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It is known that itinerant metamagnetic transitions can be driven by features in the electronic
density of states. We study the signatures of these transitions in the entropy and specific heat for a
variety of different cases, identifying the key features which differ from naive expectations, such as
enhanced critical fields and non-Fermi liquid temperature dependencies. We begin with the generic
case of a logarithmically divergent density of states, as caused by a two dimensional van Hove
singularity. We then study a specific model for the bandstructure of Sr3Ru2O7, a material with
a well-studied metamagnetic transition and quantum critical endpoint. We consider how far the
behaviour of the system can be explained by the density of states rather than quantum fluctuations,
and the distinctive features of this mechanism. One of the characteristic features of Sr3Ru2O7 is an
unusual phase with a higher entropy than its surroundings, we consider how this may arise in the
context of a density of states picture and find that we can reproduce the thermodynamic behaviour
and first-order phase transitions.

There has been much interest in the magnetic phase
diagrams of itinerant electron systems. These show both
thermal and quantum phase transitions and often non-
Fermi liquid behaviour associated with quantum criti-
cal (end)points. A particularly well studied example
is Sr3Ru2O7. This displays a metamagnetic transition
which bifurcates as a function of field angle to enclose an
anomalous phase where the transport properties break
the symmetry of the crystal lattice1,2. Intriguingly this
phase has been shown to have a higher entropy than the
surrounding ‘normal’ phases3, contrary to naive expec-
tations. The metamagnetism and anomalous phase are
generally thought to be caused by the presence of a van
Hove singularity just below the Fermi surface in one of
the electronic bands of the material4. Such peaks in the
density of states have been shown to reproduce the meta-
magnetic transition5–7. However, there is known to be a
quantum critical endpoint in the region of the anomalous
phase8, and the possible role of this critical point in the
formation of the phase remains largely unexplored. In
addition the region around the phase shows signatures
which may be attributed to the quantum critical point,
such as a diverging entropy and specific heat. Also the
dependence of the metamagnetic transition on field angle,
as well as doping9 and STM10 studies, have cast doubt
on the simple picture of a fixed bandstructure with the
field acting to Zeeman split the spin-species through a
peak in the density of states.

These issues raise the question of how far the proper-
ties of the material may be explained by the density of
states, without involving quantum fluctuations or more
exotic physics. We address this question by studying the
evolution of an itinerant magnetic system as a function
of applied magnetic field and temperature where the den-
sity of states has a peak or other sharp feature near to the
Fermi surface. In particular we will focus on the entropy
and specific heat of the system near to a metamagnetic

transition. We will study both the generic logarithmic di-
vergence of the density of states for a van Hove singularity
in a two dimensional system and a simple model for the
electronic band in Sr3Ru2O7 which contains the singular-
ity. We find that as well as the main metamagnetic tran-
sition such a model provides a natural explanation for the
magnetic crossover observed at slightly lower fields and
connects this with features observed in the entropy and
specific heat3. The peak produces a logarithmic diver-
gence of C/T with temperature and unusual behaviour
as a function of field even in the absence of a quantum
critical point. We will consider how these results may
help to identify the cause of the metamagnetic transition
in Sr3Ru2O7 and may more generally help to distinguish
between density of states features and quantum critical
effects.

We will go on to consider a toy model for the entropic
properties of the anomalous phase of Sr3Ru2O7. One of
the striking features of this phase is that it has a higher
entropy than the surrounding regions, giving rise to phase
transitions which ‘fan out’ as temperature is increased.
We will show that a density of states with a closely spaced
double-peak will reproduce this phase diagram and ther-
modynamic behaviour and speculate on the origin of such
a feature in the density of states.

We perform calculations of the magnetisation, specific
heat and entropy from the mean-field Stoner model for
a general density of states. We take care to include the
condition of number conservation. These results must be
evaluated numerically for any given bandstructure. Hav-
ing identified the mechanisms which contribute to these
results we present the numerical evaluation of the calcu-
lations for a cut through the metamagnetic wing of the
phase diagram. We will begin with the generic case of a
logarithmic singularity in the density of states, caused by
a saddle point in the electronic dispersion in two dimen-
sions11, which has been shown to induce a metamagnetic
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transition5. We will then go on to study the case of a
model bandstructure for the γ2 band of Sr3Ru2O7

4 which
has been shown to contain the van Hove singularity. This
shows many of the same features as the logarithmic case
with the addition of a magnetic crossover. Finally we
consider a double-peak density of states which gives an
interesting entropic behaviour, with two metamagnetic
transitions and a high entropy plateau region between
them.

