Let u, v and € be the two velocity components of 2D flow
field along the z and y axes and the flame strain rate,
respectively. We note that the above set of equations (8)-
(D) are conveniently expressed in terms of the quantities
U = u/usx and V = pv, with us = ex. The latter
problem is solved imposing fresh mixture condition at
the inlet (y = 0):

y=0:

U=1,T= 300[K], Y; = YiJ‘»resh7 (12)

while chemical equilibrium and zero-flux condition can
be chosen at the outlet

~fresh .
U= P2y L g Py
pea dy dy

(13)

where p®? is the density of the fully burned mixture.
The detailed derivation of the set of equations (&)- (L)
along with the boundary conditions (I2]) and (I3) can be
found in [§]. In this study, spatial derivatives in (8)-(T)
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FIG. 5: Premixed flame in a planar counter-flow. Equa-
tions (B)-(I) are solved by finite difference scheme using
the global reaction model (Id) and ([I3). Minor chemical
species are thereafter computed accessing the invariant grid
in Figure Here, we use D; = D = 3 x 107°[m?s™'],
A = 0.026[Wm™tK™'], fixed p = 1[bar] and strain rate
e =40[s"1].

have been approximated by finite differences (upwind for
convective terms while central differences for diffusive
terms), and the corresponding ordinary differential equa-
tions (ODE) system has been solved by a numerical stiff
solver [11] readily available in Matlab® (odel5s). More-
over, we first consider n = 4 reactive chemical species

(CHy, CO4, Oz, H0O) with an abundant inert (N2) par-
ticipating in the one-step global oxidation (s = 1):

CHy+ 205 + 752Ny — CO2 + 2H50 + 7.52N5, (14)
whose rate 71, according to ], can be evaluated as fol-
lows:

r = —1.3x 108 28%/T [CH, 7" [0,)'2 . (15)

Missing fields retrieval

Upon the solution of the governing equations (&)- ()
in combination with the global reaction mechanism ([I4l),
five chemical fields, the temperature, the mixture den-
sity and flow velocity are available along the symmetry
line in Figure @ On the one hand, the computational
cost of the latter simulation is drastically reduced com-
pared to a reactive simulation with a detailed combustion
mechanism, where a much stiffer and larger set of species
equations ([II]) must be taken into account. However, on
the other hand, global approaches inevitably come with
a significant lack of information concerning all intermedi-
ate and minor chemical species which underlie a complex
phenomenon such as the one represented by (I4).

In order to fill this gap, here we suggest to perform an
a posteriori retrieval of all the missing variables in the
above computation (e.g., minor species such as radicals)
via linear interpolation from the table describing the in-
variant grid evaluated (once and forever) in section . by
means of the detailed combustion mechanism GriMech
3.0 [12] (n = 53 and s = 325). To this end, the two vari-
ables Yco,, h can be extracted from the above simulation
and used to access any of the coordinates of the invariant
grid (see also Figure Bl). Some of the interpolated vari-
ables, in a well developed flame along the channel, are
reported in Figure

CONCLUSION

In this work, we first demonstrate that a recently
introduced model reduction technique (Relaxation Re-
distribution Method - RRM) is suitable for handling a
complex multi-scale combustion mechanism for hydro-
carbons. Moreover, on the basis of the latter simplified
model, we introduce and test an embarrassingly simple
method for the computation of minor chemical species
upon a reactive flow simulation efficiently performed with
a global (not necessarily one-step) reaction. The present
study is the first step towards fast computation of de-
tailed combustion fields for heavy hydrocarbons in 2D
and 3D problems.
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