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Abstract

We describe the asymptotic behaviour of a cylindrical elastic body, reinforced

along identical ε-periodically distributed fibers of size rε, with 0 < rε < ε, filled in

with some different elastic material, when this small parameter ε goes to 0. The

case of small deformations and small strains is considered. We exhibit a critical size

of the fibers and a critical link between the radius of the fibers and the size of the

Lamé coefficients of the reinforcing elastic material. Epi-convergence arguments are

used in order to prove this asymptotic behaviour. The proof is essentially based on

the construction of appropriate test-functions.
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1 Introduction

The purpose of this work is to determine the asymptotic behaviour of an elastic material
periodically reinforced by means of identical fibers filled in with some isotropic and homo-
geneous elastic material. In the first part, the fibers are longitudinally distributed inside
the elastic material. The limit law is derived, studying the convergence of the elastic en-
ergy, and we exhibit a critical size of the fibers and a critical size of the Lamé coefficients
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of the reinforcing fibers. In the last part of this work, we suppose that the fibers are
transversally distributed and we exhibit the limit law, which still involves a critical size
and a critical size of the Lamé coefficients of the fibers, but working in a different limit
functional space. These configurations intend to modelize, for example, the behaviour of
a strap reinforced by means of identical fibers which are longitudinally or transversally
disposed inside the strap.

Let ω be a bounded, smooth and open subset of R2 and Ω = ω × ]0, L[ ⊂ R3, where
L is positive. Γ1 denotes the lower basis of Ω : Γ1 = ω × {0}, Γ2 its upper basis :
Γ2 = ω × {L} and Σ its lateral surface : Σ = ∂ω × ]0, L[.

Let ε be some positive real. In the first part of this work, we dispose inside Ω lon-
gitudinal fibers. More precisely, for every k = (k1, k2) in Z2, we define the square :
Y k
ε = (εk1, εk2) + ]−ε/2, ε/2[2. Then we denote by Yε the union of all the ε-cells Y k

ε

included in ω : Yε = ∪k∈K(ε)Y
k
ε . Choosing a parameter rε smaller than ε, we consider the

disk Dk
ε of radius rε contained in Y k

ε and the cylinder T k
ε = Dk

ε × ]0, L[. Tε denotes the
union ∪kT

k
ε of the cylinders T k

ε contained in Ω. Thus Tε ∩Σ is empty. The total number
of such cylinders contained in Ω (that is the cardinal of K (ε)) is equivalent to |ω| /ε2,
with |ω| = area (ω). The domain Ωε = Ω\Tε is supposed to be the reference configuration
of some linear elastic, homogeneous and isotropic material, thus satisfying the following
Hooke’s law

σij (u) = λemm (u) δij + 2µeij (u) , i, j, m = 1, 2, 3, (1)

where the summation convention has been used with respect to repeated indices, λ and µ
are the Lamé coefficients of the material, satisfying : µ > 0 and λ ≥ 0, δij is Kronecker’s
symbol and e (u) is the linearized deformation tensor, the components of which are given

by : eij (u) =
1
2

(
∂uj

∂xi
+ ∂ui

∂xj

)
.

Figure 1: The domain Ω and the cylinders T k
ε .

We suppose that Tε is the reference configuration of some linear elastic, homogeneous
and isotropic material satisfying Hooke’s law

σε
ij (u) = λεemm (u) δij + 2µεeij (u) , i, j, m = 1, 2, 3, (2)
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where the Lamé coefficients λε ≥ 0 and µε > 0 depend on ε and satisfy

∃c > 0, ∀ε > 0 : µε ≥ c. (3)

The structure Ω built with these two elastic materials is submitted to some volumic
forces the density of which f = (f1, f2, f3) belongs to L2 (Ω,R3). We suppose that the
structure is held fixed along Γ1 and that the tractions are equal to 0 on the rest of the
boundary : σij (u

ε)nj = 0, i, j = 1, 2, 3, where n is the unit outer normal to the boundary.
Let us introduce the functional F ε defined on H1 (Ω,R3) by:

F ε (u) =





∫

Ωε

σij (u) eij (u) dx+

∫

Tε

σε
ij (u) eij (u) dx if u ∈ H1

Γ1
(Ω,R3)

+∞ otherwise,
(4)

with : H1
Γ1
(Ω,R3) = {u ∈ H1 (Ω,R3) | u = 0 on Γ1}. The problem under consideration

can be associated to the minimization problem involving the functional F ε, as indicated
in the following

Lemma 1 1. The minimization problem:

min
u∈H1(Ω,R3)

{
F ε (u)− 2

∫

Ω

f.udx

}
, (5)

admits a unique solution uε belonging to H1
Γ1
(Ω,R3) and which satisfies the varia-

tional formulation:
∫

Ωε

σij (u
ε) eij (u) dx+

∫

Tε

σε
ij (u

ε) eij (u) dx =

∫

Ω

f.udx, ∀u ∈ H1
Γ1

(
Ω,R3

)
(6)

and is a weak solution of the problem:




−σij,j (u
ε) = fi in Ωε

−σε
ij,j (u

ε) = fi in Tε
uε = 0 on Γ1

σij (u
ε)nj = 0 on ∂Ω \ Γ1.

(7)

2. The sequence (uε)ε is bounded in H1 (Ω,R3).

3. Assume that : supε (−ε2 ln (rε)) < +∞. Then, supε

((∫
Tε
|uε|2 dx

)
/ |Tε|

)
is finite

and if Rε (uε) is the rescaled restriction of uε to the fibers defined by:

Rε (uε) =
|Ω|
|Tε|

uε1Tε
, (8)

where |Ω| means the volume of Ω and 1Tε
denotes the characteristic function of Tε,

the sequence (Rε (uε))ε is bounded in L1 (R3,R3).
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Proof. 1. Because λε is nonnegative, we write for every u in H1
Γ1
(Ω,R3)

F ε (u) ≥ inf (2µ, 2µε)

∫

Ω

eij (u) eij (u) dx ≥ C inf (2µ, 2µε)

∫

Ω

|∇u|2 dx,

using the classical Korn’s inequality, because u vanishes on Γ1. The hypothesis (3) and this
inequality imply that F ε is coercive on H1 (Ω,R3). Moreover, F ε is lower semi-continuous
for the weak topology of H1

Γ1
(Ω,R3) and is not identically equal to +∞. Thus, classical

convex analysis results imply the existence and the uniqueness of a minimizer uε of F ε on
H1

Γ1
(Ω,R3), which satisfies the variational formulation (6) and, thus, is a weak solution

of (7).
2. We observe that : F ε (uε)−2

∫
Ω
f.uεdx ≤ F ε (0) = 0, which implies, using the preceding

inequality, that

C inf (2µ, 2µε)

∫

Ω

|∇uε|2 dx ≤ 2 ‖f‖L2(Ω) ‖uε‖L2(Ω) .

Using Poincaré’s inequality, we thus deduce that (uε)ε is bounded in H1
Γ1
(Ω,R3).

3. Before proving this assertion, let us first recall the following estimate, which has been
proved in [6]

Lemma 2 There exists some positive constant C such that, for every u in H1 (Ω,R3),
one has :

1

|Tε|

∫

Tε

u2dx ≤ C

(∫

Ω

|∇u|2 dx− ε2 ln (rε) + ε2
)
. (9)

Proof. We first define : u′ (r, θ, z) := u (εk1 + r cos (θ) , εk2 + r cos (θ) , z), in the fiber
centred at (εk1, εk2). Then, we observe that, for every r1 ≤ r2 < ε/2

u′ (r2, θ, z)− u′ (r1, θ, z) = (r2 − r1)

∫ 1

0

∂u′

∂r
((1− t) r1 + tr2)

√
(1− t) r1 + tr2√
(1− t) r1 + tr2

dt

⇒ (u′ (r2, θ, z)− u′ (r1, θ, z))
2 ≤ (ln (r2)− ln (r1))

∫ r2

r1

(
∂u′

∂r

)2

rdr.

