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The purpose of this work is to determine the asymptotic behaviour of an elastic material
periodically reinforced by means of identical fibers filled in with some isotropic and homo-
geneous elastic material. In the first part, the fibers are longitudinally distributed inside
the elastic material. The limit law is derived, studying the convergence of the elastic en-
ergy, and we exhibit a critical size of the fibers and a critical size of the Lamé coefficients
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of the reinforcing fibers. In the last part of this work, we suppose that the fibers are
transversally distributed and we exhibit the limit law, which still involves a critical size
and a critical size of the Lamé coefficients of the fibers, but working in a different limit
functional space. These configurations intend to modelize, for example, the behaviour of
a strap reinforced by means of identical fibers which are longitudinally or transversally
disposed inside the strap.

Let w be a bounded, smooth and open subset of R? and Q = w x |0, L] C R?, where
L is positive. T'; denotes the lower basis of Q : 'y = w x {0}, I'y its upper basis :
'y = w x {L} and ¥ its lateral surface : ¥ = 0w x |0, L.

Let £ be some positive real. In the first part of this work, we dispose inside €2 lon-
gitudinal fibers. More precisely, for every k = (ki, ko) in Z?, we define the square :
YF = (cky,eky) + ]—€/2,¢/2[>. Then we denote by Y. the union of all the e-cells Y*
included in w : Y, = Up¢ K(a)Yek. Choosing a parameter r. smaller than ¢, we consider the
disk D¥ of radius r. contained in Y* and the cylinder T% = D* x |0, L[. T. denotes the
union UyT¥ of the cylinders T* contained in Q. Thus 7. N ¥ is empty. The total number
of such cylinders contained in Q (that is the cardinal of K (g)) is equivalent to |w]| /&2,
with |w| = area (w). The domain . = Q\T?. is supposed to be the reference configuration
of some linear elastic, homogeneous and isotropic material, thus satisfying the following
Hooke’s law

0i; () = Nemm (w) 8i5 + 2pe;; (u), i, 7, m=1,2,3, (1)

where the summation convention has been used with respect to repeated indices, A and u
are the Lamé coefficients of the material, satisfying : ;1 > 0 and A > 0, 9;; is Kronecker’s
symbol and e (u) is the linearized deformation tensor, the components of which are given

ou; u;
by : e (u) =3 <8xz T ng)-

Figure 1: The domain 2 and the cylinders 7.

We suppose that T is the reference configuration of some linear elastic, homogeneous
and isotropic material satisfying Hooke’s law

05 (1) = Nemn (u) 85+ 2p%eyy (u), 4, j,m=1,2,3, (2)



where the Lamé coefficients A* > 0 and p® > 0 depend on & and satisfy
de>0,Ve>0:pu" >c. (3)

The structure €2 built with these two elastic materials is submitted to some volumic
forces the density of which f = (f1, fo, f3) belongs to L? (2, R?). We suppose that the
structure is held fixed along I'; and that the tractions are equal to 0 on the rest of the
boundary : o;; (u¥) n; =0, 4,j = 1,2, 3, where n is the unit outer normal to the boundary.
Let us introduce the functional F*¢ defined on H' (2, R?) by:

P (u) = /502']' (u)ei; (u) de + /50% (u) ey (u)dz if ue HE (2, R?)

+00 otherwise,

(4)

with : Hf (Q,R?*) = {ue H' (Q,R?) |u=0onTI}. The problem under consideration
can be associated to the minimization problem involving the functional F°, as indicated
in the following

Lemma 1 1. The minimization problem:

ueHI?(i(gl,R-‘%) {F6 (u) — Q/Qf.uda:} : (5)

admits a unique solution u® belonging to Hlll (2, R?) and which satisfies the varia-
tional formulation:

/ Eaij (u®) e (u) do + / Eo—fj (u®) ey (u) do = /Q fudr, Yue H (Q,R?) (6)

and is a weak solution of the problem:

0344 (u) fi
_Ufj,j (v?) = fi inT;
ut = 0 only (7)
Oij (Ua) n; = 0 on 0f2 \ Fl.

2. The sequence (uf)_ is bounded in H' (Q, R?).
3. Assume that : sup, (—e*In(r.)) < +oo. Then, sup, ((fTs |u5|2d1’) / |T8|> is finite
and if RF (u®) is the rescaled restriction of u® to the fibers defined by:

12
7.

R (u) uly,, (8)

where || means the volume of Q0 and 1. denotes the characteristic function of T,
the sequence (R® (uf)). is bounded in L' (R3 R3).

)
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Proof. 1. Because \° is nonnegative, we write for every u in Hp (€2, R?)

F¢ (u) > inf (2u, 214°) /

eij (u) ey (u)de > Cinf (2, 24°) / \Vul|? de,

Q Q

using the classical Korn’s inequality, because u vanishes on I'y. The hypothesis ([B]) and this
inequality imply that F is coercive on H' (€2, R3). Moreover, F* is lower semi-continuous
for the weak topology of Hf (£, R?) and is not identically equal to +oo. Thus, classical
convex analysis results imply the existence and the uniqueness of a minimizer u® of F° on
H{, (Q,R?), which satisfies the variational formulation (@) and, thus, is a weak solution
of ([@).

