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A group has a planar Cayley complex if and only

if it has a VAP-free Cayley graph
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Abstract

We prove that a group has a planar Cayley complex if and only if it

has a Cayley graph that can be embedded in the euclidean plane without

accumulation points of vertices.

1 Introduction

The study of groups that have Cayley graphs embeddable in the euclidean planeR2, called planar groups , has a tradition starting in 1896 with Maschke’s charac-
terization of the finite ones. Among the infinite planar groups, those that admit
a planar Cayley complex , i.e. a Cayley complex embeddable in R2, have received
a lot of attention. They are important in complex analysis as they include the
discontinuous groups of motions of the euclidean and hyperbolic plane. More-
over, they are closely related to the surface groups [17, Section 4.10]. These
groups are now well understood due to the work of Macbeath [13], Wilkie [16],
and others; see [17] for a survey. Planar groups that have no planar Cayley
complex are harder to analyse, and they are the subject of on-going research
[4, 5, 6, 7, 8].

The aim of this paper is to show the equivalence of the property of possessing
a planar Cayley complex with a well-known graph-theoretical property:

Theorem 1.1. A planar Cayley graph of a group Γ is VAP-free if and only if
it is the 1-skeleton of a planar Cayley complex of Γ.

A planar graph is said to be Vertex-Accumulation-Point-free, or VAP-free
for short, if it has an embedding in R2 such that the images of its vertices have
no accumulation point. The study of a planar graph is often simplified if one
knows that the graph is VAP-free; examples range from structural graph-theory
[2] to percolation theory [12] and the study of spectral properties [11]. A further
example is Thomassen’s Theorem 2.3 below, which becomes false in the non-
VAP-free case. VAP-free graphs can be characterized by a condition similar
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to that of Kuratowski’s; see [9]. VAP-free embeddings also appear with other
names in the literature, most notably “locally finite”.

We will follow the terminology of [3] for graph-theoretical terms and that of
[1] for group-theoretical ones.

2 Proof of main result

One of our main tools will be the (finitary) cycle space Cf(G) of a graph G =
(V,E), which is defined as the vector space over Z2 consisting of those subsets
of E such that can be written as a sum (modulo 2) of a finite set of circuits,
where a set of edges D ⊆ E is called a circuit if it is the edge set of a cycle of
G. Thus Cf (G) is isomorphic to the first simplicial homology group of G overZ2. The circuit of a closed walk W is the set of edges traversed by W an even
number of times. Note that the direction of the edges is ignored when defining
circuits and Cf(G).

In this section we will be assuming that our graphs have no parallel edges.
In a Cayley graph this can be achieved by drawing, for every involution in the
generating set, a single undirected edge rather than a pair of parallel edges with
opposite directions. This convention does not affect the properties involved in
Theorem 1.1, which means that our assumption comes without loss of generality
for the proof of that theorem.

Our first lemma, a well-known fact which is easy to prove, relates Cf(G) to
group presentations.

We will say that a closed walk W in G is induced by a relator R, if W can
be obtained by starting at some vertex g and following the edges corresponding
to the letters in R in order; note that for a given R there are several walks in
G induced by R, one for each starting vertex g ∈ V (G).

Lemma 2.1. Let G = Cay 〈S | R〉 be a Cayley graph of the group Γ. Then the
set of edge-sets of walks in G induced by relators in R generates Cf(G).

Conversely, if R′ is a set of relations of Γ with letters in a generating set
S such that the set of cycles of Cay(Γ, S) induced by R′ generates Cf(G), then
〈S | R′〉 is a presentation of Γ.

Combined with the next easy fact, this allows one to deduce group presen-
tations from VAP-free embeddings of a Cayley graph.

Lemma 2.2. Let G be a VAP-free plane graph. Then the set of finite face
boundaries of G generates Cf (G).

Proof. It suffices to show that the edge-set of every cycle C of G is a sum of
edge-sets of finite face boundaries. This is indeed the case, for as G is VAP-free
there must be a side A of C containing only finitely many vertices, and so E(C)
is the sum of the edge-sets of the face boundaries lying in A.

The following theorem of Thomassen generalises MacLane’s classical pla-
narity criterion to infinite VAP-free planar graphs. It will easily imply the
backward implication of Theorem 1.1. A 2-basis of G is a generating set B of
Cf (G) such that no edge of G appears in more than two elements of B.