Defining : f (r) =
∑

k∈K(ε)

∫ L

0

∫ 2π

0
(u′)2 (r, θ, z) dθdz, the previous inequality implies :

f (r1) ≤ 2f (r2) + 2 ‖∇u‖2L2(Ω,R3) ln (r2/r1), which implies, for every r2 in [ε/4, ε/2]

1

|Tε|

∫

Tε

u2dx =
1

|Tε|

∫ rε

0

f (r) rdr

≤ 2

|Tε|

∫ rε

0

(
f (r2) + ‖∇u‖2L2(Ω,R3) (ln (r2)− ln (r))

)
rdr

≤ Cε2

(rε)
2

(
f (r2) (rε)

2 + ‖∇u‖2L2(Ω,R3)

(
(rε)

2 − (rε)
2

2
ln (rε) +

(rε)
2

4

))

≤ C

(
f (r2) ε

2 + ‖∇u‖2L2(Ω,R3) ε
2 − ε2

2
ln (rε) +

ε2

4

)

≤ C

(
4f (r2) εr2 + ‖∇u‖2L2(Ω,R3) ε

2 − ε2

2
ln (rε) +

ε2

4

)
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and then, taking the mean value of this inequality with respect to r2 in [ε/4, ε/2]

1

|Tε|

∫

Tε

u2dx ≤ C

(
16

∫ ε/2

ε/4

f (r) rdr + ‖∇u‖2L2(Ω,R3) ε
2 − ε2

2
ln (rε) +

ε2

4

)

≤ C

(
(16 + ε2) ‖∇u‖2L2(Ω,R3) −

ε2

2
ln (rε) +

ε2

4

)
. �

Coming back to the proof of Lemma 1, we observe that Lemma 2 implies that

supε

((∫
Tε
|uε|2 dx

)
/ |Tε|

)
is finite, as soon as supε (−ε2 ln (rε)) < +∞. Then, using Cau-

chy-Schwarz inequality, we finally prove that the quantity
(∫

R3 |Rε (uε)| dx
)
ε
is bounded,

which ends the proof of Lemma 1. �

In the sequel, we will assume that the hypothesis supε (−ε2 ln (rε)) < +∞ is always
satisfied.

Our purpose is to describe the asymptotic behaviour of (uε)ε and that of (Rε (uε))ε,
when ε goes to 0. This will be obtained using epi-convergence arguments, that is studying
the asymptotic behaviour of the sequence (F ε)ε, when ε goes to 0. We will first suppose
that the coefficients λo and µo, defined by

λo = lim
ε→0

λε (rε)
2

ε2
, µo = lim

ε→0

µε (rε)
2

ε2
. (10)

are finite and µo is positive. Thanks to the properties of the epi-convergence, we then
derive the asymptotic behaviour of the solution in many other cases.

This kind of reinforcement problems follows earlier works like [2], [3], [6], for example.
However, the works [2] and [3] were dealing with scalar problems (also involving the p-
laplacian operator). The work [6] is dealing with linear elasticity problems but assuming
another scaling of the coefficients, which will be described later on in the present work.
The work [4] deals with the homogenization of composite media evoking the vectorial
case. See also [5] for similar phenomena in a quite general situation.

2 Construction and study of the test-functions

We define
D =

{
(y1, y2) ∈ R2 | (y1)2 + (y2)

2 < 1
}

D (r, r′) =
{
(y1, y2) ∈ R2 | r2 < (y1)

2 + (y2)
2 < r′2

}

Sr =
{
(y1, y2) ∈ R2 | (y1)2 + (y2)

2 = r2
}

for 0 < r < r′, and for every k = (k1, k2) in Z2

Bk
ε =

{
(x1, x2, x3) | (x1 − k1ε)

2 + (x2 − k2ε)
2 < (sε)

2 , x3 ∈ ]0, L[
}

Ck
ε =

{
(x1, x2, x3) | (rε)2 < (x1 − k1ε)

2 + (x2 − k2ε)
2 < (sε)

2 , x3 ∈ ]0, L[
}
,

choosing sε such that
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lim
ε→0

sε
ε

= 0 = lim
ε→0

rε
sε

= 0 = lim
ε→0

ε2 ln2 sε.

Finally, we denote: Bε = ∪kB
k
ε , Cε = ∪kC

k
ε .

We introduce the solution wm = (wm
1 , w

m
2 ), m = 1, 2, of the linear plane elasticity

problems





σij,j (w
m) (y) = 0 ∀y ∈ R2\D, i, j = 1, 2
wm (y) = 0 on S1

wm
m (y) ≃ − ln |y|+ Cte when |y| → ∞

∣∣wm
p

∣∣ (y) ≤ Cte when

{
p = 2 if m = 1
p = 1 if m = 2,

(11)

where: σij (w
m) = λeij (w

m) + 2µeij (w
m). Thanks to the potential theory methods, de-

scribed for example in [7], the solution wm of (11) can be computed as





w1
1 (y1, y2) = − ln |y|+ (y2)

2 − (y1)
2

2κ |y|2
− (y2)

2 − (y1)
2

2κ |y|4
w1

2 (y1, y2) =
y2y1

κ |y|2
− y2y1

κ |y|4
w2

1 (y1, y2) =
y2y1

κ |y|2
− y2y1

|y|4

w2
2 (y1, y2) = − ln |y| − (y2)

2 − (y1)
2

2κ |y|2
+

(y2)
2 − (y1)

2

2κ |y|4
,

with : κ = (λ+ 3µ) / (λ+ µ). We also introduce the function w(y1, y2) = − ln |y|, which
is harmonic in R2 \ {0} and verifies the following properties

w|S1
= 0, lim

|y|→∞

w (y1, y2)

ln |y| = −1,

∫

S1

∂w

∂n
dσ = 2π.

Let us observe that

Lemma 3 One has the following convergences:

1. lim
R→+∞

1

lnR

∫

D(1,R)

σij (w
m) eij

(
wl
)
dy =

2πµ (1 + κ)

κ
δlm.

2. lim
R→+∞

1

lnR

∫

D(1,R)

|∇w|2 dy = 2π,

Proof. The proof is trivial. �

Using the solutions of these plane problems, we now build the functions wmk
ε , for every

k = (k1, k2) as
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wαk
ε (x1, x2) =

−1

ln rε




wα
1

(
x1 − k1ε

rε
,
x2 − k2ε

rε

)

wα
2

(
x1 − k1ε

rε
,
x2 − k2ε

rε

)

0




w3k
ε (x1, x2) =

−1

ln rε




0
0

w

(
x1 − k1ε

rε
,
x2 − k2ε

rε

)


 ,

α = 1, 2. These functions wmk
ε satisfy the following properties.

Lemma 4 There exist two positive constants C0 and C1, independant of ε, such that:

1.
∣∣em − wmk

ε

∣∣2 ≤ C0

ln2
(
Rk

ε

)
+ 1

ln2 (rε)
, in Bk

ε ,

2.

∣∣∣∣
∂wmk

ε

∂xi

∣∣∣∣
2

≤ C1

(Rk
ε )

2 ln2 (rε)
, in Bk

ε , i = 1, 2, 3,

where em is the m-th vector of the canonical basis of R3 and

(
Rk

ε

)2
= (x1 − k1ε)

2 + (x2 − k2ε)
2 .

