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Abstract In this paper, we generalize the construction of strongiylar graphsin [Y. Tan
et al., Strongly regular graphs associated with ternary herctions, J. Combin. Theory
Ser. A (2010), 117, 668-682] from ternary bent functiongtary bent functions, wherp

is an odd prime. We obtain strongly regular graphs with thypes of parameters. Using
certain non-quadratip-ary bent functions, our constructions can give rise to neangly
regular graphs for small parameters.
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1 Introduction

Boolean bent functions were first introduced by Rothaus ir61i@ [1€]. They have been
extensively studied for their important applications iggtography. Such functions have
the maximum Hamming distance to the set of all affine funstidn [11], the authors
generalized the notion of a bent function to be defined ovaritefiield of arbitrary char-
acteristic. Precisely, let be a function fromF yn to . The Walsh transfornof f is the
complex valued functiom’s : Fpn — C defined by

Wf(b) — Z ZI)(x)wLTr(bx)7 bGFpn,
xelgn

where(, is a primitive p-th root of unity and Tx) is the absolute trace function, i.e.
Tr(x) := Y3 xP". The functionf is calledp-ary bentf every Walsh coefficientv'¢ (b) has
magnitudep™?, i.e.|w(b)| = p"/? for all b € Fn. Moreover,f is calledregular if there
exists some functioff* : Fgn — Iy such thatw'¢ (b) = p“/ZZE, ®)andf is calledweakly
regularif ws(b) = pw/ZZI,*(b) for some constant € C with |p| = 1. Obviously, regularity
implies weak regularity.

Itis shown in [10,8] that quadratic bent functions and moshomialp-ary bent func-
tions are weakly regular, except one sporadic non-weaglylee example. Recently, a new
family of non-quadratic weakly regular-ary bent functions has been constructed_in [9]
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and a new sporadic non-weakly regular bent function wasngi®wever, there are still
few non-quadratic bent functions known over the fi€jg whenp > 5.

There are many motivations to find more weakly regular bemttions, especially non-
quadratic ones. Recently, it is shown[in][15].][17] that, @insbme conditions, weakly reg-
ular bent functions can be used to construct certain cortdriahobjects, such as strongly
regular graphs and association schemes. Preciself,:[Etx — F3 be a weakly regular
bent function. Define

Di:={x:xeFax|f(x) =i}, 0<i<2

Itis shown in [17] thaDg, D1, D> are all regular partial difference sets. The Cayley graphs
generated byDo,D1,D> in the additive group off g« are strongly regular graphs. Some
non-quadratic bent functions seem to give rise to new fasitif strongly regular graphs
up to isomorphism (see[ll7, Tables 2,3]).

In this paper, we generalize the work n[17] by usim@ry bent functions to construct
strongly regular graphs. We show thaffif F' 2 — Iy satisfying Condition A (defined in
Section 3), then the subsets

D = {xe F,f(x) =0},
Ds ={xe ]F’;)2k|f(x) are non-zero squargs
D, = {xe F;2k| f(x) are squargsand

D, =1{x¢e F;2k|f(x) are non-squarés

1)

are regular partial difference sets. Using this constougtit seems that the-ary bent
functions in [9] may give rise to new negative Latin squarngetgtrongly regular graphs.
For small parameters, we have verified that the graphs are new

The paper is organized as follows. In Section 2, we give resgggefinitions and re-
sults. The constructions of strongly regular graphs wilghen in Section 3. In Section 4,
we discuss the newness of the graphs obtained.

2 Preliminaries

Group rings and character theory are useful tools to stuifigrdince sets. We refer to [14]
for basic facts of group rings and]12] for character thearyinite fields.

Let G be a multiplicative group of order. A k-subsetD of G is a (v,k,A, ) partial
difference sefPDS) if each non-identity element I can be represented g&—* (g,h €
D,g # h) in exactlyA ways, and each non-identity element@G\D can be represented as
gh™! (g,h € D,g # h) in exactlyu ways. We shall always assume that the identity element
1s of Gis not contained iD. Using the group ring languagekaubseD of G with 1 ¢ D
is a(v,k,A, )-PDS if and only if the following equation holds:

DDV = (k—wig+ (A — WD+ pG. 2)

Combinatorial objects associated with partial differesets are strongly regular graphs.
A graphl with v vertices is called &, k, A, ) strongly regular grapi{SRG) if each vertex
is adjacent to exactli other vertices, any two adjacent vertices have exacttpmmon
neighbours, and any two non-adjacent vertices have exacttynmon neighbours.