Theorem 2.3 ([14, Section 7]). A connected graph G has a 2-basis if and only
if it is planar and has a VAP-free embedding.
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The following fact is probably well-known to experts in the study of infinite
vertex transitive graphs. We include a proof sketch for the convenience of the
non-expert. A double-ray is a 2-way infinite path (with no repetition of vertices).

Lemma 2.4. Let G be an infinite, connected, vertex transitive graph which is
not a double-ray. Then for every pair of vertices x, y of G, no component of
G− {x, y} is finite.

Proof. To begin with, it is easy to prove that

for every x ∈ V (G), no component of G− {x} is finite, (1)

by considering a minimal such component C and mapping x to some vertex of
C.

Suppose that some component C of G − {x, y} is finite, and choose x, y so
as to minimise |V (C)|. We claim that the graph C has no cut-vertex. Indeed, if
z ∈ V (C) separates C, then G−{x, z} contains a component properly contained
in C, contradicting the minimality of the latter. Moreover, each of x, y has at
least two neighbours in C; for if y has a single neighbour y′ in C, then we
could have replaced y by y′ to obtain a separator {x, y′} cutting off a smaller
component, and if y has no neighbour in C then (1) is contradicted. These two
observations, combined with Menger’s theorem [3, Theorem 3.3.1], imply that
there are two independent x–y paths P,Q through C. Moreover, (at least) one
of x, y, say x, is contained in an infinite subgraph X that does not meet P,Q
except at x.

Let z ∈ V (C), and consider an automorphism g mapping x to z. Then,
there is a vertex w = gy such that {z, w} separates G. We consider three cases.

If w lies in a component C′ 6= C of G−{x, y}, then each of gP, gQ, gX meets
both C′ and C. But this is impossible since C is separated from C′ by x, y and
the only vertices meeting more than one of gP, gQ, gX are z and w.

If w lies in C, then some component of G − {z, w} is properly contained in
C contradicting its minimality.

Finally, if w = y, then as the component gC of G−{z, w} cannot be smaller
than C, it must contain the vertex x. Note that x is incident with an infinite
component C′ of G − {x, y} because otherwise y contradicts (1). But then gC
contains C′, contradicting the fact that its translate C is finite.

Thus, in all three cases we obtained a contradiction. This proves Lemma 2.4.

We can now prove our main result.

Proof of Theorem 1.1. For the forward implication, let G = Cay 〈S | R〉 be
a planar Cayley graph of the group Γ with a VAP-free embedding σ. By
Lemma 2.5 below, if F is a finite face boundary in σ, then every translate
of F is a face boundary. This means that if we let R′ be the set of relations
corresponding to the finite face boundaries of σ incident with the group identity
e, then every finite face boundary of σ is induced by some element of R′, and
conversely any cycle induced by some element of R′ bounds a face in σ. By
Lemmas 2.1 and 2.2, 〈S | R′〉 is a presentation of Γ. The corresponding Cay-
ley complex is planar and VAP-free since we can embed its 1-skeleton G by σ
and then every 2-complex can be embedded into the face of σ bounded by the
corresponding cycle.
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The backward implication follows easily from Theorem 2.3: let X be a planar
Cayley complex and let G be its 1-skeleton. Let B′ be the set of closed walks
in G bounding a 2-simplex of X —in fact, these closed walks are cycles since
X is planar— and let B := {E(C) | C ∈ B′} be the set of the corresponding
edge-sets. Note that B generates Cf (G) by Lemma 2.1. Moreover, since X is
planar, no edge of X lies in the boundary of more than two 2-simplices. Thus
B is a 2-basis of G, and so Theorem 2.3 implies that G is VAP-free.

Lemma 2.5. Let G be an infinite vertex transitive graph with a VAP-free em-
bedding σ. If F is a finite face boundary in σ then every image of F under any
automorphism of G is a face boundary in σ.

Proof. Suppose to the contrary that some image F ′ = gF of F under an auto-
morphism g is not a face boundary. Then, as σ is VAP-free, one of the sides of
F ′ contains at least one finite component C. Let N(C) be the set of vertices of
F ′ sending an edge to C. Then F ′ − N(C) consists of a set of disjoint paths,
which we call the intervals . Note that there are at least three intervals, for if
|N(C)| ≤ 2 then Lemma 2.4 is contradicted.

We claim that

no component of G− F ′ sends edges to more than one interval. (2)

Indeed, if such a component C′ existed, then, by a topological argument, it
would be impossible to embed G is such a way that both C and C′ lie in the
same side of F ′ (Figure 1), but such an embedding must be possible since F is
a face boundary.