2. We observe that : F© (u®)—2 [, f.usdz < F*©(0) = 0, which implies, using the preceding
inequality, that m

C'inf (2u, Q;f)/ |Vl | da < 2 11| 220y 1wl 220y
Q

Using Poincaré’s inequality, we thus deduce that (u®), is bounded in Hf (Q,R?).
3. Before proving this assertion, let us first recall the following estimate, which has been
proved in [6]

Lemma 2 There exists some positive constant C such that, for every u in H' (Q,R3),

one has : )
uldr < C </ \Vul|* de — &% 1n (r.) + 62) : (9)
FEPE 0

Proof. We first define : u' (1,0, z2) := w(cky +rcos(0),eky +1cos(f),2), in the fiber
centred at (eky,eks). Then, we observe that, for every r; < ry < /2
1—1¢ t
o (1= t)ry + try) VIOt ,
87” \/(1—t)7’1—|—t7’2

= (U (15,0, 2) — ' (r1,0,2))> < (In(ry) — In (rl))/: (%)2rdr.

u' (re,0,2) —u' (r1,0,2) = (re — 7’1)

Defining : f(r) = > ,c K(e fo (r,0,z) dfdz, the previous inequality implies :
£ () <2f (ry) + 2| Vul[3 (@.R?) 10 (7"2/7"1), which implies, for every 7y in [¢/4,¢/2]

1 1 e
] uldr = |T|/ f(r)rdr
elJT:

< T / (r2) + |Vl (0 72) = I (1)) vy
< v 2 (7’5)21 (Ta)2
< o (T 00 1Tl 0 = 5+
) 2 g? g?
< Ol f(r)e” + [[Vulieqrs e Eln(re)jtz
2 2
< (1 0Der+ IVl - S0 + )



and then, taking the mean value of this inequality with respect to 75 in [e/4,¢/2] m

1 ) e/2 ) ) 52 2
uwdr < C[16 fr)yrdr +[[Vull 2 qrsye® — 5 In(r) + —
T Jr. e/d ’ 2

g2 g?
< C <(16 + £2) ||VUH%2(Q,R3) Y In (r) + Z) - U

Coming back to the proof of Lemma [I we observe that Lemma [l implies that
sup, ((fTs ue|? dx) / \T€|) is finite, as soon as sup, (—e*1In (r.)) < 4o0. Then, using Cau-

chy-Schwarz inequality, we finally prove that the quantity ( Jrs | RE (u)] al:lt)E is bounded,
which ends the proof of Lemma [II O

In the sequel, we will assume that the hypothesis sup, (—¢%1In (r.)) < +o0o is always
satisfied.

Our purpose is to describe the asymptotic behaviour of (u®)_. and that of (R® (u%)),,
when € goes to 0. This will be obtained using epi-convergence arguments, that is studying
the asymptotic behaviour of the sequence (F°)_, when ¢ goes to 0. We will first suppose
that the coefficients A\, and p,, defined by

s (T€)2 . (Ts)z
o= BT ke B

(10)

are finite and p, is positive. Thanks to the properties of the epi-convergence, we then
derive the asymptotic behaviour of the solution in many other cases.

This kind of reinforcement problems follows earlier works like [2], [3], [6], for example.
However, the works [2] and [3] were dealing with scalar problems (also involving the p-
laplacian operator). The work [6] is dealing with linear elasticity problems but assuming
another scaling of the coefficients, which will be described later on in the present work.
The work [4] deals with the homogenization of composite media evoking the vectorial
case. See also [9] for similar phenomena in a quite general situation.

2 Construction and study of the test-functions

We define
D = {(n1,y2) € R?| (y1)? + (y2)* < 1
D(r,r") = {(y1,12) €R?[1? < (1)* + (1)° <77}
Sy = {(y1,12) € R?| (y1)? + (y2)* = r’}

for 0 < r <1/, and for every k = (ky, ko) in Z?

B = {(a1,22,73) | (11 . kig)? + (w2 S koe)® < (Sa)z, T3 € lO,L[}
Ct = (w1, @9,23) | (ro)” < (w1 — k1e)” + (w2 — koe)” < (s.)°, w3 €10, L[},

choosing s, such that



. S .. T .
lim= =0= lim— =0= lime?In?s..
e—0 ¢ e—0 Se e—0
Finally, we denote: B. = U, Bk, C. = U,CF.
We introduce the solution w™ = (w}*, wj'), m = 1,2, of the linear plane elasticity
problems

oijg (W™) (y) = 0 Vy e R2\D, i, j = 1,2
w™(y) = 0 on S,
wn(y) ~ —Inly|+ Cte when |y| — oo (11)
m p=2ifm=1
‘wp‘(y) < (te when { D= 1itm=2.

where: o;; (w™) = Ae;j (W™) + 2pe;; (w™). Thanks to the potential theory methods, de-
scribed for example in [7], the solution w™ of ([II]) can be computed as

(

(y2)2 - (y1)2 (y2)2 - (y1)2
wy (y1,y2) = —Infy|+ 5 — 1
2k [yl 2k [y|
1 Y291 Y2t
B A
2 Y291 Y291
i) =TT
(y2)2 - (y1)2 (y2)2 - (y1)2
w% (y1>y2) = —ln|y| - 2 1
\ 2k |yl 2k |yl

with : Kk = (A+3u) /(A + ). We also introduce the function w(yy,y2) = — In |y|, which
is harmonic in R?\ {0} and verifies the following properties

0
w‘S1 = O’ hm w (y17 y2) — _17 / _wdo- — 27T
ly|—o0 In |y| S1 on

Let us observe that

Lemma 3 One has the following convergences:

: 1 m l
L Rgrfooﬁ D(LR)UU (") sy () dy

~ 2mp(1+ k)
B K

Otm.-

1 2
2. lim —— Vw|"dy =2
R—1>1}-1001n R D(1,R) | w‘ Y i

Proof. The proof is trivial. O m
Using the solutions of these plane problems, we now build the functions w™*, for every
k= (]{71, ]{72) as



1 — k’1€ Lo — k’QE

wy )
-1 Te Te
w?k (LL’l,LL’Q) = nr we T — ]flé? To — ]{726
c 2 TE ’ TE
0
0
—1 0
3k
w2 (x1, T =
= (@1, 72) Inr, x1 — ki xg — koe ’
w )
T€ T€

a =1, 2. These functions w™" satisfy the following properties.

