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AN EXPLICIT EXAMPLE OF FROBENIUS PERIODICITY

HOLGER BRENNER AND ALMAR KAID

Abstract. In this note we show that the restriction of the cotangent
bundle Ω

P2
of the projective plane to a Fermat curve C of degree d in

characteristic p ≡ −1 mod 2d is, up to tensoration with a certain line
bundle, isomorphic to its Frobenius pull-back. This leads to a Frobenius
periodicity F ∗(E) ∼= E on the Fermat curve of degree 2d, where E =
Syz(U2, V 2,W 2)(3).
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1. Introduction

Let C be a smooth projective curve defined over a field K of characteristic
p > 0. If F denotes the absolute Frobenius morphism F : C → C, then we
say that a vector bundle E on C admits an (s, t)-Frobenius periodicity if there
are natural numbers s and t, t > s, such that F t∗(E) ∼= F s∗(E). Of particular
interest are vector bundles which admit a (0, t)-Frobenius periodicity, i.e.,
F t∗(E) ∼= E . By the classical theorem of H. Lange and U. Stuhler [19, Satz
1.4] such a bundle is étale trivializable, i.e., there exists an étale covering
f : D → C such that f∗(E) ∼= Or

D where r = rk(E). Hence a vector bundle E
with a (0, t)-Frobenius periodicity comes from a (continuous) representation
ρ : π1(C) → GLr(K) of the étale fundamental group π1(C) of the curve
(see [ibid., Proposition 1.2]). We recall that a vector bundle which can be
trivialized under an étale covering does not necessarily admit a Frobenius
periodicity (see [9, Example 2.10] or [2, Example below Theorem 1.1]).

Quasicoherent modules over a scheme of positive characteristic allowing
a Frobenius periodicity appear under several names (F -finite modules, unit
OX [F ]-modules) and from several perspectives (D-modules, local cohomol-
ogy, Cartier modules, constructible sheaves on the étale site, Riemann-Hilbert
correspondence) in the literature. Beside [19] we mention work of Katz [17,
Proposition 4.1.1], Lyubeznik [21], Emerton and Kisin [11], Blickle [3] and
Blickle and Böckle [4].

Despite the importance of vector bundles having a Frobenius periodicity,
it is not easy to write down non-trivial explicit examples. For a line bundle
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the condition becomes F t∗L = Lq = L (with q = pt), so L must be a torsion
element in Pic C of order q−1. For higher rank, a necessary condition is that
the bundle S has degree 0 and is semistable. By the periodicity it follows that
the bundle is in fact strongly semistable, meaning that F t∗(E) is semistable for
all t ≥ 0. On the other hand, if the curve C and the bundle E are defined over
a finite field and E is strongly semistable of degree 0, then there is necessarily
a (s, t)-Frobenius periodicity due to the fact that the number of isomorphism
classes of semistable vector bundles of fixed rank and degree is finite ([19,
Satz 1.9]). Nevertheless, it is still hard to detect the periodicity s and t. If we
have an extension 0 → OC → S → O → 0 given by c ∈ H1(C,OC), then its
Frobenius pull-back is given by the class F ∗(c), and one can get (semistable,
but not stable) examples by looking at the Frobenius action on H1(C,OC).

In this note we provide a down to earth example of a stable rank-2 vector
bundle E on a suitable Fermat curve admitting a (0, 1)-Frobenius periodic-
ity. Moreover, this periodicity only depends on a congruence condition of the
characteristic of the base field, not on its algebraic structure. Our main tools
will be results of P. Monsky on the Hilbert-Kunz multiplicity of Fermat hyper-
surface rings and the geometric approach to Hilbert-Kunz theory developed
independently by the first author in [7] and V. Trivedi in [26].

The results of this article are contained in Chapter 4 of the PhD-thesis
[14] of the second author. Related results on the free resolution of Frobenius
powers on a Fermat ring can be found in the preprint [18]. We thank Manuel
Blickle, Aldo Conca, Neil Epstein and Andrew Kustin for useful discussions.

2. A lemma on global sections

To begin with we recall the notions of a syzygy bundle. Let K be a field
and let R be a normal standard-graded K-domain of dimension d ≥ 2. Then
homogeneous R+-primary elements f1, . . . , fn (i.e.,

√
(f1, . . . , fn) = R+) of

degrees d1, . . . , dn define a short exact (presenting) sequence

0 −→ Syz(f1, . . . , fn) −→

n⊕

i=1

OX(−di)
f1,...,fn
−→ OX −→ 0

on the projective scheme X = ProjR. The kernel Syz(f1, . . . , fn) is locally
free and is called the syzygy bundle for the elements f1, . . . , fn.