Next, we claim that at most one of the intervals sends an edge to an infinite
component of G − F ′. For if there are intervals I 6= J adjacent with infinite
components CI , CJ of G− F ′, then replacing I in F ′ by a path through C we
would obtain a cycle D that separates CI from CJ by (2) (Figure 1). But then
g−1I, g−1J must lie in distinct sides of g−1D since F = g−1F ′ and F is a face
boundary, contradicting the fact that σ is VAP-free.

g
1

g
1

Figure 1: A contradictory situation in the proof of Lemma 2.5.

Thus our claim is proved, implying that there is a unique interval I adjacent
with the infinite component of G−F ′. This fact, combined with (2), implies that
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deleting the vertices x, y ∈ N(C) bounding I leaves a finite component, namely
the component of G−{x, y} containing C. But this contradicts Lemma 2.4.

3 VAP-freeness as a group-theoretical invariant

A planar group can admit both VAP-free and non-VAP-free Cayley graphs. For
example, the Cayley graph corresponding to the presentation

〈

a, b | b2, abab
〉

,
of the infinite dihedral group, is VAP-free planar, but adding the redundant
generator c = ab keeps the Cayley graph planar and makes it non-VAP-free
as the reader can check. Thus VAP-freeness is not group-theoretical invariant
in general. However, it becomes an invariant if one only considers 3-connected
Cayley graphs:

Theorem 3.1. If a group Γ has a 3-connected VAP-free planar Cayley graph
and a group ∆ has a 3-connected non-VAP-free planar Cayley graph, then Γ is
not isomorphic to ∆.

Before proving this let us see a further example showing that it is necessary
that both graphs in the assertion be 3-connected. Consider the Cayley graph
corresponding to the presentation

〈

a, b | a4, b4
〉

. This is a free product of 4-
cycles, and it is easy to see that it has a VAP-free embedding and that its
connectivity is 1. Now add the redundant generators c = ab and d = a2b2a2.
Note that d2 = 1. Figure 2 shows that the corresponding Cayley graph is still
planar, and it is easy to check that it is 3-connected. The given embedding is
not VAP-free. It now follows easily from the following classical result, proved
by Whitney [15, Theorem 11] for finite graphs and by Imrich [10] for infinite
ones, that no embedding of this graph is VAP-free.

Figure 2: An embedding of the Cayley graph of
〈

a, b, c, d | a4, b4, c = ab, d = a2b2a2
〉

.

Theorem 3.2. Let G be a 3-connected graph embedded in the plane. Then every
automorphism of G maps each facial path to a facial path.

We will need a few lemmas for the proof of Theorem 3.1.

Lemma 3.3. Let G be a 2-connected planar graph and let ω, ψ be distinct ends
of G. Then there is a cycle C in G that separates ω from ψ, i.e. every double-ray
with a tail in ω and a tail ψ has a vertex in C.

5



Proof. Fix an embedding σ ofG. Consider a finite set of vertices S = {s1, s2, . . . , sk}
separating ω from ψ, and let C1 be a cycle containing s1, s2; such a cycle exists
since G is 2-connected. If C1 does not separate ω from ψ then both ends lie
in one of the sides of C1, the outside say. Note that some vertex of S must
also lie outside C1, for otherwise every double-ray with a tail in ω and a tail ψ
would have to go through C1 to meet S, contradicting the fact that C1 does not
separate ω from ψ. So pick the least index j such that sj lies outside C1. Now
consider two independent paths P1, P2 from sj to C1, and let A be the region
of R2\{C1 ∪ P1 ∪ P2} containing rays in ω. The boundary of A is a cycle C2

containing P1∪P2 and a subpath of C1. Note that no element of {s1, s2, . . . , sj}
lies in A because those points do not lie outside C1. Repeating this argument we
construct the sequence of cycles C1, C2, . . . , Cm, terminating with a cycle Cm
such that the outside of Cm contains ω but none of the si. This cycle separates
ω from ψ because every double-ray with a tail in ω and a tail ψ has to cross it
to meet S.

Using this we can prove:

Lemma 3.4. Let G be a 2-connected graph with a VAP-free embedding σ and
more than 1 end. Then at least one of the faces of σ has infinite boundary.

