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Abstract In this paper, we generalize the construction of strongly regular graphs in [Y. Tan
et al., Strongly regular graphs associated with ternary bent functions, J. Combin. Theory
Ser. A (2010), 117, 668-682] from ternary bent functions top-ary bent functions, wherep
is an odd prime. We obtain strongly regular graphs with threetypes of parameters. Using
certain non-quadraticp-ary bent functions, our constructions can give rise to new strongly
regular graphs for small parameters.

Keywords strongly regular graphs· partial difference sets· p-ary bent functions· (weakly)
regular bent functions

1 Introduction

Boolean bent functions were first introduced by Rothaus in 1976 in [16]. They have been
extensively studied for their important applications in cryptography. Such functions have
the maximum Hamming distance to the set of all affine functions. In [11], the authors
generalized the notion of a bent function to be defined over a finite field of arbitrary char-
acteristic. Precisely, letf be a function fromFpn to Fp. TheWalsh transformof f is the
complex valued functionW f : Fpn → C defined by

W f (b) := ∑
x∈Fpn

ζ f (x)+Tr(bx)
p , b∈ Fpn,

whereζp is a primitive p-th root of unity and Tr(x) is the absolute trace function, i.e.

Tr(x) := ∑n−1
i=0 xpi

. The functionf is calledp-ary bentif every Walsh coefficientW f (b) has
magnitudepn/2, i.e. |W f (b)|= pn/2 for all b∈ Fpn. Moreover,f is calledregular if there

exists some functionf ∗ : Fpn → Fp such thatW f (b) = pn/2ζ f ∗(b)
p , and f is calledweakly

regular if W f (b) = µpn/2ζ f ∗(b)
p for some constantµ∈C with |µ|= 1. Obviously, regularity

implies weak regularity.
It is shown in [10,8] that quadratic bent functions and most monomialp-ary bent func-

tions are weakly regular, except one sporadic non-weakly regular example. Recently, a new
family of non-quadratic weakly regularp-ary bent functions has been constructed in [9]
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and a new sporadic non-weakly regular bent function was given. However, there are still
few non-quadratic bent functions known over the fieldFpn whenp≥ 5.

There are many motivations to find more weakly regular bent functions, especially non-
quadratic ones. Recently, it is shown in [15], [17] that, under some conditions, weakly reg-
ular bent functions can be used to construct certain combinatorial objects, such as strongly
regular graphs and association schemes. Precisely, letf : F32k → F3 be a weakly regular
bent function. Define

Di := {x : x∈ F32k| f (x) = i}, 0≤ i ≤ 2.

It is shown in [17] thatD0,D1,D2 are all regular partial difference sets. The Cayley graphs
generated byD0,D1,D2 in the additive group ofF32k are strongly regular graphs. Some
non-quadratic bent functions seem to give rise to new families of strongly regular graphs
up to isomorphism (see [17, Tables 2,3]).

In this paper, we generalize the work in [17] by usingp-ary bent functions to construct
strongly regular graphs. We show that iff : Fp2k → Fp satisfying Condition A (defined in
Section 3), then the subsets

D = {x∈ F∗
p2k| f (x) = 0},

DS = {x∈ F∗
p2k| f (x) are non-zero squares},

D′
S = {x∈ F∗

p2k| f (x) are squares} and

DN = {x∈ F∗
p2k| f (x) are non-squares}

(1)

are regular partial difference sets. Using this construction, it seems that thep-ary bent
functions in [9] may give rise to new negative Latin square type strongly regular graphs.
For small parameters, we have verified that the graphs are new.

The paper is organized as follows. In Section 2, we give necessary definitions and re-
sults. The constructions of strongly regular graphs will begiven in Section 3. In Section 4,
we discuss the newness of the graphs obtained.

2 Preliminaries

Group rings and character theory are useful tools to study difference sets. We refer to [14]
for basic facts of group rings and [12] for character theory on finite fields.

Let G be a multiplicative group of orderv. A k-subsetD of G is a (v,k,λ,µ) partial
difference set(PDS) if each non-identity element inD can be represented asgh−1 (g,h∈
D,g 6= h) in exactlyλ ways, and each non-identity element inG\D can be represented as
gh−1 (g,h∈ D,g 6= h) in exactlyµ ways. We shall always assume that the identity element
1G of G is not contained inD. Using the group ring language, ak-subsetD of Gwith 1G 6∈D
is a(v,k,λ,µ)-PDS if and only if the following equation holds:

DD(−1) = (k−µ)1G+(λ−µ)D+µG. (2)

Combinatorial objects associated with partial differencesets are strongly regular graphs.
A graphΓ with v vertices is called a(v,k,λ,µ) strongly regular graph(SRG) if each vertex
is adjacent to exactlyk other vertices, any two adjacent vertices have exactlyλ common
neighbours, and any two non-adjacent vertices have exactlyµ common neighbours.