Given a grougs of orderv and ak-subseD of G with 1 ¢ D andD(~V = D, the graph
I = (V,E) defined as follows is called tHeayley graptgenerated by in G:

(1) The vertex seV is G;
(2) Two verticegy, h are joined by an edge if and onlygh* € D.

The following result points out the relationship betweerG3Rind PDSs.
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Result 1 ([13]) LetT be the Cayley graph generated by a k-subset D of a multiplieat
group G with order v. Theml is a (v,k,A, ) strongly regular graph if and only if D is a
(v,k, A, n)-PDS withlg ¢ D and D~V = D.

Strongly regular graphs (or partial difference sets) wihgmetergn?, r(n+-¢), —en-+
r? 4+ 3er,r? 4-¢r) are called ofLatin Square typéf € = —1, and ofnegative Latin Square
typeif € = 1. There are many constructions of SRGs of Latin square g/pgcollection of
r — 1 mutually orthogonal Latin squares gives rise to such algrege[[18], for instance),
but only a few constructions of negative Latin square typekaown. We will show that
certain weakly regulap-ary bent functions can be used to construct SRGs of Latiarsqu
and of negative Latin square type.

Next we introduce the concept of association schemes/ lbet a finite set of vertices,
and let{Ro, Ry, ...,Rq} be binary relations ol with Ry := {(x,X) : x € V}. The configu-
ration (V;Ro,Ry,...,Ry) is called anassociation schemef classd onV if the following
holds:

(1) VXV =RyURiU---URg andR NRj = 0 fori # |,

(2) 'R = Ry for somei’ € {0,1,...,d}, where'R := {(x,y)|(y,X) € R}. If i =i, we call
R is symmetric

(3) Fori,j,ke {0,1,...,d} and for any pair(x,y) € R, the number{ze V| (x,z) €
R, (zy) € Rj| is a constant, which is denoted b&{.

An association scheme is said tosyenmetridf every R; is symmetric.

Given an association scherf¥; {R, }o<i<d), We can take the union of classes to form
graphs with larger sets (this is calléasion), but it is not necessarily guaranteed that the
fused collection of graphs will form an association schem¥ olf an association scheme
has the property that any of its fusions is also an assoniaiheme, then we call the
association schermamorphic Van Dam[[7] proved the following result.

Result 2 LetV be a set of size v, and lgB1, Gy, ..., Gy} be an edge-decomposition of the
complete graph on V, where eachi&a strongly regular graphon V. If GL<i < d, are

all of Latin square type or all of negative Latin square tyfigen the decomposition is a
d-class amorphic association scheme on V.

We conclude this section by recording the bent functiofjraf9below.
Result 3 Let n=4k. Then the p-ary function(X) mappingFy to F, given by

£(X) = Trg (0@ 4 xP* T P*- P41y

is a weakly regular bent function. Moreover, foeli » the corresponding Walsh coefficient
of f(x) is equal to
e (b) _ *DZkZFk(XO)M

where ¥ is a unique solution ifif x of the equation

BP* Ly (b2 4 x) (PPHD/2 | P (PPH) (2 4y PP D/2 — g,

3 Theconstruction

In this section, we construct SRGs usipeary bent functions. First we introduce some
notations used throughout this section. lfetFyn — F, be a weakly regulap-ary bent
function satisfyingf (—x) = f(x). Without loss of generality, we may assurh@) = 0.
If not, we can replacd (x) with f(x) — f(0). For eachb € Fpn, assume thaw'¢ (b) =

u(\/ﬁ)“zg(b), wherep = +1 andp* = (71)%l p. Suppose that there exists an inteber
with (I — 1, p— 1) = 1 such that for each € F andx € Fpn, f(ax) = a' f(x) holds. Let