Proof. By Lemma 3.3 there is a cycle C separating two ends ω, ψ of G. Since σ
is VAP-free, both these ends lie in the same side of C, the outside say. Let Kω

(respectively Kψ) be the component of G − C containing rays in ω (resp. ψ).
Easily, it is possible to find independent subpaths Pω, Pψ of C such that every
vertex of C adjacent with Kω lies in Pω, and similarly for Kψ and Pψ. Let x
be an endvertex of Pω; without loss of generality, x is adjacent with Kω.

By the choice of x we can choose an edge e = xy with y ∈ V (Kω) and a
further edge f = xz incident with x with z not in Kω and f not in Pω , so that
e, f lie on a common face boundary F . Now if F is infinite we are done, so
suppose it is finite. Consider the path F ′ := F − C. One of the endvertices of
F ′ is x by construction, and the other endvertex x′ must also lie on Pω since F ′

must be contained inKω∪C. Now consider the cycle D contained in F ′∪Pω . By
construction, Kω,Kψ lie in distinct sides of D. This contradicts our assumption
that σ is VAP-free.

Our last lemma is

Lemma 3.5. There is no 3-connected vertex-transitive VAP-free planar graph
with more than 1 end.

Proof. If such a graph G exists, then by Lemma 3.4 it has an infinite face-
boundary. By Theorem 3.2 this implies that every vertex of G is incident with
an infinite face-boundary.

Thus we can pick two vertices x, y that lie in a common double ray R of G
contained in a face-boundary. As G is 3-connected, there are three independent
x–y paths P1, P2, P3 by Menger’s theorem [3, Theorem 3.3.1]. By an easy topo-
logical argument, there must be a pair of those paths, say P1, P2, whose union
is a cycle C such that some side of C contains a tail of R and the other side
of C contains P3. We may assume without loss of generality that P3 is not a
single edge, for we are allowed to choose x and y far apart. Thus the side of
C containing P3 contains at least one vertex z. By our previous remarks, z is
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incident with an infinite face-boundary. This means that both sides of C contain
infinitely many vertices, contradicting our assumption that G is VAP-free.

We can now prove the main result of this section.

Proof of Theorem 3.1. If any of Γ,∆ is 1-ended then we are done since it is well-
known, and not hard to prove, that all its planar Cayley graphs are VAP-free
in this case. The result now follows immediately from Lemma 3.5.

4 VAP-free presentations via MacLane’s planarity

criterion

In this section we derive a further characterisation of the groups that admit a
planar Cayley complex by means of group presentations. We achieve this using
Thomassen’s Theorem 2.3.

Define a VAP-free presentation to be a group presentation 〈S | R〉 with the
following two properties. First, every closed walk induced by a relator R ∈ R is
a cycle; in other words, no proper subword of R is a relation. Second, for every
edge e in the corresponding Cayley graph G, at most two cycles of G induced
by the relators in R contain e. Note that the latter property can be checked by
an easy algorithm once the former is guaranteed.

By Lemma 2.1 the cycles induced by the relators of a VAP-free presentation
form a 2-basis. Combined with Theorem 2.3 this yields the following valuable
tool, which in many cases [8, 7] allows one to deduce that certain Cayley graphs
are planar by looking only at the corresponding presentations.

Corollary 4.1. A group admits a planar Cayley complex, and a VAP-free Cay-
ley graph, if and only if it admits a VAP-free presentation.

Proof. Given a planar Cayley complex of the group Γ it is straightforward to
derive a VAP-free presentation of Γ. By the above discussion, such a presenta-
tion yields a VAP-free Cayley graph of Γ. This in turn implies that Γ admits a
planar Cayley complex by Theorem 1.1.

The fact that a group with a planar Cayley complex admits a VAP-free
presentation is implicit in [17, Theorem 4.5.6].

In fact, we can say a bit more. Thomassen [14, Theorem 7.4.] also proved
that if G is 2-connected, then Theorem 2.3 can be strengthened to yield that
given any 2-basis B of G, there is a VAP-free embedding σ of G such that
B is the set of finite face-boundaries of σ. If G is a Cayley graph then the
requirement of being 2-connected can be dropped by applying the result to the
maximal 2-connected subgraphs of G, which must be either Cayley graphs too
or single edges corresponding to free generators. Thus we have

Corollary 4.2. Given a VAP-free presentation, the corresponding Cayley graph
has a VAP-free embedding the finite face-boundaries of which are precisely the
cycles of G induced by the relators.
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