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PROPAGATION OF CR EXTENDIBILITY AT THE

VERTEX OF A COMPLEX SECTOR

LUCA BARACCO AND STEFANO PINTON

Abstract. We study propagation of CR extendibility at the ver-
tex p of an analytic sector A contained in a CR manifold M . Let
k be the weighted vanishing order of M and α the complex angle
of A at p. Propagation takes place if and only if α > 1

k
.

MSC: 32F10, 32F20, 32N15, 32T25

1. Introduction

Hanges and Treves prove in [5] that a disc A in a real hypersurface
M of the complex space is a propagator of holomorphic extendibility
across M . Propagation takes also place at a boundary point p ∈ ∂A at
which ∂A is smooth; this is meant, though not stated, for instance in
[2]. Thus the complex angle for a set to be a propagator reduces from
2π to π. Going on in reduction of the angle, Zaitsev and Zampieri prove
in [11] that a sector Aα of angle απ > π

2
is a propagator; again, this

is not explicitely stated. What about α ≤ 1
2
? The positive solution to

the question comes from a good balance between the size of α and the
flatness of M at p. (As for the result of [11], note that any smooth M
is at least “2-flat”.) For instance, consider the sector in C

A 1

k
+ǫ = {z1 ∈ C : −π(

1

2k
+

ǫ

2
) < argz1 < π(

1

2k
+

ǫ

2
)},

and the function

(1.1) h 1

k
+ǫ =











0 if z1 ∈ A 1

k
+ǫ,

−(zk1 + z̄k1 ) if z1 /∈ A 1

k
+2ǫ,

|z1|
kχ(arg(z1)) if z1 ∈ A 1

k
+2ǫ \ A 1

k
+ǫ,

where χ ∈ C∞ serves to connect 0 to −(zk1 + z̄k1 ) in the region A 1

k
+2ǫ \

A 1

k
+ǫ: it takes value 0 (resp. cos(π

2
+ kǫπ)) for arg(z1) = π( 1

2k
+ ǫ

2
)

(resp. arg(z1) = π( 1
2k

+ ǫ)). Let M 1

k
+ǫ = {z ∈ C2 : y2 = h}; then

Aα ⊂ M 1

k
+ǫ for α = 1

k
+ ǫ is a propagator of holomorphic extendibility

across M 1

k
+ǫ at 0. The proof is contained in Theorem 1.1 which follows

but can be much simplified in this model case. On the contrary, consider
1
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the smaller sector A 1

k
−ǫ, define h 1

k
−ǫ similarly as in (1.1) but with the

pair A 1

k
+ǫ ⊂ A 1

k
+2ǫ replaced by A 1

k
−ǫ ⊂ A 1

k
, and denote by M 1

k
−ǫ the

hypersurface defined by y2 = h 1

k
−ǫ. It is also not restrictive to suppose

that h 1

k
−ǫ ≥ −(zk1 + z̄k1 ). The domain Ω := {z : y2 > −(zk1 + z̄k1 )}

contains a neighborhood of the punctured sector A 1

k
−ǫ \ {0} and also

contains {z : y2 > h 1

k
−ǫ}. Since Ω is pseudoconvex, then A 1

k
−ǫ is not a

propagator of extendibility across M 1

k
−ǫ at 0. This shows that the angle

απ must be calibrated according to the flatness of the hypersurface.
Propagation also holds in an exponentially degenerate boundary for

an “infinitely stretched” disc, that is, a real ray. In fact, according to

[1], the x1-axis is a propagator in the hypersurface y2 = e
− 1

|y1|
s , s ≥ 1.

This is no more true for s < 1. On one hand the method by [1] of
approximation of the real line by analytic discs fails, on the other there
are superlogarithic estimates (Kohn [7]) which yield hypoellipticity of
the ∂̄-Neumann problem. As it is classical, hypoellipticity and propa-
gation are in contrast one to another. This shows that propagation in
the infinitely degenerate regime is far from having reached a complete
understanding.
Instead, coming back to propagation along a nondegenerate sector on

a manifold of weighted vanishing order≥ k, the problem takes complete
solution in the present paper. A sector Aα for α > 1