Given a groupG of orderv and ak-subsetD of G with 1G 6∈D andD(−1) =D, the graph
Γ = (V,E) defined as follows is called theCayley graphgenerated byD in G:

(1) The vertex setV is G;
(2) Two verticesg,h are joined by an edge if and only ifgh−1 ∈ D.

The following result points out the relationship between SRGs and PDSs.
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Result 1 ([13]) Let Γ be the Cayley graph generated by a k-subset D of a multiplicative
group G with order v. ThenΓ is a (v,k,λ,µ) strongly regular graph if and only if D is a
(v,k,λ,µ)-PDS with1G 6∈ D and D(−1) = D.

Strongly regular graphs (or partial difference sets) with parameters(n2, r(n+ε),−εn+
r2+3εr, r2 + εr) are called ofLatin Square typeif ε = −1, and ofnegative Latin Square
typeif ε = 1. There are many constructions of SRGs of Latin square type (any collection of
r −1 mutually orthogonal Latin squares gives rise to such a graph, see [13], for instance),
but only a few constructions of negative Latin square type are known. We will show that
certain weakly regularp-ary bent functions can be used to construct SRGs of Latin square
and of negative Latin square type.

Next we introduce the concept of association schemes. LetV be a finite set of vertices,
and let{R0,R1, . . . ,Rd} be binary relations onV with R0 := {(x,x) : x∈V}. The configu-
ration (V;R0,R1, . . . ,Rd) is called anassociation schemeof classd on V if the following
holds:

(1) V ×V = R0∪R1∪·· ·∪Rd andRi ∩Rj = /0 for i 6= j,
(2) tRi = Ri′ for somei′ ∈ {0,1, . . . ,d}, wheretRi := {(x,y)|(y,x) ∈ Ri}. If i′ = i, we call

Ri is symmetric,
(3) For i, j,k ∈ {0,1, . . . ,d} and for any pair(x,y) ∈ Rk, the number|{z ∈ V | (x,z) ∈

Ri,(z,y) ∈ Rj | is a constant, which is denoted bypk
i j .

An association scheme is said to besymmetricif everyRi is symmetric.
Given an association scheme(V;{Rl}0≤l≤d), we can take the union of classes to form

graphs with larger sets (this is calledfusion), but it is not necessarily guaranteed that the
fused collection of graphs will form an association scheme on V. If an association scheme
has the property that any of its fusions is also an association scheme, then we call the
association schemeamorphic. Van Dam [7] proved the following result.

Result 2 Let V be a set of size v, and let{G1,G2, . . . ,Gd} be an edge-decomposition of the
complete graph on V, where each Gi is a strongly regular graph on V. If Gi ,1≤ i ≤ d, are
all of Latin square type or all of negative Latin square type,then the decomposition is a
d-class amorphic association scheme on V.

We conclude this section by recording the bent function in [9] as below.

Result 3 Let n= 4k. Then the p-ary function f(x) mappingFpn to Fp given by

f (x) = Trn(x2+ xp3k+p2k−pk+1)

is a weakly regular bent function. Moreover, for b∈Fpn the corresponding Walsh coefficient
of f(x) is equal to

W f (b) =−p2kζTrk(x0)/4
p ,

where x0 is a unique solution inFpk of the equation

bp2k+1+(b2+ x)(p
2k+1)/2+bpk(p2k+1)+(b2+ x)pk(p2k+1)/2 = 0.

3 The construction

In this section, we construct SRGs usingp-ary bent functions. First we introduce some
notations used throughout this section. Letf : Fpn → Fp be a weakly regularp-ary bent
function satisfyingf (−x) = f (x). Without loss of generality, we may assumef (0) = 0.
If not, we can replacef (x) with f (x)− f (0). For eachb ∈ Fpn, assume thatW f (b) =

µ(
√

p∗)nζ f ∗(b)
p , whereµ= ±1 andp∗ = (−1)

p−1
2 p. Suppose that there exists an integerl

with (l −1, p−1) = 1 such that for eachα ∈ Fp andx∈ Fpn, f (αx) = αl f (x) holds. Let

Di := {x∈ Fpn | f (x) = i}, 0≤ i ≤ p−1.
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Denote byG and H the additive groups ofFpn and Fp respectively. Clearly we have
p−1
∑

i=0
Di = G. Moreover,D(−1)

i = Di for each 0≤ i ≤ p− 1 since f (−x) = f (x). Define

the group ring elements inZ[ζp](G):

Lt :=
p−1

∑
i=0

Diζit
p, 0≤ t ≤ p−1,

in particularL0 = Fpn. The following result gives some properties of theLt ’s (see [15]).

