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TAIL BEHAVIOR OF RANDOMLY WEIGHTED SUMS

RAJAT SUBHRA HAZRA AND KRISHANU MAULIK

Abstract. Let {Xt, t ≥ 1} be a sequence of identically distributed and pair-
wise asymptotically independent random variables with regularly varying tails
and {Θt, t ≥ 1} be a sequence of positive random variables independent of
the sequence {Xt, t ≥ 1}. We shall discuss the tail probabilities and al-

most sure convergence of X(∞) =
∑∞

t=1 ΘtX
+
t

(where X+ = max{0, X})

and max1≤k<∞

∑
k

t=1 ΘtXt and provide some sufficient conditions motivated
by Denisov and Zwart (2007) as alternatives to the usual moment conditions.
In particular, we illustrate how the conditions on the slowly varying function
involved in the tail probability of X1 helps to control the tail behavior of the
randomly weighted sums.

Note that, the above results allow us to choose X1,X2, . . . as independent
and identically distributed positive random variables. If X1 has regularly vary-
ing tail of index −α, where α > 0, and if {Θt, t ≥ 1} is a positive sequence
of random variables independent of {Xt}, then it is known, which can also
be obtained from the sufficient conditions above, that under some appropri-
ate moment conditions on {Θt, t ≥ 1}, X(∞) =

∑∞
t=1 ΘtXt converges with

probability 1 and has regularly varying tail of index −α. Motivated by the
converse problems in Jacobsen et al. (2009) we ask the question that, if X(∞)

has regularly varying tail, then does X1 have regularly varying tail under some
appropriate conditions? We obtain appropriate sufficient moment conditions,
including nonvanishing Mellin transform of

∑∞
t=1 Θt along some vertical line in

the complex plane, so that the above is true. We also show that the condition
on the Mellin transform cannot be dropped.

1. Introduction

Let {Xt, t ≥ 1} be a sequence of identically distributed, pairwise asymptotically
independent, cf. (2.1), random variables and {Θt, t ≥ 1} be a sequence of positive
random variables independent of the sequence {Xt, t ≥ 1}. We shall discuss the tail
probabilities and almost sure convergence of X(∞) =

∑∞
t=1 ΘtX

+
t (where X+ =

max{0, X}) and max1≤k<∞
∑k

t=1 ΘtXt, in particular, when Xt’s belong to the
class of random variables with regularly varying tail and {Θt, t ≥ 1} satisfies some
moment conditions. We shall say that a random variable X with distribution
function F has regularly varying tail of index −α, if F (x) := 1−F (x) is a regularly
varying function of index −α, that is, for any t > 0, as x → ∞, F (tx) ∼ t−αF (x).
Here and later, for two positive functions a(x) and b(x), we write a(x) ∼ b(x)
as x → ∞, if limx→∞ a(x)/b(x) = 1. For α > 0, the convergence in the limit
of the ratio of the tail probabilities is uniform in t on the intervals of the form
[a,∞) with a > 0. Note that, we require the upper endpoint of the support of
X to be ∞. In recent times, there have been quite a few articles devoted to the

2000 Mathematics Subject Classification. Primary 60G70; Secondary 62G32.
Key words and phrases. Regular variation, heavy tails, asymptotic independence, Breiman’s

theorem, product of random variables, subexponential.

1

http://arxiv.org/abs/1011.4349v1


2 R. S. HAZRA AND K. MAULIK

asymptotic tail behavior of randomly weighted sums and their maxima, (see, for
example, Chen et al., 2005, Hult and Samorodnitsky, 2008, Resnick and Willekens,
1991, Wang and Tang, 2006, Zhang et al., 2009).

The question about the tail behavior of the infinite series X(∞) with non-random
Θt and i.i.d.Xt having regularly varying tails has been studied well in the literature,
as it arises in the context of the linear processes, including ARMA and FARIMA
processes. We refer to Jessen and Mikosch (2006) for a review of the results. The
case, when Θt’s are random, arises in various areas, especially in actuarial and
economic situations and stochastic recurrence equation. For various applications,
see Hult and Samorodnitsky (2008), Zhang et al. (2009).

Resnick and Willekens (1991) showed that if {Xt} is a sequence of i.i.d. non-
negative random variables with regularly varying tail of index −α, where α > 0
and {Θt} is another sequence of positive random variables independent of {Xt},
the series X(∞) has regularly varying tail under the following conditions, which we
shall call the RW conditions:

(RW1) If 0 < α < 1, then for some ǫ ∈ (0, α),
∑∞

t=1 E[Θ
α+ǫ
t +Θα−ǫ

t ] < ∞.

(RW2) If 1 ≤ α < ∞, then for some ǫ ∈ (0, α),
∑∞

t=1(E[Θ
α+ǫ
t +Θα−ǫ

t ])
1

α+ǫ < ∞.

In this case, we have P[X(∞) > x] ∼∑∞
t=1 E[Θ

α
t ] P[X1 > x] as x → ∞.

Remark 1.1. Each of the RW conditions implies the other for the respective ranges
of α. In particular, if 0 < α < 1, choose ǫ′ < ǫ such that α+ ǫ′ < 1. Note that

∞
∑

t=1

E[Θα+ǫ′

t +Θα−ǫ′

t ] ≤ 2

∞
∑

t=1

E[Θα+ǫ′

t 1[Θt≥1] +Θα−ǫ′

t 1[Θt<1]]

≤ 2

∞
∑

t=1

E[Θα+ǫ
t 1[Θt≥1] +Θα−ǫ

t 1[Θt<1]] ≤ 2

∞
∑

t=1

E[Θα+ǫ
t +Θα−ǫ

t ] < ∞.

Further, since α+ ǫ′ < 1, we also have
∑∞

t=1(E[Θ
α+ǫ′

t + Θα−ǫ′

t ])
1

α+ǫ′ < ∞. On the
other hand, if α ≥ 1 and ǫ > 0, then α + ǫ > 1 and the condition (RW2) implies
∑∞

t=1 E[Θ
α+ǫ
t +Θα−ǫ

t ] < ∞.

Zhang et al. (2009) considered the tails of
∑n

t=1 ΘtXt and the tails of their max-
ima, when {Xt} are pairwise asymptotically independent and have extended regu-
larly varying and negligible left tail and {Θt} are positive random variables inde-
pendent of {Xt}. The sufficient conditions for the tails to be regularly varying are
almost similar.

While the tail behavior of X(∞) requires only the α-th moments of Θt’s, we
require existence and summability of some extra moments in the RW conditions.
Note that Θα+ǫ

t acts as a dominator for [Θt ≥ 1] and Θα−ǫ
t acts as a domina-

tor for [Θt ≤ 1]. In some cases, the assumption of existence and summability
of extra moments can become restrictive. For example, consider {Θt} such that
∑∞

t=1 E[Θ
α+ǫ
t ] = ∞ for all ǫ > 0 but

∑∞
t=1 E[Θ

α
t ] < ∞. (A particular choice of

such {Θt}, for α < 1 is as follows: Θt takes values 2t/t2/α and 0 with probability
2−tα and 1 − 2−tα respectively.) Also let {Xt} be i.i.d. Pareto with parameter
α < 1, independent of {Θt}. Then it turns out, after some easy calculations, that
∑∞

t=1 ΘtXt is finite almost surely and has regularly varying tail of index −α. This
leads to the question whether we can reduce the moment conditions on Θt to obtain
the regular variation of the tail for X(∞).
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The situation becomes clearer when we consider a general term of the series. It in-
volves the product ΘtXt. Using Breiman’s theorem (cf. Breiman, 1965, Cline and Samorodnitsky,
1994), the tail behavior of the product depends on the moments of Θt. Breiman’s
theorem states that, if X is a random variable with regularly varying tail of index
−α for some α > 0 and is independent of a positive random variable Θ satisfying
E[Θα+ǫ] < ∞ for some ǫ > 0, then,

lim
x→∞

P[ΘX > x] ∼ E[Θα] P[X > x]. (1.1)

Note that, in this case, we work with a probability measure P[Θt ∈ ·], unlike in the
problem of the weighted sum, where a σ-finite measure

∑∞
t=1 P[Θ ∈ ·] is considered.