Proof. Immediate, thanks to the expression of wmk
ε . �

Lemma 5 If γ := limε→0 (−1/ (ε2 ln rε)) is finite, then:

1. For every m and l, one has

lim
ε→0

∫

Bε

σij

(
wmk

ε

)
eij
(
wlk

ε

)
dx =






2πγµ (1 + κ)

κ
|Ω| δlm m, l = 1, 2

0 l = 3, m = 1, 2
2πγµ |Ω| m, l = 3.

2. Let ϕ be any element of C1
(
Ω
)
. Then

lim
ε→0

∫

Bε

σij

(
wmk

ε

)
eij
(
wlk

ε

)
ϕdx =





2πγµ (1 + κ)

κ
δlm

∫

Ω

ϕdx m, l = 1, 2

0 l = 3, m = 1, 2

2πγµ

∫

Ω

ϕdx m, l = 3.
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3. Let ϕk
ε be the truncation function defined by

ϕk
ε (x) = ϕk

ε (x1, x2) =






−4

3 (sε)
2

((
Rk

ε

)2 − (sε)
2
)

if
sε
2

≤ Rk
ε ≤ sε

1 if Rk
ε ≤ sε

2
0 if Rk

ε ≥ sε

(12)

and zmε the function defined by

zmε (x) =

{
ϕk
ε (x)

(
em − wmk

ε

)
(x) ∀x ∈ Bk

ε , ∀k
0 ∀x ∈ Ω\Bε.

(13)

Then (zmε )|Tε
= em, (z

m
ε )ε converges to 0 in the weak topology of H1 (Ω,R3) and

lim
ε→0

∫

Ω

σij (z
m
ε ) eij

(
zlε
)
dx =





2πγµ (1 + κ)

κ
|Ω| δlm if m, l = 1, 2

0 if l = 3, m = 1, 2
2πγµ |Ω| if m, l = 3.

Proof. 1. Using Hooke’s law, the above expression of wmk
ε and the estimates given in

Lemma 4, one has, for m, l = 1, 3

lim
ε→0

∫

Cε

σij

(
wmk

ε

)
eij
(
wlk

ε

)
dx =

|Ω|
ε2 ln2 rε

∫

D(1,sε/rε)

σij (w
m) eij

(
wl
)
dy1dy2 + oε,

where: y1 = (x1 − k1ε) /rε, y2 = (x2 − kε) /rε, σij and eij respectively denote the
stress and the deformation tensors in the plane, with the Lamé coefficients λ and µ
and limε→0 oε = 0. One deduces from Lemma 3, through the definition of sε that

lim
ε→0

−1

ln rε

∫

D(1,sε/rε)

σij (w
m) eij

(
wl
)
dy1dy2 =

2πµ (1 + κ)

κ
δml,

the other cases being treated in a similar way. We conclude, using the definition of γ.
2. The smoothness of ϕ implies that for every (x1, x2, x3) in C

k
ε we have : ϕ (x1, x2, x3) =

ϕ (k1ε, k2ε, x3) +O
(
Rk

ε

)
, which implies

∫

Cε

σij

(
wmk

ε

)
eij
(
wlk

ε

)
ϕdx

=
1

ε2 ln2 rε

(∫

D(1,sε/rε)

σij (w
m) eij

(
wl
)
dy1dy2

(
∑

k

ε2
∫ L

0

ϕ (k1ε, k2ε, x3) dx3

))
+ oε.

But the smoothness of ϕ also implies

lim
ε→0

∑

k

ε2
∫ L

0

ϕ (k1ε, k2ε, x3) dx3 =

∫

Ω

ϕdx,

8



from which we conclude, using the first assertion.
3. We observe that ϕk

ε ≡ 0 in Ω \Bε and w
mk
ε ≡ 0 in Tε. Then we compute

∫

Ω

σij (z
m
ε ) eij

(
zlε
)
dx =

∑

k

∫

Ck
ε

σij

(
wmk

ε

)
eij
(
wlk

ε

) (
ϕk
ε

)2
dx

−2
∑

k

∫

Ck
ε∩{sε/2<Rk

ε<sε}
σij

(
wmk

ε

) ∂ϕk
ε

∂xi

(
el − wlk

ε

)
j
dx

+
∑

k

∫

Ck
ε ∩{sε/2<Rk

ε<sε}
(
em − wmk

ε

)
i

∂ϕk
ε

∂xi

(
el − wlk

ε

)
j

∂ϕk
ε

∂xj
dx.

Thanks to Lemma 4 and to the definition of ϕk
ε , one can prove that the two last sums

are respectively bounded by : C |ln sε| /
(
ε2 ln2 rε

)
and C ln2 sε/

(
ε2 ln2 rε

)
. These two

upper bounds converge to 0, because γ is finite and thanks to the choice of sε. Moreover,
the first term of the preceding equality can be computed as

∫

Ck
ε

σij

(
wmk

ε

)
eij
(
wlk

ε

) (
ϕk
ε

)2
dx =

∫

Ck
ε

σij

(
wmk

ε

)
eij
(
wlk

ε

)
dx

+

∫

Ck
ε∩{sε/2<Rk

ε<sε}
σij

(
wmk

ε

)
eij
(
wlk

ε

) ((
ϕk
ε

)2 − 1
)
dx

and using the definition (12) of ϕk
ε we get

∣∣∣∣∣

∫

Ck
ε∩{sε/2<Rk

ε<sε}
σij

(
wmk

ε

)
eij
(
wlk

ε

) ((
ϕk
ε

)2 − 1
)
dx

∣∣∣∣∣

≤
∫

Ck
ε∩{sε/2<Rk

ε<sε}
σij

(
wmk

ε

)
eij
(
wlk

ε

)
dx.

Thanks to the estimates of Lemma 4, we deduce

lim
ε→0

∑

k

∫

Ck
ε∩{sε/2<Rk

ε<sε}
σij

(
wmk

ε

)
eij
(
wlk

ε

)
dx = 0,

which implies

lim
ε→0

∫

Ω

σij (z
m
ε ) eij

(
zlε
)
dx = lim

ε→0

∫

Cε

σij

(
wmk

ε

)
eij
(
wlk

ε

)
dx.

One concludes using the first assertion. Because (zmε )|Γ1
= 0, there exists some positive

constant C such that ∫

Ω

|∇zmε |2 dx ≤ C

∫

Ω

σij (z
m
ε ) eij (z

m
ε ) dx.

Hence (zmε )ε is bounded in H1 (Ω,R3), which implies that a subsequence still denoted
(zmε )ε converges to some z∗ in the weak topology of H1 (Ω,R3) and in the strong topology
of L2 (Ω,R3). We observe that zmε = 0 in Ω\Bε and because the sequence of characteristic
functions of Ω\Bε converges to 1 in the strong topology of L2 (Ω), we infer that z∗ = 0.
Hence (zmε )ε converges to 0 in the weak topology of H1 (Ω,R3). �
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3 Convergence

We define the topology τ which will be used throughout this paragraph as

uε
τ
⇀
ε→0

(u, v) ⇔





uε
w-H1(Ω,R3)

⇀
ε→0

u

and : ∀ϕ ∈ C0
0 (R

3) :

∫

Ω

Rε (uε)ϕdx →
ε→0

∫

Ω

vϕdx,

where w-H1 (Ω,R3) stands for the weak topology of H1 (Ω,R3) and Rε is the rescaled
restriction operator defined in (8).