Result 4 (1) If s, t,s+ t 6= 0, then LtLs = µ( tsv
p )n(

√
p∗)nLv with s1−l + t1−l = v1−l ;

(2) LtL−t = pn for t ∈ {1, . . . , p−1};

(3)
p−1
∑

t=1
LtL0ζ−at

p = (p|Da|− pn)Fpn.

It is clear that we may computeDi ’s from Lt ’s, namelyDi =
1
p

p−1
∑

t=0
Ltζ−it

p . By Result 4,

we have

p2DaDb =
p−1
∑

s,t=0
LtLsζ−at−bs

p

= L2
0+ ∑

s,t 6=0
s+t 6=0

LtLsζ−at−bs
p +

p−1
∑

s=1
LsL−sζ

s(a−b)
p +

p−1
∑

s=1
LsL0ζ−bs

p +
p−1
∑

t=1
LtL0ζ−at

p

= pnFpn + ∑
s,t,s+t 6=0

s1−l +t1−l=v1−l

µ( tsv
p )n(

√
p∗)nζ−at−bs

p Lv+
p−1
∑

s=1
pnζs(a−b)

p +(p|Db|− pn)Fpn

+(p(|Da|− pn)Fpn

=
p−1
∑

s=1
pnζs(a−b)

p +(p(|Da|+ |Db|)− pn)Fpn + ∑
s,t,s+t 6=0

s1−l+t1−l=v1−l

µ( tsv
p )n(

√
p∗)nζ−at−bs

p Lv.

(3)
In the following we only work on the fieldFpn with n= 2k. Note that in this case the

Walsh coefficient off can be written as the formW f (b) = (−1)
(p−1)k

2 µpkζ f ∗(b)
p . For each

b ∈ Fp2k, let χb be the additive character ofG defined byχb(x) = ζTr(bx)
p , andη be the

additive character ofH defined byη(x) = ζx
p. Now for eachb∈ Fpn,

W f (b) = ∑
x∈Fp2k

ζ f (x)+Tr(bx)
p =

p−1

∑
i=0

( ∑
x∈Di

ζTr(bx)
p )ζi

p =
p−1

∑
i=0

χb(Di)ζi
p = χbη(R),

whereR= {(x, f (x)) : x ∈ Fp2k}. Since f is a bent function, we know that|χbη(R)| =
|W f (b)|= pk.

First we determine the cardinalities ofDi ’s.

Lemma 1 Let f : Fp2k → Fp be the bent function as above. Then
(1) |D1|= |D2|= · · ·= |Dp−1|,
(2) |D0|= p2k−1+ε(pk− pk−1) and|Di |= p2k−1−εpk−1 for each1≤ i ≤ p−1, where

ε = (−1)
(p−1)k

2 µ.

Proof (1) For any 1≤ a,b≤ p−1, by Result 4 (3) we have

(p|Da|− p2k)Fp2k =
p−1

∑
t=1

LtL0ζ−at
p =

p−1

∑
t=1

LtL0(ζab−1

p )−bt = (p|Db|− p2k)Fp2k.
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The last equality holds sinceζab−1

p is also a primitivep-th root of unity. Thus|Da|= |Db|.
(2) Let χ0 be the principal character ofFp2k, we have

χ0η(R) = |D0|+
p−1

∑
i=1

|Di |ζi
p = |D0|+ |D1|(ζp+ ζ2

p+ · · ·+ ζp−1
p ) = |D0|− |D1|.

Sinceχbη(R) = W f (b) = (−1)
(p−1)k

2 µpkζ f ∗(b)
p = εpkζ f ∗(b)

p and |D0| − |D1| is a rational
integer, we have

|D0|− |D1|= εpk. (4)

On the other hand,
|D0|+(p−1)|D1|= p2k. (5)

By solving Eqs. (4) and (5), the result follows.

Next, we define Condition A for a functionf as follows.
Condition A: Let f : Fp2k → Fp be a weakly regular bent function withf (0) = 0 and

f (−x) = f (x), wherep is an odd prime. There exists an integerl with (l −1, p−1)= 1 such

that f (αx) = αl f (x) for anyα ∈ Fp andx∈ Fp2k. For eachb∈ Fp2k, W f (b) = εpkζ f ∗(b)
p ,

whereε = (−1)
(p−1)k

2 µ with µ=±1.
Two functionsf ,g : Fpn → Fp are calledaffine equivalentif there exist an affine permu-

tationA1 of Fp and an affine permutationA2 of Fpn such thatg= A1◦ f ◦A2. Furthermore,
they are calledextended affine equivalent (EA-equivalent)if g = A1 ◦ f ◦A2 +A, where

A : Fpn → Fp is an affine function. A polynomialL of the formL(x) =
n
∑

i=0
aixpi ∈ Fp[x] is

called alinearized polynomial. Note that the affine permutations ofFp arecx+d, where
c∈ F∗

p andd ∈ Fp.
We have the following result.