In this case, we can consider the dominator as 1 on [Θ ≤ 1] instead of Θα−ǫ, since
1 is integrable with respect to a probability measure.

Denisov and Zwart (2007) relaxed the existence of (α+ǫ) moments in Breiman’s
theorem to E[Θα] < ∞. They also made the further natural assumption that P[Θ >
x] = o(P[X > x]). However, to obtain (1.1), the weaker moment assumption needed
to be compensated. They obtained some sufficient conditions for (1.1) to hold. We
would like to find conditions similar to those obtained by Denisov and Zwart (2007),
which will guarantee the regular variation of X(∞).

In the above discussion, we considered the effect of the tail of X1 in determining
the tail of X(∞). However, the converse question is also equally interesting. More
specifically, let {Xt} be a sequence of identically distributed, asymptotically inde-
pendent, positive random variables, independent of another sequence of positive
random variables {Θt}. As before, we define X(∞) =

∑∞
t=1 ΘtXt and assume that

X(∞) converges with probability one and has regularly varying tail of index −α
with α > 0. It is interesting to obtain sufficient conditions which will ensure that
X1 has a regularly varying tail of index −α as well.

Similar converse questions regarding Breiman’s theorem (1.1) have recently been
considered in the literature. Suppose X and Y are positive random variables with
E[Y α+ǫ] < ∞ and the product XY has regularly varying tail of index −α, α > 0.
Then it was shown in Jacobsen et al. (2009) that X has regularly varying tail of
same index and hence (1.1) holds. They have also obtained results for the weighted
series, when the weights {Θt} are nonrandom. We shall extend this result for
product to the case of randomly weighted series under appropriate conditions.

In Section 2 we first describe the various classes of heavy tailed distributions and
describe the conditions imposed by Denisov and Zwart (2007). We study the tail
behavior when finite weighted sums are considered. In Section 3 we describe the
tail behavior of the series of randomly weighted sums. In Section 4 we consider the
converse problem described above. We prove the converse result is true under the
RW conditions and the extra assumption of nonvanishing Mellin transform. We
also show the necessity of this extra assumption.

2. Notations and preliminary results

We first introduce a few classes of random variables, which will be required for
the rest of the discussion. A random variable X with distribution function F is
called long tailed, if for any fixed y ∈ R and as x → ∞, we have F (x − y) ∼ F (x).
The class of long tailed distribution is denoted by L. Observe that for F ∈ L, we
need F (x) > 0 for all x > 0. The class L is related to the class of distributions
with regularly varying tail by the fact that F ∈ L if and only if F (log(·)) is slowly
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varying, that is, regularly varying of index 0. Equivalently, the random variable X
has distribution function in the class L if and only if exp(X) has a regularly varying
tail of index 0.

A nonnegative function f , which does not vanish for all large x, is in the class
of subexponential densities (denoted by Sd), if it satisfies the property

lim
x→∞

∫ x

0

f(x− y)

f(x)
f(y)dy = 2

∫ ∞

0

f(u)du < ∞.

If, for some random variable X , the tail probability distribution function F (x) =
P[X > x] is in the class of subexponential densities, we say that X is in S∗. Again,
if F ∈ S∗, we need F (x) > 0 for all x > 0.

A distribution function F belongs to the class S(γ) with γ ≥ 0 if, for all real u,

lim
x→∞

F (x− u)

F (x)
= eγu and lim

x→∞

F ∗ F (x)

F (x)
= 2

∫ ∞

0

eγyF (dy) < ∞.

The class S := S(0) is called the class of subexponential distribution functions. See
Embrechts et al. (1997), Klüppelberg (1988, 1989) for properties of these classes.

We call two random variables X1 and X2 to be asymptotically independent if

lim
x→∞

P[X1 > x,X2 > x]

P[Xt > x]
= 0, for t = 1, 2. (2.1)

See Ledford and Tawn (1996, 1997) or Chapter 6.5 of Resnick (2007) for discussions
on asymptotic independence. Note that, we require F t(x) > 0 for all x > 0 and t =
1, 2. Observe that if X1 and X2 are independent, then they are also asymptotically
independent. Thus the results under pairwise asymptotic independence condition
continue to hold in the independent setup.

A random variable X is said to have negligible left tail with respect to the right
one, if

lim
x→∞

P[X < −x]

P[X > x]
= 0. (2.2)

Note that we require P[X > x] > 0 for all x > 0.
The random variables with regularly varying tails will play a central role in this

article. Note that, if X has a regularly varying tail of index −α, then xα P[X > x]
is a slowly varying function, that is, a regularly varying function with index 0. By
Karamata’s representation, a slowly varying function L can be one of the four types
(cf. Denisov and Zwart, 2007, Lemma 2.1), namely,

(1) L(x) = c(x),
(2) L(x) = c(x)/P[V > log x],
(3) L(x) = c(x) P[U > log x],
(4) L(x) = c(x) P[U > log x]/P[V > log x].

In the above representations, c(x) is a function converging to c ∈ (0,∞), and U
and V are two long-tailed random variables with hazard rates converging to 0. We
shall refer to a slowly varying function L as of type 1, type 2, type 3 or type 4,
according to the above representations.

Denisov and Zwart (2007) introduced the following sufficient conditions on the
slowly varying part L of the regularly varying tail of index −α of a random variable
X with distribution function F (x) = x−αL(x) for Breiman’s theorem (1.1) to hold:

(DZ1) Assume limx→∞ supy∈[1,x] L(y)/L(x) := D1 < ∞.
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(DZ2) Assume L is of type 3 or type 4 and L(ex) ∈ Sd.
(DZ3) Assume L is of type 3 or type 4, U ∈ S∗ and P[Θ > x] = o(x−α P[U >

log x]).
(DZ4) When E[U ] = ∞ or equivalently E[Xα] = ∞, define m(x) =

∫ x

0 vαF (dv) →
∞. Assume lim supx→∞ sup√x≤y≤x L(y)/L(x) := D2 < ∞ and P[Θ > x] =

o(P[X > x]/m(x)).

We shall refer to these conditions as the DZ conditions. For further discussions
on the DZ conditions, we refer to Denisov and Zwart (2007). Denisov and Zwart
proved the following lemma:

Lemma 2.1 (Denisov and Zwart, 2007, Section 2). Let X be a nonnegative random
variable with regularly varying tail of index −α, α ≥ 0 and Θ be a positive random
variable independent of X such that E[Θα] < ∞ and P[Θ > x] = o(P[X > x]). If
X and Θ satisfy any one of the DZ conditions, then (1.1) holds.

The next result shows that asymptotic independence is preserved under multi-
plication, when the DZ conditions are assumed.

Lemma 2.2. Let X1, X2 be two positive, asymptotically independent, identically
distributed random variables with common regularly varying tail of index −α, where
α > 0. Let Θ1 and Θ2 be two other positive random variables independent of the
pair (X1, X2) satisfying E[Θα

t ] < ∞, t = 1, 2. Also suppose that P[Θt > x] =
o(P[X1 > x]) for t = 1, 2 and the pairs (Θ1, X1) and (Θ2, X2) satisfy any one of
the DZ conditions. Then Θ1X1 and Θ2X2 are asymptotically independent.