k
is a propagator

at the vertex. The conclusion looks similar as to the extension at the
vertex in presence of the sector property or, more generally, the rays
condition by Fornaess and Rea [4]. However, ours is propagation, and
theirs, forced extension. In particular, for their result to be true, one
needs to know from the beginning that the extension holds in a neigh-
borhood of the punctured sector whose rate at 0 is |z|k; instead, no
control of the rate is required in the present paper.
Our method is largely inspired to Tumanov [8] and [10] but con-

tains some novelties. It consists in making infinitesimal deformations
of analytic discs in the Lipschitz spaces F i,α defined in the sequel. The
crucial point is that the component of these discs which is normal to M
is smoothened by composition of the disc with the graphing function
h of M . When h has weighted vanishing order k, and the tangential
components are F i,α, the normal component takes regularity Ckα; in
particular, if α > 1

k
, this is C1. Another ingredient of the proof is the

approximation of α-discs by smooth discs; the convergence for the nor-
mal components is in fact in Ckα. And finally, there is a smoothening
argument in the implicit function theorem: a smoothening operator
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which gains regularity from F i,α to Ckα has F i,α-inversion which is in
fact in the class Ckα.
For stating our result we need to clarify the concept of weighted

vanishing order. Let M ⊂ Cn be a smooth generic submanifold with
dimR(M) = 2n− d. Fix a point p = 0 ∈ M and normalize coordinates
so that M is locally described as a graph

M = {(z, w) ∈ C
d × C

n−d : z = (x+ iy), y = h(x, w) }

where h : Rd × Cn−d → Rd is a smooth function such that h(0) = 0
and ∂h(0) = 0. Using the Taylor expansion of h, we can write for some
k > 2:

(1.2) h = Pk−1(w, w̄) + xO(xk−1, |w|k−1) +Ok(w, w̄)

where Pk−1(w, w̄) is a homogeneous, non-harmonic polynomial of de-
gree k− 1. When the graphing function h has the form (1.2), we write
h = Ok and say that M has weighted vanishing order ≥ k. This notion
is coordinate free. It can be reformulated by asking, for any vector field
L ∈ T 1,0M

[Lǫ1 , [Lǫ2, . . . [Lǫk−2 , Lǫk−1] . . . ]] ∈ T 1,0M ⊕ T 0,1M

for any choice of Lǫj as L or L̄.
We use the terminology “analytic sector” of M for a subset A ⊂ M

obtained as the holomorphic image under the mapping (x + ih, w) of
the standard sector {(1−τ)αwo : τ ∈ ∆} where ∆ is the standard disc
and wo a vector of Cn−d. We call α the angle of A. Finally, we recall
that a CR function f is a continuous function such that L̄f = 0 for
any L̄ ∈ T 0,1M .
Here is the main result of this paper.

Theorem 1.1 (Propagation at the vertex of an analytic sector). Let
M ⊂ C

n be a generic submanifold of class Ck+3 with weighted vanishing
order ≥ k at p ∈ M . We suppose that M contains an analytic sector
of angle α > 1

k
with vertex at p and passing through another point q.

For any submanifold M ′ of class Ck+3 with boundary M at q, there
exists a submanifold M ′′ ⊂ Cn of class C1 with boundary M at p,
such that any continuous CR function in M that has continuous CR
extension to M ′ also has CR extension to M ′′. Moreover, given several
submanifolds M ′

1, . . . ,M
′
s as above in s linearly indipendent directions

of TqC
n \ TqM , the corresponding submanifolds M ′′

1 , . . . ,M
′′
s span s

linearly indipendent directions of TpC
n \ TpM .

To prove the result we first introduce in §2 spaces of discs with
Lipschitz boundary. Then, we proceed in three steps. The first, in §3,



4 L. BARACCO AND S. PINTON

consists in showing that there exists a F2,α disc A′ attached to a defor-
mation ofM , contained inM∪M ′, that has non-null normal component
of the radial derivitive at p. The second, in §4, consists in showing that
there exists a smooth disc A′′, sufficiently close to A′ in F2,α−norm,
with the radial derivative in p close to those of A′. The third, in §5,
consists in constructing a submanifolds over p by union of the rays of
a family of analytic discs obtained moving the vertices of the discs in
a neighborhood of p.