Proposition 1 Let L1,L2 ∈ Fp[x] be linearized polynomials, where L1 is a permutation of
Fp and L2 is a permutation ofFp2k. If L1(1) 6= 0 and f satisfies Condition A, then the
function g= L1◦ f ◦L2 satisfies Condition A.

Proof Thatg(0) = 0,g(−x) = g(x) andg(αx) = αl g(x) for α ∈ Fp are easy to be verified.

We only need to prove that for eachb∈ Fp2k, W g(b) = εpkζg∗(b)
p , whereε = (−1)

(p−1)k
2 µ

with µ= ±1. First assume thatL1(x) = cx. Note thatL1(1) 6= 0 implies thatc 6= 0 andζc
p

is also a primitivep-th root of unity. Now

W g(b) = ∑
x∈Fp2k

ζL1( f (L2(x))+Tr(bx)
p = ∑

x∈Fp2k

(ζc
p)

f (L2(x)+Tr(c−1bx)

= ∑
y∈Fp2k

(ζc
p)

f (y)+Tr(c−1bL−1
2 (y) = ∑

y∈Fp2k

(ζc
p)

f (y)+Tr((L−1
2 )⋆(c−1b)y)

= W f ((L
−1
2 )⋆(c−1b)) = εpkζ f ∗((L−1

2 )⋆(c−1b))
p ,

where(L−1
2 )⋆ is the adjoint operator ofL−1

2 . We finish the proof.

Remark 1Clearly the functiong in the above Proposition is affine equivalent tof . How-
ever, for a functiong which is EA-equivalent but not affine equivalent tof , it may be
seen thatg does not satisfy Condition A. Indeed, assume thatg = A1 ◦ f ◦A2 +A, then
g(αx) 6= αl−1g(x) for α ∈ Fp whenl > 2.

Now assume that a functionf : Fp2k → Fp satisfies Condition A, then clearly the func-
tionsL1 ◦ f ◦L2 all satisfy Condition A, whereL1,L2 ∈ Fp[x] are linearized polynomials,
andL1 is a permutation ofFp, L2 is a permutation ofFp2k. We see that the functions of the
form L1◦ f ◦L2 are affine equivalent tof . However, for a functiong which is EA-equivalent
but not affine equivalent tof , it may be seen thatg does not satisfy Condition A.

Now we will prove the first result in this section.
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Theorem 1 Let f be a function satisfying condition A. Let

D := {x : x∈ F
∗
p2k| f (x) = 0}.

Then D is a(v,d,λ1,λ2)-PDS, where

v = p2k,
d = (pk− ε)(pk−1+ ε),
λ1 = (pk−1+ ε)2−3ε(pk−1+ ε)+ εpk,
λ2 = (pk−1+ ε)pk−1.

(6)

Proof Recall thatLt =
p−1
∑

i=0
Diζit

p. By Eq. (3), we have:

p2D0D0 = (p−1)p2k+(2p|D0|− p2k)Fp2k + ε ∑
s,t,s+t 6=0

s1−l+t1−l=v1−l

pkLv, (7)

Now we compute the last term of Eq. (7).

∑
s,t,s+t 6=0

s1−l+t1−l=v1−l

pkLv = pk
p−1
∑

i=1
(p−2)Li

= (p−2)pk
p−1
∑

i=1
(D0+

p−1
∑
j=1

D jζ ji
p )

= (p−2)pk((p−1)D0+
p−1
∑
j=1

D j(
p−1
∑

i=1
ζ ji

p ))

= (p−2)pk((p−1)D0−
p−1
∑
j=1

D j)

= (p−2)pk((p−1)D0− (Fp2k −D0))

= (p−2)pk(pD0−Fp2k).

(8)

Substituting Eq. (8) in Eq. (7), we have

p2D0D0 = (p−1)p2k+(2p|D0|− p2k)Fp2k + ε(p−2)pk(pD0−Fp2k)

= (p−1)p2k+ εpk+1(p−2)D0+(2p|D0|− p2k− ε(p−2)pk)Fp2k.
(9)

Note thatD+0= D0 and|D0|= p2k−1+ ε(pk− pk−1) (Lemma 1), by Eq. (9) we have

p2(D+0)2 = (p−1)p2k+ εpk+1(p−2)(D+0)+ (2p|D0|− p2k− ε(p−2)pk)Fp2k.

After simplifying, we get the equation

D2 = (p2k−1− p2k−2+ εpk−2εpk−1−1)+ (εpk−2εpk−1−2)D+(εpk−1+ p2k−2)Fp2k.