Proof. Here and later G will denote the joint distribution function of (Θ1,Θ2) and
Gt will denote the marginal distribution functions of Θt.

P[Θ1X1 > x,Θ2X2 > x]

P[X1 > x]
=

∫∫

u≤v

+

∫∫

u>v

P[X1 > x/u,X2 > x/v]

P[X1 > x]
G(du, dv)

≤
∫ ∞

0

P[X1 > x/v,X2 > x/v]

P[X1 > x/v]

P[X1 > x/v]

P[X1 > x]
(G1 +G2)(dv).

The integrand converges to 0. Also, the first factor of the integrand is bounded by
1 and hence the integrand is bounded by the second factor, which converges to vα.
Further, using Lemma 2.1, we have
∫ ∞

0

P[X1 > x/v]

P[X1 > x]
(G1 +G2)(dv) =

P[Θ1X1 > x] + P[Θ2X1 > x]

P[X1 > x]

→ E [Θα
1 ] + E [Θα

2 ] =

∫ ∞

0

vα(G1 +G2)(dv).

Then the result follows using Pratt’s lemma, cf. Pratt (1960). �

The next lemma shows that if the left tail of X is negligible when compared to
the right tail then the product has also such a behavior.

Lemma 2.3. Let X have regularly varying tail of index −α, for some α > 0
satisfying (2.2) and Θ be independent of X satisfying E[Θα] < ∞ and P[Θ > x] =
o(P[X > x]). Also suppose that (Θ, X) satisfy one of the DZ conditions. Then, for
any u > 0,

lim
x→∞

P[ΘX < −ux]

P[ΘX > x]
= 0.
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The proof is exactly similar to that of Lemma 2.2, except for the fact that the
first factor in the integrand is bounded, as, using (2.2), P[X < −x]/P[X > x] is
bounded. We skip the proof.

The following result from Davis and Resnick (1996) considers a simple case of
tail of sum of finitely many random variables.

Lemma 2.4 (Davis and Resnick, 1996, Lemma 2.1). Suppose Y1, Y2, . . . , Yk are
nonnegative, pairwise asymptotically independent (but not necessarily identically
distributed) random variables with regularly varying tails of common index −α,
where α > 0. If, for t = 1, 2, . . . , k, P[Yt > x]/P[Y1 > x] → ct, then

P[
∑k

t=1 Yt > x]

P[Y1 > x]
→ c1 + c2 + · · ·+ ck.

We have the following corollary by applying Lemma 2.4 with Yt = ΘtX
+
t and

the modified Breiman’s theorem in Lemma 2.1 under the DZ conditions.

Corollary 2.1. Let {Xt} be a sequence of pairwise asymptotically independent,
identically distributed random variables with common regularly varying tail of index
−α, where α > 0, which is independent of another sequence of positive random
variables {Θt} satisfying E[Θα

t ] < ∞, for all t. Also assume that, for all t, P[Θt >
x] = o(P[X1 > x]) and the pairs (Θt, Xt) satisfy one of the DZ conditions. Then
we have

P

[

k
∑

t=1

ΘtX
+
t > x

]

∼ P[X1 > x]

k
∑

t=1

E[Θα
t ].

Using Lemmas 2.1–2.4 and Corollary 2.1 and arguing as in Theorem 3.1(a) of
Zhang et al. (2009), we have the following result. (Note that the proof of Theo-
rem 3.1(a) of Zhang et al. (2009) require only the results obtained in Lemmas 2.1–
2.4 and Corollary 2.1.)

Proposition 2.1. Let {Xt} be a sequence of pairwise asymptotically independent,
identically distributed random variables with common regularly varying tail of index
−α, for some α > 0 satisfying (2.2), which is independent of another sequence
of positive random variables {Θt}. Further assume that, for all t, P[Θt > x] =
o(P[X1 > x]) and E[Θα

t ] < ∞. Also assume that the pairs (Θt, Xt) satisfy one of
the DZ conditions. Then,

P

[

max
1≤k≤n

k
∑

t=1

ΘtXt > x

]

∼ P

[

n
∑

t=1

ΘtX
+
t > x

]

∼ P[X1 > x]

n
∑

t=1

E[Θα
t ].

3. The tail of the weighted sum under the DZ conditions

In Proposition 2.1, we saw that the conditions on the slowly varying function
helps us to reduce the moment conditions on {Θt} for the finite sum. However
we need some additional hypotheses to handle the infinite series. To study the
almost sure convergence ofX(∞) =

∑∞
t=1 ΘtX

+
t , observe that the partial sums Sn =

∑n
t=1 ΘtX

+
t increase to X(∞). We shall show in the following results that P[X(∞) >

x] ∼ P[X1 > x]
∑∞

t=1 E[Θ
α
t ] under suitable conditions. Thus if

∑∞
t=1 E[Θ

α
t ] < ∞,

then limx→∞ P[X(∞) > x] = 0 and X(∞) is finite almost surely.
To obtain the required tail behavior, we shall assume the following conditions,

which weaken the moment requirements of {Θt} assumed in the conditions (RW1)
and (RW2) given in Resnick and Willekens (1991):
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(RW1′) For 0 < α < 1,
∑∞

t=1 E[Θ
α
t ] < ∞.

(RW2′) For 1 ≤ α < ∞, for some ǫ > 0,
∑∞

t=1(E[Θ
α
t ])

1
α+ǫ < ∞.

We shall call these conditions modified RW moment conditions.

Remark 3.1. As observed in Remark 1.1, for α ≥ 1 and ǫ > 0, the finiteness of the
sum in (RW2′) implies

∑∞
t=1(E[Θ

α
t ]) < ∞. Thus to check the almost sure finiteness

of X(∞), it is enough to check the tail asymptotics condition:

P[X(∞) > x] ∼ P[X1 > x]

∞
∑

t=1

E[Θα
t ].

We shall prove it under the above model together with the assumption that
P[Θt > x] = o(P[X1 > x]) and one of the DZ conditions. We need to as-
sume an extra summability condition for uniform convergence, when the condi-
tions (DZ2), (DZ3) or (DZ4) hold.

Further note that Θ1X1 ≤ max1≤n<∞
∑n

t=1 ΘtXt ≤ X(∞) and hence the almost

sure finiteness of X(∞) guarantees that max1≤n<∞
∑n

t=1 ΘtXt is a valid random
variable.

Theorem 3.1. Suppose that {Xt} is a sequence of pairwise asymptotically indepen-
dent, identically distributed random variables with common regularly varying tail of
index −α, where α > 0, satisfying (2.2), which is independent of another sequence
of positive random variables {Θt}. Also assume that P[Θt > x] = o(P[X1 > x]), the
pairs (Θt, Xt) satisfy one of the four DZ conditions (DZ1)–(DZ4) and, depending
on the value of α, the modified RW moment conditions (RW1′) or (RW2′) holds.
If the pairs (Θt, Xt) satisfy DZ condition (DZ2), (DZ3) or (DZ4), define

Ct =















supx
P[Θt>x]
P[X1>x] , when (DZ2) holds,

supx
P[Θt>x]

x−α P[U>log x] , when (DZ3) holds,

supx
P[Θt>x]
P[X1>x]m(x), when (DZ4) holds,

(3.1)

and further assume that

∞
∑

t=1

Ct < ∞, when α < 1, (3.2)

∞
∑

t=1

C
1

α+ǫ

t < ∞, when α ≥ 1. (3.3)

Then

P

[

max
1≤n<∞

n
∑

t=1

ΘtXt > x

]

∼ P[X(∞) > x] ∼ P[X1 > x]
∞
∑

t=1

E[Θα
t ]

and X(∞) is almost surely finite.