Lemma 4 There exist two positive constants Cy and C1, independant of €, such that:

In? (RF) +1
1 }em w?k2§00n(26)+ ,ZTLB?,
In® (1)
owmk |? C,
2) e | < . in B¥, i=1,2,3,
O (RE)"In” (re)

where e,, is the m-th vector of the canonical basis of R® and
(R’;)2 = (21 — k1&)® + (x5 — koe)”.

Proof. Immediate, thanks to the expression of w™*. O m

Lemma 5 If~y:=lim. 0 (—1/(e*Inr.)) is finite, then:

1. For every m and l, one has

2myp (1 + k) Q] 610 m, 1= 1,2
1 .. mk .. lk — " ’ ’
fig f,, 70 (w2") e () do =9 g I=3,m=12
2y | m,l = 3.
2. Let ¢ be any element of C* (Q). Then
2 1
M(glm/gpdx m,l=1,2
K Q
lim [ oy (W) ey (W) pdz =< 0 =3, m=1,2
e—0 B.
27w,u/<pdz m,l = 3.
Q



3. Let ©F be the truncation function defined by

4 i
s (B =) Wy <ne <o
Se
P (@) = ¢ (anan) = § FRE < 5 (12)
0 if RE > s.
and 2" the function defined by

2 (z) = { ¢t (2) (em —wi™) () Va € BE, Vk

: 0 Vo € O\FL. (13)

Then (2") 7, = €m, (2I"). converges to 0 in the weak topology of HY(Q,R?) and
1| 6 if myl=1,2

. m l _
lim QUU(ZE)% (2)dz =1 ifl=3, m=1,2
277#‘9‘ if m,l = 3.

2nyp (1 + k)
K

Proof. 1. Using Hooke’s law, the above expression of w™ and the estimates given in
Lemma [ one has, for m,[ =1,3

: (Y o () dp = ™ e (!
}:1_1)% Csaw (w6 ) €ij (w6 ) dr = TR /D(LSE/TE)O'U (w™) ey (w ) dy1dys + o,
where: vy, = (z1 — kie) /re, yo = (w9 — ke) /1., 0;; and e;; respectively denote the

stress and the deformation tensors in the plane, with the Lamé coefficients A\ and u
and lim._,g0., = 0. One deduces from Lemma [3, through the definition of s, that

2mp (14 k)

. —1
lim
e=0Inr,

/ Oij (wm) €ij (wl) dyrdys = Omis
D(1,s¢/7e)

the other cases being treated in a similar way. We conclude, using the definition of ~.
2. The smoothness of ¢ implies that for every (xy, 72, x3) in C* we have : ¢ (21, 72, 73) =
¢ (kie, koe, x3) + O (RY), which implies

/ ij (W) ei; (W) pda
Ce
1 L
T 2ln?r, </D(1,ss/rs)aij (w™) ei; (w') dyrdys (Z 52/0 @ (kie, kog, 3) dl’g)) +o..

k

But the smoothness of ¢ also implies

L
lim 52/ ke, koe, x3) dx :/ dz,
Hozk: i ¢ (kie, kog, x3) du 7

8



from which we conclude, using the first assertion.
3. We observe that ¥ =0 in Q\ B. and w™ = 0 in T.. Then we compute

Jos e G = 5 [ o (wrt)es (o) (2t)" ar

E Ok
- . mk £ . lk‘
’ . /(150{55/2<R§<55}U” (wz™) o, (e — w)  da
E Ot Ok
" /cgm{sg/2<ng<ss} (em We )7, oz, ( | — wy )j o,

Thanks to Lemma [ and to the definition of ¢¥, one can prove that the two last sums
are respectively bounded by : C|lns.|/ (e2In*r.) and C'ln®s./ (¢2In*r.). These two
upper bounds converge to 0, because v is finite and thanks to the choice of s.. Moreover,
the first term of the preceding equality can be computed as

[ ) e () (o) do = [y ) ey () o
Ck Ck

€

+ i mk ; 1k ; 2 1) 4
/cgm{ss/2<}z§<ss}ay (wi™) eij (wl) <(<P ) ) x

and using the definition (IZ) of ¢* we get

ii mk : Ik 2_1 d
/Cgm{%/k%}m(we Jes () () ~1) do

< Oij (wgn,k) €ij (U)ik) dx.
CE{sc/2<RE<s:}

Thanks to the estimates of Lemma 4] we deduce

=0 k C§0{35/2<R§<55} Z]( € ) Z]( e) ,

which implies

lim Qom( ") eij (22) do = lim 7 (wr*) ey (wl*) da.

One concludes using the first assertion. Because (z;”)|F1 = 0, there exists some positive
constant C' such that

/|vzm| dx<0/aw( ™ o5 (27) da.