2. Analytic discs with a singular boundary point

2.1. The functional space F2,α. We introduce now a particular sub-
class of the Hölder space Cα for 0 < α < 1. Denote by τ = reiθ the
variable in the standard disc ∆. We call F2,α the subclass of Cα com-
posed by all the real continuous function σ(θ), θ ∈ [−π, π], that are
C2,α out of 0 and for which the following norm is finite:

(2.1) ‖σ‖F2,α = ‖σ‖C0 + ‖θσ(1)‖Cα + ‖θ2σ(2)‖Cα.

(Here σ(1) and σ(2) denote first and second derivative of σ respectively).

We remark that for σ ∈ F2,α we must have θσ
(1)
|θ=0 = 0, for otherwise

θσ(1) → c 6= 0, which implies |σ| ≥ − |c|
2
log |θ| contradicting the bound-

edness of σ. It is easy to check that F2,α is a Banach algebra. First we
state a theorem that we use in the sequel.

Theorem 2.1 (Hardy-Littlewood). Let Ω be a bounded, lipschitz do-
main in Rn and let δ(x) is the distance from the boundary of Ω. Let
f ∈ C1(Ω) and suppose that

(2.2) |∇f(x)| ≤ Cδ(x)α−1

Then f ∈ Cα(Ω̄) and, moreover, the constant C of (2.2) controls the
Cα-norm of f by

‖f‖Cα . ‖f‖C0 + C,

where “<
∼
” denotes inequality up to a multiplicative constant.

We denote by F2,α
0 the set of functions σ such that σ ∈ F2,α and

σ(0) = 0. Using the previous theorem, we prove an important result
concerning the regularity of the composition, that we use in the sequel.
Assume (k − 1)α < 1 < kα. Let γ ≤ kα− 1 (in particular γ ≤ α).

Proposition 2.2. If

h ∈ Ck,γ
0 , h ∈ Ok,

u ∈ C1,γ
0 , w ∈ F2,α

0 .
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then,

(2.3) h(u, w) ∈ C1,γ,

and
‖h(u, w)‖C1,γ <

∼
‖h‖Ck‖u‖C1,γ + ‖w‖F2,α.

Proof. We have

h(u, w)(1) = hxu
(1) + hww

(1) + hw̄w̄
(1).

Since the first term in the right is Cγ, then we only have to treat the
second and third. Now, as for the second,

(hww
(1))(1) = hx,wu

(1)w(1) + hww(w
(1))2 + hw̄w̄(w̄

(1))2 + 2hww̄|w
(1)|2

+ hww
(2) + hw̄w̄

(2)

. |θ|α+α−1 + |θ|(k−2)α+2(α−1) + |θ|(k−1)α−2+α

. |θ|−1+2α + |θ|−1+γ + |θ|−1+γ.

A similar estimate holds for the third term. We then carry out our
proof by the aid of the Hardy-Littlewood’s theorem.

�

Let T1 denote the Hilbert transform normalized by condition
T1(·)(1) = 0; it is easy to see that T1 is a bounded operator in
F2,α. We change a little our notations and require that for σ ∈ F2,α we
have that σ(−π) = σ(π) so that σ is naturally identified to a function
of the variable τ = eiθ on the circle. In this new setting we denote by
F2,α

1 the set of functions σ ∈ F2,α such that σ(1) = 0.

2.2. Attaching F2,α analytic discs. We come back to our manifold
M and suppose that M has weighted vanishing order ≥ k. We consider
in Cn analytic discs A(τ) = (z(τ), w(τ)), τ ∈ ∆, attached to M , that
is, satisfying A(∂∆) ⊂ M . If we prescribe a point p = (zo, wo) with
yo = h(xo, wo), and an analytic function wo + wν(τ), τ ∈ ∆, ν ∈ R,
the so called CR component, and look for an analytic completion zν(τ)
for Aν(τ) = p + (zν(τ), wν(τ)) with Aν(1) = p, we are led to Bishop’s
equation

(2.4) uν(τ) = −T1(h(xo + uν(τ), wo + wν(τ))) τ ∈ ∂∆.