By Eq. (2), the proof is done.

Remark 2Whenε = −1 in Theorem 1, we get negative Latin square type SRGs. When
p = 3, some new SRGs arise using non-quadratic ternary bent functions; see [17, Tables
2,3]. Unfortunately, whenp≥ 5, for the known bent functions, we don’t get new graphs.

To give another construction of SRGs usingp-ary bent functions, we show two lemmas
first.



7

Lemma 2 Let S and T be the sets of non-zero squares and non-squares inFp respectively,
where p is an odd prime. Then we have

(1) when p≡ 1 (mod 4),

S2 = p−1
2 + p−5

4 S+ p−1
4 T,

T2 = p−1
2 + p−1

4 S+ p−5
4 T,

ST = TS= p−1
4 (S+T);

(2) when p≡ 3 (mod 4),

S2 = p−3
4 S+ p+1

4 T,
T2 = p+1

4 S+ p−3
4 T,

ST = TS= p+1
4 + p−3

4 Fp.

Proof (1) Note that−1 is a square whenp≡ 1 (mod 4) andS(−1) = S,T(−1) = T in this
case. By [1, Theorem 2],Sis a(p, p−1

2 , p−5
4 , p−1

2 ) almost difference set inFp, which implies
that

SS(−1) = S2 =
p−1

2
+

p−5
4

S+
p−1

4
T.

It is easy to see thatT = Fp− 0−S, and henceTT(−1) = T2 = (Fp− 0−S)2. Now the
results can be followed by direct computation.

(2) When p ≡ 3 (mod 4), −1 is a non-square, andS(−1) = T,T(−1) = S. It is well
known that the subsetS is a(p, p−1

2 , p−3
4 ) difference set inFp. Hence

SS(−1) = ST=
p+1

4
+

p−3
4

Fp.

The computations are similar to those in(1).

Lemma 3 Let ζp be a primitive p-th root of unity, S and T be the sets of non-zero squares
and non-squares ofFp respectively. Define m= ∑i∈Sζ−i

p , then

(1) when p≡ 1 (mod 4), −m(1+m) =− p−1
4 ;

(2) when p≡ 3 (mod 4), −m(1+m) = p+1
4 .

Proof We only prove the casep≡ 1 (mod 4), the proof of (2) is similar. Note that−(1+

m) = ∑i∈T ζ−i
p , hence−m(1+ m) = ∑i∈S, j∈T ζ−(i+ j)

p . By Lemma 2 (1), we know that

∑i∈S, j∈T ζ−(i+ j)
p = p−1

4 ∑i∈F∗p ζ−i
p =− p−1

4 .

Now we prove the following result.

Theorem 2 Let f be a function satisfying Condition A. Let

DS := {x : x∈ F
∗
p2k| f (x) are non-zero squares},

then DS is a (v,d,λ1,λ2)-PDS, where

v = p2k,
d = 1

2(p
k− pk−1)(pk− ε),

λ1 = 1
4(p

k− pk−1)2− 3ε
2 (p

k− pk−1)+ pkε,
λ2 = 1

2(p
k− pk−1)(1

2(p
k− pk−1)− ε).

(10)
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Proof We only prove the casep ≡ 1 (mod 4), the proof of the casep ≡ 3 (mod 4) is
similar. LetS andT be the sets of non-zero squares and non-squares ofFp respectively.
Now by Eq. (3), we have

p2D2
S = p2 ∑

a,b∈S
DaDb

= ∑
a,b∈S

(
p−1
∑

s=1
p2kζs(a−b)

p +(2p|D1|− p2k)Fp2k + εpk ∑
s,t,s+t 6=0

s1−l +t1−l=v1−l

ζ−at−bs
p Lv).

(11)

Now

∑
a,b∈S

(
p−1
∑

s=1
p2kζs(a−b)

p ) = p2k(p−1)(p+1)
4 ,

∑
a,b∈S

(2p|D1|− p2k)Fp2k = (
p(p−1)2

2 |D1|− p2k(p−1)2

4 )Fp2k.
(12)

To compute the third term in Eq. (11), fors, t ∈ F∗
p, we defineδ(s, t) as follows

δ(s, t) =







m2 if s, t both are squares
(1+m)2 if s, t both are nonsquares
−m(1+m) others,

wherem=∑i∈Sζ−i
p . For convenience, denote the set{(s, t) : s, t ∈ Fp|s 6= 0, t 6= 0,s+ t 6= 0}

by Ω. For s, t,s+ t 6= 0, define the functionσ(s, t) = v, wheres1−l + t1−l = v1−l . Since
(l −1, p−1) = 1, σ is well defined. Now we compute the third term of Eq. (11):

∑
a,b∈S

∑
(s,t)∈Ω

ζ−at−bs
p Lσ(s,t)

= ∑
(s,t)∈Ω

( ∑
a∈S

(ζ−t
p )a)( ∑

b∈S
(ζ−s

p )b)Lσ(s,t) = ∑
(s,t)∈Ω

δ(s, t)Lσ(s,t)

= ∑
(s,t)∈Ω∩(S×S)

m2Lσ(s,t)+ ∑
(s,t)∈Ω∩(T×T)

(1+m)2Lσ(s,t)− ∑
(s,t)∈

Ω\((S×S)∪(T×T))

m(1+m)Lσ(s,t).