I. HEURISTIC DISCUSSION

The effects contributing to the form of the entropy and
specific heat were considered in detail in Ref.12, we will
briefly summarize these results here.

The shape of the entropy and specific heat curves for
an itinerant magnet may be deduced from some basic
principles. Entropy as a function of field should follow the
density of states as a function of energy. There are several
effects which alter this dependence in the presence of a
varying density of states. These include spin-splitting
due to the external magnetic field, interaction induced
magnetism, number conservation13,14 and temperature.

Upon application of a magnetic field the spin-species’
Fermi surfaces become split. The entropy is then given
by the sum of the density of states at two different en-
ergies. Since one Fermi surface is moved to a lower den-
sity of states this has the effect of compressing the peak
in entropy around the van Hove singularity. This split-
ting is proportional to the magnetic field. However, by
moving a fixed energy interval the Fermi surface closest
to the peak expands to include more electrons than the
Fermi surface further from the peak loses by contracting
(assuming the Fermi surfaces lie below the peak). This
means that the overall number of electrons has increased.
In order to conserve number the majority Fermi surface
must move towards the peak more slowly than the mi-
nority Fermi surface recedes. This results in a slower
approach to the peak than would naively be expected
and therefore a higher critical field for the metamagnetic
transition. This is illustrated in detail in figure 1. We
note that despite this effect the energy gap between the
Fermi surfaces remains proportional to the field.

When interactions are included as well as the external
field there is an additional splitting of the Fermi surfaces
due to metamagnetism. When the transition is continu-
ous the effect is one of compressing the field scale around
the transition so that field tunes through the putative
entropy curve more rapidly than expected (see Fig.1).
When the transition is discontinuous a range of magneti-
sation values are ‘jumped over’ by the transition. This
removes a slice of the putative entropy curve beginning
at the critical endpoint and getting wider as temperature
is decreased and the transition gets stronger. The en-
tropy therefore becomes discontinuous at the metamag-
netic transition. Since the region removed is around the
peak, it is possible for the highest value of S/T to occur at

non-zero temperature, where the jump is smaller and the
Fermi surface samples a region closer to the peak. This
is similar to the susceptibility which is strongly peaked
around the critical endpoint of the transition.

Finally we consider the effect of temperature. This
broadens the Fermi-Dirac distribution, allowing the ther-
mal occupation the peak in the density of states across
a wider range of chemical potentials as temperature is
increased. The peak in entropy therefore becomes broad-
ened. The increase in occupied states is most rapid on
either side of the peak. Specific heat is the temperature
derivative of the entropy and so will be largest in these
regions. We therefore expect a structure which is loga-
rithmic at zero temperature with a peak which bifurcates
and broadens as temperature increases.

The magnetic field and interactions have the same ef-
fect for the specific heat as for the entropy - a compression
along the field axis and the removal of a ‘wedge’ of field
values due to the first order transition.

We will now consider how to calculate these quantities
explicitly within the Stoner mean-field theory.

II. CALCULATION OF ENTROPY AND
SPECIFIC HEAT

We calculate the magnetization, entropy and specific
heat from the free energy of the Stoner model where the
effective chemical potential for the spin-species is deter-
mined by number conservation. Number conservation is
enforced by requiring nσ = n

2 + σm where σ = ±1 labels
the spin-species, the total number of electrons n = n↑+n↓
is constant, and the magnetisation 2m = n↑ − n↓. The
effective chemical potential µσ is determined implicitly
from the number nσ,

nσ =

∫
dε ρ(ε)f(ε− µσ), (1)

where f(ε − µσ) =
[
1 + exp

{
1

kBT
(ε− µ)

}]−1

is the

Fermi-Dirac distribution and ρ(ε) is the density of states.
Throughout all integrals are performed over the band-
width of the band in question.