Di:={xeFp|f(x)=i}, 0<i<p-L1



Denote byG and H the additive groups oF ;»» and I, respectively. Clearly we have
p—1

> Di=G. Moreover,fol) = D; for each 0<i < p—1 sincef(—x) = f(x). Define
i=0

the group ring elements [ ] (G):

p-1
L= %Di 5 0<t<p—1,
i=

in particularLo = Fyn. The following result gives some properties of thés (see [15]).
Result 4 (1) If s,t,5+t# 0, then LLs = p('5)"(v/P")"Ly with s - t1-! = v1;
(2)LLy=p"forte{l,...,p—1};

p—1
(3) 3, LiLoG;™ = (pIDal — p")Fip.

Itis clear that we may compui®;’s from L;’s, namelyD; = % Z Lth't By Resul{4,

we have

p—1
P?DaDp = 5 Likslp® s
st=0

2 —at—bs Pl s(a—b) Pt —bs Pt _at
=L+ 3 LtLSZp + 5 LsL_sCp + 3 LsLOZp + 3 LtLOZp
Ssjé% s=1 s=1 t=1
p-1
=Pt 3 WG et T PG (pIDs| — Py
s=

st,s+t#0
IS N Y

+(p(IDd] — Py
p— _
= 3 PG+ (Pl + Do) —PFp 3 (VP Ly

st,s+t#0
sl -1 11
®3)
In the following we only work on the field ,» with n = 2k. Note that in this case the
Walsh coefficient off can be written as the formv¢ (b) = (p = d‘Z . For each

b € Fx, let Xp be the additive character @ defined byxb( ) = Zp< , andn be the
additive character dfi defined byn(x) = . Now for eachb € Fin,

wib)= 5 VT = Z) z” ®9) Z}Xb = Xon(R),
Xe p2k Xe
whereR = {(x, f(x)) : x € Fa}. Sincef is a bent function, we know thakun(R)| =
|wi(b)| = p~.
First we determine the cardinalities bf's.

Lemmal Let f:Fx — IFp be the bent function as above. Then

(1) [D1| = [Dg| = --- = [Dp_1],
(2) |Do| = p* L +g(pk— p1) and|Dj| = p*~t —epk~Lforeachl <i < p—1, where
e= (-1 p

Proof (1) For any 1< a,b < p— 1, by Resulf# (3) we have

p—1
(pIDal — PF = § LeLol,™ LeLo(Z3 )™ = (p|Dp| — pP)F .
P = 5 Lt ’



The last equality holds sinc&%'ff1 is also a primitivep-th root of unity. ThugDa| = |Dp|.
(2) Letxo be the principal character @, we have

-1
Xon(R) = |Do| + Z Di|, = |Do| + [D1[(Zp+ L5+ - +Zh ) = |Do| — D1l
i=

p 1k

Sincexpn(R) = wi(b) = Erupgh ® = epgl ™ and|Do| — Dy is a rational
integer, we have
|Do| — D] = ep*. @)
On the other hand,
Do| + (p—1)|D4| = p*. (5)

By solving Egs.[(#) and {5), the result follows.

Next, we define Condition A for a functiohas follows.

Condition A: Let f : Fa — Fp be a weakly regular bent function with{0) = 0 and
f(—x) = f(x), wherepis an odd prime. There exists an integaiith (I — 1, p— 1) = 1 such
that f (ax) = a' f(x) for anya € Fp andx € F . For eactb € Fa, wi(b) = ep<gp

wheres = (—1)*2" pwith p= +1.

Two functionsf,g: Fpn — IFp are calledaffine equivalenif there exist an affine permu-
tationA; of IFp and an affine permutatiofy of Fn such thay= Aq o f o Ay. Furthermore,
they are callecextended affine equivalent (EA-equivaldhty) = Aj o f oAz + A, where

A:Fp — Fpis an affine function. A polynomidl of the formL(x) = Z axP € F p[X| is

called alinearized polynomialNote that the affine permutations ]E[) are cx+d, where
ce Fpandd € Fp.
We have the following result.