In this article we only deal with restrictions of syzygy bundles of the form
Syz(Xa, Y a, Za), a ∈ N \ {0}, on P2 = ProjK[X,Y, Z] to a plane curve C.
Our main interest will be the case a = 1 which corresponds via the Euler
sequence to the cotangent bundle ΩP2 |C on the projective plane. Since there
will be no confusion in the sequel we also denote the restricted bundle on the
curve by Syz(Xa, Y a, Za).

Let K be a field and consider a smooth plane curve of the form

V+(Z
d − P (X,Y )) ⊂ P2 = ProjK[X,Y, Z],
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where P (X,Y ) ∈ K[X,Y ] denotes a homogeneous polynomial of degree d.
In this situation we can compute global sections of a rank-2 syzygy bundle
of the form Syz(Xa1 , Y a2 , Za3) by the following lemma which is a slight im-
provement over [6, Lemma 1]. It relates the sheaves Syz(Xa1 , Y a2 , Za3) with
the sheaves Syz(Xa1 , Y a2 , P (X,Y )k) which come from P1 via the Noetherian
normalization C = V+(Z

d−P (X,Y )) → P1 = ProjK[X,Y ]. We will use this
result several times in the proof of our main theorem in the next section.

Lemma 2.1. Let K be a field and let P (X,Y ) ∈ K[X,Y ] be a homogeneous

polynomial of degree d. Suppose the plane curve

C := Proj(K[X,Y, Z]/(Zd − P (X,Y )))

is smooth. Further, fix a1, a2, a3 ∈ N+ and write a3 = dk + t with 0 ≤ t < d.
Then we have for every m ∈ Z a surjective sheaf morphism

ϕm : Sk(m− t)⊕ Sk+1(m) −→ Syz(Xa1 , Y a2 , Za3)(m)

(f1, f2, f3), (g1, g2, g3) 7−→ (Ztf1 + g1, Z
tf2 + g2, f3 + Zd−tg3)

for every m ∈ Z, where Si := Syz(Xa1 , Y a2 , P (X,Y )i) for i ≥ 0. Moreover,

the corresponding map on global sections

Γ(C,Sk(m− t))⊕ Γ(C,Sk+1(m)) −→ Γ(C, Syz(Xa1 , Y a2 , Za3)(m))

is surjective for every m ∈ Z.

Proof. We consider the sheaf morphism

OC(m− t− a1)⊕OC(m− t− a2)⊕OC(m− t− dk)

⊕

OC(m− a1)⊕OC(m− a2)⊕OC(m− dk − d)

ϕ̃m

��

OC(m− a1)⊕OC(m− a2)⊕OC(m− a3)

which maps (s1, s2, s3, s4, s5, s6) 7→ (Zts1+s4, Z
ts2+s5, s3+Zd−ts6). Clearly,

ϕ̃m maps Sk(m− t)⊕ Sk+1(m) into Syz(Xa1 , Y a2 , Za3)(m). Hence, the map
ϕm is obtained from ϕ̃m via restriction to Sk(m−t)⊕Sk+1(m) and is therefore
a morphism of sheaves. It is enough to prove that ϕm is surjective on global
sections for all m. Let s := (F,G,H) ∈ Γ(C, Syz(Xa1 , Y a2 , Za3)(m)) be a
non-trivial global section, i.e., FXa1 +GY a2 +HZa3 = 0 and deg(F ) + a1 =
deg(G) + a2 = deg(H) + a3 = m. We write

F = F0 + F1Z + F2Z
2 + . . .+ Fd−1Z

d−1

G = G0 +G1Z +G2Z
2 + . . .+Gd−1Z

d−1

H = H0 +H1Z +H2Z
2 + . . .+Hd−1Z

d−1
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with Fi, Gi, Hi ∈ K[X,Y ] for i = 0, . . . , d − 1. We have Za3 = Zdk+t =
(Zd)kZt = P (X,Y )kZt. Since s is a syzygy we obtain (by considering the
K[X,Y ]]-component corresponding to Zi a system of equations

FiZ
iXa1 +GiZ

iY a2 +Hj(i)Z
j(i)Za3 = 0,

where j(i) ≡ i − t mod d. Thus s = (F,G,H) is the sum of the syzygies

si := (FiZ
i, GiZ

i, Hj(i)Z
j(i)) ∈ Γ(C, Syz(Xa1 , Y a2 , Za3)(m)).