In fact, if uν(τ) solves (2.4), then if we set vν(τ) = T1uν(τ) and
zν(τ) = zo + uν(τ) + ivν(τ), we obtain that Aν(τ) = p+ (zν(τ), wν(τ))
is holomorphic, vν(τ) = h(xo + uν(τ), wo + wν(τ)) for all τ ∈ ∂∆, and
finally Aν(1) = p. We consider the equation (2.4) in the spaces F2,α

and C1,γ for which T1 is bounded. Here we remeber two propositions
that we will use subsequently.
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Proposition 2.3. Let h be of class Ck+2 and have weighted vanishing
order ≥ k. Then for any ǫ there is δ such that if ‖h‖C1,α < δ, ‖wν‖F2,α <
δ, |w0| < δ, |x0| < δ and ν ∈ R, then the equation (2.4) has a unique
solution u ∈ F2,α with ‖u‖F2,α < ǫ. The solution depends Ck on xo, wo

and if the mapping ν → Wν, R → F2,α is Ck, then it is also Ck on ν.
Moreover, for p = 0, u ∈ C1,γ where γ = kα− 1.

Proof. The first claim can be proved in a standard way. In fact, consider
the functional

F : Rd × C
n−d × F2,α × F2,α → F2,α,

defined by

(2.5) F (ν, x0, w0,Wν , u) → u− T1h(u+ x0,Wν + w0).

Then, for the partial Jacobian with respect to u, one has ∂uF : u̇ 7→
u̇− T1∂xhu̇. In particular, if we evaluate at (xo, wo, wν , u) = (0, 0, 0, 0),
then this is invertible since ∂xh

∣

∣

0
= 0 and therefore ∂uF ∼ id. Thus we

can apply the implicit function theorem and get the conclusion.
For the second claim, that is, u ∈ C1,γ, we remember that by Propo-

sition 2.2 the composition h(u, w) is C1,γ
1 if u ∈ C1,γ

1 , w ∈ F2,α
1 and h is

of weighted vanishing order ≥ k . Thus we can consider the functional:

F 1 : F2,α
1 × C1,γ

1 → C1,γ
1

F 1(wν , u) = u− T1h(u, wν);(2.6)

This is defined as in (2.5) for (xo, wo) = (0, 0) but in different spaces
(as an effect of the regularity of the composition). By the implicit
function theorem, we can conclude as in the previous case that the
equation F 1 = 0 has an unique solution u ∈ C1,γ

1 . On the other hand
the solution of the equations F = 0 and F 1 = 0 for the same datum w
are the same by uniqueness. �

Remark 2.4. In the sequel we shall write ∂r for the radial derivative in
the stanard disc ∆. Since by Proposition 2.3 the normal component A
is C1,γ, it makes sense to write [∂rA(1)] ∼ ∂rv(1) ∈ (TMCn)A(1), even
though ∂ru(1) may not exist.

We can think of the family of discs produced by the first part of
the above statement as a deformation of the disc A(τ) ≡ 0 which is
a trivial solution to Bishop’s equation. By the next statment we show
how it is possible to make infinitesimal deformations of discs which are
no longer assumed to be small.

Proposition 2.5. Let h be as in the previous proposition, let w̃(τ) ∈
C1,γ

1 be small in F2,α (not necessarly in C1,γ), and let ũ(τ) ∈ C1,γ
1 be
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the solution of the Bishop’s equation ũ = −T1h(ũ, w̃). Then there exists
δ > 0 such that for any wν(τ) and (xo, wo) with ‖wν − w̃‖F 2,α ≤ δ and
|(xo, wo)| ≤ δ there is a unique solution u ∈ C1,γ of Bishop’s equation
uT1h(xo + u, wo+ wν) with ‖u− ũ‖C1,γ < ǫ. Moreover, u depends in a
Ckfashin on (xo, wo, wν).

Proof. We recall the functional

F : Rd × C
n−d × F2,α × F2,α → F2,α

(xo, wo, u, wν) → u− T1h(xo + u, wo+ wν)

We know that is invertible at (0, w̃, ũ); in particular ∂uF is injective.
We can restrict F to the subspace Rd × Cn−d × C1,γ × C1,γ into C1,γ

and call the new restricted functional F̃ . What we have to prove is that
∂uF̃ is surjective also in the restricted sense. We want to show that if
ḟ ∈ C1,γ then there exists u̇ ∈ C1,γ such that (∂uF̃ (0, w̃, ũ))u̇ = ḟ .
Since we know that ∂uF at (0, w̃, ũ) is surjective, there exists u̇ ∈ F2,α

such that:

(∂uF̃ (0, w̃, ũ))(u̇) = u̇+ T1(hx((ũ, w̃))(u̇)) = ḟ

Thus we have that:

u̇ = ḟ − T1(hx(ũ, w̃)(u̇))