Hence (). is bounded in H' (€2, R?), which implies that a subsequence still denoted
(2"). converges to some z* in the weak topology of H' (2, R?) and in the strong topology
of L? (2, R3). We observe that 2z = 0 in Q\ B. and because the sequence of characteristic
functions of Q\B. converges to 1 in the strong topology of L? (), we infer that z* = 0.
Hence (2")_ converges to 0 in the weak topology of H* (2, R?). N

9



3 Convergence

We define the topology 7 which will be used throughout this paragraph as

w-H(Q,R?)
T Ue — u
u: — (u,v) & =0
=0 and : Vo € CJ (R3) : /R€ (us) pdx — [ vda,
Q e=0 Jo

where w-H' (2, R?) stands for the weak topology of H' (2, R?) and R° is the rescaled
restriction operator defined in (8]).
Our main result reads as follows

Theorem 6 Suppose that v = lim._,o (—1/ (¢*Inr.)) is finite, N, and p, are finite and

L, is positive. Then, the sequence (F*), epi-converges in the topology T to the functional
Fe defined on H' (0, R3) x L* (Q,R?) by:

F° (u ) = /Q%' (u) eij (u) dz + 27?7/ (v—u) A —u)de+ WEO/ (es3 (v))* d,

Q Q
if (u,v) € HY, (Q,R?) x V
—+00 otherwise,
(14)

using the summation convention with respect to repeated indices and where A is the diag-
onal matriz with : Ay = p(1+ k) /k = Agy and Asz = p, where K = (A +3u) / (A + ),
E, = p, (3N +2u,) / (Mo + 11,) and V' denotes the subspace

V= {v eL? (Q,R?’) | vgir, = 0, es3 (v) € L? (Q)} :

As a consequence of this theorem and of the properties of the epi-convergence (see [1]
for a definition and the main properties of this notion of convergence well-fitted to the
description of the asymptotic behaviour of the solution of minimization problems), one
gets the following asymptotic behaviour, when € goes to 0, of the solution u® of ()

Corollary 7 Under the hypotheses of Theorem[Q, the solution u® of () converges, in the
topology T, to the solution (u®,v°) in the space HE (2, R?) XV of the following problem

_Uij,j (uo) — 2’}/71'142']‘ (’UO — uo)j = fz n Q, 1= 1, 2, 3

u’ = 0 on I'y
o (u)n; = 0 on Ow x )0, L[U 'y
1,7=1,2,3
Foo (e (1) = 20 —u)y in )
T3
v = 0 onI't
(w), = (v°), inQ, a=1,2

L €33 (’UO) = 0 on FQ.

10



(u®,v°) is the unique solution of the minimization problem
min{FO(u,v) — Q/f.udx |ue HE (QR?), ve V} :
Q

Moreover, the convergence of the linked energies : lim._,o F© (u®) = F° (u®,v°) holds true.

Remark 8 In the expression of the limit functional F°, the term wE, [, (es3 (v))* dx can
be interpreted as the “pure influence” of the fibers, due to their longitudinal repartition,
on the asymptotic behaviour. The term 2m7y [, (v — u)' A(v—u)dz can be interpreted as
the mized influence of the fibers and of the elastic material (for example, shearing effect
of the fibers on the material, for the term 2myp [, (vs — us)® dz).

of Theorem [6l. This proof will be decomposed in two main parts, corresponding to the
verification of the two assertions of the epi-convergence. As a first step, let us verify : For
every u in Hi (Q,R?) and for every v in V, there exists a sequence (u?). of elements of
H} (9, R?) converging to (u,v) in the topology T and such that : limsup,_,, F© (u2) <
Fo(u,v).

Let us first choose any element u of C* (Q,R*) N H{ (©,R?) and any element v of
C? (Q,R*) NV. For every k = (ki, k), we define the function R. (v) in B by its three

components as follows:

( (‘Z’E (U))a (11,1’2,1'3) - 'Ua (klf,kQE,l’g)
)\ (ZII’O - ]{? ) v (]{j g ]{;25 3)
8$3 ! v

2(pF+ ) g
(Re (U))3 (Il, Ta, 1’3) = Vs (]{716, ]{726, Ig) ( ]{716) a (1{318 ]{328 1’3)
T3
Ovy
\ — (ZL’Q — ]{328) 8;]‘3 (1{318 ]{528 1’3)

u
Let us choose some smooth function 9. identically equal to 1 (resp. to 0) in Q\ Xy
(resp. in X.), with : Y. ={z € Q| d(z,I'1) < e}. We define:

W= (L= 0wt b (e = )+ 2 (Re (0),)
= w2 (e — (Re (v)),). (16)

where u,, and (R, (v)),, are the m-th components of v and R, (v) in the canonical basis
(€m) e 23 Of R? and 27" is defined in (I3). One has the following estimates.

Lemma 9 1. There exists some positive constant C' independant of € such that

ul(z) < C VYre

IVR. (v)|(z) < C Vzxe€ B,
IR (v) —v|(z) < Cr. Vxel.
IR: (v) —v|(z) < Cs. Vze B..

11



2. u? belongs to Hy (Q,R?), (u2), converges to (u,v) in the above defined topology T.

€

Proof. 1. Because v belongs to L™ (€2, R?), together with its first order derivatives,
we get, in every B¥ : |R.(v)] < C and |VR. (v)] < ', where C' and C' are positive
constants. Using Lemma [, we get : |u2| < C, in Q. One has, for every k = (ki k2)

[(Re (v) — U)a\mk < |va (k1g, ko, 23) — va (21, 2, 23))
)\8 81)3
a7 ~ L ey o ka a_ k 7k Y
+2(Iue_'_)\€> (LU 6) 81’3 ( 1€, R2€ 1’3)

< Cre,

because v belongs to C* (ﬁ, R3) and using the hypotheses on A° and pf. Similarly, we
have : |(R: (v) — “)3|\T§ < Cre, and : |R. (v) — v g < Cse, for every k.