Proposition 1 Let Ly,L> € Fp[x] be linearized polynomials, where s a permutation of
Fp and Ly is a permutation off . If L1(1) # 0 and f satisfies Condition A, then the
function g= Lj o f o Ly satisfies Condition A.

Proof Thatg(0) = 0,g(—x) = g(x) andg(ax) = a'g(x) for a € Fp are easy to be verified.

We only need to prove that for eabhe Fa, wq(b) = spkl%*(b), wheree = (—1)&2&k

with p= £1. First assume that (x) = cx Note thatl1(1) # 0 implies thatc # 0 and{j,
is also a primitivep-th root of unity. Now

wg(b) = 5 Zlﬁl(f(LZ(X))JrTr(bX): 5 (ZC) (X)+Tr(c™tbx)
xeF o xef
- 5 (ZC> y)+Tr(c bl t(y) 3 (ZC) Y)+Tr((Ly Y (cth)y)
yeF YEszk

= wi((L5Y) (b)) =epigy 2

Where(Lgl)* is the adjoint operator dfg . We finish the proof.

Remark 1Clearly the functiorg in the above Proposition is affine equivalentftoHow-
ever, for a functiong which is EA-equivalent but not affine equivalent fo it may be
seen thag does not satisfy Condition A. Indeed, assume that Aj o f o Ap + A, then
g(ax) # a'~*g(x) for o € Fp whenl > 2.

Now assume that a functioin: F 2« — Fp satisfies Condition A, then clearly the func-
tionsLio f oLy all satisfy Condition A, wheré.1,L> € F[X] are linearized polynomials,
andL; is a permutation oF p, L» is a permutation O]szk. We see that the functions of the
formLjo f oL, are affine equivalent tb. However, for a functiolg which is EA-equivalent
but not affine equivalent té, it may be seen tha does not satisfy Condition A.

Now we will prove the first result in this section.
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Theorem 1 Let f be a function satisfying condition A. Let
D:={x:xe€ FEZk”(X) = 0}.

Then Dis a(v,d,A1,A2)-PDS, where

Vv o= p 9
d = (pk_s)(pk71+s)7 (6)
A= (Pt 4e)2—3e(ptie) +epk
A2 = (P4t
p-1 .
Proof Recall thatly = y D;Z}. By Eq. [3), we have:
i<0
p’DoDo = (P~ 1)p?+ (2p|Do| - P*)Fr+e 5 PLy, 7
St,s+#0
sll 1Tyl
Now we compute the last term of E] (7).
p—1
PLy = p* 3 (p—2)L
stsrt0 i=1
sl—l gl _y1-1
kPt Pt i
=(P=2)p" 3 (Do+ 3 Djlp)
i= =
K Pt Pt
=(pP—2)p ((p—l)Do+j§le(i§lZp)) ®)
p—1
= (P=2p((P~1)Do~ 3 D))
J:
= (p—2)p*((p— 1)Do — (F yx — Do))
= (P—2)p*(pDo — F )
Substituting Eq.[(8) in Eq[{7), we have
p?DoDo = (p— 1)p* + (2p|Do| — p?)F s + &(p — 2) p(pDo — F ) o

= (p—1)p*+ep“"(p—2)Do+ (2p|Do| — P — &(p— 2) P)F pax.
Note thatD + 0= Do and|Do| = p?~ 1 4 g(pX — p*1) (Lemmd), by Eq[{9) we have
p*(D+0)? = (p—1)p*+ep“"*(p—2)(D+0) + (2p|Do| — p™ — &(p — 2) P)F .
After simplifying, we get the equation
D2 _ (p2k71 _ p2k—2+ Epk _ 28pk71 _ 1) + (Epk _ 28pk71 _ 2)D + (Epk’1—|— p2k72)Fp2k.
By Eq. [2), the proof is done.
Remark 2Whene = —1 in Theorenl L, we get negative Latin square type SRGs. When
p = 3, some new SRGs arise using non-quadratic ternary bentidascsee[[17, Tables

2,3]. Unfortunately, whemp > 5, for the known bent functions, we don’t get new graphs.