Proof. For any m ≥ 1, we have, by Proposition 2.1,

P

[

max
1≤n<∞

n
∑

t=1

ΘtXt > x

]

≥ P

[

max
1≤n≤m

n
∑

t=1

ΘtXt > x

]

∼ P[X1 > x]

m
∑

t=1

E[Θα
t ]
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leading to

lim inf
x→∞

P[max1≤n<∞
∑n

t=1 ΘtXt > x]

P[X1 > x]
≥

∞
∑

t=1

E[Θα
t ].

Similarly, comparing with the partial sums and using Proposition 2.1, we also get

lim inf
x→∞

P[X(∞) > x]

P[X1 > x]
≥

∞
∑

t=1

E[Θα
t ].

For the other inequality, observe that for any natural number m, 0 < δ < 1 and
x ≥ 0,

P

[

max
1≤n<∞

n
∑

t=1

ΘtXt > x

]

≤ P

[

max
1≤n≤m

n
∑

t=1

ΘtXt > (1− δ)x

]

+ P

[ ∞
∑

t=m+1

ΘtX
+
t > δx

]

.

For the first term, by Proposition 2.1 and the regular variation of the tail of X1,
we have,

lim
x→∞

P [max1≤n≤m

∑n
t=1 ΘtXt > (1 − δ)x]

P[X1 > x]

= (1− δ)−α
m
∑

t=1

E[Θα
t ] ≤ (1 − δ)−α

∞
∑

t=1

E[Θα
t ].

Also, for X(∞), we have,

P
[

X(∞) > x
]

≤ P

[

m
∑

t=1

ΘtX
+
t > (1− δ)x

]

+ P

[ ∞
∑

t=m+1

ΘtX
+
t > δx

]

and a similar result holds for the first term.
Then, as X1 is a random variable with regularly varying tail, to complete the

proof, it is enough to show that,

lim
m→∞

lim sup
x→∞

P[
∑∞

t=m+1 ΘtX
+
t > x]

P[X1 > x]
= 0. (3.4)

Now,

P

[ ∞
∑

t=m+1

ΘtXt
+ > x

]

≤P

[ ∞
∨

t=m+1

ΘtX
+
t > x

]

+ P

[ ∞
∑

t=m+1

ΘtX
+
t > x,

∞
∨

t=m+1

ΘtX
+
t ≤ x

]

≤
∞
∑

t=m+1

P[ΘtXt > x] + P

[ ∞
∑

t=m+1

ΘtX
+
t 1[ΘtX

+
t
≤x] > x

]

. (3.5)

We bound the final term of (3.5) separately in the cases α < 1 and α ≥ 1. In
the rest of the proof, for α ≥ 1, we shall choose ǫ > 0, so that the condition (RW2′)
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holds. We first consider the case α < 1. By Markov inequality, the final term
of (3.5) gets bounded above by

∞
∑

t=m+1

1

x
E
[

ΘtX
+
t 1[ΘtX

+

t
≤x]

]

=

∞
∑

t=m+1

∫ ∞

0

1

x/v
E
[

X+
t 1[X+

t
≤x/v]

]

Gt(dv) (3.6)

=

∞
∑

t=m+1

∫ ∞

0

E[X+
t 1[X+

t
≤x/v]]

x/vP[X+
t > x/v]

P[Xt > x/v]Gt(dv).

Now, using Karamata’s theorem (cf. Resnick, 2007, Theorem 2.1), we have

lim
x→∞

E
[

X+
t 1[X+

t
≤x/v]

]

xP[X+
t > x]

=
α

1− α

and, for x < 1, we have E[X+
t 1[X+

t
≤x/v]]/(xP[X

+
t > x]) ≤ 1/P[X+

t > 1]. Thus,

E[X+
t 1[X+

t
≤x/v]]/(xP[X

+
t > x]) is bounded on (0,∞). So the final term of (3.5)

becomes bounded by a multiple of
∑∞

t=m+1 P[ΘtXt > x].
When α ≥ 1, using Markov inequality on the final term of (3.5), we get a bound

for it as

1

xα+ǫ
E





( ∞
∑

t=m+1

ΘtX
+
t 1[ΘtX

+

t
≤x]

)α+ǫ


 ,

and then using Minkowski’s inequality, this gets further bounded by

{ ∞
∑

t=m+1

(

E

[

1

xα+ǫ

(

ΘtX
+
t

)α+ǫ 1[ΘtX
+

t
≤x]

])
1

α+ǫ

}α+ǫ

=

{ ∞
∑

t=m+1

[
∫ ∞

0

(x/v)−(α+ǫ)E
[

(

X+
t

)α+ǫ 1[X+

t
≤x/v]

]

Gt(dv)

]
1

α+ǫ

}α+ǫ

(3.7)

=











∞
∑

t=m+1





∫ ∞

0

E
[

(

X+
t

)α+ǫ 1[X+
t
≤x/v]

]

(x/v)α+ǫ P[X+
t > x/v]

P[Xt > x/v]Gt(dv)





1
α+ǫ











α+ǫ

.

Then, again using Karamata’s theorem, the first factor of the integrand converges
to α/ǫ and, arguing as in the case α < 1, is bounded. Thus the final term of (3.5)
is bounded by a multiple of [

∑∞
t=m+1(P[ΘtXt > x])1/(α+ǫ)]α+ǫ.

Combining the two cases for α, we get, for some L1 > 0,

P[
∑∞

t=m+1 ΘtX
+
t > x]

P[X1 > x]
≤























L1

∑∞
t=m+1

P[ΘtXt>x]
P[X1>x] , when α < 1,

∑∞
t=m+1

P[ΘtXt>x]
P[X1>x]

+L1

[

∑∞
t=m+1

(

P[ΘtXt>x]
P[X1>x]

)
1

α+ǫ

]α+ǫ

, when α ≥ 1.

To prove (3.4), we shall show

P[ΘtXt > x]

P[X1 > x]
≤ Bt (3.8)
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for all large values of x, where

∞
∑

t=1

Bt < ∞, for α < 1,

∞
∑

t=1

B
1

α+ǫ

t < ∞, for α ≥ 1.

(3.9)

As mentioned in Remark 3.1, for α ≥ 1 and ǫ > 0,
∑∞

t=1 B
1/α+ǫ
t < ∞ will also

imply
∑∞

t=1 Bt < ∞. Thus, for both the cases of α < 1 and α ≥ 1, the sums
involved will be bounded by the tail sum of a convergent series and hence (3.4) will
hold.

First observe that

P[ΘtXt > x]

P[X1 > x]
=

∫ ∞

0

P[X1 > x/v]

P[X1 > x]
Gt(dv). (3.10)

We break the range of integration into three intervals (0, 1], (1, x] and (x,∞), where
we choose a suitably large x greater than 1.

Since F is regularly varying of index −α with α > 0, P[X1 > x/v]/P[X1 > x]
converges uniformly to vα for v ∈ (0, 1) or equivalently 1/v ∈ (1,∞). Hence the
integral in (3.10) over the first interval can be bounded, for all large enough x, as

∫ 1

0

P[X1 > x/v]

P[X1 > x]
Gt(dv) ≤ 2E[Θα

t ]. (3.11)

For the integral in (3.10) over the third interval, we have, for all large enough x,
by (3.1) (for the conditions (DZ2), (DZ3) and (DZ4) only),

∫ ∞

x

P[X1 > x/v]

P[X1 > x]
Gt(dv) ≤

P [Θt > x]

P[X1 > x]

≤























E[Θα

t
]

L(x) ≤ 2D1
E[Θα

t
]

L(1) , by Markov’s inequality, when (DZ1) holds,

Ct, when (DZ2) holds,
P[Θt>x]

c(x)x−α P[U>log x] ≤ 2
cCt, when (DZ3) holds,

Ct, as m(x) → ∞, when (DZ4) holds.