First we recall that hx(ũ, w̃) ∈ C1,γ . Next we observe that if hx(ũ, w̃) ∈
C1,γ, hx

∣

∣

0
= 0 and u̇ ∈ F2,α then hx(ũ, w̃)u̇ ∈ C1,γ . Thus u̇ ∈ C1,γ; this

yields the invertibility of ∂uF̃ at (0, w̃, ũ) also in the space C1,γ. �

3. Radial derivatives of attached F2,α analytic discs

Let A, M, M ′, p, q be as in the previous theorem. In this section we
suppose that the given disc A is small in F2,α-norm (note that we don’t
require this hypothesis in Theorem 1.1). We want to construct a family
of F2,α-analytic discs {Aη}0≤η≤ǫ, that depends on one real parameter
0 ≤ η ≤ ǫ, attached to M ∪M ′′ (i.e. ∂Aη ⊂ M ∪M ′′) such that p ∈ ∂Aη

and [∂rA
η(p)] 6= 0; this direction depends on the direction of M ′ normal

to M at q.
First of all, we take coordinates (z, w) ∈ Cd × Cn−d = Cn with

z = x+ iy and w = u+ iv in such a way that p = 0 and

U ∩M = {(z, w) ∈ C
d × C

n−d : y = h(x, w)}

for h(0) = 0 and ∂h(0) = 0. We also use the notation r = y −
h(x, w) where r = (rj), h = (hj) and y = (yj) for j = 1, . . . , d. Let M ′

be a manifold with boundary M , possibly in a neighborhood of q, of
codimension d−1. This is defined, e.g., by introducing a new parameter
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t ∈ R+, and extending the domain of h from Rd×Cn−d to Rd×Cn−d×R+

with ∂th 6= 0. Hence, M ′ will be defined by y = h(x, w, t), t ∈ R+. If we
consider a generic F2,α-disc A(τ) = (z(τ), w(τ)) attached to M ∪M ′

we call w the CR components of A and define the t components t(τ)
by the equation h(x(τ), w(τ), t(τ)) − y(τ) = 0. Hence the condition
A(τ) ∈ M ′ \M for τ ∈ ∂∆ is equivalent as to t(τ) > 0. We shall also
let the function t(τ) depend on a small parameter η ∈ R+ ∪ {0}, and
denote it by tη(τ). Existence of attached F2,α discs with prescribed
components w(τ) and tη is assured by the following statement.

Lemma 3.1. Let h belong to Ck+2, k ≥ 1 and have weighted vanishing
order ≥ k. Let w ∈ F2,α and tη(τ) ∈ Ck,α be small. We also suppose
w(1) = 0, tη(τ) ≡ 0 in a neighborhood of 1 and take (xo, wo) ∈ Rd ×
Cn−d small. Then we can find an unique solution u = uη in F2,α(∂∆)
of the equation

u = xo − T1(h(u, wo + w, tη))

Moreover, if (xo, wo) = (0, 0) then u is in C1,γ for γ = kα− 1.

The proof of the last statement follows from the last part of Propo-
sition 2.3.
Using the basis ∂rj , j = 1, . . . , d, for T ∗

MCn, we can identify TMCn

(the normal bundle to M) to M × iRd by [v] → i(Re 〈∂rj , v〉). Let
z ∈ M and iv1 = i∂th(z). We have clearly (TM ′)z = (TM)z ⊕ iR+v1;
in this case we say that M ′ is attached to M at (z, iv1) or that M ′ is
an extension of M which points to the normal direction iv1 at z.
We assume now that we are given a small F2,α analytic disc A con-

tained in M with a singularity in p ∈ ∂A which contains another point
q in its boundary (here we are supposing that p ∈ M and that M
has weighted vanishing order ≥ k). Let q = A(−1) and we denote
by w(τ) the CR components of A. Let ∂′r be the square d × d Jaco-
bian matrix of r with respect to the (z1, . . . , zd) variables. It is easy
to find a real d × d matrix G(τ), τ ∈ ∂∆, with G(1) = idd×d and
such that G · (∂′r ◦ A) extends holomorphically from ∂∆ to ∆. To
prove this, we only need to solve a linear Bishop’s equation G(τ) =
T1(G(τ)(∂′