We show that each of these summands does either come from Γ(C,Sk+1(m))
or from Γ(C,Sk(m− t)). We fix one equation

Fi0Z
i0Xa1 +Gi0Z

i0Y a2 +Hj(i0)Z
j(i0)Za3 = 0

with j(i0) ≡ i0 − t mod d. First, we treat the case where i0 < t, hence
j(i0) = i0 − t+ d. Factoring out Zi0 and replacing Za3 by P (X,Y )kZt yields

0 = Zi0(Fi0X
a1 +Gi0Y

a2 +Hj(i0)Z
d−tP (X,Y )kZt)

= Zi0(Fi0X
a1 +Gi0Y

a2 +Hj(i0)P (X,Y )k+1).

Hence gi0 := (Zi0Fi0 , Z
i0Gi0 , Z

i0Hj(i0)) ∈ Γ(C,Sk+1(m)) and ϕm(gi0) = si0 .

Next, we consider the case i0 ≥ t, hence j(i0) = i0 − t. We factor out Zt and
replace Za3 . This gives

0 = Fi0Z
j(i0)+tXa1 +Gi0Z

j(i0)+tY a2 +Hj(i0)Z
j(i0)P (X,Y )kZt

= Zt(Fi0Z
j(i0)Xa1 +Gi0Z

j(i0)Y a2 +Hj(i0)Z
j(i0)P (X,Y )k).

Hence we have hi0 := (Fi0Z
j(i0), Gi0Z

j(i0), Hj(i0)Z
j(i0)) ∈ Γ(C,Sk(m − t))

and ϕm(hi0 ) = si0 . �

Remark 2.2. It is easy to see that the morphisms ϕm, m ∈ Z, are injective
on both summands, i.e., the induced mappings

Sk(m− t) −→ Syz(Xa1 , Y a2 , Za3)(m), (f1, f2, f3) 7−→ (Ztf1, Z
tf2, f3)

and

Sk+1(m) −→ Syz(Xa1 , Y a2 , Za3)(m), (g1, g2, g3) 7−→ (g1, g2, Z
d−tg3)

are both injective.

Remark 2.3. The sheaves Sk and Sk+1 are the pull-backs

π∗(Syz
P1(Xa1 , Y a2 , P (X,Y )k)) and π∗(Syz

P1(Xa1 , Y a2 , P (X,Y )k+1))

respectively under the Noetherian normalization π : C → P1 = ProjK[X,Y ].
In particular, Sk and Sk+1 split as a direct sum of line bundles. If t = 0
we have SyzC(X

a1 , Y a2 , Za3) ∼= SyzC(X
a1 , Y a2 , P (X,Y )k) and the bundle is

therefore already defined on P1.
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3. Frobenius periodicity up to a twist

Let C be a smooth projective curve defined over a field of positive char-
acteristic. It is a well-known fact that the pull-back of a semistable vector
bundle under the (absolute) Frobenius morphism is in general not semistable
anymore; see for instance the example of Serre in [13, Example 3.2]. Using
syzygy bundles on Fermat curves one can produce fairly easy examples of this
phenomenon.

Example 3.1. Let C := Proj(F3[X,Y, Z]/(X4 + Y 4 − Z4) be the Fermat
quartic in characteristic 3. The cotangent bundle ΩP2 is stable on the pro-
jective plane (see for instance [8, Corollary 6.4]) and so is the restriction
ΩP2 |C = Syz(X,Y, Z) by Langer’s restriction theorem [20, Theorem 2.19]. Its
Frobenius pull-back is the syzygy bundle Syz(X3, Y 3, Z3). The curve equa-
tion yields the relation X · X3 + Y · Y 3 − Z · Z3 = 0 and thus we obtain a
non-trivial global section of (F ∗(ΩP2 |C))(4). But the degree of this bundle
equals −4 and therefore F ∗(ΩP2 |C) is not semistable.

A vector bundle E such that F e∗(E) is semistable for all e ≥ 0 is called
strongly semistable. This notion goes back to Miyaoka (cf. [22, Section 5]).
Before we state our main theorem, we prove the following Lemma separately.

Lemma 3.2. Let d ≥ 2 be an integer and let K be a field of characteristic

p ≡ −1 mod 2d. Then ΩP2 |C is strongly semistable on the Fermat curve

C := Proj(K[X,Y, Z]/(Xd + Y d − Zd)).