(3.12)

Note that, when the condition (DZ3) holds and L is of type 4, we can ignore the
factor P[V > log x], as it is bounded by 1.

Finally, we consider the integral in (3.10) over the second interval separately for
each of the DZ conditions. We begin with the condition (DZ1). In this case, we
have, for all large enough x,

∫ x

1

P[X1 > x/v]

P[X1 > x]
Gt(dv) ≤

∫ x

1

vα
L(x/v)

L(x)
Gt(dv)

≤ sup
y∈[1,x]

L(y)

L(x)
E [Θα

t ] ≤ 2D1E [Θα
t ] . (3.13)

Next we consider the condition (DZ2). Integrating by parts, we have
∫ x

1

P [X1 > x/v]

P[X1 > x]
Gt(dv) ≤ P[Θt > 1] +

∫ x

1

P[Θt > v]

P[X1 > x]
dv P [X1 > x/v] .
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Using Markov’s inequality and (3.1) respectively in each of the terms, we have
∫ x

1

P [X1 > x/v]

P[X1 > x]
Gt(dv) ≤ E[Θα

t ] + Ct

∫ x

1

P[X1 > v]

P[X1 > x]
dv P [X1 > x/v] .

Substituting u = log v, the second term becomes, for all large x,

Ct

∫ log x

0

P[logX1 > u]

P[logX1 > log x]
du P [logX1 > log x− u]

≤ 2Ct E[exp(α(logX1)
+)] ≤ 2Ct E[X

α
1 ],

where the inequalities follow, since L(ex) ∈ Sd implies (logX1)
+ ∈ S(α), cf.

Klüppelberg (1989). Thus,
∫ x

1

P[X1 > x/v]

P[X1 > x]
Gt(dv) ≤ E[Θα

t ] + 2Ct E[X
α
1 ]. (3.14)

Next we consider the condition (DZ3). In this case, we have
∫ x

1

P[X1 > x/v]

P[X1 > x]
Gt(dv) =

∫ x

1

L(x/v)

L(x)
vαGt(dv)

≤ sup
v∈[1,x]

c(x/v)

c(x)

∫ x

1

P[U > log x− log v]

P[U > log x]
vαGt(dv).

If L is of type 4, the ratio L(x/v)/L(x) has an extra factor P[V > log x]/P[V >
log x− log v], which is bounded by 1. Thus the above estimate works if L is either
of type 3 or of type 4. Since c(x) → c ∈ (0,∞), we have supv∈[N,x) c(x/v)/c(x) :=
L2 < ∞. Integrating by parts, the integral becomes
∫ x

1

P[U > log x− log v]

P[U > log x]
vαGt(dv)

≤ P[Θt > 1] +

∫ x

1

P[U > log x− log v] P[Θt > v]

P[U > log x]
αvα−1dv

+

∫ x

1

P[Θt > v]vα

P[U > log x]
dv P[U > log x− log v].

The first term is bounded by E[Θα
1 ] by Markov’s inequality. By (3.1), the second

term gets bounded by, for all large enough x,

αCt

∫ x

1

P[U > log x− log v] P[U > log v]

P[U > log x]
d(log v) ≤ 2αCt E[U ],

as U belongs to S∗. Again, by (3.1), the third term gets bounded by, for all large
enough x,

Ct

∫ x

1

P[U > log v]dv P[U > log x− log v]

P[U > log x]
≤ 4Ct,

as U belongs to S∗ and hence is subexponential, cf. Klüppelberg (1988). Combining
the bounds for the three terms, we get

∫ x

1

P[X1 > x/v]

P[X1 > x]
Gt(dv) ≤ L2{E[Θα

t ] + 2(αE[U ] + 2)Ct}. (3.15)

Finally we consider the condition (DZ4). In this case, we split the interval (1, x]
into two subintervals (1,

√
x] and (

√
x, x] and bound the integrals on each of the
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subintervals separately. We begin with the integral on the subinterval (1,
√
x].

∫

√
x

1

L(x/v)

L(x)
vαGt(dv) ≤ sup

v∈(1,
√
x]

L(x/v)

L(x)

∫

√
x

1

vαGt(dv) ≤ D2 E[Θ
α
t ].

For the integral over (
√
x, x], we integrate by parts to obtain

∫ x

√
x

L(x/v)

L(x)
vαGt(dv) ≤ P[Θt >

√
x]xα/2L(

√
x)

L(x)
+

∫ x

√
x

P[Θt > v]

L(x)
dv(v

αL(x/v)).

By Markov’s inequality, the first term is bounded by D2 E[Θ
α
t ]. The second term

becomes, using (3.1),
∫ x

√
x

P[Θt > v]

L(x)
xαdv(P[X1 ≤ x/v]) ≤ Ct

∫ x

√
x

P[X1 > v]

L(x)m(v)
xαdv(P[X1 ≤ x/v])

≤ Ct

m(
√
x)

∫ x

√
x

L(v)

L(x)

(x

v

)α

dv(P[X1 ≤ x/v])

≤ D2Ct

m(
√
x)

∫

√
x

1

yαdy(P[X1 ≤ y]) ≤ D2Ct.

Combining the bounds for the integrals over each subinterval, we get
∫ x

1

P[X1 > x/v]

P[X1 > x]
Gt(dv) ≤ D2(2 E[Θ

α
t ] + Ct). (3.16)

Combining all the bounds in (3.11)–(3.16), for some constant B, we can choose
the bound in (3.8) as

Bt =

{

B E[Θα
t ], when the condition (DZ1) holds,

B(E[Θα
t ] + Ct), when the conditions (DZ2), (DZ3) or (DZ4) hold.

Then, for α < 1, the summability condition (3.9) follows from the condition (RW1′)
alone under the condition (DZ1) and from the condition (RW1′) together with (3.2)
under the conditions (DZ2), (DZ3) or (DZ4). For α ≥ 1, under the condition (DZ1),
the summability condition (3.9) follows from the condition (RW2′). Finally, to
check the summability condition (3.9) for α ≥ 1, under the condition (DZ2), (DZ3)
or (DZ4), observe that as α ≥ 1 and ǫ > 0, we have

(E[Θα
t ] + Ct)

1
α+ǫ ≤ (E[Θα

t ])
1

α+ǫ + C
1

α+ǫ

t

and we get the desired condition from the condition (RW2′), together with (3.3). �

4. The tails of the summands from the tail of the sum

In this section, we address the converse problem of studying the tail behavior
of X1 based on the tail behavior of X(∞). For the converse problem, we restrict
ourselves to the setup where the sequence {Xt} is positive and pairwise asymp-
totically independent and the other sequence {Θt} is positive and independent of
the sequence {Xt}, such that X(∞) is finite with probability one and has regularly
varying tail of index −α. Depending on the value of α, we assume the usual RW
moment conditions (RW1) or (RW2) for the sequence {Θt}, instead of the modi-
fied ones. Then, under a further assumption of the non-vanishing Mellin transform
along the vertical line of the complex plane with the real part α, we shall show that
X1 also has regularly varying tail of index −α.
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We use the extension of the notion of product of two independent positive random
variables to the product convolution of two measures on (0,∞), which we allow to
be σ-finite. For two σ-finite measures ν and ρ on (0,∞), we define the product
convolution as

ν ⊛ ρ(B) =

∫ ∞

0

ν(x−1B)ρ(dx),

for any Borel subsetB of (0,∞). We shall need the following result from Jacobsen et al.
(2009).