2. Observe that u? belongs to Hf (Q,R?) because u vanishes on I'; and 1, also
vanishes on I'y. Furthermore, there exists some constant C,, such that one has in B,

Vgl < Vg (em — 2I") + 2"V (Re (0)),,, + (Re (v)),, = tm) V21|

17
< Co ([Vt] + 2 [V + V2] [0 — ta]) (17)
for some constant C,,, thanks to the preceding estimates. We then compute
/ Vel dy — / Ve + [ [Vl de (18)
Q O\Be Be

Thanks to (I7) and to Lemma [ one has

\Vul|* dz < C’,’n< \Vp|*de+e | |V d + |vm—um|2|Vz;”|2dx)
Bg Bs BE
< C

Be

where C' is some positive constant independant of €. Furthermore, because 2" outside B,

/ V| dz — /|Vu|2dx.
Q\B- e=0 Jo

This proves that (u?). converges to u in the weak topology of H' (Q,R?). Let ¢ be
any element of Cj (R?,R?). We have, because : (2"),7, = e

/ YR (u0)dx = puldx
Q

12



¢ and v being continuously differentiable and ‘Tf N w‘ being independant of k. We have,
thanks to the smoothness of ¢ and v

e—0

L
lim252/ © (kig, kog, x3) v (k1€, koe, x3) dog = /gpvd:)s
k 0 Q

and we observe that : lim._,o (|| |T¥ Nw]) / (|T:|€?) = 1. This proves that the sequence
(ug). converges to (u,v) in the above defined topology . O m
For every u in C* (€, R®) N HE, (Q, R?) and every v in C* (Q, R?), we compute

Fe(u2) = /\C%‘ (u) eij (u) d$+/ o (ug) ey (ug) dx »
ON\C:UT: < 19
—l—/ o5 (R (v)) €ij (Re (v)) de.

T:

Because the characteristic function of Q\C. U T. converges to 1 in the strong topology
of L? (), the first integral of (I9) immediately leads to

lim oi; (u) e;j (u)de = / 0 (u) e;; (u) de. (20)

=0 Jo\c.UTs Q

Let us study the second integral of (I9). One has, using the definition (I6) of the
test-function u?

[ ot ) do
= / oij (u) e (u) dr + 2/ oij (u) e (20" (Re (v)),, — um)) dz (21)

Ce €

—l—/c oij (20" (Re (v)),, — um)) € (zé (R (v)), — ul)) d.

m

The second integral of the right hand side of (2II) converges to 0, because (z["). con-
verges to 0 in the weak topology of H (€2, R*) and thanks to the estimates of Lemma
The third integral of this right hand side of (2I]) can be computed as

[ 2 o= ) e L 0 = )
+2 /C o (2 (Re (0)),, — wm)) e (2 (00 — ) da (22)

[ oy G2 (R (0) = v e (L (R (0), = o0) do

Thanks to Lemmas [§ and [@, the two last integrals of (22) converge to 0 and the first
integral of (22)) is equal to

/Uij (22") €3 (Zé) (U, — um) (0 — W) dz + o,
Q

13



with lim._,00. = 0, because (2*). converges to 0 in the weak topology of H} (€, R?).

One deduces from Lemma B and the smoothness of v and v that

li_r)r(l) Qaw (22") €55 (2L) (Um — wm) (0 — W) dz = 27?7/9 (v —u)" A(v—u)dz. (23)

In order to study the third integral of (I9)), one observes that the above expression of
R. (v) implies

€ a 82 o
Tr(e(Re:(v))) = /flfi- Aea—;)’i, (k1g, kae, 23) — (2o — koe) 8—::’}2 (k1e, koe, x3)
3
82
0’?1 (Re ('U)) = —)\E( k‘ ) 02 (k‘1€ k‘2€ 1’3)
3
0?vg
05 (Re (1)) = =X (0 = koe) G (kre, kac, 2s)
E
053 (Re(v)) = 0 b
. e+ v
053 (R=(v)) = n Waxz (k1 ko, 23)
Pvg
— (2uF + X°) (x40 — kat) 0—;2 (k1e, kag, x3)
3
v,
0o (R (V) = = (v — ko) S5 (1, hoe, ).

2
Oxs

One easily proves that all the terms of the third integral of (I9) converge to 0 except
the following one

/ 5 (Re (1) 30 (R (1)
_ e (r)” 2u° +3A€Z / <8v3) (e kot 23) s + o,

g2 pE+ A° Oxs

L E, / (53 (v))? da

e—0

with the above definition of E,. Thus, we get, for this third integral of (9]

lim [ oF; (R (v)) €ij (Re (v)) doe = 7TEO/ (es3 (v))* d. (24)
e—0 T. Q

From (20), (23)) and (24]), we thus derive : lim._,o F (u?) = F° (u,v).

We conclude the verification of this first assertion, using a density argument and
the diagonalization argument contained in [, Corollary 1.18]. Indeed, for every u in
HE (2, R?), there exists a sequence (u”,v"), in (C* (Q,R?*) N HE (Q,R?))x(C* (L, R?*)NV)
converging to (u, v) in the strong topology of the space H' (2, R?) x V. Thanks to Lemma
9, ((u™)?), converges to (u”,v"™) in the topology 7 and

lim HmFe ((u")?) = lm F(u",0") = F°(u,v).

n—+oo e—0 n—+oo

14



The space H' (Q, R?) x L' (Q, R?) is metrizable for the topology 7. One deduces from
[T, Corollary 1.18], the existence of a subsequence ((u"(e))z)6 converging to v in the weak
topology of H%l (Q,R3), such that (R6 (1)"(5)))E converges to v in the weak* topology of
L'(Q,R?) and : limsup,_,, F* ((u"®)?) < F°(u,v). This ends the verification of the
first assertion.

Let us now prove the second assertion of the epi-convergence, that is : For every
sequence (uc). of elements of H} (2, R?), converging to (u,v) in the topology T, then v
belongs to V', satisfies : v =0, on 'y, and : liminf._,o F© (u.) > F° (u,v).