Proof. We use Hilbert-Kunz theory and its geometric interpretation developed
in [7] and [26]. The Hilbert-Kunz multiplicity eHK(R) of the homogeneous
coordinate ring R := K[X,Y, Z]/(Xd + Y d − Zd) of the Fermat curve equals
3d
4 in characteristic p ≡ −1 mod 2d by Monsky’s result [24, Theorem 2.3].
By [7, Corollary 4.6] this is equivalent to the strong semistability of ΩP2 |C in
these characteristics. �

Remark 3.3. Note that for d = 1 we have C ∼= P1 and ΩP2 |C ∼= OC(−2) ⊕
OC(−1), i.e., ΩP2 |C is not even semistable. For a general characterization of
strong semistability of ΩP2 |C on the Fermat curve of degree d depending on
the characteristic of the base field see [14, Chapter 4]. The restriction of S to
every smooth projective curve of degree ≥ 7 is stable by Langer’s restriction
theorem [20, Theorem 2.19].

Theorem 3.4. Let d ≥ 2 be an integer and let K be a field of characteristic

p ≡ −1 mod 2d. Then E := ΩP2 |C is strongly semistable on the Fermat curve

C := Proj(K[X,Y, Z]/(Xd + Y d − Zd)) and

F ∗(E) ∼= E(−
3(p− 1)

2
).
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Proof. The strong semistability of E in characteristics p ≡ −1 mod 2d has
already been proved in Lemma 3.2. So we have to show that F ∗(E) ∼=

Syz(Xp, Y p, Zp) ∼= E(− 3(p−1)
2 ). Since the proof is quite long, we divide it into

several steps. Note that, since semistability is preserved under base change,
we may assume without loss of generality that K is algebraically closed.

Step 1. We write p = dk + (d− 1) with k odd. Accordingly, we set t = d− 1.
Further, we follow the notation of Lemma 2.1 and define the bundles

Sk := Syz(Xp, Y p, (Xd + Y d)k), Sk+1 := Syz(Xp, Y p, (Xd + Y d)k+1).

We show that the surjective morphism

ϕ 3p+1

2

: Sk(
3p+ 1

2
− t)⊕ Sk+1(

3p+ 1

2
) −→ Syz(Xp, Y p, Zp)(

3p+ 1

2
)

defined in Lemma 2.1 can be identified with

(OC(−d+ 2)⊕OC)⊕O2
C −→ Syz(Xp, Y p, Zp)(

3p+ 1

2
).

We consider the vector bundle Syz(Uk+1, V k+1, (U + V )k)(3k+1
2 ) on the

projective line P1 = ProjK[U, V ]. Since the degree of this bundle is −1, it
has to have a non-trivial global section. Substituting U = Xd and V = Y d

yields a non-trivial syzygy

FXdk+d+GY dk+d+H(Xd+Y d)k = (FX)Xp+(GY )Y p+H(Xd+Y d)k = 0

of total degree 3dk+d
2 . That is, we have a non-trivial global section of Sk(

3dk+d
2 )

on the curve C. We have Γ(C,Sk(
3dk+d

2 − 1)) = 0 because otherwise the

twisted semistable Frobenius pull-back Syz(Xp, Y p, Zp)(3dk+d
2 + d− 2) of de-

gree −d would have a non-trivial global section too (see Remark 2.2) which
is impossible by semistability. Since deg(Sk(

3dk+d
2 )) = (−d + 2)d, we obtain

the splitting (rewrite 3dk+d
2 = 3p+1

2 − (d− 1) = 3p+1
2 − t)

Sk(
3p+ 1

2
− t) ∼= OC(−d+ 2)⊕OC .

The other summand Sk+1(
3dk+d

2 + d− 1) has degree 0. It follows once again
from Lemma 2.1 and the semistability of Syz(Xp, Y p, Zp) that

Γ(C,Sk+1(
3dk + d

2
+ d− 2)) = 0,

i.e., Sk+1(
3dk+d

2 + d− 1) splits as (rewrite 3dk+d
2 + d− 1 = 3p+1

2 )

Sk+1(
3p+ 1

2
) ∼= O2

C .