To give another construction of SRGs usim@ry bent functions, we show two lemmas
first.



Lemma2 LetS and T be the sets of non-zero squares and non-squdrgsaspectively,
where pis an odd prime. Then we have
(1) when p=1 (mod 4),

P — p1

(2) when p=3 (mod 4),

-3
& = 3sy Mt
TZ
ST=TS= 21 28F,,

.
of7s]
(V)]
_l’_
ISk

w
a—|

Proof (1) Note that-1 is a square whep=1 (mod 4 andS"=Y =S TY =T in this
case. Byl[1, Theorem 2§is a(p, %, pT, )almostdlfference setﬂﬁp, which implies
that

1_@_P-1 p-5. p-1
ss & St St T

It is easy to see thal =F,—0-S, and hencd TV = T2 = (F, — 0— S)%. Now the
results can be followed by direct computation.

(2) Whenp = 3 (mod 4, —1 is a non-square, arl~Y = T, T(-D = S It is well

known that the subs&is a(p, 2 1, i 3) difference set iffp. Hence

p+1 p-3

S V=8T= + 5 Fp

The computations are similar to those(l).

Lemma 3 Let{p be a primitive p-th root of unity, S and T be the sets of non-gguares
and non-squares dfy, respectively. Define m y;cs(,', then

(1)when p=1 (mod 4, —m(1+m) = _pTl;
(2)when p=3 (mod 4, —-m(1+m) = p+l

Proof We only prove the case=1 (mod 4), the proof of (2) is similar. Note that (1 +
m) = ZieTZBi’ hence—m(1+m) = Yicgjer 15““). By Lemmal2 (1), we know that

—(i+j -1 i -1
Siesjerlp ) = b Sier ' =
Now we prove the following result.
Theorem 2 Let f be a function satisfying Condition A. Let

D; = {x:x € Fx|f(x) are non-zero squargs

then D; is a(v,d,A1,A2)-PDS, where

N
=

v =p*X
d = 3(p*—ph(p-e).

M= %(pk —pt)2— %i(pk —p )+ ple, (10)
A= 3(P =P HG(P - P —e)
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Proof We only prove the casp = 1 (mod 4), the proof of the cas@ = 3 (mod 4 is
similar. LetSandT be the sets of non-zero squares and non-squargg céspectively.
Now by Eq. [3), we have

p?’D2 =p? 3 DaDp
a,beS
p-1 -
= 5 (3 PG+ (2001 - P Fgactept 5 G,

abesS s=1 St,s+t#£0
sl 1T _yd-

(11)

Now
ZKZ p*(p—1)(p+1)
a,bzes(sgl P ) 4 ' 2k (12)
3 {(2PIDa] = P = (BB (027 Dy | - P )R .

To compute the third term in E_(1L1), feit € %, we defined(s,t) as follows

(1+m)?  if st both are nonsquares

2 if s,t both are squares
(s t)
—m(1+ m) others

wherem= ZiesZBi- For convenience, denote the $&,t) : s;t € Fp|s#0,t # 0,5+t # 0}
by Q. Fors,t,s+t # 0, define the functiom(s t) = v, wheres™' 4+t~ = v-!. Since
(—1,p—1)=1,0is well defined. Now we compute the third term of Hg.l(11):

Z—at—bsL
a,k)zES(st)e o(sh
= ¥ (3(GH( 2 (Zp Py = 3 (S t)Loss
(st)eQ acsS (st)eQ
= mzl—a(st) + > (1+mPlgey — > M(1+m)Lgsy)-
(st)eQN(SxS) (st)eQN(TxT) (she

Q\((SxU(T xT))
(13)
By Lemmal2(1), we know that the multisgt o(st) : (st) € QN (Sx S) *} = 2.°S+

PAT, then
ML L+t s
( V V
(&t)GQZﬁ(SXS) zS zr

Using similar argument, we can compute the last two termsjof{E3). Then we have
TabesY(stealp™ Plo(sy)
= MP(B Syeslvt+ P77 Suer L)+ (14 m>2(5 Suesby + 222 Suer L)
—2m(L 4 m) (B Sy L), -
= AYvesbv+BYver Ly,
whereA= 22?4 22214 m)2— 2 Im(14-m)andB= 2 mP + 2.2 (1+ m)? - B m(1+
m). Now we see that
Zﬁatfbsl—o(s,t =AYvesbv+BY et Ly
= ASves(3P 5 DitH) + B et (3P DidY) (15)