xh(u(τ), w(τ), t(τ)))) + idd×d on ∂∆ where T1 is the Hilbert
transform normalized by the condition T1(·)|τ=1 = 0. By means of G
we can define an isomorphism (TMC

n)q → (TMC
n)p which is defined,

in the bases dual to (∂rj)j by v 7→ G(−1)v.
Let χ(τ) be a real positive smooth function on ∂∆ with χ(−1) = 1

and whose support supp(χ) is contained in a small neighborhood of −1.
Define tη(τ) = ηχ(τ) for small η so that Lemma (3.1) can be applied.
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Let Aη be the family of discs of lemma (3.1) with a data w(τ), tη(τ) and

(xo, wo) = (0, 0). Let Ȧ be the derivative with respect to η at η = 0.

Theorem 3.2. Let M be a Ck+2 of weighted vanishing order ≥ k, A
be a F2,α in ∆̄, small in F2,α norm, attached to M , tangent to M
at the singular point p = A(1) and let q be another point of ∂A, say
p = A(−1). Let v1 = i(∂thj(q))j ∈ iRd and v0 = G(−1)v1 ∈ iRd. Then

|∂τ Ȧ
∣

∣

1
− cv0| < ǫ

where c > 0 and ǫ is an error vector which can be made arbitrarly small
if we correspondingly shrink supp(χ).

Proof. The proof can be found e.g. in [8]. The key point is that the CR
components do not depend on η and that the normal component of Aη

is C1,γ.
�

Let Aη = (uη, w) be the family of F2,α discs we defined before.
We observe that in general ∂τA

η is not defined in τ = 1 since the CR
component of Aη has only regularity F2,α. However for η = 0 (i.e. A0 =
A) we can consider the function Re 〈∂rj ◦ A(τ), ∂τA

η(τ)〉 also for τ = 1.
In fact, we have |∂wrj ◦A(τ)| ≈ |1− τ |(k−1)α and |∂τw(τ)| ≈ |1− τ |α−1

when |τ | → 1. This implies that Re 〈∂wrj ◦ A(τ), ∂τw(τ)〉 → 0 when
|τ | → 1. Thus the Taylor expansion of ∂τA

η with respect to η gives:

Re 〈∂rj ◦ A, ∂τA
η〉
∣

∣

1
= ηRe

〈

∂rj ◦ A, ∂τ Ȧ
〉

∣

∣

1
+ o(η)

where we have used the basic hypothesis that A is tangent to M at
p. Finally we observe that ∂τ Ȧ satisfies the conclusion of theorem (??).
It follows

(Re 〈∂zrj(p), ∂τA
η〉|1)j = η(Gq(∂thj(q))j + ǫ) + o(η).

where ǫ is small if supp(χ) is small. We can state the following propo-
sition.

Proposition 3.3. Let M be a Ck+2 submanifold of Cn of type ≥ k
(k ≥ 4) and A a small F2,α-disc attached to M and tangent to M at
p = A(1) Let q = A(−1) be another point and M ′ ⊂ Cn a Ck-smooth
submanifold with boundary M at q with extra direction v ∈ TqC

n. Then,
for any ǫ > 0, there exists a Ck-smooth family of F2,α-analytic discs
Aη, 0 ≤ η ≤ η0, with A0 = A and Aη(1) = p attached to M ∪M ′ and
with the property

(3.1) [∂rA
η(1)] = η(G(−1)[v] + E) + o(η), η → 0,

for some vector error E .
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As an immediate applications of previous proposition we obtain

Corollary 3.4. Let M ⊂ Cn be a generic Ck+2-smooth (k ≥ 4) sub-
manifold through p = 0, and let A be a small F2,α-disc attached to M
and tangent to M at p = A(1). If M ′

1, . . . ,M
′
s are Ck-smooth subman-

ifolds with boundary M at a point q ∈ A(∂∆) in s lineary indipen-
dent directions [v1], . . . , [vs] ∈ (TMCn)q, then there exist submanifolds
Mj ⊂ M ∪ M ′

j of class Ck, of the same dimension as M and arbi-

trarly close to M in the Ck norm and analytic discs A1, . . . , As of class
F2,α attached to M1, . . . ,Ms respectively with Aj(1) = p and such that
[∂rA1(1)], . . . , [∂rAs(1)] are linearly indipendent and are arbitrarly close
to G(−1)[v1], . . . , G(−1)[vs].