Step 2. Let (FX,GY,H) be the non-trivial global section of Sk(
3p+1

2 − t)
constructed above (corresponding to the component OC). We show that
H(P ) 6= 0 for every point P = (x, y, z) ∈ C satisfying zd = xd + yd = 0.
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The last component H of the section (FX,GY,H) is a homogeneous poly-
nomial in Xd and Y d (it stems by construction from a syzygy on P1 in U and
V ). Let P = (x, y, z) ∈ C be a point on the curve such that zd = xd+ yd = 0.
Then xd = −yd which implies x = ζy where ζ is a dth root of −1. In partic-
ular, P = (ζy, y, 0). Since K is algebraically closed, char(K) 6= 2 and p ≡ −1
mod 2d, the group µ2d(K) of (2d)th roots of unity in K has order 2d. Hence,
we have

Xd + Y d =
∏

ζ

(X − ζY ),

where ζ ∈ µ2d(K) runs through the elements with the property ζd = −1
(there are exactly d such roots). Now assume H(P ) = 0. Then H(P ′) = 0
for all points P ′ of the form P ′ = (ζy, y, 0). So Xd +Y d has to divide H , i.e.,

H = H̃(Xd + Y d) with a homogeneous polynomial H̃ ∈ K[X,Y ]. So we have
a relation

(FX)Xp + (GY )Y p + H̃(Xd + Y d)k+1 = 0

of total degree 3p+1
2 − t. That is, we have a non-trivial section of the bundle

Sk+1(
3p+1

2 − t). This section maps by Lemma 2.1 and Remark 2.2 to a non-

trivial global section of Syz(Xp, Y p, Zp)(3p+1
2 − t). But

deg(Syz(Xp, Y p, Zp)(
3p+ 1

2
− t)) = (3p+ 1− 2t− 3p)d = (1− 2t)d < 0.

Hence, the section contradicts the semistability of Syz(Xp, Y p, Zp).

Step 3. We show that in the surjective sheaf homomorphism

ϕ 3p+1

2

: (OC(−d+ 2)⊕OC)⊕O2
C −→ Syz(Xp, Y p, Zp)(

3p+ 1

2
)

the summand OC(−d+ 2) is not necessary, i.e.,

ϕ 3p+1

2

: O3
C = OC ⊕O2

C −→ Syz(Xp, Y p, Zp)(
3p+ 1

2
)

is also surjective.

Set m := 3p+1
2 . By the Nakayama lemma, we can check surjectivity point-

wise over the residue field K at every point P = (x, y, z) ∈ C. For this we
have to find two linearly independent vectors in the image. First we treat the
case z 6= 0. We show that we even have a surjective map

Sk+1(m) = O2
C −→ Syz(Xp, Y p, Zp)(m).

We take basic sections

f = (f1, f2, f3), g = (g1, g2, g3) ∈ Γ(C,Sk+1(m)) ∼= Γ(C,O2
C).

Their images are f̃ = (f1, f2, Zf3) and g̃ = (g1, g2, Zg3). Assume there is a

relation f̃(P ) + λg̃(P ) = 0 with λ ∈ K×. Looking at each component this
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gives the equations

f1(P ) + λg1(P ) = 0,

f2(P ) + λg2(P ) = 0,

(f3(P ) + λg3(P ))z = 0.

But since z 6= 0, the latter equation would mean f3(P ) + λg3(P ) = 0 and
therefore we would obtain a relation f(P ) + λg(P ) = 0 which contradicts the
assumption.

Now we deal with the case z = 0, i.e., P = (x, y, 0). Let

f = (FX,GY,H) ∈ Γ(C,Sk(m− t)) ∼= Γ(C,OC(−d+ 2)⊕OC)

be the section (corresponding to OC which we have found in step 1. The
image of f in the bundle Syz(Xp, Y p, Zp)(m) is the section (ZtFX,ZtGY,H).
Evaluated at P we obtain the vector v = (0, 0, H(P )). Since 0 = zd = xd+ yd

we have H(P ) 6= 0 by step 2. Now we take a section 0 6= g = (g1, g2, g3) ∈
Γ(C,Sk+1(m)) ∼= Γ(C,O2

C). The image of g equals (g1, g2, Zg3). Evaluation
at P gives the vector w = (g1(P ), g2(P ), 0), where either g1(P ) or g2(P ) is
not 0 (otherwise g3(P ) would be 0 as well). Hence we have found a vector w
such that v, w are linearly independent over K.

Step 4. So far we have shown that we have a surjective morphism

O3
C −→ Syz(Xp, Y p, Zp)(

3p+ 1

2
) −→ 0.

Since det(Syz(Xp, Y p, Zp)(3p+1
2 )) ∼= OC(1) we have a short exact sequence

0 −→ OC(−1) −→ O3
C −→ Syz(Xp, Y p, Zp)(

3p+ 1

2
) −→ 0.