Our main result reads as follows

Theorem 6 Suppose that γ = limε→0 (−1/ (ε2 ln rε)) is finite, λo and µo are finite and
µo is positive. Then, the sequence (F ε)ε epi-converges in the topology τ to the functional
F o defined on H1 (Ω,R3)× L1 (Ω,R3) by:

F o (u, v) =





∫

Ω

σij (u) eij (u) dx+ 2πγ

∫

Ω

(v − u)tA (v − u) dx+ πEo

∫

Ω

(e33 (v))
2 dx,

if (u, v) ∈ H1
Γ1

(Ω,R3)× V
+∞ otherwise,

(14)
using the summation convention with respect to repeated indices and where A is the diag-
onal matrix with : A11 = µ (1 + κ) /κ = A22 and A33 = µ, where κ = (λ+ 3µ) / (λ+ µ),
Eo = µo (3λo + 2µo) / (λo + µo) and V denotes the subspace

V =
{
v ∈ L2

(
Ω,R3

)
| v3|Γ1

= 0, e33 (v) ∈ L2 (Ω)
}
.

As a consequence of this theorem and of the properties of the epi-convergence (see [1]
for a definition and the main properties of this notion of convergence well-fitted to the
description of the asymptotic behaviour of the solution of minimization problems), one
gets the following asymptotic behaviour, when ε goes to 0, of the solution uε of (5)

Corollary 7 Under the hypotheses of Theorem 6, the solution uε of (5) converges, in the
topology τ , to the solution (uo, vo) in the space H1

Γ1
(Ω,R3)× V of the following problem






−σij,j (u
o)− 2γπAij (v

o − uo)j = fi in Ω, i = 1, 2, 3

uo = 0 on Γ1

σij (u
o)nj = 0 on ∂ω × ]0, L[ ∪ Γ2

i, j = 1, 2, 3

Eo
∂

∂x3
(e33 (v

o)) = 2γµ (vo − uo)3 in Ω

vo = 0 on Γ1

(uo)α = (vo)α in Ω, α = 1, 2
e33 (v

o) = 0 on Γ2.

(15)
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(uo, vo) is the unique solution of the minimization problem

min

{
F o (u, v)− 2

∫

Ω

f.udx | u ∈ H1
Γ1

(
Ω,R3

)
, v ∈ V

}
.

Moreover, the convergence of the linked energies : limε→0 F
ε (uε) = F o (uo, vo) holds true.

Remark 8 In the expression of the limit functional F o, the term πEo

∫
Ω
(e33 (v))

2 dx can
be interpreted as the ”pure influence” of the fibers, due to their longitudinal repartition,
on the asymptotic behaviour. The term 2πγ

∫
Ω
(v − u)tA (v − u) dx can be interpreted as

the mixed influence of the fibers and of the elastic material (for example, shearing effect
of the fibers on the material, for the term 2πγµ

∫
Ω
(v3 − u3)

2 dx).

of Theorem 6. This proof will be decomposed in two main parts, corresponding to the
verification of the two assertions of the epi-convergence. As a first step, let us verify : For
every u in H1

Γ1
(Ω,R3) and for every v in V , there exists a sequence (uoε)ε of elements of

H1
Γ1
(Ω,R3) converging to (u, v) in the topology τ and such that : lim supε→0 F

ε (uoε) ≤
F o (u, v) .

Let us first choose any element u of C1
(
Ω,R3

)
∩ H1

Γ1
(Ω,R3) and any element v of

C2
(
Ω,R3

)
∩ V . For every k = (k1, k2), we define the function Rε (v) in B

k
ε by its three

components as follows:





(Rε (v))α (x1, x2, x3) = vα (k1ε, k2ε, x3)

− λε

2 (µε + λε)
(xα − kαε)

∂v3
∂x3

(k1ε, k2ε, x3)

(Rε (v))3 (x1, x2, x3) = v3 (k1ε, k2ε, x3)− (x1 − k1ε)
∂v1
∂x3

(k1ε, k2ε, x3)

− (x2 − k2ε)
∂v2
∂x3

(k1ε, k2ε, x3) .

Let us choose some smooth function ψε identically equal to 1 (resp. to 0) in Ω \ Σ2ε

(resp. in Σε), with : Σε = {x ∈ Ω | d (x,Γ1) < ε}. We define:

uoε = (1− ψε) u+ ψε ((em − zmε )um + zmε (Rε (v))m)
= u− ψεz

m
ε (um − (Rε (v))m) ,

(16)

where um and (Rε (v))m are the m-th components of u and Rε (v) in the canonical basis
(em)m=1,2,3 of R3 and zmε is defined in (13). One has the following estimates.

Lemma 9 1. There exists some positive constant C independant of ε such that

|uoε| (x) ≤ C ∀x ∈ Ω
|∇Rε (v)| (x) ≤ C ∀x ∈ Bε

|Rε (v)− v| (x) ≤ Crε ∀x ∈ Tε
|Rε (v)− v| (x) ≤ Csε ∀x ∈ Bε.

11



2. uoε belongs to H1
Γ1

(Ω,R3), (uoε)ε converges to (u, v) in the above defined topology τ .

Proof. 1. Because v belongs to L∞ (Ω,R3), together with its first order derivatives,
we get, in every Bk

ε : |Rε (v)| ≤ C and |∇Rε (v)| ≤ C ′, where C and C ′ are positive
constants. Using Lemma 4, we get : |uoε| ≤ C, in Ω. One has, for every k = (k1, k2)

|(Rε (v)− v)α||T k
ε

≤ |vα (k1ε, k2ε, x3)− vα (x1, x2, x3)|

+
λε

2 (µε + λε)

∣∣∣∣(xα − kαε)
∂v3
∂x3

(k1ε, k2ε, x3)

∣∣∣∣
≤ Crε,

because v belongs to C1
(
Ω,R3

)
and using the hypotheses on λε and µε. Similarly, we

have : |(Rε (v)− v)3||T k
ε
≤ Crε, and : |Rε (v)− v||Bk

ε
≤ Csε, for every k.

2. Observe that uoε belongs to H1
Γ1
(Ω,R3) because u vanishes on Γ1 and ψε also

vanishes on Γ1. Furthermore, there exists some constant Cm such that one has in Bε

|∇uoε| ≤ |∇um (em − zmε ) + zmε ∇ (Rε (v))m + ((Rε (v))m − um)∇zmε |
≤ Cm (|∇um|+ ε |∇zmε |+ |∇zmε | |vm − um|) ,

(17)

for some constant Cm, thanks to the preceding estimates. We then compute

∫

Ω

|∇uoε|2 dx =

∫

Ω\Bε

|∇uoε|2 dx+
∫

Bε

|∇uoε|2 dx (18)

Thanks to (17) and to Lemma 5 one has

∫

Bε

|∇uoε|2 dx ≤ C ′
m

(∫

Bε

|∇um|2 dx+ ε

∫

Bε

|∇zmε |2 dx+
∫

Bε

|vm − um|2 |∇zmε |2 dx
)

≤ C,

where C is some positive constant independant of ε. Furthermore, because zmε outside Bε

∫

Ω\Bε

|∇uoε|2 dx →
ε→0

∫

Ω

|∇u|2 dx.