(13)
By Lemma 2(1), we know that the multiset{∗ σ(s, t) : (s, t) ∈ Ω∩ (S×S) ∗} = p−5

4 S+
p−1

4 T, then

∑
(s,t)∈Ω∩(S×S)

m2Lσ(s,t) = m2(
p−5

4 ∑
v∈S

Lv+
p−1

4 ∑
v∈T

Lv).

Using similar argument, we can compute the last two terms of Eq. (13). Then we have

∑a,b∈S∑(s,t)∈Ω ζ−at−bs
p Lσ(s,t)

= m2( p−5
4 ∑v∈SLv+

p−1
4 ∑v∈T Lv)+ (1+m)2( p−1

4 ∑v∈SLv+
p−5

4 ∑v∈T Lv)

−2m(1+m)( p−1
4 ∑v∈F∗p Lv),

= A∑v∈SLv+B∑v∈T Lv,

(14)

whereA= p−5
4 m2+ p−1

4 (1+m)2− p−1
2 m(1+m) andB= p−1

4 m2+ p−5
4 (1+m)2− p−1

2 m(1+
m). Now we see that

∑
a,b∈S

∑
(s,t)∈Ω

ζ−at−bs
p Lσ(s,t) = A∑v∈SLv+B∑v∈T Lv

= A∑v∈S(∑
p−1
i=0 Diζvi

p)+B∑v∈T(∑
p−1
i=0 Diζvi

p )

= ∑p−1
i=0 (A∑v∈Sζvi

p +B∑v∈T ζvi
p )Di .

(15)
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Denoteai = A∑v∈Sζvi
p +B∑v∈T ζvi

p for 0≤ i ≤ p−1. Clearly,

a0 = p−1
2 (A+B)

= p−1
2 (−2m2−2m+ p−3

2 )

= −(p−1)m(1+m)+ (p−1)(p−3)
4

= − (p−1)2

4 +
(p−1)(p−3)

4
= − p−1

2 .

Similarly, we get the following:

ai =

{

−(p−1)/2 i ∈ {0}∪T,
(p+1)/2 i ∈ S.

Now
∑

a,b∈S
∑

(s,t)∈Ω
ζ−at−bs

p Lσ(s,t) = − p−1
2 (Fp2k −DS )+

p+1
2 DS . (16)

By Eqs. (11), (12) and (16), we know that

p2DSD
(−1)
S

= p2D2
S

= p2k(p−1)(p+1)
4 +( p(p−1)2

2 |D1|− p2k(p−1)2

4 )Fp2k + εpk(− p−1
2 (Fp2k −DS )+

p+1
2 DS )

= C1+C2DS +C3Fp2k,

whereC1 =
1
4 p2k(p−1)(p+1),C2 = pk+1ε andC3 =

1
4 p2k(p−1)2− 1

2 pk+1(p−1)ε. The
proof follows by Eq. (2).

Remark 3(1) Using similar proof, we may also prove that the set

DN := {x : x∈ F
∗
p2k| f (x) are non-squares}

is a PDS with the same paramters as in Theorem 2.
(2) In [17], it is shown that for weakly regular ternary bent function f : F32k → F3, the

setDi := {x∈ F∗
32k| f (x) = i} is a partial difference set for each 0≤ i ≤ 2. We may see that

Theorem 2 is the generalization of the result in [17].

With a small modification, we may get the following result.

Theorem 3 Let f be a function satisfying Condition A. Let

D′
S := {x : x∈ F

∗
p2k| f (x) are squares},

then D′S is a (v,d,λ1,λ2)-PDS, where

v= p2k,

d = 1
2(p

k+ pk−1+2ε)(pk− ε),
λ1 =

1
4(p

k+ pk−1+2ε)2− 3ε
2 (p

k+ pk−1+2ε)+ pkε,
λ2 =

1
4(p

k+ pk−1)(pk+ pk−1+2ε).

(17)

Proof ClearlyD′
S =D+DS , whereD= {x : x∈F∗

p2k| f (x) = 0}. ThenD′
S (D

′
S )

(−1)=(DS +

D)(DS +D). The result follows from Theorems 1, 2 and similar group ringcomputations
as those in Theorem 2.