Dualizing and tensoring with OC(−1) gives

0 −→ (Syz(Xp, Y p, Zp)(
3p+ 1

2
))∨(−1) −→ O3

C(−1) −→ OC −→ 0,

where the map O3
C(−1) → OC is given by some linear forms L1, L2, L3

in the homogeneous coordinate ring R = K[X,Y, Z]/(Xd + Y d − Zd). In

particular, we have (Syz(Xp, Y p, Zp)(3p+1
2 ))∨(−1) ∼= Syz(L1, L2, L3). We

show that {L1, L2, L3} and {X,Y, Z} generate the same ideal in R. Assume
to the contrary that L1, L2, L3 are linearly dependent. Such an equation
yields a non-trivial section of Syz(L1, L2, L3)(1). This bundle has degree
deg(Syz(L1, L2, L3)(1)) = (2 − 3)d = −d < 0. But since Syz(Xp, Y p, Zp)

is semistable, so is (Syz(Xp, Y p, Zp)(3p+1
2 ))∨ and thus also Syz(L1, L2, L3).

So the section contradicts the semistability.

Step 5. We have already proved that

E ∼= Syz(X,Y, Z) ∼= (Syz(Xp, Y p, Zp)(
3p+ 1

2
))∨(−1).
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Since Syz(Xp, Y p, Zp) is a bundle of rank 2, we have

Syz(Xp, Y p, Zp) ∼= Syz(Xp, Y p, Zp)∨ ⊗OC(−3p).

So finally we obtain

E ∼= Syz(X,Y, Z)

∼= (Syz(Xp, Y p, Zp)(
3p+ 1

2
))∨(−1)

∼= Syz(Xp, Y p, Zp)∨ ⊗OC(−
3p+ 1

2
)⊗OC(−1)

∼= Syz(Xp, Y p, Zp)⊗OC(3p)⊗OC(−
3p+ 1

2
)⊗OC(−1)

∼= Syz(Xp, Y p, Zp)(
3(p− 1)

2
),

and consequently F ∗(E) ∼= Syz(Xp, Y p, Zp) ∼= E(− 3(p−1)
2 ) which finishes the

proof. �

Remark 3.5. We also comment on the case p ≡ 1 mod 2d. Then we write
p = dk + 1 with k even and set t = 1. The syzygy bundle Syz(Uk, V k, (U +
V )k+1)(3k2 ) on P1 = ProjK[U, V ] has degree −1 and therefore has to have a

non-trivial global section. Substituting U = Xd and Y d and multiplying with
XY gives then a syzygy

(FY )Xp + (GX)Y p + (HXY )(Xd + Y d)k+1 = 0,

i.e., a global section of Sk+1(
3dk
2 +2) on the Fermat curve. As in the proof of

Theorem 3.4 we obtain the splittings (rewrite 3dk
2 + 2 = 3p+1

2 )

Sk+1(
3p+ 1

2
) ∼= OC(−d+ 2)⊕OC and Sk(

3p+ 1

2
− t) ∼= O2

C .

Unfortunately, we do not know how to prove an analog of step 2 in these
characteristics, i.e., to show that H(P ) 6= 0 for every point P = (x, y, z) ∈ C
with zd = xd + yd = 0. Here the reasoning of the proof (step 2) of Theorem
3.4 would lead to a section of Syz(Xp, Y p, (Xd+Y d)k+2) which is not helpful
to get a contradiction.

Remark 3.6. We cannot expect that Theorem 3.4 holds in every character-
istic p where ΩP2 |C is strongly semistable. For example, consider in charac-
teristic 2 the Fermat cubic C = Proj(K[X,Y, Z]/(X3 + Y 3 − Z3)), which is
an elliptic curve. It is a well-known fact that semistable vector bundles on
elliptic curves are strongly semistable (see for instance [27, appendix]). Hence
ΩP2 |C ∼= Syz(X,Y, Z) is strongly semistable by [5, Proposition 6.2]. The pull-
back F ∗(ΩP2 |C) ∼= Syz(X2, Y 2, Z2) has for the first time non-trivial global
sections in total degree 3, namely the (only) syzygy (X,Y,−Z) which comes
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from the equation of the curve. This section gives rise to the short exact
sequence

0 −→ OC −→ Syz(X2, Y 2, Z2)(3) −→ OC −→ 0,

i.e., Syz(X2, Y 2, Z2)(3) is the bundle F2 in Atiyah’s classification [1]. Since the
Hasse invariant of C is 0, we have F ∗(F2) ∼= O2

C and therefore F ∗(ΩP2 |C) 6∼=

ΩP2 |C(−
3(p−1)

2 ). We have F 2∗(ΩP2
|C) ∼= OC(−6) ⊕ OC(−6) and we obtain

(up to a twist) the periodicity F 3∗(ΩP2 |C) ∼= (F 2∗(ΩP2 |C))(−6).