This proves that (uoε)ε converges to u in the weak topology of H1 (Ω,R3). Let ϕ be
any element of C1

0 (R
3,R3). We have, because : (zmε )|Tε

= em

∫

Ω

ϕRε (uoε) dx =
|Ω|
|Tε|

∫

Tε

ϕuoεdx

=
|Ω|
|Tε|

∫

Tε

ϕRε (v) dx

=
|Ω|
∣∣T k

ε ∩ ω
∣∣

|Tε| ε2
∑

k

ε2
∫ L

0

ϕ (k1ε, k2ε, x3) v (k1ε, k2ε, x3) dx3 + oε,

12



ϕ and v being continuously differentiable and
∣∣T k

ε ∩ ω
∣∣ being independant of k. We have,

thanks to the smoothness of ϕ and v

lim
ε→0

∑

k

ε2
∫ L

0

ϕ (k1ε, k2ε, x3) v (k1ε, k2ε, x3) dx3 =

∫

Ω

ϕvdx

and we observe that : limε→0

(
|Ω|
∣∣T k

ε ∩ ω
∣∣) / (|Tε| ε2) = 1. This proves that the sequence

(uoε)ε converges to (u, v) in the above defined topology τ . �

For every u in C1
(
Ω,R3

)
∩H1

Γ1
(Ω,R3) and every v in C1

(
Ω,R3

)
, we compute

F ε (uoε) =

∫

Ω\Cε∪Tε

σij (u) eij (u) dx+

∫

Cε

σij (u
o
ε) eij (u

o
ε) dx

+

∫

Tε

σε
ij (Rε (v)) eij (Rε (v)) dx.

(19)

Because the characteristic function of Ω\Cε ∪ Tε converges to 1 in the strong topology
of L2 (Ω), the first integral of (19) immediately leads to

lim
ε→0

∫

Ω\Cε∪Tε

σij (u) eij (u) dx =

∫

Ω

σij (u) eij (u) dx. (20)

Let us study the second integral of (19). One has, using the definition (16) of the
test-function uoε

∫

Cε

σij (u
o
ε) eij (u

o
ε) dx

=

∫

Cε

σij (u) eij (u) dx+ 2

∫

Cε

σij (u) eij (z
m
ε ((Rε (v))m − um)) dx

+

∫

Cε

σij (z
m
ε ((Rε (v))m − um)) eij

(
zlε ((Rε (v))l − ul)

)
dx.

(21)

The second integral of the right hand side of (21) converges to 0, because (zmε )ε con-
verges to 0 in the weak topology of H1

Γ1
(Ω,R3) and thanks to the estimates of Lemma 8.

The third integral of this right hand side of (21) can be computed as
∫

Cε

σij (z
m
ε (vm − um)) eij

(
zlε (vl − ul)

)
dx

+2

∫

Cε

σij (z
m
ε ((Rε (v))m − um)) eij

(
zlε (vl − ul)

)
dx

+

∫

Cε

σij (z
m
ε ((Rε (v))m − vm)) eij

(
zlε ((Rε (v))l − vl)

)
dx.

(22)

Thanks to Lemmas 5 and 9, the two last integrals of (22) converge to 0 and the first
integral of (22) is equal to

∫

Ω

σij (z
m
ε ) eij

(
zlε
)
(vm − um) (vl − ul) dx+ oε,

13



with limε→0 oε = 0, because (zmε )ε converges to 0 in the weak topology of H1
Γ1
(Ω,R3).

One deduces from Lemma 5 and the smoothness of u and v that

lim
ε→0

∫

Ω

σij (z
m
ε ) eij

(
zlε
)
(vm − um) (vl − ul) dx = 2πγ

∫

Ω

(v − u)tA (v − u) dx. (23)

In order to study the third integral of (19), one observes that the above expression of
Rε (v) implies

Tr (e (Rε (v))) =
µε

µε + λε
∂v3
∂x3

(k1ε, k2ε, x3)− (xα − kαε)
∂2vα
∂x23

(k1ε, k2ε, x3)

σε
11 (Rε (v)) = −λε (xα − kαε)

∂2vα
∂x23

(k1ε, k2ε, x3)

σε
22 (Rε (v)) = −λε (xα − kαε)

∂2vα
∂x23

(k1ε, k2ε, x3)

σε
12 (Rε (v)) = 0

σε
33 (Rε (v)) = µε2µ

ε + 3λε

µε + λε
∂v3
∂x3

(k1ε, k2ε, x3)

− (2µε + λε) (xα − kαε)
∂2vα
∂x23

(k1ε, k2ε, x3)

σε
α3 (Rε (v)) = −µε (xα − kαε)

∂2vα
∂x23

(k1ε, k2ε, x3) .

One easily proves that all the terms of the third integral of (19) converge to 0 except
the following one

∫

Tε

σε
33 (Rε (v)) e33 (Rε (v)) dx

=
πµε (rε)

2

ε2
2µε + 3λε

µε + λε
∑

k

ε2
∫ L

0

(
∂v3
∂x3

)2

(k1ε, k2ε, x3) dx3 + oε

→
ε→0

πEo

∫

Ω

(e33 (v))
2 dx,

with the above definition of Eo. Thus, we get, for this third integral of (19)

lim
ε→0

∫

Tε

σε
ij (Rε (v)) eij (Rε (v)) dx = πEo

∫

Ω

(e33 (v))
2 dx. (24)

From (20), (23) and (24), we thus derive : limε→0 F
ε (uoε) = F o (u, v) .

We conclude the verification of this first assertion, using a density argument and
the diagonalization argument contained in [1, Corollary 1.18]. Indeed, for every u in
H1

Γ1
(Ω,R3) , there exists a sequence (un, vn)n in

(
C1
(
Ω,R3

)
∩H1

Γ1
(Ω,R3)

)
×
(
C2
(
Ω,R3

)
∩ V

)

converging to (u, v) in the strong topology of the space H1 (Ω,R3)×V . Thanks to Lemma
9, ((un)oε)ε converges to (un, vn) in the topology τ and

lim
n→+∞

lim
ε→0

F ε ((un)oε) = lim
n→+∞

F o (un, vn) = F o (u, v) .
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The space H1 (Ω,R3)×L1 (Ω,R3) is metrizable for the topology τ . One deduces from
[1, Corollary 1.18], the existence of a subsequence

((
un(ε)

)o
ε

)
ε
converging to u in the weak

topology of H1
Γ1
(Ω,R3), such that

(
Rε
(
vn(ε)

))
ε
converges to v in the weak∗ topology of

L1 (Ω,R3) and : lim supε→0 F
ε
((
un(ε)

)o
ε

)
≤ F o (u, v). This ends the verification of the

first assertion.
Let us now prove the second assertion of the epi-convergence, that is : For every

sequence (uε)ε of elements of H1
Γ1
(Ω,R3), converging to (u, v) in the topology τ , then v

belongs to V , satisfies : v = 0, on Γ1, and : lim infε→0 F
ε (uε) ≥ F o (u, v).

Let (un)n be any sequence of smooth functions in C1
(
Ω,R3

)
∩H1

Γ1
(Ω,R3) converging

to u in the strong topology of H1 (Ω,R3) and (vn)n be any sequence of smooth functions
in C2

(
Ω,R3

)
∩ V converging to v in the strong topology of V . Let us suppose that

supε F
ε (uε) < +∞, otherwise the assertion is trivially satisfied. Under these hypotheses,

one proves

Lemma 10 (uε)ε is bounded in H1
Γ1
(Ω,R3) and the sequence (Rε (uε))ε converges in the

weak∗ topology of L1 (Ω,R3) to some v belonging to V .

Proof. We use some argument similar to [2, Lemme A1], defining:

Φε = e33 (uε) , δε =
|Ω|
|Tε|

1Tε
dx, δ = 1Ωdx.