The free energy in the Stoner model is:

F =
∑
σ

[
−kBT

∫
dε ρ (ε) ln

(
1 + e

− ε−µσkBT

)
+ µσnσ

]
+gn↑n↓ − hm, (2)

where g is the interaction strength and h is the applied
magnetic field multiplied by µB . From the requirement
that the free energy is a minimum, ∂mF = 0, this gives a
self-consistent equation for the magnetization and mag-
netic susceptibility5,

h = µ↑(n,m)− µ↓(n,m)− 2gm, (3)

1

χ
=
∑
σ

1∫
dε ρ (ε) ∂εf (ε− µσ)

− 2g. (4)
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FIG. 1. (Color online) a) Magnetisation for the number conserving case (red solid line) and non-number conserving case (blue
dashed line, determined by the equation 2m = n(ε− µ− h/2) − n(ε− µ+ h/2), valid in the case of a non-interacting system).
The critical field Hc is higher in the number conserving case than the non-number conserving case H0

c . Introducing interactions
(purple solid lines, g = 0.22, 0.35) reduces the critical field. W is the bandwidth. b) Effective chemical potentials relative to
the singularity for the two spin species, with number conservation (solid red) and non number conserving (dashed blue). The
number conserving case slows its approach to the van Hove singularity as field is increased. c) The density of states with the
zero-field chemical potential (solid black line) the non number conserving chemical potentials at the critical field (blue dashed
line) and the number conserving case at the same field (solid red lines).

The entropy is defined by S = − ∂TF |n,h and the specific

heat as C = −T ∂2
TF
∣∣
n,h

. These are evaluated with the

conditions that total number is conserved. This condition
is encoded in the behaviour of the chemical potentials,
giving a non-trivial form for ∂Tµσ. The evaluation of
these derivatives is straightforward but lengthy and is
presented in appendix A. The results of these calculations
are:

S =
∑
σ

[
kB

∫
dε ρ (ε) ln

(
1 + e

− ε−µσkBT

)
+ kBT

∫
dε ρ (ε) ∂T ln

(
1 + e

− ε−µσkBT

)
− ∂Tµσnσ

]
,

C =
∑
σ

[∫
dε ερ (ε) ∂T f (ε− µσ)

]
− (2gm+ h) ∂Tn↑.

(5)

The temperature derivatives of the chemical potential are
given by

∂Tµσ =
−kBT

∫
dε
(

Ξ↓
ε−µ↓
kBT

2 +Ξ↑
ε−µ↑
kBT

2

)
∫
dε Ξ(−σ)

+ 2g
∫
dε Ξσ

ε−µσ
kBT 2

1− 2g
kBT

∫
dε Ξσ +

∫
dε Ξσ∫

dε Ξ(−σ)

,

(6)

where

Ξσ = ρ(ε)
e

(ε−µσ)
kBT(

1 + e
(ε−µσ)
kBT

)2 . (7)

The specific heat and entropy may be calculated for
any n, h and T from equations (3),(5) and (6). These ex-
pressions produce the magnetic transitions of the Stoner
model, although the location of the first-order transition
must be determined by direct minimisation of the free

energy as it is not uniquely determined by Eq.3 which
becomes multi-valued in the region of the first-order tran-
sition. We will evaluate these expressions for magnetisa-
tion, entropy and specific heat numerically for the loga-
rithmic density of states in section III, the model γ2 band
in section IV and a toy model double-peaked density of
states in section V.

III. DENSITY OF STATES WITH
LOGARITHMIC PEAK

With the previous results it is possible to evaluate the
magnetization, susceptibility, entropy and specific heat
as a function of filling, magnetic field and temperature,
for any given density of states and interaction strength.
First we will study a logarithmically divergent density of
states, as produced generically by saddle points in a two
dimensional electronic dispersion. This model density of
states is given by

ρ (ε) =
1

W
ln

∣∣∣∣ W

ε− εc

∣∣∣∣ (8)

where the bandwidth is 2W . The density of states di-
verges at ε = εc. In the following we will take the inter-
action strength to be g = 0.3W . We choose to look at
a filling which is below the van Hove point and use field
to tune the system through the metamagnetic transition.
The phase diagram for this model was studied in Ref.5
and the thermodynamic properties were briefly studied
in Ref.12, we now consider them in more detail.

Figure 2 gives the results of evaluating (3) for magne-
tization and (5) for entropy and specific heat, for a cut
through the metamagnetic wing in the h, T plane with
the logarithmic density of states (8). These plots are in
good agreement with the anticipated results. Magnetiza-
tion has the familiar first-order transition at low temper-
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ature which becomes continuous at a critical endpoint.
The entropy has a temperature-broadened peak reflect-
ing the density of states with the position and symmetry
of the peak shifting due to the effect of the metamag-
netism and number conservation. Specific heat shows
the expected double-peak structure but with very asym-
metric peaks due to the magnetic transition. Other sig-
natures of the metamagnetic transition are observed in
the field dependence, such as the discontinuity and max-
imum of S/T at non-zero temperature. The slope of the
transition to lower fields as the temperature in increased
is consistent with the entropy jump at the transition by
the Clausius-Clapeyron relation. The effects discussed
modify the field dependence of these quantities from the
logarithmic density of states. In Fig.(2) we show fits to
the specific heat below the transition which show an h−1

dependence which is consistent with that observed in the
experiments3.