Let (u™),, be any sequence of smooth functions in C* (2, R*) N HE, (€2, R?) converging
to w in the strong topology of H' (Q,R?) and (v™), be any sequence of smooth functions
in C? (ﬁ, R3) NV converging to v in the strong topology of V. Let us suppose that
sup, F* (u.) < 400, otherwise the assertion is trivially satisfied. Under these hypotheses,
one proves

Lemma 10 (u.), is bounded in H{ (2, R*) and the sequence (R° (u.)). converges in the

weak® topology of L' (0, R3) to some v belonging to V.

£

Proof. We use some argument similar to [2, Lemme A1l], defining:

_ 19

(I)€: 5 755—
) 0= g

1T5dl’, 0= 1Qd£(3

. and § are two bounded Radon measures such that (J.). converges weakly to J in
the sense of measures. We then compute

1/2
[iedac < ([ epa) v
R3 R3

C 1/2 1/2
R ( |<I>E|2dz> <C <supF‘E (u€)> < 400,
Te 15

VITE]

because (A° |T;|), and (p° |T;|), have finite limits. Hence, the sequence (®.6. ). of measures
has uniformly bounded variations. One can extract some subsequence, still denoted by
(®.6.),, which converges to some measure ®. For every ¢ in C¢ (R?), we write Fenchel’s

inequality
/ ‘(I)e|255 Z 2/ (I)ESO(SE _/ 902567

liminf/ |(I>€|25€22<<I>,g0>—/ 20,
RS

e—0 R3

which implies

where (.,.) means the duality product between measures and functions, from which we
deduce that : sup {(CI),ap) | p € CZR?), (ol 2 < 1} < +o00. Riesz’s representation

15



theorem implies the existence of some x in L3 (Q2) such that for every ¢ in C¢(R?) :
(®,9) = [gs X0 = [, xedx. For every ¢ in Cj (Q2), one has

2 _
T
- €_>0|T| 6:53 (u )3 dx
2T Qa—ivgdx = Qapegg (v) dz.

We thus get : [, (x¢ — pess (v)) de = 0, which implies that ess (v) (= x) belongs to
L2 (9).

In order to prove that v; belongs to L? (), for i = 1, 2, 3, we repeat the above argument
with ®.; = (u.), instead of ®. = e33 (u.) and we use the estimates of Lemma [II 3.

In order to prove that vz is equal to 0 on I'y, let us take any function ¢ in C* (ﬁ)
taking the form: ¢ (z) = 6 (21, 22) ¢ (z3), with ¥ (0) = 1, ¢ (L) = 0, 6 in C* (w). We
first compute

Q&LEB |T ‘ (1'1,1’2,0)

( xl’x2’L> ) dl’ldl'g

thanks to the boundary conditions verified by ¢ and u.. Moreover, using Green’s formula,
we get

ov
Qﬁxz /8—36’3”3dx+/9($1=x2)v3 (1,22, 0) dz1dz,

which implies
/9 (Il, ZL’Q) V3 (l’l,LEQ, O) dflfldl'g =0= V3 (l’l,LEQ, 0) =0.

Thus v belongs to V. O m
In order to prove this second assertion, we write the subdifferential inequality for the
first term of F*© (u.)

/a\m"“ ey (e > [ oy (@) ey (o)) de

O\C-UT:

+2 oij (u™) e (ue — (u™)?) de,
O\CLUT:

where (u")? is associated to u™ through (I8]). The sequence ((u")?)_ converges to u™ in the
weak topology of H' (2, R?), thanks to Lemma [0, and coincides with wu, in Q\C. UTL.

16



Thus, (e; (ue — (u™)?)). converges to e; (u—u”) in the weak topology of L*(Q), for
i,7 = 1,2,3. The sequence of characteristic functions of Q\C. U T, converges to 1 in the
strong topology of L? (2). This implies the following convergence

lim ll'lf/ 0ij (UE) €ij (Ue) dx Z /Uij (Un) €ij (Un) dx
o\CIUT

e—0 Q

+2/ oi; (u") eij (u —u") de.
Q

Letting n increase to +00 we get, using the convergence of (u™), to u in the strong
topology of H* (Q, R3)

lim inf / o5 (u2) €3 (ue) da > / o5 () es; () do. (25)
=0 Jacoore Q

We then write the subdifferential inequality for the second term of F* (u.)

[ twyes o= [ oy (@ ey ()0)do
+2 [ 04 ((u")?) eqj (ue — (u7)7) da,
Ce
with

2 [ oy (@) ey (o= ) dr =2 [ an Jeiy (we — (™)) da
2 / oy (22 (Re (o), — (™)) €2y (e — (")) de.

We immediately get : lim. o [, 0i; (u") eij (ue — (u")?) dz = 0, because the sequence
(eij (ue — (u™)?)), converges to e;; (u — u") in the weak topology of L* (), for i,j = 1,2,3
and the sequence of characteristic functions of C. converges to 0 in the strong topology
of L? (€2). The second term of the last equality can be computed as

/ oy (2 (R (")), — (u"),,)) €3y (e — (u")°) d

- / o () (Re (0™),, — (u™),) €3y (e — (u")) d

Ce

+/ aijs (2), O ((R. (v"g);? — (un)m)eij (ue — (u™)?) dz,

writing : 0;; = a;jse€se. We observe that

i [ s (o), LR 07, = (1))

=0/ oxy

e (u — (u")?) do = 0,

17



because (z")_ converges to 0 in the strong topology of L? (2, R?), [V (R. (v") — u™)| <
in C., and (e (u. — (u™)?)). converges to e;; (u — u™) in the weak topology of L2 (Q )
1,7 = 1,2,3. Then, we compute, using the deﬁmtlon of 2"

o ) (R ) = () e e = (7))
=3 [ oo () s (e @O0 (R 07 — ),

" Z i (R ) = 00, G = 2%), S50 0 = 4

But, for every k, one has, thanks to the definition (I2)) of ©* and using Lemmas @ and
assertion 1.