δε and δ are two bounded Radon measures such that (δε)ε converges weakly to δ in
the sense of measures. We then compute

∫

R3

|Φε| δε ≤
(∫

R3

|Φε|2 δε
)1/2√

|Tε|

≤ C√
|Tε|

(∫

Tε

|Φε|2 dx
)1/2

≤ C

(
sup
ε
F ε (uε)

)1/2

< +∞,

because (λε |Tε|)ε and (µε |Tε|)ε have finite limits. Hence, the sequence (Φεδε)ε of measures
has uniformly bounded variations. One can extract some subsequence, still denoted by
(Φεδε)ε, which converges to some measure Φ. For every ϕ in Co

c (R
3), we write Fenchel’s

inequality ∫

R3

|Φε|2 δε ≥ 2

∫

R3

Φεϕδε −
∫

R3

ϕ2δε,

which implies

lim inf
ε→0

∫

R3

|Φε|2 δε ≥ 2 〈Φ, ϕ〉 −
∫

R3

ϕ2δ,

where 〈., .〉 means the duality product between measures and functions, from which we

deduce that : sup
{
〈Φ, ϕ〉 | ϕ ∈ Co

c (R
3) , ‖ϕ‖L2(Ω) ≤ 1

}
< +∞. Riesz’s representation
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theorem implies the existence of some χ in L2
δ (Ω) such that for every ϕ in Co

c (R
3) :

〈Φ, ϕ〉 =
∫
R3 χϕδ =

∫
Ω
χϕdx. For every ϕ in C1

0 (Ω), one has

lim
ε→0

|Ω|
|Tε|

∫

Tε

e33 (uε)ϕdx =

∫

Ω

χϕdx

= −lim
ε→0

|Ω|
|Tε|

∫

Tε

∂ϕ

∂x3
(uε)3 dx

→
ε→0

−
∫

Ω

∂ϕ

∂x3
v3dx =

∫

Ω

ϕe33 (v) dx.

We thus get :
∫
Ω
(χϕ− ϕe33 (v)) dx = 0, which implies that e33 (v) (= χ) belongs to

L2 (Ω).
In order to prove that vi belongs to L

2 (Ω), for i = 1, 2, 3, we repeat the above argument
with Φε,i = (uε)i instead of Φε = e33 (uε) and we use the estimates of Lemma 1 3.

In order to prove that v3 is equal to 0 on Γ1, let us take any function ϕ in C1
(
Ω
)

taking the form: ϕ (x) = θ (x1, x2)ψ (x3), with ψ (0) = 1, ψ (L) = 0, θ in C∞ (ω). We
first compute

∫

Ω

∂v3
∂x3

ϕdx

= −
∫

Ω

∂ϕ

∂x3
v3dx+ lim

ε→0

|Ω|
|Tε|

∫

Tε

(
(ϕ (uε)3) (x1, x2, L)
− (ϕ (uε)3) (x1, x2, 0)

)
dx1dx2

= −
∫

Ω

∂ϕ

∂x3
v3dx,

thanks to the boundary conditions verified by ϕ and uε. Moreover, using Green’s formula,
we get ∫

Ω

∂v3
∂x3

ϕdx = −
∫

Ω

∂ϕ

∂x3
v3dx+

∫

ω

θ (x1, x2) v3 (x1, x2, 0) dx1dx2,

which implies

∫

ω

θ (x1, x2) v3 (x1, x2, 0) dx1dx2 = 0 ⇒ v3 (x1, x2, 0) = 0.

Thus v belongs to V . �

In order to prove this second assertion, we write the subdifferential inequality for the
first term of F ε (uε)

∫

Ω\Cε∪Tε

σij (uε) eij (uε) dx ≥
∫

Ω\Cε∪Tε

σij ((u
n)oε) eij ((u

n)oε) dx

+2

∫

Ω\Cε∪Tε

σij (u
n) eij (uε − (un)oε) dx,

where (un)oε is associated to un through (16). The sequence ((un)oε)ε converges to u
n in the

weak topology of H1 (Ω,R3), thanks to Lemma 9, and coincides with un in Ω\Cε ∪ Tε.
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Thus, (eij (uε − (un)oε))ε converges to eij (u− un) in the weak topology of L2 (Ω), for

i, j = 1, 2, 3. The sequence of characteristic functions of Ω\Cε ∪ Tε converges to 1 in the
strong topology of L2 (Ω). This implies the following convergence

lim inf
ε→0

∫

Ω\Cε∪Tε

σij (uε) eij (uε) dx ≥
∫

Ω

σij (u
n) eij (u

n) dx

+2

∫

Ω

σij (u
n) eij (u− un) dx.

Letting n increase to +∞ we get, using the convergence of (un)n to u in the strong
topology of H1 (Ω,R3)

lim inf
ε→0

∫

Ω\Cε∪Tε

σij (uε) eij (uε) dx ≥
∫

Ω

σij (u) eij (u) dx. (25)

We then write the subdifferential inequality for the second term of F ε (uε)

∫

Cε

σij (uε) eij (uε) dx ≥
∫

Cε

σij ((u
n)oε) eij ((u

n)oε) dx

+2

∫

Cε

σij ((u
n)oε) eij (uε − (unε )

o
ε) dx,

with

2

∫

Cε

σij ((u
n)oε) eij (uε − (un)oε) dx = 2

∫

Cε

σij (u
n) eij (uε − (un)oε) dx

+2

∫

Cε

σij (z
m
ε ((Rε (v

n))m − (un)m)) eij (uε − (un)oε) dx.

We immediately get : limε→0

∫
Cε
σij (u

n) eij (uε − (un)oε) dx = 0, because the sequence

(eij (uε − (un)oε))ε converges to eij (u− un) in the weak topology of L2 (Ω), for i, j = 1, 2, 3
and the sequence of characteristic functions of Cε converges to 0 in the strong topology
of L2 (Ω). The second term of the last equality can be computed as

∫

Cε

σij (z
m
ε ((Rε (v

n))m − (un)m)) eij (uε − (un)oε) dx

=

∫

Cε

σij (z
m
ε ) ((Rε (v

n))m − (un)m) eij (uε − (un)oε) dx

+

∫

Cε

aijst (z
m
ε )s

∂ ((Rε (v
n))m − (un)m)

∂xt
eij (uε − (un)oε) dx,

writing : σij = aijstest. We observe that

lim
ε→0

∫

Cε

aijst (z
m
ε )s

∂ ((Rε (v
n))m − (un)m)

∂xt
eij (uε − (un)oε) dx = 0,
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because (zmε )ε converges to 0 in the strong topology of L2 (Ω,R3), |∇ (Rε (v
n)− un)| ≤ Cn,

in Cε, and (eij (uε − (un)oε))ε converges to eij (u− un) in the weak topology of L2 (Ω), for
i, j = 1, 2, 3. Then, we compute, using the definition of zmε

∫

Cε

σij (z
m
ε ) ((Rε (v

n))m − (un)m) eij (uε − (un)oε) dx

= −
∑

k

∫

Ck
ε

σij

(
wmk

ε

)
eij (uε − (un)oε) ((Rε (v

n))m − (un)m)ϕ
k
εdx

+
∑

k

∫

Ck
ε

aijst ((Rε (v
n))m − (un)m)

(
em − wmk

ε

)
s

∂ϕk
ε

∂xt
eij (uε − (un)oε) dx.

But, for every k, one has, thanks to the definition (12) of ϕk
ε and using Lemmas 4 and

9 assertion 1.
∣∣∣∣
∫

Ck
ε

((Rε (v
n))m − (un)m)

(
em − wmk

ε

)
s

∂ϕk
ε

∂xt
eij (uε − (un)oε) dx

∣∣∣∣

≤ Cn |ln sε|
ε2 |ln rε|

∫

Ck
ε∩{sε/2<Rk

ε<sε}
Rk

ε |∇ (uε − (un)oε)| dx.