- Z| (AZVESZV =+ BZVET ZVI)

>
a,beS(st)eQ



Denotea; = A¥ sl + BY et} for0<i < p— 1. Clearly,

a = %} (A+B)

I
‘U
N
=
0
2
|
N
3
+
‘U
N |
w
D

= *((p— 1)m(1+ m) 4 (P-1(p=3)

—1)2 —1)(p-3
_ )+(p L(p )

Similarly, we get the following:

_J-=(p—1/2 ie{0}UT,
a'{(|0+1)/2 ies

Now

_at— —1 1
abzeS(st)eQZpat Loy =~ (Fga—Ds) + 557D (16)

By Egs. [11),[(IR) and(16), we know that

1
p?D,D\ Y = p2D2

2K 12 2K(n_1)2 -
p~(p i)(p+1)+(p(pzl) |D1| — p (Fjl £ )szkﬁLSpk(*pTl(FPZk*Dg)ﬁL%le)
= C1+CDg +C3Fp2k,

whereCy = p*(p—1)(p+1),C = p*le andCs = p*(p—1)2— $p*(p—1)e. The
proof follows by Eq.[(2).

Remark 3(1) Using similar proof, we may also prove that the set
Dy = {x:x€ ]F’;)2k|f(x) are non-squares

is a PDS with the same paramters as in Thedrem 2.

(2) In [17], it is shown that for weakly regular ternary beah€tionf : Fox — F3, the
setD; 1= {x € F,|f(x) =i} is a partial difference set for each0i < 2. We may see that
Theorent 2 is the generalization of the resul{in/ [17].

With a small modification, we may get the following result.

Theorem 3 Let f be a function satisfying Condition A. Let
D} := {x:x € F f(x) are square,

then O is a(v,d,A1,A2)-PDS, where

P+ Pt 2e) (P~ 8,

\Y
d=3(
M= (P4 pfo 4 2e)2 — 3 (pk g pfot oy 2e) 4 pre,
Az = (P P (p 4+ 2).

(17)

Proof ClearlyD| =D-+Dy, whereD = {x:x€ F,]f(x) = 0}. ThenD/ (D )Y = (Ds +
D)(D;s + D). The result follows from Theoreni$ I}, 2 and similar group @egnputations
as those in Theoref 2.

Remark 4By using MAGMA, we know that Theoreni$[I,[2, 3 are not true fon+veeakly
regular bent functior (x) = Tr(£"x%8) overF, whereg is a primitive element of z6. This
implies that the weakly regular condition is necessary.
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We conclude this section by a result on association scheBmsbining Resulfl2 and
Theorem§IL)P]3, we have the following result.

Theorem 4 Let f be a function satisfying Condition A. Define the follogvsets:

D = {x:xeFEZkH(x) =0},
D; ={x:xe IF’F‘JZkH(x) are non-zero squarés
D, = {x:xe F;2k|f(x) are non-squares

Then{F ,x;{0},D, Dy, D, } is an amorphic association scheme of class

4 Newness

In this section, we discuss the known constructions of th&SRith parameter§ (10) and
(I32). Since there are many constructions of the Latin sqtyge SRGs, we only discuss
the newness of the negative Latin square type SRGs with theegarameters, namely,
€= —1in parameters (10) and {17).

One may check the known constructions of the SRGs with thanpeters[(1J0)[(17)
via the online databaskgl[2]. It is well known that projectw®-weight codes can be used
to construct SRGs[([3]), one can check the known constmstif two-weight codes via
the online databaskl[4]. Next we give the following condinrs of SRGs with parameters

(I0) and[(1T).
Result 5 [B] Let k = 2m andQ be a non-degnerate quadratic form &g with g odd. Let

M={ve ]Fck1 \ {0}|Tr(Q (v)) are non-zero squarés

and
M’ = {ve Fg\ {0}[Tr(Q(v)) are square}.