[ R, = 0, (e = w2), Sy (= () o

) Cy |In s¢|

52 |1n ’I"€| Cﬁﬂ{ss/2<R’§<35}

REIV (u, — (u")?)] da.

This implies, because (u.), and ((u")?), are bounded in H' (2, R?)

lim sup
e—0

> i (R ) = 0, (e = 2, gjs e (7)) dx‘
< timsup 25l (/ IV (u — (um)?) dx)1/2:0,

e—0 & |1I1 Ta|

because 7 is finite and using the properties of s.. Similarly, we estimate, using Lemma [

= [ () 0 () (R0, 0),) it
fw (17 e d”“")m =

because 7 is finite. We then have to compute the limit of the remaining term
> / o1y (W) e (e — () (01, — (u"),,) e
- -% / 00y () (e = ()2, (), — (u),,) il
_ Z /Ckaij (w;nk) (e — (um)?), 0 (((Un)m - (Un)m) @5) dr

+ Z i ) g = ), ()= (),




Using the estimates of Lemma [l we prove that the second term above converges to
0. Using the properties of w™*, the first term above is equal to 0. Then, the properties of

mk

w? and the convergence of (u. — (u™)?)_ to u — u" in the weak topology of H' (Q,R?)

£

imply

We let n increase to 400 and get

e—0

imint 37 [ o () € e = (0712 ((07),, = (07),) et = 0,

which implies, using the computations of the first assertion

lim inf/c 0.5 (u:) e (ue) doe > 27r7/ (v—u) A —u)dr. (26)

e—0 Q

We finally observe that for the third term of F*© (u.), one has

205 4+ 3X°
pe+ A

/Tso—?j (ue) ey (ue) dx > /T (55 (1)) da.

Indeed, one can easily verify that for every z, y, z in R, one has
20F 4 3M°
TEa e 2
HE 4 A
We then use the computations given in Lemma [[0] which imply, because p, and A,
are finite

N(xty+z2)? 2 (2 +22) > p

lim inf /T 0%, () €3 (ue) dz > 7, / (e3s (v))? da. (27)

e—0 Q

One deduces from (25])-(27)

liminf F° (u.) > /Qaij (u)eij (u) dx + 27?7/ (v —u)" A(v—u)ds

e—0 Q

+E, /Q (es3 (v)) d,

which concludes the proof. U

3.1 Other situations

The other situations given by different values of the parameters v or A\, or u, are summa-
rized in the

19



Proposition 11 1. If X, and p, are equal to 0, then (u®), converges in the topology
T to the solution (u®,v%) of the minimization problem associated to the functional

0o’ Yo

F? defined in a similar way than (13)), but with A\, = p, = 0.

2. If v is equal to +00, one obtains u®>® = v°> in Q and F° only depends on u

FOo® (u) = /Q oi; (u) eij (u) dx + 7E, /Q (es3 (u))? da.

Proof. 1. This case corresponds to a situation where the Lamé coefficients A° and p° of
the reinforcing material are smaller than the critical ones given in (I0), that is given by

for every positive and small ¢, but preserving the critical radius r. of the fibers given
through ~. Let F¢ be the functional defined in ({]) but with these critical Lamé coefficients.
Thanks to the property of the epi-convergence, we get, for every (u,v) in Hf (Q,R?)xV

0 (u) e;j (u) dr + WCEO/Q (es3 (v))* da
—|—27r7/Q (v—u) A —u)dr.

Py (u) < B (uo) = |

Q

This inequality being true for every positive ¢, we get, letting ¢ go to 0
F? (u,v) < /aij (u) ey (u) de + 27w/ (v—u) A(v—u)dr.
Q Q

In order to establish the reverse inequality, we observe that, for every sequence (u.).
converging to (u,v) in the above-defined topology 7, one has

FWMZA®%WMMMM+/@NM%WM%

€

thus omitting the integral involving the fibers T.. We then adapt the proof of the second
assertion in the Theorem [0l in order to conclude

2. We again observe that this situation corresponds to a case where the Lamé coefficients
of the reinforcing material are still given by (I0) but where the radius of the fibers is larger
than the critical one, that is 7. > exp (—1/Ce?), for every positive C. The functional F*
is thus larger than the functional F°¢ given by (@), but with the radius exp (—1/C¢e?).
The comparison principle implies that for every (u,v) in Hj (Q,R?) x V

Fo (u,v) > FC (u,v) = /Q

oi; (u) e;j (u) dr + WEO/ (€33 (v))2 dx

Q

+27T’}/C/Q (v—u) A(v—u)dr.
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Letting C' increase to +00, we observe that F°* (u, v) is finite if and only if the integral
[o (v —u)"A(v—u)dz = 0, which implies : u = v, in Q. The reverse inequality is still
obtained adapting the proof of Theorem [f (first part) but with v = w. O m

Let us now examine the special case when A\, = p, = +00. As a special subcase, [0]
have considered the case when v = 400 and

A° (7‘5)4 pe (7‘5)4
52 e:)O >\17 52 ejO H1 (28>

with positive and finite A; and ;. We now adapt their result considering

Proposition 12 Suppose that the above hypothesis (28) holds true and ~ belongs to

10, +00]. Then, the sequence (uf)_ converges in the topology T, to the solution (u',v")

of
/QUU (u) ey (u) de + 27w/ (v—u) A —u)de

' 2 2
H%l(sllr,lrlg)xvf + mhy 0*vy N 0%y g |
4 Jo \ \ 023 0x?
with El = My (3)\1 + 2#1) / ()\1 + ,ul) and
V' = {va e L? (w,H2 (O,L)) o, =0, v3 = O} )