The fact that the Fermi surfaces are spin-split means
that as temperature is increased each will intersect with
the peak in the density of states at a different temper-
ature. However the effect of temperature in broaden-
ing the transitions means that rather than a double-peak
structure the shape of the peak is modified by the pres-
ence of a broad background from the Fermi surface fur-
thest from the peak. This gives a shoulder at high tem-
perature which appears as the field is increased, this is
clearly visible in figure 2. This shoulder will become less
pronounced for larger critical fields as a greater tempera-
ture broadening will be required for the minority species
to see the peak. This is a distinctive signal of Zeeman
splitting near to a feature in the density of states15.

As shown in figure 2 the specific heat has a logarith-
mic dependence on temperature above the metamagnetic
transition, reflecting the density of states. This may
be seen from a simple calculation. Examining the in-
tegrals involved in the entropy and specific heat we see
that they are based on the Fermi-Dirac distribution and
its temperature derivatives. Approximating the Fermi-
Dirac distribution as f(ε − µ) = 1

2 −
ε−µ
4T and using the

logarithmic density of states ρ(ε) = ln 1
|ε| we see that

C/T ≈
∫ T
−T dε ερ(ε)∂T f(ε− µ)

∣∣∣
µ=0

= 1
36 (2− 6 lnT ),

where we have limited our integration to a temperature-
dependent region around the Fermi energy. The entropy
can be seen to follow a − lnT law similarly. Such a pic-
ture is only applicable where only one spin-species is near
a feature in the density of states and below the temper-
ature at which the other species picks up the peak. It
must also be above the temperature of the metamag-
netic transition where interactions dominate the motion
of the Fermi level. The simple fit therefore only works in
a window of temperatures.

These effects mean that a comparison of field and tem-
perature scales is subtle. Interactions and number con-
servation alter the rate at which field tunes into the peak
in the density of states relative to temperature. This is
shown in figure 2 where the peak in C/T is plotted for

various interaction strengths and band fillings. We see
that small changes in interaction strength can produce a
large change in critical field but has no effect on the tem-
perature of the zero-field maximum. This means that
care is needed when identifying zero field features as a
function of temperature with low temperature features
at a certain field.

IV. MODEL γ2 BAND

A. Constructing the model

The metamagnetic transition in Sr3Ru2O7 is thought
to be due to a van Hove singularity near to the Fermi
surface. Angle-resolved photoemission spectroscopy
(ARPES) studies have identified this as belonging to the
electronic band named γ2

4. Sr3Ru2O7 is a quasi-two di-
mensional material with an extrememly complex Fermi
surface. A simplified model of the relevant band can
be produced relatively straightforwardly. We follow a
similar but simpler procedure to that in references16,17,
identifying a minimal model for the γ2 band. The ma-
jority of the Fermi surface in Sr3Ru2O7 is built up from
the t2g orbitals of the ruthenium atoms, hybridising via
the oxygen p-orbitals. When bilayer splitting and back-
folding due to the structural rotation of ruthenium-oxide
octrahedra is taken into account this can account for the
observed bandstructure18. The simplest model for γ2 is
therefore one involving the dxy, backfolded dxy and the
dyz and dzx orbitals closest to the Brillouin zone corner as
described in appendix B. These bands, and the result of
including hybridisation between them are shown in figure
3 close to the zone corner. The resulting model for the γ2

pocket is shown in figure 4. Four triangular pockets form
a cross around the zone corner. A saddle point in the
dispersion creates a logarithmic peak in the density of
states but additionally there is a shoulder in the density
of states due to a local maximum of the band structure
in the zone corner. This feature has consequences for the
observable properties of the system.