4. Approximation of Sectors by smooth discs

The main result of this section is the approximation in the class F2,α

by smooth discs. Let w(τ be a disc in F3,α; define

wν(τ) = w((1−
1

ν
)τ)− w(1−

1

ν
);

note that wν ’s are smooth in ∆̄. Our goal is to prove

Theorem 4.1. We have

wν(τ) → w in F2,α(∆̄) for any α′ < α.

Proof. Let us recall that ‖σ‖F2,α = ‖σ‖Cα′ + ‖(1 − τ)σ(1)‖Cα′ + ‖(1 −
τ)2σ(2)‖Cα′ . Hence it suffices to show that

(4.1) (1− τ)jw(j)
ν → (1− τ)jw(j) in Cα′

;

only for j = 0, 1 and 2. To prove this we remark that
∣

∣((1− τ)jw(j)
ν (τ))(1)

∣

∣ . |(1− τ)j−1(wν(τ))
(j)|+ |(1− τ)j(wν(τ))

(j+1)|

.
|(1− (1− 1

ν
)τ)jw(j)((1− 1

ν
)τ)|

|(1− (1− 1
ν
)τ)|

+
|(1− (1− 1

ν
)τ)j+1w(j+1)((1− 1

ν
)τ)|

|(1− (1− 1
ν
)τ)|

. |(1− (1−
1

ν
)τ)|α−1

. |(1− τ)|α−1.

Obviously, the same estimate holds with wν instead of w, that is, we
have

∣

∣((1− τ)jw(j))(1)
∣

∣ . C|1− τ |α−1.
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For the difference fν := (1− τ)j(w
(j)
ν − w(j)), we then have

{

fν → 0 uniformly on compact subset of ∆

|f
(1)
ν | . (1− |τ |)α−1.

Using Hardy-Littlewood’s Theorem we conclude that the sequence fν is
bounded in Cα−norm. Thus Arzela’s theorem implies that fν converges
to 0 in Cα′

-norm, which is precisely 4.1. �

5. Extended manifolds spanned by discs

Let uν be F2,α-solutions to Bishop’s equations uν = −T1h(uν , wν),
and let zν = uν + ivν for vν = T1uν . Let u be the solution to u =
−T1h(u, w), and set v = T1u and z = u + iv; suppose that [∂rA(1)] =
[vo] 6= 0. To exploit the conclusions of the preceeding section, we also
assume that w(τ) has a little extra regularity, that is, w ∈ F3,α; thus
three derivatives are now controlled but the angle α, which only carries
geometric meaning, is unchanged. Since

wν(τ) → w(τ) in F2,α′

(∆̄) for any α′ < α,

and since wν(1) ≡ 0 for all ν, zν(τ) → z(τ) in C1,β′
(∆̄) by Proposi-

tion 2.5 (clearly we are supposing α′ close enough to α so that β ′ : =
kα′ − 1 > 0.) In particular for any ǫ > 0 and for large ν the discs
Aν = (zν , wν) are in C1,β′

and satisfy

|∂rvν(1)− [vo]| < ǫ.

Let Ã = (z̃, w̃) be one of these discs and recall the conclusions of
Proposition 3.3. We are ready to construct a half-space M ′′ in a mani-
fold which containsM and gains one more direction by a deformation of
the disc Ã such that CR functions extend from M ∪M ′ to M ∪M ′′. For
this we consider Bishop’s equation u = T1h(xo+u, w̃+wo). According to
Proposition 2.5, for any ǫ and for small data, there is a unique solution
u which satisfies ‖u− ũ‖C1,β′ < ǫ for β ′ < β : = kα− 1. We also write
p = (xo+ih(xo, wo), wo), and define A(xo,wo)(τ) = p+(u(τ)+iv(τ), w̃(τ))

with v = T1(u). We also write I(x0,w0) = A(x0,w0)

∣

∣

[−1,+1]
and define

M ′′ =
⋃

|x0|≤δ,|w0|≤δ

I(x0,w0)([1− ǫ, 1]).

Proposition 5.1. M ′′ is a half space in a manifold of codimension
d− 1 with boundary M and inward conormal v′o for v′o0 close to v0.