This implies, because (uε)ε and ((un)oε)ε are bounded in H1 (Ω,R3)

lim sup
ε→0

∣∣∣∣∣
∑

k

∫

Ck
ε

aijst ((Rε (v
n))m − (un)m)

(
em − wmk

ε

)
s

∂ϕk
ε

∂xt
eij (uε − (un)oε) dx

∣∣∣∣∣

≤ lim sup
ε→0

Cn |ln sε|
ε |ln rε|

(∫

Ω

|∇ (uε − (un)oε)|
2
dx

)1/2

= 0,

because γ is finite and using the properties of sε. Similarly, we estimate, using Lemma 4
∣∣∣∣∣
∑

k

∫

Ck
ε

σij

(
wmk

ε

)
eij (uε − (un)oε) ((Rε (v

n))m − (vn)m)ϕ
k
εdx

∣∣∣∣∣

≤ Cn
√
sε

|ln (rε)|

(∫

Ω

|∇ (uε − (un)oε)|
2
dx

)1/2

→
ε→0

0,

because γ is finite. We then have to compute the limit of the remaining term

∑

k

∫

Ck
ε

σij

(
wmk

ε

)
eij (uε − (un)oε) ((v

n)m − (un)m)ϕ
k
εdx

= −
∑

k

∫

Ck
ε

σij,j

(
wmk

ε

)
(uε − (un)oε)i ((v

n)m − (un)m)ϕ
k
εdx

−
∑

k

∫

Ck
ε

σij

(
wmk

ε

)
(uε − (un)oε)i

∂
(
((vn)m − (un)m)ϕ

k
ε

)

∂xj
dx

+
∑

k

∫

∂T k
ε

σij

(
wmk

ε

)
nj (uε − (un)oε)i ((v

n)m − (un)m) dx.
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Using the estimates of Lemma 4, we prove that the second term above converges to
0. Using the properties of wmk

ε , the first term above is equal to 0. Then, the properties of
wmk

ε and the convergence of (uε − (un)oε)ε to u − un in the weak topology of H1 (Ω,R3)
imply

lim
ε→0

∑

k

∫

Ck
ε

σij

(
wmk

ε

)
eij (uε − (un)oε) ((v

n)m − (un)m)ϕ
k
εdx

= 2πγ

∫

Ω

(vn − un)tA (u− un) dx.

We let n increase to +∞ and get

lim inf
ε→0

∑

k

∫

Ck
ε

σij

(
wmk

ε

)
eij (uε − (un)oε) ((v

n)m − (un)m)ϕ
k
εdx ≥ 0,

which implies, using the computations of the first assertion

lim inf
ε→0

∫

Cε

σij (uε) eij (uε) dx ≥ 2πγ

∫

Ω

(v − u)tA (v − u) dx. (26)

We finally observe that for the third term of F ε (uε), one has

∫

Tε

σε
ij (uε) eij (uε) dx ≥ µε2µ

ε + 3λε

µε + λε

∫

Tε

(e33 (uε))
2 dx.

Indeed, one can easily verify that for every x, y, z in R, one has

λε (x+ y + z)2 + 2µε
(
x2 + y2 + z2

)
≥ µε2µ

ε + 3λε

µε + λε
z2.

We then use the computations given in Lemma 10, which imply, because µo and λo
are finite

lim inf
ε→0

∫

Tε

σε
ij (uε) eij (uε) dx ≥ πEo

∫

Ω

(e33 (v))
2 dx. (27)

One deduces from (25)-(27)

lim inf
ε→0

F ε (uε) ≥
∫

Ω

σij (u) eij (u) dx+ 2πγ

∫

Ω

(v − u)tA (v − u) dx

+πEo

∫

Ω

(e33 (v))
2 dx,

which concludes the proof. �

3.1 Other situations

The other situations given by different values of the parameters γ or λo or µo are summa-
rized in the
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Proposition 11 1. If λo and µo are equal to 0, then (uε)ε converges in the topology
τ to the solution (uoo, v

o
o) of the minimization problem associated to the functional

F o
o defined in a similar way than (14), but with λo = µo = 0.

2. If γ is equal to +∞, one obtains uo∞ = vo∞ in Ω and F o∞ only depends on u

F o∞ (u) =

∫

Ω

σij (u) eij (u) dx+ πEo

∫

Ω

(e33 (u))
2 dx.

Proof. 1. This case corresponds to a situation where the Lamé coefficients λε and µε of
the reinforcing material are smaller than the critical ones given in (10), that is given by

λεc =
cε2

(rε)
2 , µ

ε
c =

cε2

(rε)
2 ,

for every positive and small c, but preserving the critical radius rε of the fibers given
through γ. Let F ε

c be the functional defined in (4) but with these critical Lamé coefficients.
Thanks to the property of the epi-convergence, we get, for every (u, v) in H1

Γ1
(Ω,R3)×V

F o
o (u, v) ≤ F o

c (u, v) =

∫

Ω

σij (u) eij (u) dx+ πcEo

∫

Ω

(e33 (v))
2 dx

+2πγ

∫

Ω

(v − u)tA (v − u) dx.

This inequality being true for every positive c, we get, letting c go to 0

F o
o (u, v) ≤

∫

Ω

σij (u) eij (u) dx+ 2πγ

∫

Ω

(v − u)tA (v − u) dx.

In order to establish the reverse inequality, we observe that, for every sequence (uε)ε
converging to (u, v) in the above-defined topology τ , one has

F ε (uε) ≥
∫

Ω\Bε

σij (uε) eij (uε) dx+

∫

Cε

σij (uε) eij (uε) dx,

thus omitting the integral involving the fibers Tε. We then adapt the proof of the second
assertion in the Theorem 6 in order to conclude
2. We again observe that this situation corresponds to a case where the Lamé coefficients
of the reinforcing material are still given by (10) but where the radius of the fibers is larger
than the critical one, that is rε ≥ exp (−1/Cε2), for every positive C. The functional F ε

is thus larger than the functional F εC given by (4), but with the radius exp (−1/Cε2).
The comparison principle implies that for every (u, v) in H1

Γ1
(Ω,R3)× V

F o∞ (u, v) ≥ F oC (u, v) =

∫

Ω

σij (u) eij (u) dx+ πEo

∫

Ω

(e33 (v))
2 dx

+2πγC

∫

Ω

(v − u)tA (v − u) dx.
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Letting C increase to +∞, we observe that F o∞ (u, v) is finite if and only if the integral∫
Ω
(v − u)tA (v − u) dx = 0, which implies : u = v, in Ω. The reverse inequality is still

obtained adapting the proof of Theorem 6 (first part) but with v = u. �

Let us now examine the special case when λo = µo = +∞. As a special subcase, [6]
have considered the case when γ = +∞ and

λε (rε)
4

ε2
→
ε→0

λ1,
µε (rε)

4

ε2
→
ε→0

µ1, (28)

with positive and finite λ1 and µ1. We now adapt their result considering

Proposition 12 Suppose that the above hypothesis (28) holds true and γ belongs to
]0,+∞]. Then, the sequence (uε)ε converges in the topology τ , to the solution (u1, v1)
of

min
H1

Γ1
(Ω,R3)×V ′




∫

Ω

σij (u) eij (u) dx+ 2πγ

∫

Ω

(v − u)tA (v − u) dx

+
πE1

4

∫

Ω

((
∂2v1
∂x23

)2

+

(
∂2v2
∂x23

)2
)
dx


 ,

with E1 = µ1 (3λ1 + 2µ1) / (λ1 + µ1) and

V ′ =
{
vα ∈ L2

(
ω,H2 (0, L)

)
| v|Γ1

= 0, v3 = 0
}
.