Then:

(1) the Cayley graph generated by M(BY, +) is a (p?, 2(p* — p*=1) (pk—¢), 2 (p*
Ph)Z — F(pf— P + pre, (0K — P (3(P* - p*T) —¢)) strongly regular graph,
wheree = +1 and depends on .

(2) the Cayley graph generated by’ Nh (F¥,+) is a (p?, 3 (p*+ p*~ 1+ 2¢)(p* -
£), 7(P*+ Pt +26)2 — F(pf 4 Pt 4 2¢) + pre, 7 (P*+ P ) (p* + P+ 2¢)) strongly
regular graph, where = +1 and depends on..

The SRGs constructed by RedUlt 5 (1) are caiéd, and the SRGs from Res(lt 5 (2)
are calledRT2in [3]. They both are also callesffine polar graphsn [€, P. 852]. To the
best of our knowledge, affine polar graphs are the only knaiinitive construction of the
SRGs with parameterls (10) and{17) wher 5.

For small parameters, now we discuss the known constriectibthe SRGs with pa-
rameters[(10) and (17).

When p = 3, by Theoreni2 and the bent function in Res$ult 3, in fild, we get
an SRG with parametdi6561,2214 729,756). Computed by MAGMA, the order of its
automorphism group and the 3-rank of the adjacent matrike@BRG ar¢2* - 38,566). By
comparing to[[1l7, Table 4], we know that this graph is new.

Whenp =5, in the fieldFgs, the known constructions of the SRGs with parameters
(625,260,105 110), (625,364,213 210) are affine polar graphs, or from Theordnid 2,3, or
from the projective two weight codes in Chehl([5]). It is Vel that Chen's SRGs are
isomorphic to affine polar graphs and the SRGs from the bewtion in ResulfB are new.

When p = 7, in the fieldF4, the known constructions of the SRGs with parame-
ters (24011050 455,462), (2401, 1350 761, 756) are the same as the cage= 5. Using
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MAGMA, it is verified that Chen’s SRGsI[([5]) are also isomoipto affine polar graphs
and the SRGs from the bent function in ReElilt 3 are new.

In the following two tables, we give some computational hssaof the SRGs from
different constructions. In the first column, we list thegraeters of the SRGs. The group
Aut(g ) is the full automorphism group of the SR¢ andM denotes an adjacency matrix
of g, to be considered iifp. The abbreviatiom.L. means the SRG is of negative Latin
square type. The symb®l means the SRG is constructed by the bent function in Riglsult 3.

Table 1 SRGs with parameterg{{L0)

(VKA 1) | Type | RankofM [ [Aut(g)] | note
(625,260 105,110 n.L. 86 25.3.5%.13 | affine polar

(6252601051100 | n.L. 104 2%.5% new
(2401,105Q0455462) | n.L. 237 26.32.52.75 | affine polar

(2401,1050455462)Q | n.L. 335 28.3.7% new

Table 2 SRGs with parameterE {117)

(V, K, A, ) | Type | RankofM | |Aut(g)] | note
(625364,213210) | n.L. 625 26.3.55.13 | affine polar

(625,364,213 2100 | n.L. 625 2%.5 new
(24011350761756) | n.L. 2401 | 2°.3%.57.75 | affine polar

(24011350761 756/ | n.L. 2401 237 new

Remark 5From Table§l and 2, we conjecture that the bent functiongsuR3 can give
a family of SRGs of negative Latin square type which are rarnisrphic to the affine polar
graphs. Itis difficult to prove it in general cases.

We may see that the automorphism groups of the Cayley gragtesated by the PDSs
in (@) have the subgroup of ordpf< coming from translationg, : x— x+cfor anyc e IF o
and the subgroup of ordekZoming from the Galois automorphism Bf. This means

that Zp? divides the order of the automorphism groups of the Caylepks of [(1). For
the bent functions given by ResUlf (3), we conjecture {Aat(g (X)) is not divisible by
pZ+1 whereX = D or D). This is a possible method to prove that they are new.
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