B. Metamagnetism and Fermi surface transitions

The density of states for this model may be straight-
forwardly used in Eq.(3) to determine the magnetisation
profile of the band, with the first order transition de-
termined by minimisation of Eq.(2). This magnetisation
is shown in figures 5 and 6. We see that the peak in
the density of states reproduces the metamagnetic tran-
sition as in the previous case, with a first-order transition
which curves towards lower fields as the temperature is
increased before becoming continuous at a critical end-
point. In addition the local maximum of the bandstruc-
ture in the zone corner creates a crossover feature - a large
but continuous increase in the magnetisation just before
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FIG. 2. (Color online) a) Phase diagram as a function of magnetic field h and temperature T for g = 0.3W and filling fraction
n = 0.42. The first-order transition is shown by the thick black line, terminating at a critical endpoint. The thin black lines
indicate two peaks in C/T at low temperature while the upper branch follows the shoulder feature. The dashed line indicates
the peak in the specific heat with the interaction strength reduced to g = 0.29 and the dotted line g = 0.28. We see that
the critical field of the transition is increased as the interaction strength decreases. Vertical and horizontal lines labelled A,
B, C and D indicate paths through the phase diagram. b) Entropy and specific heat plotted along the paths in the phase
diagram indicated in a). A: C/T (circles) and S/T (squares) as a function of temperature for fields below the critical field
of the transition. Note how the single peak at H = 0 develops a shoulder as field is increased, caused by spin-splitting of
the Fermi-surface, while the main peak sharpens and moves to lower temperatures. B: C/T (circles) and S/T (squares) as a
function of temperature for fields above the critical field of the transition. The dotted line shows a logarithmic fit to the low
temperature C/T . The inset shows C/T for a filling far from the van Hove singularity. The high field necessary to reach the
transition means that the contribution from the minority spin is negligible and C/T follows a perfect logarithmic fit of the form
a+ b log T . C: C/T and S/T as a function of field above the critical temperature of the transition. Here we see the broadening
of the low temperature peaks and the asymmetric double peak in C/T . D: C/T and S/T as a function of field below the critical
temperature of the transition. We see the jump in entropy and specific heat at the first-order transition which is reflected in
the curvature of the transition line seen in a). We also see the appearance of the double peak in C/T . Dotted lines show h−1

fits to the low-field C/T .
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the transition. These features merge into one smooth
crossover above the critical point.

The changes in the minority Fermi surface across this
transition are plotted in figure 5. At low fields the four γ2

pockets are clearly seperated. In the crossover regime an
additional small pocket appears in the zone center at a
Lifshitz transition. After the metamagnetic transition all
of these pockets have reconnected to form a cross-shape.
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FIG. 5. Magnetisation as a function of field for the model
γ2 pocket, visible are the metamagnetic transition and the
magnetic crossover. The Fermi surfaces for the minority spin-
species show the three regimes, low-field, crossover, high-field,
as the four pockets connect.

C. Specific heat and entropy

The specific heat and entropy for this pocket may be
calculated by substituting the calculated density of states
and magnetization into (5) and (6). These results are
shown in figure 6. These plots have the same basic form
as for the logarithmic density of states (section III and
Ref.12) with additional features caused by the crossover.
The first-order transition produces a discontinuity which
terminates at the critical endpoint, this discontinuity is in
a temperature broadened peak for the entropy or asym-
metric double peak for the specific heat. There is an
additional shoulder in C/T moving to higher tempera-
ture with field as in the previous case. The crossover
generically produces shoulders in the entropy and spe-
cific heat just before the transition as a function of field
as one Fermi surface reaches the shoulder in the density
of states.