Proof. We proceed in a similar way to [6]. Indeed, we first follow their method in order
to prove the following estimates

1

|Tε|

∫

Tε

|uε| dx < C,
1

|Tε|

∫

Tε

|uε|2 dx < C,
1

(rε)
2 |Tε|

∫

Tε

|eij (uε)|2 dx < C,

where C is independant of ε. For every smooth v in C2
(
Ω,R3

)
∩ V ′, we set





(Rε1 (v))1 (x1, x2, x3) = v1 (k1ε, k2ε, x3)

− λε

2 (µε + λε)

(x1 − k1ε)
2 − (x2 − k2ε)

2

2

∂2v1
∂x23

(k1ε, k2ε, x3)

− λε

2 (µε + λε)

(x1 − k1ε) (x2 − k2ε)

2

∂2v2
∂x23

(k1ε, k2ε, x3)

(Rε1 (v))2 (x1, x2, x3) = v2 (k1ε, k2ε, x3)

− λε

2 (µε + λε)

(x1 − k1ε)
2 − (x2 − k2ε)

2

2

∂2v2
∂x23

(k1ε, k2ε, x3)

− λε

2 (µε + λε)

(x1 − k1ε) (x2 − k2ε)

2

∂2v1
∂x23

(k1ε, k2ε, x3)

(Rε1 (v))3 (x1, x2, x3) = − (x1 − k1ε)
∂v1
∂x3

(k1ε, k2ε, x3)

− (x2 − k2ε)
∂v2
∂x3

(k1ε, k2ε, x3) .
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The verification of the first assertion of the epi-convergence is obtained computing
the energy of the test-function associated to this Rε1 (v). The verification of the second
assertion follows the same lines as in Theorem 6. �

Remark 13 The extra term occuring in the energy functional described in Proposition
12 corresponds to the flexion of the fibers.

Remark 14 In the case γ = 0, one can still prove that
(∫

Tε
|(uε)3| dx/ |Tε|

)

ε
is bounded,

writing : uε (s) =
∫ s

0
∂ (uε)3 /∂x3dt and using some trivial arguments. Thus Lemma 10

still implies the existence of e33 (v) in L
2 (Ω), with v3 = 0 on Γ1. We conjecture that the

limit functional is

F oo (u, v) =

∫

Ω

σij (u) eij (u) dx+ πEo

∫

Ω

(e33 (v))
2 dx.

4 Further extensions

4.1 The case of a almost non-periodic distribution of fibers

Let ω̃ be some open subset of R2 and θ be a C1-diffeomorphism from ω̃ to ω. We define
the following almost non-periodic distribution of non-homogeneous fibers as follows. The
fibers are defined as

T k
ε =

{
(x1, x2, x3) | (x1 − θ1 (k1ε, k2ε))

2 + (x2 − θ2 (k1ε, k2ε))
2 < (rε)

2 , x3 ∈ ]0, L[
}
.

Replacing (k1ε, k2ε) by θ (k1ε, k2ε) in the local test-functions and adapting the proof
of Theorem 6, one can prove

Theorem 15 Suppose that γ is positive and finite and the nonhomogeneous material
filling in the fibers satisfies the usual conditions of symmetry, uniform ellipticity and
continuity and

sup
x3∈[0,L],ε>0

∣∣∣∣∣
(rε)

2

ε2
aεijkl (x3)

∣∣∣∣∣ < +∞,
(rε)

2

ε2
aεijkl (x3) →

ε→0
aoijkl (x3) , a.e. in Ω.

Then, the sequence (F ε)ε epi-converges in the topology τ to the functional F o defined on
H1 (Ω,R3)× L1 (Ω,R3) by:

F o (u, v) =





∫

Ω

σij (u) eij (u) dx+ 2πγ

∫

Ω

(v − u)tA (v − u)
∣∣∇θ−1

∣∣ (x1, x2) dx

+π

∫

Ω

Eo (x3) e33 (v) e33 (v)
∣∣∇θ−1

∣∣ (x1, x2) dx,
if (u, v) ∈ H1

Γ1
(Ω,R3)× V

+∞ otherwise,

where Eo (x3) is Young’s modulus associated to aoijkl (x3).
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4.2 The case of tranverse fibers

Let us assume in this paragraph that ω is the disk centred at the origin and of radius
R > 0 of R2. Choose any R∗ in ]0, R] and positive ε and rε such that : 0 < 2rε < ε < 1.
For every k in Z, we introduce the torus T k

ε defined as

T k
ε =

{
(x1, x2, x3) ∈ R3 |

(
R∗ −

√
(x1)

2 + (x2)
2

)2

+ (x3 − kε)2 < (rε)
2

}
.

Tε denotes the union
⋃

k=n(ε)
k=−n(ε)T

k
ε of the tori T k

ε ε-periodically distributed along the

surface : ΣR∗ =
{
(x1)

2 + (x2)
2 = (R∗)2 , x3 ∈ ]0, L[

}
and contained in Ω = ω× ]0, L[. We

suppose that Tε ∩ Γ1 and Tε ∩ Γ2 are empty. The number n (ε) of such tori contained in
Ω is equivalent to L/ε.

We define the topology τ ∗ as

uε
τ∗
⇀
ε→0

(u, v) ⇔ uε
w-H1(Ω,R3)

⇀
ε→0

u

and : ∀ϕ ∈ Co
c (R

3) :

∫

ΣR∗

(
Rε∗ (uε)ϕ

)
|ΣR∗

dσ →
ε→0

∫

ΣR∗

(vϕ)|ΣR∗
dσ,

where Rε∗ is defined by : Rε∗ (u) = |ΣR∗ |u1Tε
/ |Tε|. We introduce the space

V ∗ =

{
v = (vr, vθ, vx3

) : [0, 2π]× ]0, L[ → R3 | vα ∈ L2 (]0, 2π[× ]0, L[) ,

vα (0, .) = vα (2π, .) , α = r, θ, x3,
∂vθ
∂θ

+ vr ∈ L2 (]0, 2π[× ]0, L[) .

}

Figure 2: The cylinder Ω and the tori T k
ε .

Following similar arguments to the ones presented in the previous parts, we prove
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Theorem 16 Suppose that γ∗ = limε→0 (−1/ (ε ln rε)) is finite, λ∗o and µ∗
o are finite and

µ∗
o is positive, with:

λ∗o = lim
ε→0

λε (rε)
2

ε
, µ∗

o = lim
ε→0

µε (rε)
2

ε
.

Then, the sequence (F ε)ε epi-converges in the topology τ ∗ to the functional F o∗ defined on
H1 (Ω,R3)× L1 (Ω,R3) by:

F o∗ (u, v) =






∫

Ω

σij (u) eij (u) dx+ πE∗
o

∫ 2π

0

∫ L

0

(
∂vθ
∂θ

+ vr

)2

(R∗, θ, x3) dθdx3

+2πγ∗R∗

∫ 2π

0

∫ L

0

(
v − u|ΣR∗

)t
A
(
v − u|ΣR∗

)
(R∗, θ, x3) dθdx3,

if (u, v) ∈ H1
Γ1
(Ω,R3)× V ∗

+∞ otherwise,

with A as in Theorem 6 and E∗
o = µ∗

o (3λ
∗
o + 2µ∗

o) / (λ
∗
o + µ∗

o).
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