Remark 4By using MAGMA, we know that Theorems 1, 2, 3 are not true for non-weakly
regular bent functionf (x) = Tr(ξ7x98) overF36, whereξ is a primitive element ofF36. This
implies that the weakly regular condition is necessary.
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We conclude this section by a result on association schemes.Combining Result 2 and
Theorems 1,2,3, we have the following result.

Theorem 4 Let f be a function satisfying Condition A. Define the following sets:

D = {x : x∈ F∗
p2k| f (x) = 0},

DS = {x : x∈ F
∗
p2k| f (x) are non-zero squares},

DN = {x : x∈ F∗
p2k| f (x) are non-squares}.

Then{Fp2k;{0},D,DS ,DN } is an amorphic association scheme of class3.

4 Newness

In this section, we discuss the known constructions of the SRGs with parameters (10) and
(17). Since there are many constructions of the Latin squaretype SRGs, we only discuss
the newness of the negative Latin square type SRGs with the above parameters, namely,
ε =−1 in parameters (10) and (17).

One may check the known constructions of the SRGs with the parameters (10), (17)
via the online database [2]. It is well known that projectivetwo-weight codes can be used
to construct SRGs ([3]), one can check the known constructions of two-weight codes via
the online database [4]. Next we give the following constructions of SRGs with parameters
(10) and (17).

Result 5 [3] Let k = 2m andQ be a non-degnerate quadratic form onFq with q odd. Let

M = {v∈ F
k
q\ {0}|Tr(Q (v)) are non-zero squares},

and
M′ = {v∈ F

k
q\ {0}|Tr(Q (v)) are squares}.

Then:
(1) the Cayley graph generated by M in(Fk

q,+) is a(p2k, 1
2(p

k− pk−1)(pk−ε), 1
4(p

k−
pk−1)2 − 3ε

2 (p
k − pk−1) + pkε, 1

2(p
k − pk−1)(1

2(p
k − pk−1)− ε)) strongly regular graph,

whereε =±1 and depends onQ .
(2) the Cayley graph generated by M′ in (Fk

q,+) is a (p2k, 1
2(p

k + pk−1 + 2ε)(pk −
ε), 1

4(p
k+ pk−1+2ε)2− 3ε

2 (p
k+ pk−1+2ε)+ pkε, 1

4(p
k+ pk−1)(pk+ pk−1+2ε)) strongly

regular graph, whereε =±1 and depends onQ .

The SRGs constructed by Result 5 (1) are calledFE1, and the SRGs from Result 5 (2)
are calledRT2 in [3]. They both are also calledaffine polar graphsin [6, P. 852]. To the
best of our knowledge, affine polar graphs are the only known infinitive construction of the
SRGs with parameters (10) and (17) whenp≥ 5.

For small parameters, now we discuss the known constructions of the SRGs with pa-
rameters (10) and (17).

When p = 3, by Theorem 2 and the bent function in Result 3, in fieldF38, we get
an SRG with parameter(6561,2214,729,756). Computed by MAGMA, the order of its
automorphism group and the 3-rank of the adjacent matrix of the SRG are(24 ·38,566). By
comparing to [17, Table 4], we know that this graph is new.

When p = 5, in the fieldF54, the known constructions of the SRGs with parameters
(625,260,105,110),(625,364,213,210) are affine polar graphs, or from Theorems 2,3, or
from the projective two weight codes in Chen ([5]). It is verified that Chen’s SRGs are
isomorphic to affine polar graphs and the SRGs from the bent function in Result 3 are new.

When p = 7, in the fieldF74, the known constructions of the SRGs with parame-
ters (2401,1050,455,462),(2401,1350,761,756) are the same as the casep = 5. Using
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MAGMA, it is verified that Chen’s SRGs ([5]) are also isomorphic to affine polar graphs
and the SRGs from the bent function in Result 3 are new.

In the following two tables, we give some computational results of the SRGs from
different constructions. In the first column, we list the parameters of the SRGs. The group
Aut(G ) is the full automorphism group of the SRGG , andM denotes an adjacency matrix
of G , to be considered inFp. The abbreviationn.L. means the SRG is of negative Latin
square type. The symbol♥ means the SRG is constructed by the bent function in Result 3.