While capturing the major features of Sr3Ru2O7
3 this

model does not match all of of the observed details. For
example the crossover is associated with a distinct ad-
ditional peak in the entropy in experiment, which is al-
ways a shoulder in this picture. This discrepancy may be
taken into account if the majority spin pocket vanishes
in the crossover region, giving two Lifshitz transitions
in close succession15. However this requires consider-
able fine-tuning of the system parameters. We present
a model in which this happens in Fig.7. In this model we
see a kink in the crossover magnetisation associated with
a distinct peak in the entropy. We stress that although
the shoulder is a generic feature of this sort of bandstruc-
ture this peak requires a density of states and filling and
interaction parameters with considerable fine-tuning.
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FIG. 6. (Color online) a) Magnetisation, b) magnetic susceptibility, c) specific heat and d) entropy as a function of field
and temperature for the model γ2 pocket. These are shown as 3D plots and gradient plots to clearly show the temperature
dependence. The first-order transition shows the same behaviour as for the generic logarithmic case but the crossover produces
additional shoulder features. The susceptibility is strongly peaked around the critical endpoint with a weaker feature at the
crossover. Note that the high-temperature shoulder in C/T is present but outwith the temperature range of these plots. The
parameters used for these plots are g = 0.115, µ − µc = 0.008 where µc is the chemical potential of the peak and the density
of states is shown in Fig.4.
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FIG. 7. (Color online) a) Magnetisation (solid line) and
magnetic susceptibility (dashed line) for a model where the
crossover is associated with the appearance of a new pocket
and the subsequent disappearance of one spin-species. Letters
label distinct Fermi surface topologies. b) Entropy (solid line)
and specific heat (dashed line) for this model, the crossover
now produces a peak in the entropy. c) The density of states
used to produce this behaviour. The logarithmic singular-
ity produces the first-order transition while the two step fea-
tures representing the appearance of Fermi surface pockets
give the crossover. Shading represents the zero-field filling.
c) Schematic evolution of the Fermi surface presented earlier
through the transitions. Note the disappearance of one spin
species between B and C. The complete field sweep involves
three Lifshitz transitions.

We now consider the field and temperature dependence
of the entropy and specific heat. As discussed in the
previous section the van Hove singularity gives a − lnT
dependence of C/T above the transition, as observed in
Sr3Ru2O7

3. Number conservation and interactions will
alter the field dependence as shown in the previous sec-
tion. Additional features of the density of states will
also create additional features in the specific heat as a
function of temperature and field. The presence of the
shoulder in the density of states produces a steeper rise
of the entropy and specific heat as a function of field
than would be expected from a van Hove singularity as
can be seen in Fig.6. This is consistent with experiments
where an enhanced divergence was observed3. However
in this picture the ‘divergence’ is caused by a feature at
a specific energy in the density of states, and its effects
will therefore only be seen in a field range with a width
proportional to the temperature around this point. In
particular this will result in a very asymmetric depen-
dence of the entropy and specific heat around the van
Hove singularity.

We have shown that a simple model for one band of
Sr3Ru2O7 can reproduce many of the observed experi-
mental properties. These include non Fermi liquid depen-
dencies as a function of T and h, the magnetic crossover
and a more rapid divergence of S and C than may be
expected from the form of the van Hove singularity.

V. HIGH ENTROPY REGIONS

So far absent from our discussion of Sr3Ru2O7 has been
any indication of the anomalous phase. In the context of
our present study the most interesting property of this
phase is that upon entering it the entropy jumps to a
higher value and upon leaving the entropy falls again.
This produces a region of high entropy with the associ-
ated outwards curvature of the first-order phase transi-
tions, which has so-far not been captured in any theo-
retical treatment. Examining the entropy jump at the
first-order transition in the Stoner theory of the meta-
magnetic transition suggests that this behaviour may be
captured in our picture if one spin-species Fermi surface
can be maintained in a region of high density of states
after the transition. This may happen if, for example,
we have a double-peaked density of states where the re-
gion between the peaks has a higher density of states
than that outside. We now present a theory for the
magnetic transitions in such a density of states. We will
find that there are two transitions at low temperature as
the Fermi-surface jumps over the two peaks. In between
these transitions there is a plateau which has a higher
entropy than the surrounding areas. In accordance with
the Clausius-Clapeyron relation these transitions slope
away from each other as a function of temperature. The
density of states in question is shown in Fig.(8) and the
results for magnetisation, entropy and specific heat, ob-
tained by the same methods as previously, are shown in
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Fig.9.
Unlike in Sr3Ru2O7 there is no distinct phase between

the transitions of this model. Above the critical end-
point of the transitions is just a crossover, rather than
a second-order transition. Since there is no symmetry
broken phase there is no obvious reason for this area to
show the resistive anisotropy characteristic of the anoma-
lous phase. However this approach does show that the
thermodynamics of the phase can be captured in a sim-
ple mean-field picture. What is required is a reason for
the formation of such a double-peaked density of states.
While we cannot rule out a simple feature in the density
of states, caused by bilayer splitting of the γ2 band for
example, we point out that this scenario is sensitively
dependent on the positions if the peaks. Small changes
in peak height or seperation can destroy the second first-
order transition and this configuration is unlikely to have
occured by chance. This may be an interaction-driven
effect where the appearance of a new phase reconstructs
the density of states. It is possible that this could be due
to the formation of a symmetry broken state such as a
spin-density wave, or an electronic nematic state. In fact
the density of states used to calculate the results of figure
9 is that produced from a spin-density wave dispersion
with wavevector q and magnitude M :

2E =
(
εk+ q

2
+ εk− q

2

)
+

√(
εk+ q

2
− εk− q

2

)2

+ (gM)2,

εk = − (cos kx + cos ky) + 0.3 cos kx cos ky, (9)

although our calculation only examines the possibility of
ferromagnetic states within this density of states.