Theorem 4.1 (Jacobsen et al., 2009, Theorem 2.3). Let a non-zero σ-finite mea-
sure ρ on (0,∞) satisfies, for some α > 0, ǫ ∈ (0, α) and all β ∈ R,

∫ ∞

0

(

yα−ǫ ∨ yα+ǫ
)

ρ(dy) < ∞ (4.1)

and
∫ ∞

0

yα+iβρ(dy) 6= 0. (4.2)

Suppose, for another σ-finite measure ν on (0,∞), the product convolution mea-
sure ν ⊛ ρ has a regularly varying tail of index −α and

lim
b→0

lim sup
x→∞

∫ b

0 ρ(x/y,∞)ν(dy)

(ν ⊛ ρ)(x,∞)
= 0. (4.3)

Then the measure ν has a regularly varying tail of index −α as well and

lim
x→∞

ν ⊛ ρ(x,∞)

ν(x,∞)
=

∫ ∞

0

yαρ(dy).

Conversely, if (4.1) holds but (4.2) fails for the measure ρ, then there exists
a σ-finite measure ν without regularly varying tail, such that ν ⊛ ρ has regularly
varying tail of index −α and (4.3) holds.

Remark 4.1. Jacobsen et al. (2009) gave an explicit construction of the σ-finite
measure ν in Theorem 4.1 above. In fact, if (4.2) fails for β = β0, then, for any real
number a and b satisfying 0 < a2+b2 ≤ 1, we can define g(x) = 1+a cos(β0 log x)+
b sin(β0 log x) and dν = gdνα will qualify for the measure in the converse part, where
να is the σ-finite measure given by να(x,∞) = x−α for any x > 0.

It is easy to check that 0 ≤ g(x) ≤ 2 for all x > 0 and hence

ν(x,∞) ≤ 2x−α. (4.4)

Also, it is known from Theorem 2.1 of Jacobsen et al. (2009) that

ν ⊛ ρ = ‖ρ‖ανα, (4.5)

where ‖ρ‖α =
∫∞
0

yαρ(dy) < ∞, by (4.1).

We are now ready to state the main result of this section.

Theorem 4.2. Let {Xt, t ≥ 1} be a sequence of identically distributed, pairwise
asymptotically independent positive random variables and {Θt, t ≥ 1} be a sequence
of positive random variables independent of {Xt}, such that X(∞) =

∑∞
t=1 ΘtXt is

finite with probability one and has regularly varying tail of index −α, where α > 0.
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Let {Θt, t ≥ 1} satisfy the appropriate RW condition (RW1) or (RW2), depending
on the value of α. If we further have, for all β ∈ R,

∞
∑

t=1

E[Θα+iβ
t ] 6= 0, (4.6)

then X1 has regularly varying tail of index −α and, as x → ∞,

P[X(∞) > x] ∼ P[X1 > x]

∞
∑

t=1

E[Θα
t ] as x → ∞.

We shall prove Theorem 4.2 in several steps. We collect the preliminary steps,
which will also be useful for a converse to Theorem 4.2, into three separate lemmas.
The first lemma controls the tail of the sum X(∞).

Lemma 4.1. Let {Xt} be a sequence of identically distributed positive random
variables and {Θt} be a sequence of positive random variables independent of {Xt}.
Suppose that the tail of X1 is dominated by a bounded regularly varying function R
of index −α, where α > 0, that is, for all x > 0,

P[X1 > x] ≤ R(x). (4.7)

Also assume that {Θt} satisfies the appropriate RW condition depending on the
value of α. Then,

lim
m→∞

lim sup
x→∞

P[
∑∞

t=m+1 ΘtXt > x]

R(x)
= 0

and

lim
m→∞

lim sup
x→∞

∞
∑

t=m+1

P[ΘtXt > x]

R(x)
= 0.

Proof. From (3.5), we have

P

[ ∞
∑

t=m+1

ΘtXt > x

]

≤
∞
∑

t=m+1

P [ΘtXt > x] + P

[ ∞
∑

t=m+1

ΘtXt1[ΘtXt≤x] > x

]

.

(4.8)
Using (4.7), the summands of the first term on the right side of (4.8) can be bounded
as

P[ΘtXt > x] =

∫ ∞

0

P[Xt > x/u]Gt(du) ≤
∫ ∞

0

R(x/u)Gt(du). (4.9)

Before analyzing the second term on the right side of (4.8), observe that, for
γ > α, we have, using Fubini’s theorem, (4.7) and Karamata’s theorem successively

E
[

Xγ
t 1[Xt≤x]

]

≤ γ

∫ x

0

uγ−1P[Xt > u]du ≤ γ

∫ x

0

uγ−1R(u)du ∼ γ

γ − α
xγR(x).

Thus, there exists constant M ≡ M(γ), such that, for all x > 0,

x−γ E
[

Xγ
t 1[Xt≤x]

]

≤ MR(x). (4.10)

We bound the second term on the right side of (4.8), using (4.10), separately for
the cases α < 1 and α ≥ 1. For α < 1, we use (3.6) and (4.10) with γ = 1, to get

P

[ ∞
∑

t=m+1

ΘtXt1[ΘtXt≤x] > x

]

≤ M(1)

∞
∑

t=m+1

∫ ∞

0

R(x/u)Gt(du). (4.11)
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For α ≥ 1, we use (3.7) and (4.10) with γ = α+ ǫ, to get

P

[ ∞
∑

t=m+1

ΘtXt1[ΘtXt≤x] > x

]

≤ M(α+ ǫ)

[ ∞
∑

t=m+1

(
∫ ∞

0

R(x/u)Gt(du)

)
1

α+ǫ

]α+ǫ

.

(4.12)
Combining (4.9), (4.11) and (4.12) with the bound in (4.8), the proof will be

complete if we show

lim
m→∞

lim sup
x→∞

∞
∑

t=m+1

∫ ∞

0

R(x/u)

R(x)
Gt(du) = 0, for α < 1,

and lim
m→∞

lim sup
x→∞

∞
∑

t=m+1

(
∫ ∞

0

R(x/u)

R(x)
Gt(du)

)
1

α+ǫ

= 0, for α ≥ 1.

(4.13)

Note that, for α ≥ 1, as in Remark 1.1, the second limit above gives the first one
as well.

We bound the integrand using a variant of Potter’s bound (see Resnick and Willekens,
1991, Lemma 2.2 ). Let ǫ > 0 be as in the RW conditions. Then there exists a x0

and a constant M > 0 such that, for x > x0, we have

R(x/u)

R(x)
≤
{

Muα−ǫ, if u < 1,

Muα+ǫ, if 1 ≤ u ≤ x/x0.
(4.14)

We split the range of integration in (4.13) into three intervals, namely (0, 1],
(1, x/x0] and (x/x0,∞). For x > x0, we bound the integrand over the first two
integrals using (4.14) and hence the integrals get bounded by a multiple of E[Θα−ǫ

t ]
and E[Θα+ǫ

t ] respectively. As R is bounded, by Markov’s inequality, the third
integral gets bounded by a multiple of xα+ǫ

0 E[Θα+ǫ
t ]/{xα+ǫR(x)}. Putting all the

bounds together, we have
∫ ∞

0

R(x/u)

R(x)
Gt(du) ≤ M

(

E[Θα−ǫ
t ] + E[Θα+ǫ

t ] +
xα+ǫ
0 E[Θα+ǫ

t ]

xα+ǫR(x)

)

.