Proof. We consider the mapping

Φ: Cn−d×R
d×[1−ǫ, 1] → V ′, (w, x, r) → Ip(r) for p = (x+ ih(x, w), w).
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By Proposition 2.3, Φ is C1,β′
in the whole of its arguments up to r = 1,

and we have

(5.1) Φ′
(0,0,1)(C

n × R
d × R

−) = TpM + R
+v′0.

In particular, Φ extends as a C1,β′
mapping to a neighborhhod of

(0, 0, 1) in Cn × Rd × (1 − ǫ, 1 + ǫ) whose image defines a manifold
M1 = Φ(Cn × Rl × (1 − ǫ, 1 + ǫ)). Thus M ′′ is a half space in this
manifold; by (5.1) it satisfies TpM

+
1 = TpM + R+v′0. �

6. End of proof of Theorem 1.1

The last tool that we use to prove Theorem 1.1 is the following result.

Theorem 6.1. Let A be an analytic disc embedded in M and let p, q be
two points in the interior. If f extends at q to M ′, then it also extends
at p to M ′′. Moreover, the additional directions v′ and v′′ of M ′ and
M ′′ respectively are related as follows. For a chain of small C1-discs
{Aj} with q ∈ ∂A1, . . . , p ∈ ∂AN and Aj(1) = Aj+1(−1) we have

v′′ ∼ GN(−1) ◦ · · · ◦G2(−1) ◦G1(−1)v′

The proof can be found e.g. in [8]. Thus, propagation holds for points
in the interior of A. By a slight modificaton of the proof it is easy to
extend the result to C1-points of the boundary ∂A. The result of this
paper is to bring it to the singular boundary point p = A(1) of an F2,α

disc.

Proof. Proof of Theorem 1.1 Let A ∈ F3,α with A ⊂ M . By the theo-
rem on propagation in the interior Theorem 6.1, we can suppose that
any CR continuous function in M which has CR extension to a sub-
manifold M ′ with boundary M at q also extends to a submanifold M ′′′

with boundary M at q′ ∈ A, where q′ can be choosen arbitrarly close to
the vertex and M ′. Here, M ′ has extra direction v′ and M ′′′ has extra
direction v′′′ related to v′ according to Proposition 3.3. (We note that
given several submanifolds M ′

1, . . . ,M
′
s in s linearly indipendent direc-

tions in TqC
n\TqM , the corresponding submanifolds M ′′′

1 , . . . ,M ′′′
s span

s linearly indipendent directions in Tq′C
n \ Tq′M .) Let A1 be a small

piece of A which contains p as its vertex and contains q′ as a bound-
ary point; moreover, A1 belongs to F3,α and it is small in the related
norm. Besides, we can choose A1 in such a way that, according to the
celebrated Baouendi-Treves approximation theorem, any CR function
in M ∪M ′′′ over a neighborhood of Ā1 is approximated by holomorphic
polynomials.
By Proposition 3.3, there exists an analytic disc A2 attached to M ∪

M ′′′ such that [∂rA2(1)] is close to G(−1)[v′]. Let w(τ) be the CR
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component of A2; we can approximate w in ‖ · ‖F2,α′ (for any α′ ≤ α)
by a sequence of smooth functions wν for which wν(1) = 0 (according
to §3). Applying Proposition 2.5, there is a C1,β′

disc Aν attached to
M ∪M ′′′ with CR component wν and with ‖u2 − uν0‖C1,β′ ≤ ǫ (cf. §4).
By Proposition 2.5 we can construct a submanifold M ′′ with boundary
M at p (see §4). Let f be a CR function over a neighborhood of Ā2 and
let us approximate f by a sequence of polynomials Pν . By maximum
principle there exists a subsequence Pνµ which converges in

M ′′ =
⋃

|x0|≤δ,|w0|≤δ

I(x0,w0)([1− ǫ, 1])

to an analytic function which is the desired extension of f . �
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35121 Padova, Italy

E-mail address : baracco@math.unipd.it, pinton@math.unipd.it

http://arxiv.org/abs/0908.2149

	1. Introduction
	2. Analytic discs with a singular boundary point
	2.1. The functional space F2,
	2.2. Attaching F2, analytic discs

	3. Radial derivatives of attached F2, analytic discs
	4. Approximation of Sectors by smooth discs
	5. Extended manifolds spanned by discs
	6. End of proof of Theorem ??
	References