4. A computation of the Hilbert-Kunz function

We recall that the Hilbert-Kunz function of a standard graded ring R of
characteristic p > 0 with graded maximal ideal m is the function

e 7−→ ϕR(e) := length(R/m[pe]),

where m[pe] denotes the extended ideal under the e-th iteration of the Frobe-
nius endomorphism on R; see for instance [23] for this rather complicated func-
tion and its properties. As a consequence of Theorem 3.4 we obtain the com-
plete Hilbert-Kunz function of the Fermat ringR = K[X,Y, Z]/(Xd+Y d−Zd)
in characteristics p ≡ −1 mod 2d. The following result is implicitly contained
in [12, Lemma 5.6] of P. Monsky and C. Han.

Corollary 4.1. Let d ≥ 2 be a positive integer and let K be a field of charac-

teristic p ≡ −1 mod 2d. Then the Hilbert-Kunz function of the Fermat ring

R = K[X,Y, Z]/(Xd + Y d − Zd) is

ϕR(e) =
3d

4
p2e + 1−

3d

4
.

Proof. Since the length of R/m[pe], m = (X,Y, Z), does not change if one
enlarges the base field, we may assume that K is algebraically closed. Hence,
ϕR(e) =

∑∞

m=0 dimK(R/m[pe])m (this sum is in fact finite since the alge-

bras R/m[pe] have finite length). It follows from the presenting sequence of
Syz(X,Y,C) on the Fermat curve C = ProjR that (setting q := pe)

(∗) dimK(R/m[q])m = h0(C,OC(m))− 3h0(C,OC(m− q))

+h0(C, Syz(Xq, Y q, Zq)(m)).

By Theorem 3.4 we have Syz(Xp, Y p, Zp) ∼= Syz(X,Y, Z)(− 3(p−1)
2 ) and con-

sequently Syz(Xq, Y q, Zq) ∼= Syz(X,Y, Z)(− 3(q−1)
2 ) for all q = pe, e ≥ 1. The

global evaluation of the presenting sequence of E(k) := Syz(X,Y, Z)(k) gives
the exact sequence

0 −→ Γ(C, E(k)) −→ Γ(C,OC(k − 1)3) −→ Γ(C,OC(k)) −→ K −→ 0

for k = 0 and the short exact sequence

0 −→ Γ(C, E(k)) −→ Γ(C,OC(k − 1)3) −→ Γ(C,OC(k)) −→ 0
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for k ≥ 1. Hence we obtain

h0(C, E(k)) =

{
3h0(C,OC(k − 1))− h0(C,OC(k)) + 1 if k = 0,

3h0(C,OC(k − 1))− h0(C,OC(k)) if k 6= 0.

For k ≥ d− 2 we have by Riemann-Roch h0(C,OC(k)) = dk− g +1, where g
is the genus of the curve. Since p ≡ −1 mod 2d, this holds in particular for
k ≥ p+1

2 . So the geometric formula for the Hilbert-Kunz function (∗) gives
(in order to obtain an easier calculation we sum up to 2q):

ϕR(e) =

2q∑

m=0

h0(C,OC(m)) − 3

2q∑

m=0

h0(C,OC(m− q))

+3

2q∑

m=0

h0(C,OC(m−
3(q − 1)

2
− 1))

−

2q∑

m=0

h0(C,OC(m−
3(q − 1)

2
)) + 1

=

2q∑

m=0

h0(C,OC(m)) − 3

q∑

m=0

h0(C,OC(m))

+3

q+1

2∑

m=0

h0(C,OC(m))−

q+3

2∑

m=0

h0(C,OC(m)) + 1

=

2q∑

m= q+5

2

h0(C,OC(m))− 3

q∑

m= q+3

2

h0(C,OC(m)) + 1

=

2q∑

m= q+5

2

(dm− g + 1)− 3

q∑

m= q+3

2

(dm− g + 1) + 1

= d

(
q(2q + 1)−

(q + 3)(q + 5)

8

)
−

3g(q − 1)

2
+

3(q − 1)

2

−3d

(
q(q + 1)

2
−

(q + 1)(q + 3)

8

)
+

3g(q − 1)

2
−

3(q − 1)

2
+ 1

=
3d

4
q2 + 1−

3d

4
.