Then, (4.13) holds for α < 1 using the condition (RW1) and the fact that R is
regularly varying of index −α. For α ≥ 1, we need to further observe that, as
α+ ǫ > 1, we have

(
∫ ∞

0

R(x/u)

R(x)
Gt(du)

)
1

α+ǫ

≤ M
1

α+ǫ

[

(

E[Θα−ǫ
t ] + E[Θα+ǫ

t ]
)

+
xα+ǫ
0 E[Θα+ǫ

t ]

xα+ǫR(x)

]

1
α+ǫ

≤ M
1

α+ǫ

(

E[Θα−ǫ
t ] + E[Θα+ǫ

t ]
)

1
α+ǫ +

x0

(

E[Θα+ǫ
t ]

)
1

α+ǫ

xR(x)
1

α+ǫ

and (4.13) holds using the condition (RW2) and the fact that R is regularly varying
of index −α. �

The next lemma considers the joint distribution of (Θ1X1,Θ2X2) and shows
they are “somewhat” asymptotically independent, if (X1, X2) are asymptotically
independent.

Lemma 4.2. Let (X1, X2) and (Θ1,Θ2) be two independent random vectors, such
that each coordinate of either vector is positive. We assume that X1 and X2 have
same distribution with their common tail dominated by a regularly varying function
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R of index −α with α > 0, as in (4.7). We also assume that R stays bounded away
from 0 on any bounded interval. We further assume that both Θ1 and Θ2 have
(α+ ǫ)-th moments finite. Then

lim
x→∞

P[Θ1X1 > x,Θ2X2 > x]

R(x)
= 0.

Proof. By asymptotic independence and (4.7), we have

P[X1 > x,X2 > x] = o(R(x)). (4.15)

Further, since R is bounded away from 0 on any bounded interval, P[X1 > x,X2 >
x] is bounded by a multiple of R(x). Then,

P[Θ1X1 > x,Θ2X2 > x]

R(x)
=

∞
∫

0

∞
∫

0

P[X1 > x/u,X2 > x/v]

R(x)
G(du, dv)

=

∫∫

u>v

+

∫∫

u≤v

P[X1 > x/u,X2 > x/v]

R(x)
G(du, dv)

≤
∫ ∞

0

P[X1 > x/u,X2 > x/u]

R(x)
(G1 +G2)(du)

=

∫ ∞

0

P[X1 > x/u,X2 > x/u]

R(x)
1[0,x/x0](u)(G1 +G2)(du)

+
xα+ǫ
0

(

E[Θα+ǫ
1 ] + E[Θα+ǫ

1 ]
)

xα+ǫR(x)
,

for any x0 > 0. The integrand in the first term goes to 0, using (4.15) and the
regular variation of R. Further choose x0 as in Potter’s bound (4.14). Then, the
integrand of the first term is bounded by a multiple of 1+uα+ǫ, which is integrable
with respect to G1 +G2. So, by Dominated Convergence Theorem, the first term
goes to 0. For this choice of x0, the second term also goes to 0, as R is regularly
varying of index −α. �

The next lemma compares
∑m

t=1 P[ΘtXt > x] and P [
∑m

t=1 ΘtXt > x].

Lemma 4.3. Let {Xt} and {Θt} be two sequences of positive random variables.
Then, we have, for any 1

2 < δ < 1 and m ≥ 2,

P

[

m
∑

t=1

ΘtXt > x

]

≥
m
∑

t=1

P[ΘtXt > x]−
∑∑

1≤s6=t≤m

P[ΘsXs > x,ΘtXt > x] (4.16)

and

P

[

m
∑

t=1

ΘtXt > x

]

≤
m
∑

t=1

P[ΘtXt > x]

+
∑∑

1≤s6=t≤m

P

[

ΘsXs >
1− δ

m− 1
x,ΘtXt >

1− δ

m− 1
x

]

. (4.17)

Proof. The first inequality (4.16) follows from the fact that
[

m
∑

t=1

ΘtXt > x

]

⊆
m
⋃

t=1

[ΘtXt > x]
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and Bonferroni’s inequality.
For the second inequality (4.17), observe that

P

[

m
∑

t=1

ΘtXt > x

]

≤
m
∑

t=1

P[ΘtXt > δx] + P

[

k
∑

t=1

ΘtXt > x,

m
∨

t=1

ΘtXt ≤ δx

]

.

Next we estimate the second term as

P

[

m
∑

t=1

ΘtXt > x,
m
∨

t=1

ΘtXt ≤ δx

]

=P

[

m
∑

t=1

ΘtXt > x,

m
∨

t=1

ΘtXt ≤ δx,

m
∨

t=1

ΘtXt >
x

m

]

≤
m
∑

s=1

P

[

m
∑

t=1

ΘtXt > x,

m
∨

t=1

ΘtXt ≤ δx,ΘsXs >
x

m

]

≤
m
∑

s=1

P

[

m
∑

t=1

ΘtXt > x,ΘsXs ≤ δx,ΘsXs >
x

m

]

≤
m
∑

s=1

P







k
∑

t=1
t6=s

ΘtXt > (1 − δ)x,ΘsXs >
x

m







≤
∑∑

1≤s6=t≤m

P

[

ΘtXt >
1− δ

m− 1
x,ΘsXs >

x

m

]

≤
∑∑

1≤s6=t≤m

P

[

ΘtXt >
1− δ

m− 1
x,ΘsXs >

1− δ

m− 1
x

]

,

since δ > 1/2 and m ≥ 2 imply (1− δ)/(m− 1) < 1/m. �

With the above three lemmas, we are now ready to show the tail equivalence of
the distribution of X(∞) and

∑∞
t=1 P[ΘtXt ∈ ·].

Proposition 4.1. Let {Xt, t ≥ 1} be a sequence of identically distributed, pairwise
asymptotically independent positive random variables and {Θt, t ≥ 1} be a sequence
of positive random variables independent of {Xt}, such that X(∞) =

∑∞
t=1 ΘtXt is

finite with probability one and has regularly varying tail of index −α, where α > 0.
Let {Θt, t ≥ 1} satisfy the appropriate RW condition (RW1) or (RW2), depending
on the value of α. Then, as x → ∞,

∞
∑

t=1

P[ΘtXt > x] ∼ P[X(∞) > x].

Proof. We first show that the tail of X1 can be dominated by a multiple of the tail
of X(∞), so that Lemmas 4.1 and 4.2 apply. Note that the tail of X(∞) is bounded
and stays bounded away from 0 on any bounded interval. As Θ1 is a positive
random variable, choose η > 0 such that P[Θ1 > η] > 0. Then, for all x > 0,

P[X(∞) > ηx] ≥ P[Θ1X1 > ηx,Θ1 > η] ≥ P[X1 > x] P[Θ1 > η].
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Further, using the regular variation of the tail of X(∞), X1 satisfies (4.7) with R as
a multiple of P[X(∞) > ·]. Thus, from Lemmas 4.1 and 4.2, we have,

lim
m→∞

lim sup
x→∞

P[
∑∞

t=m+1 ΘtXt > x]

P[X(∞) > x]
= 0, (4.18)

lim
m→∞

lim sup
x→∞

∞
∑

t=m+1

P[ΘtXt > x]

P[X(∞) > x]
= 0, (4.19)

and, for any s 6= t,

lim
x→∞

P[ΘsXs > x,ΘtXt > x]

P[X(∞) > x]
= 0. (4.20)

Choose any δ > 0. Then

P
[

X(∞) > (1 + δ)x
]

≤ P

[

m
∑

t=1

ΘtXt > x

]

+ P

[ ∞
∑

t=m+1

ΘtXt > δx

]

,

and from (4.18) and the regular variation of the tail of X(∞), we have

lim
m→∞

lim inf
x→∞

P[
∑m

t=1 ΘtXt > x]

P[X(∞) > x]
≥ 1.