Proof. We proceed in a similar way to [6]. Indeed, we first follow their method in order
to prove the following estimates

1 1
ulde < C, —
A T

WP d < C, ﬁ/ les; (u) P dz < C,
TE 15 5

where C' is independant of e. For every smooth v in C? (Q,R?) NV, we set

( (Rel (U))1 ($1, T2, $3) =N (lﬁé‘, kae, $3)

- A\E (xl B ]{215)2 _ (:(,’2 — k28)2 821)1 (k‘lg k‘25 $3)

2 (15 + X) 2 o}
A° (ZL’l — k‘1€) ([L’g — k’QE) 0 V2
_2 (,ua + )\a) 9 a{pg (k‘1€, k2€a 1'3)

(Rel (U))2 ($1, Z2, $3) = V2 (lﬁé‘, kae, 373)

- A\E (xl o k‘15)2 _ (:L'Q — k’2€)2 821)2 (k‘lg k‘25 $3)

2 (15 + N) 2 E
A° (ZL’l — k‘1€) ([L’g — k’QE) 0 V1
2 (,Ua + )\a) 2 a alg (1{3187 kgé,.ﬁ(]g)
(Rex (0) (21,22,75) = = (1 = bae) 5 L (e, e, )
0
\ — (ZL’Q — ]{328) 8—::2 (]{716, ]{7287 Ig) .
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The verification of the first assertion of the epi-convergence is obtained computing
the energy of the test-function associated to this R.; (v). The verification of the second
assertion follows the same lines as in Theorem [6l U m

Remark 13 The extra term occuring in the energy functional described in Proposition
corresponds to the flexion of the fibers.

Remark 14 In the case v = 0, one can still prove that (fTs |(ue)4] d/ |TE|) is bounded,

writing : ue (s) = [5 0 (ue); /Oxsdt and using some trivial arguments. Thus Lemma
still implies the existence of es3 (v) in L* (Q), with v = 0 on I'y. We conjecture that the
limit functional is

F (u,v) = /Qaij (u) ey (u) de + 7TEO/Q (es3 (v))* d.

4 Further extensions

4.1 The case of a almost non-periodic distribution of fibers

Let @ be some open subset of R? and § be a C'-diffeomorphism from @ to w. We define
the following almost non-periodic distribution of non-homogeneous fibers as follows. The
fibers are defined as

TF = {(x1,22,73) | (21 — 01 (krg, ka))® + (w9 — 02 (kre, kae))® < (r2)?, 23 €10, L[} .

Replacing (kie, kse) by 0 (k1e, kse) in the local test-functions and adapting the proof
of Theorem [B] one can prove

Theorem 15 Suppose that v is positive and finite and the nonhomogeneous material
filling in the fibers satisfies the usual conditions of symmetry, uniform ellipticity and
continuity and

(r )2 (r )2 ‘
sup ? < +00, %a’?jkl (w3) e ag (23) , a.e. in Q.

€
Q551 (3)
z3€[0,L],e>0

Then, the sequence (F*)_ epi-converges in the topology T to the functional F° defined on
HY(Q,R?) x L' (Q,R?) by:

p

[ @es s+ 2my [ ) A=) |77 (21,2) do
Q Q
F° (u, U) = +7T/ E° (25'3) €33 (’U) €33 (U) ‘VG_I‘ (1’1, LUQ) dl‘,
Q
if (u,v) € HE (Q,R?) x V
( +00 otherwise,

where E° (x3) is Young’s modulus associated to af, (x3).
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4.2 The case of tranverse fibers

Let us assume in this paragraph that w is the disk centred at the origin and of radius
R > 0 of R?. Choose any R* in |0, R] and positive € and 7. such that : 0 < 2r. < e < 1.
For every k in Z, we introduce the torus 7% defined as

TF = {(m,xa,xs) €R’| <R* — /()" + (552)2> + (13— ke)* < (7"6)2} :

T. denotes the union U ]Zz"(e) )Tf of the tori T e-periodically distributed along the

—n(e
surface : Yp- = {(:)31)2 + (22)” = (R*)?, 23 €10, L[} and contained in Q = w x]0, L[. We
suppose that 7. NI'; and T, N Ty are empty. The number n (¢) of such tori contained in
Q is equivalent to L/e.

We define the topology 7 as

w-H(Q,R?)

Us AN (u,v) < ue - U
e—0 e—0
and : Yy € C2 (RY) ; /Z (B () 9) 5. 40 2 | (00)isy 4o
R* R*

where R is defined by : R*" (u) = |Xp«|uly,/ |T.]. We introduce the space

e { v = (v, 09, V) ¢ [0,27] X ]0, L] = R3 | v, € L? (]0, 2] x 0, L[), }

Y% 2
=+ v € L2 (10,20 x ]0, L).

Vo (0,.) = v, (2m,.), a =1,0, x3,

Figure 2: The cylinder © and the tori TF.

Following similar arguments to the ones presented in the previous parts, we prove
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Theorem 16 Suppose that v* = lim._,o (—1/ (elnr.)) is finite, A, and u} are finite and
W 1s positive, with:
)\6 2 £ 2
AL = lim ()" e )
e—0 £ e—0 £

Then, the sequence (F*)_ epi-converges in the topology T to the functional F°" defined on
HY(Q,R?) x L' (Q,R?) by:

¢ 2
/ oij (u) e (u)de + 7E} / / (01)9 + vr) (R*, 0, x3) dfdxs
Fo (u,v) = +21mv* R / / v — UIER* A (U — UIER*) (R*, 0, x3) dfdxs,
if (u,v) € HE (Q,R?) x V*
[ +oo otherwise,

with A as in Theorem [ and E} = ik 3\, +2uk) / (A5 + pl).
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