VI. CONCLUSIONS

We have shown that a peak in the electronic density
of states produces a metamagnetic transition as a func-
tion of magnetic field and calculated the corresponding
thermodynamic behaviour. Both the entropy and specific
heat show distinctive behaviour. The entropy has a peak
which reflects the density of states but with modified

field dependence and temperature broadening. The tran-
sition causes a discontinuous jump in the entropy. The
specific heat also shows a discontinuity but in an under-
lying double-peak structure. Such a peak in the density
of states arises in the γ2 band of Sr3Ru2O7 and is there-
fore a good candidate for the cause of the metamagnetic
transition in this material. A shoulder in the density of
states of this band produces the crossover feature which
has been observed in experiment. The temperature de-
pendence of the specific heat above the transition is log-
arithmic. In addition the field dependence is complex,
depending on many parameters and not just the density
of states. This raises the question of how to distinguish
between deviations from the expected Fermi-liquid be-
haviour which are due to features in the bandstructure
and which are due to the breakdown of the quasiparticle
picture - such as at a quantum critical point.

Throughout we have stressed the role of number con-
servation which can have a significant effect on the criti-
cal field of the transition and the field dependence of the
other system properties.

Similar models to that presented here have been used
to study the bandstructure of Sr3Ru2O7

16,17,19,20. Many
of these include the effects of field angle by introduc-
ing spin-orbit and orbital Zeeman coupling, these terms
will also cause some change in the bandstructure with
field magnitude. These effects may be straightforwardly
introduced into our calculations in the form of a field-
dependent density of states, though for simplicity we do
not consider this here.

These results provide a strong test for the scenario of
a static density of states peak with Zeeman splitting.
In particular the appearance of two features in C/T as
a function of temperature at finite magnetic fields is a
consequence of this picture. Careful comparison with ex-
perimental measurements on Sr3Ru2O7 may allow the
confirmation of the energetic drive behind the metamag-
netism and possibly the anomalous phase formation.

In addition to the single metamagnetic transition we
have studied the possibility of having phases with a
higher entropy than their surroundings in this picture.
We find that a double-peaked density of states can pro-
duce this effect and that its properties match well with
the thermodynamic signatures of the anomalous phase
in Sr3Ru2O7, although in this model it is not a distinct
phase. However the underlying reason for such a density
of states appearing is outwith the scope of this work.
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Appendix A: Thermodynamic derivations

1. Number conservation

Enforcing conservation of total number produces a
number of relationships between the spin-species which
are important for our calculations. Using the equations
and relationships from Section II we have:

∂Tn = ∂Tn↑ + ∂Tn↓ = 0

⇒ ∂Tn↑ = −∂Tn↓,

∂Tm =
1

2
(∂Tn↑ − ∂Tn↓)

= ∂Tn↑ = −∂Tn↓,
∂Th = ∂Tµ↑ − ∂Tµ↓ − 2g∂Tm

= ∂Tµ↑ − ∂Tµ↓ − 2g∂Tn↑ = 0

⇒ ∂Tµ↑ = ∂Tµ↓ + 2g∂Tn↑. (A1)

2. Useful derivatives

We now evaluate some derivatives which will prove to
be useful. We will use the shortened form fσ = f(ε−µσ).

∂T fσ =
e

(ε−µσ)
kBT

(1 + e
(ε−µσ)
kBT )2

[
ε− µσ
kBT 2

+
∂Tµσ
kBT

]
, (A2)

∂T ln
(

1 + e
− ε−µσkBT

)
=

1

1 + e
ε−µσ
kBT

[
ε− µσ
kBT 2

+
∂Tµσ
kBT

]
= fσ

[
ε− µσ
kBT 2

+
∂Tµσ
kBT

]
, (A3)

3. Entropy

Entropy is the first derivative of the free energy with
respect to temperature.