Further, using the trivial bound P[
∑m

t=1 ΘtXt > x] ≤ P[X(∞) > x], we have

1 ≤ lim
m→∞

lim inf
x→∞

P[
∑m

t=1 ΘtXt > x]

P[X(∞) > x]
≤ lim

m→∞
lim sup
x→∞

P[
∑m

t=1 ΘtXt > x]

P[X(∞) > x]
≤ 1.

(4.21)
We next replace P[

∑m
t=1 ΘtXt > x] in the numerator by

∑m
t=1 P[ΘtXt > x]. We

obtain the upper bound first. From (4.16), (4.20) and (4.21), we get

lim sup
x→∞

∑m
t=1 P[ΘtXt > x]

P[X(∞) > x]
≤ 1

and letting m → ∞, we get the upper bound. The lower bound follows using
exactly similar lines, but using (4.17) and the regular variation of the tail of X(∞)

instead of (4.16). Putting together, we get

1 ≤ lim
m→∞

lim inf
x→∞

∑m
t=1 P[ΘtXt > x]

P[X(∞) > x]
≤ lim

m→∞
lim sup
x→∞

∑m
t=1 P[ΘtXt > x]

P[X(∞) > x]
≤ 1.

(4.22)
Then the result follows combining (4.19) and (4.22). �

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let ν be the law of X1 and define the measure ρ(·) =
∑∞

t=1 P[Θt ∈ ·]. As observed in Remark 1.1, under the RW conditions, for all

values of α, we have
∑∞

t=1 E[Θ
α+ǫ
t ] < ∞. Thus, ρ is a σ-finite measure. Also,

by Proposition 4.1, we have ν ⊛ ρ(x,∞) =
∑∞

t=1 P[ΘtXt > x] ∼ P[X(∞) > x].
Hence ν ⊛ ρ has regularly varying tail of index −α. As ν is a probability mea-
sure, by Remark 2.4 of Jacobsen et al. (2009), (4.3) holds. The RW condition
implies (4.1). Finally, (4.2) holds, since, for all β ∈ R, we have, from (4.6),
∫∞
0 yα+iβρ(dy) =

∑∞
t=1 E[Θ

α+iβ
t ] 6= 0. Hence, by Theorem 4.1, X1 has regularly

varying tail of index −α. �
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As in Theorem 4.1, (4.6) is necessary for Theorem 4.2 and we give its converse
below.

Theorem 4.3. Let {Θt, t ≥ 1} be a sequence of positive random variables satisfying

the condition (RW1) or (RW2), for some α > 0, but
∑∞

t=1 E[Θ
α+iβ0

t ] = 0 for some
β0 ∈ R. Then there exists a sequence of i.i.d. positive random variables {Xt}, such
that X1 does not have a regularly varying tail, but X(∞) is finite almost surely and
has regularly varying tail of index −α.

The proof depends on an analogue of Proposition 4.1.

Proposition 4.2. Let {Xt, t ≥ 1} be a sequence of identically distributed, pairwise
asymptotically independent positive random variables and {Θt, t ≥ 1} be a sequence
of positive random variables satisfying the condition (RW1) or (RW2) for some
α > 0 and independent of {Xt}. If

∑∞
t=1 P[ΘtXt > x] is regularly varying of index

−α, then, as x → ∞,

∞
∑

t=1

P[ΘtXt > x] ∼ P[X(∞) > x]

and X(∞) is finite with probability one.

Proof. We shall denote R(x) =
∑∞

t=1 P[ΘtXt > x]. As Θ1 is a positive random
variable, choose η > 0 such that P[Θ1 > η] > 0. Then, for all x > 0, we have
R(x) ≥ P[Θ1X1 > ηx,Θ1 > η] ≥ P[X1 > x] P[Θ1 > η] and using the regular
variation of R, the tail of X1 is dominated by a constant multiple of R. Also, note
that, R is bounded and stays bounded away from 0 on any bounded interval. Then,
from Lemmas 4.1 and 4.2, we have

lim
m→∞

lim sup
x→∞

P[
∑∞

t=m+1 ΘtXt > x]

R(x)
= 0, (4.23)

lim
m→∞

lim sup
x→∞

∞
∑

t=m+1

P[ΘtXt > x]

R(x)
= 0, (4.24)

and, for any s 6= t,

lim
x→∞

P[ΘsXs > x,ΘtXt > x]

R(x)
= 0. (4.25)

Using (4.24), we have

1 ≤ lim
m→∞

lim inf
x→∞

∑m
t=1 P[ΘtXt > x]

R(x)
≤ lim

m→∞
lim sup
x→∞

∑m
t=1 P[ΘtXt > x]

R(x)
≤ 1.

As in the proof of Proposition 4.1, using (4.16), (4.17) and (4.25), the above in-
equalities reduce to

1 ≤ lim
m→∞

lim inf
x→∞

P[
∑m

t=1 ΘtXt > x]

R(x)
≤ lim

m→∞
lim sup
x→∞

P[
∑m

t=1 ΘtXt > x]

R(x)
≤ 1

and the tail equivalence follows using (4.23) and the regular variation of R. Since
R(x) → 0, the tail equivalence also shows the almost sure finiteness of X(∞). �

Next, we prove Theorem 4.3 using the converse part of Theorem 4.1.
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Proof of Theorem 4.3. Define the measure ρ(·) =
∑∞

t=1 P[Θt ∈ ·]. By the RW

moment condition, the measure ρ is σ-finite. Further, we have,
∫∞
0 yα+iβ0ρ(dy) = 0.

Now by converse part of Theorem 4.1, there exists a σ-finite measure ν, whose tail is
not regularly varying, but ν⊛ρ has regularly varying tail. Next, define a probability
measure µ using the σ-finite measure ν as in Theorem 3.1 of Jacobsen et al. (2009).
Choose b > 1, such that ν(b,∞) ≤ 1 and define a probability measure on (0,∞) by

µ(B) = ν(B ∩ (b,∞)) + (1− ν(b,∞))1B(1), where B is Borel subset of (0,∞).

First observe that

µ(y,∞) =











ν(y,∞), for y > b,

ν(b,∞), for 1 < y ≤ b,

1, for y ≤ 1.

Thus, µ does not have a regularly varying tail and

µ⊛ ρ(x,∞) =

∫ ∞

0

µ(x/u,∞)ρ(du)

=

∫ x/b

0

ν(x/u,∞)ρ(du) + ν(b,∞)ρ[x/b, x) + ρ[x,∞)

=ν ⊛ ρ(x,∞)− 2x−α

∫ ∞

x/b

uαρ(du)

+ ν(b,∞)ρ[x/b, x) + ρ[x,∞).

Now, using the bound from (4.4) and (4.5), the second term is bounded by, for
x > b,

2
ν ⊛ ρ(x,∞)

‖ρ‖α

∫ ∞

x/b

uα+ǫρ(du) = o(ν ⊛ ρ(x,∞))

as x → ∞, since
∫∞
0 uα+ǫρ(du) < ∞ by the RW conditions. The sum of the last

two terms can be bounded by

1 + ν(b,∞)bα+ǫ

xα+ǫ

∫ ∞

0

uα+ǫρ(du) = o(ν ⊛ ρ(x,∞)),

as x → ∞, since ν⊛ ρ(x,∞) is regularly varying of index −α. Thus, µ⊛ ρ(x,∞) ∼
ν ⊛ ρ(x,∞) as x → ∞ and hence is regularly varying of index −α.

Let Xt be an i.i.d. sequence with common law µ. Then, X1 does not have
regularly varying tail. Further, by Proposition 4.2, X(∞) is finite with probability
one and P[X(∞) > x] ∼ µ⊛ ρ(x,∞) is regularly varying of index −α. �
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