Table 1 SRGs with parameters (10)

(v,k,λ,µ) Type Rank ofM |Aut(G )| note

(625,260,105,110) n.L. 86 26 ·3 ·56 ·13 affine polar
(625,260,105,110)♥ n.L. 104 24 ·54 new
(2401,1050,455,462) n.L. 237 26 ·32 ·52 ·76 affine polar
(2401,1050,455,462)♥ n.L. 335 23 ·3 ·74 new

Table 2 SRGs with parameters (17)

(v,k,λ,µ) Type Rank ofM |Aut(G )| note

(625,364,213,210) n.L. 625 26 ·3 ·56 ·13 affine polar
(625,364,213,210)♥ n.L. 625 24 ·54 new
(2401,1350,761,756) n.L. 2401 26 ·32 ·52 ·76 affine polar
(2401,1350,761,756)♥ n.L. 2401 23 ·3 ·74 new

Remark 5From Tables 1 and 2, we conjecture that the bent functions in Result 3 can give
a family of SRGs of negative Latin square type which are not isomorphic to the affine polar
graphs. It is difficult to prove it in general cases.

We may see that the automorphism groups of the Cayley graphs generated by the PDSs
in (1) have the subgroup of orderp2k coming from translationsτc : x 7→ x+c for anyc∈Fp2k

and the subgroup of order 2k coming from the Galois automorphism ofFp2k. This means

that 2kp2k divides the order of the automorphism groups of the Cayley graphs of (1). For
the bent functions given by Result (3), we conjecture that|Aut(G (X))| is not divisible by
p2k+1, whereX = DS or D′

S . This is a possible method to prove that they are new.

Acknowledgements Research supported by the National Research Foundation of Singapore under Research
Grant NRF-CRP2-2007-03 and by the Nanyang Technological University under Research Grant M58110040.
The authors would like to thank Professor Alexander Pott forhelpful discussions. They are also indebted to one
of the anonymous referees to point out the result in Proposition 1 and the two subgroups of the automorphism
groups of the SRGs in this paper.

References

1. Arasu, K., Ding, C., Helleseth, T., Kumer, P. and Martinsen, H., Almost difference sets and their sequences
with optimal autocorrelation, IEEE Trans. Inform. Theory 47, 2934–2943, (2001).

2. Brouwer, A., Web database of strongly regular graphs, http://www.win.tue.nl/˜aeb/graphs/srg/srgtab.html
(online).

3. Calderbank, R. and Kantor, W., The geometry of two-weightcodes, Bull. London Math. Soc. 18 (2), 97–122,
(1986).

4. Chen, E., Web database of two-weight codes, http://moodle.tec.hkr.se/˜chen/research/2-weight-
codes/search.php (online).

5. Chen, E., Construction of two-weight codes, internal reports, (2008).
6. Colbourn, C. and Dinitz, J., Handbook of Combinatorial Designs, Discrete Mathematics and its Applications

(Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, second edition, (2007).
7. Edwin, R., van D., Strongly regular decompositions of thecomplete graph, J. Algebraic Combin. 17 (2),

181–201, (2003).
8. Helleseth, T., Hollmann, H., Kholosha, A., Wang, Z. and Xiang, Q., Proofs of two conjectures on ternary

weakly regular bent functions, IEEE Trans. Inform. Theory 55 (5), 5272–5283, (2009).



12

9. Helleseth, T. and Kholosha, A., New binomial bent functions over the finite fields of odd characteristic, IEEE
Trans. Inform. Theory 56 (9), 4646–4652, (2010).

10. Helleseth, T. and Kholosha, A., Monomial and quadratic bent functions over the finite fields of odd charac-
teristic, IEEE Trans. Inform. Theory 52 (5), 2018–2032, (2006).

11. Kumar, P., Scholtz, R. and Welch, L., Generalized bent functions and their properties, J. Combin. Theory Ser.
A 40 (1), 90–107, (1985).

12. Lidl, R. and Niederreiter, H., Finite Fields, Encyclopedia of Mathematics and its Applications 20, second
edition, Cambridge University Press, (1997).

13. Ma, S., A survey of partial differential sets, Des. CodesCryptogr. 4 (3), 221–261, (1994).
14. Passman, D., The Algebraic Structure of Group Rings, Robert E. Krieger Publishing Co. Inc., Melbourne,

FL, Reprint of the 1977 original, (1985).
15. Pott, A., Tan, Y., Feng, T. and Ling, S., Association schemes arising from bent functions, Preproceedings of

The International Workshop on Coding and Cryptography, Bergen, 48–61, (2009).
16. Rothaus, O., On “bent” functions, J. Combin. Theory Ser.A 20 (3), 300-305, (1976).
17. Tan, Y., Pott, A. and Feng, T., Strongly regular graphs associated with ternary bent functions, J. Combin.

Theory Ser. A 117 (6), 668–682, (2010).
18. Tan, Y., Yang, J. and Zhang, X., A recursive approach to constructp-ary bent functions which are not weakly

regular, to appear in Proceedings of IEEE International Conference on Information Theory and Information
Security, Beijing, (2010).


	1 Introduction
	2 Preliminaries
	3 The construction
	4 Newness