S = −∂TF =
∑
σ

[
kB

∫
dε ρ (ε) ln

(
1 + e

− ε−µσkBT

)
+kBT

∫
dε ρ (ε) ∂T ln

(
1 + e

− ε−µσkBT

)
−∂Tµσnσ − µσ∂Tnσ]

−g (∂Tn↑n↓ + n↑∂Tn↓) + h∂Tm (A4)

Using (A1) and (3)

∑
σ

(µσ∂Tnσ + g∂Tµσ∂Tn−σ)− h∂Tm = (n↑ − n↓ + 2gm− h) ∂Tn↑ = 0,

(A5)

and so

S =
∑
σ

[
kB

∫
dε ρ (ε) ln

(
1 + e

− ε−µσkBT

)
+kBT

∫
dε ρ (ε) ∂T ln

(
1 + e

− ε−µσkBT

)
− ∂Tµσnσ

]
.

(A6)

4. Specific Heat

Specific heat is the first derivative of the internal en-
ergy with respect to temperature. It may alternatively
be calculated from the second temperature derivative of
the free energy.
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U =
∑
σ

[∫
dε ερ (ε) fσ

]
+ gn↑n↓ − hm. (A7)

C = ∂TU =
∑
σ

[∫
dε ερ (ε) ∂T fσ

]
+g (∂Tn↑n↓ + n↑∂Tn↓)− h∂Tm

=
∑
σ

[∫
dε ερ (ε) ∂T fσ

]
− (2gm+ h) ∂Tn↑.

(A8)

5. Derivatives of the chemical potential

Before we can evaluate the specific heat or entropy we
need to calculate expressions for the temperature deriva-
tives of the chemical potentials. We begin from the de-
pendence of number on temperature:

∂Tnσ =

∫
dε ρ (ε) ∂T fσ

=

∫
dε ρ (ε)

e
(ε−µσ)
kBT

(1 + e
(ε−µσ)
kBT )2

[
ε− µσ
kBT 2

+
∂Tµσ
kBT

]
.

(A9)

From (A1) and (A9) we have

∂Tµσ = −kBT

∑
σ

∫
dε ρ (ε) Ξσ

(
ε−µσ
kBT 2

)
∫
dε ρ (ε) Ξσ

−∂Tµ−σ
∫
dε ρ (ε) Ξ−σ∫
dε ρ (ε) Ξσ

, (A10)

where Ξσ = e
(ε−µσ)
kBT(

1+e
(ε−µσ)
kBT

)2 . Also

∂Tµσ = ∂Tµ−σ − 2g∂Tn−σ

= ∂Tµ−σ

(
1− 2g

kBT

∫
dε ρ (ε) Ξ−σ

)
−2g

∫
dε ρ (ε) Ξ−σ

(
ε− µ−σ
kBT 2

)
, (A11)

resulting in

∂Tµσ =
−kBT

∑
σ

∫
dε ρ(ε)Ξσ

(
ε−µσ
kBT

2

)
∫
dε ρ(ε)Ξ−σ

+ 2g
∫
dε ρ (ε) Ξσ

ε−µσ
kBT 2

1− 2g
kBT

∫
dε ρ (ε) Ξσ +

∫
dε ρ(ε)Ξσ∫
dε ρ(ε)Ξ−σ

.

(A12)

Appendix B: γ2 pocket

Our model for the γ2 pocket is found by diagonalizing
the following Hamiltonian:

H =
∑
σ,k

ψ†σ,k


dxy (k) ∆ 0 ∆2

∆ d′xy (k) ∆2 0
0 ∆2 dzx (k) 0

∆2 0 0 d′yz (k)

ψσ,k,

(B1)

where dxy (k), dyz (k), dzx (k) are dispersions represent-
ing the bands formed by the t2g atomic orbitals:

dxy (k) = −W [cos (kx) + cos (ky)]− t [cos (2kx) + cos (2ky)]

dzx (k) = −W cos (kx)

dyz (k) = −W cos (ky), (B2)

and d′xy, d′yz, d
′
zx are the backfolded versions with, for

example, d′xy(k) = dxy(k + Q) where Q = (π, π). ∆ and
∆2 are the interaction potentials between bands. These
potentials may arise from spin-orbit effects and therefore
allow a coupling of the bandstructure to the angle and
strength of the applied field, though for simplicity we do
not consider this here. These bands are shown in figure
3 before and after hybridisation with the parameters t =
−0.2W , ∆ = 0.025W , ∆2 = 0.1W .
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