Thus we have obtained the desired formula for the Hilbert-Kunz function of
the ring R. �

Remark 4.2. Corollary 4.1 matches for d = 3 with the result [10, Theorem
4] of Buchweitz and Chen, which says that the Hilbert-Kunz function of the
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homogeneous coordinate ring of a plane elliptic curve defined over a field K
of odd characteristic p equals 9

4p
2e − 5

4 .

5. Examples of a (0,1)-Frobenius periodicity on Fermat curves

In this section, we show how to get via Theorem 3.4 non-trivial examples of
(0, 1)-Frobenius periodicities, i.e., we give explicit examples of vector bundles
E on certain Fermat curves such that E ∼= F ∗(E).

Example 5.1. Let d ≥ 2 and letK be a field of characteristic p ≡ −1 mod 2d.
The ring homomorphism

K[X,Y, Z]/(Xd + Y d − Zd) −→ K[U, V,W ]/(U2d + V 2d −W 2d)

which sends X 7→ U2, Y 7→ V 2 and Z 7→ W 2 induces a finite cover f : C2d →
Cd, where Ci denotes the Fermat curve of degree i. Since f∗(OCd(1)) ∼=
OC2d(2), we see that deg(f) = 4. The group Z/(2) × Z/(2) acts on C2d by
sending (u, v, w) either to (u, v, w), (−u, v, w), (u,−v, w) or (u, v,−w), and Cd

is the quotient of this action. Moreover, f is a finite separable morphism and
therefore f preserves semistability. Theorem 3.4 gives, via pull-back under f ,
the isomorphic vector bundles

SyzC2d(U2p, V 2p,W 2p) ∼= f∗(SyzCd(Xp, Y p, Zp))

∼= f∗(SyzCd(X,Y, Z)(−
3(p− 1)

2
))

∼= f∗(SyzCd(X,Y, Z))⊗ f∗(OCd(−
3(p− 1)

2
))

∼= SyzC2d(U2, V 2,W 2)(−3(p− 1))

on the Fermat curve C2d. In particular, we have the periodicity

SyzC2d(U2, V 2,W 2)(3) ∼= F ∗(SyzC2d(U2, V 2,W 2)(3))

(note that this bundle has degree 0 and is not trivial since there are no non-
trivial global sections below the degree of the curve).

Remark 5.2. By the classical result [19, Satz 1.4] of H. Lange and U. Stuh-
ler the periodicity SyzC2d(U2, V 2,W 2)(3) ∼= F ∗(SyzC2d(U2, V 2,W 2)(3)) in
Example 5.1 implies the existence of an étale cover

g : D −→ C2d

such that

g∗(SyzC2d(U2, V 2,W 2)(3)) ∼= O2
D.

Moreover, by [19, Proposition 1.2] the bundle SyzC2d(U2, V 2,W 2)(3) comes
from a (continuous) representation

ρ : π1(C
2d) −→ GL2(K)
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of the algebraic fundamental group π1(C
2d). It would be interesting to see

how the étale trivialization g and the representation ρ look explicitly in this
example.

Remark 5.3. In this remark we show that E := Syz(U2, V 2,W 2)(3) is not
étale trivializable in characteristic 0. We consider this bundle on the smooth
projective relative curve

C2d := Proj(Z2d[U, V,W ]/(U2d + V 2d − Z2d)) −→ SpecZ2d.

For a prime number p 6 |2d the special fiber C2d
p over (p) is the (smooth) Fermat

curve over the finite field Fp. The generic fiber C
2d
0 over (0) is the Fermat curve

over Q. To prove that E0 := E|C2d
0

is not étale trivializable on C2d
0 we use once

again Hilbert-Kunz theory (cf. also the proof of Lemma 3.2). Note that E0 is
semistable by [5, Proposition 2]. If d ≥ 4 is even (the case d = 2 is trivial) we
consider prime numbers p ≡ d±1 mod 2d and if d ≥ 3 is odd we look at prime
numbers p ≡ d mod 2d. In these characteristics, [24, Theorem 2.3] yields that
the Hilbert-Kunz multiplicity eHK(Rp) of the homogeneous coordinate ring
Rp of the Fermat curve Cd → SpecFp of degree d equals

eHK(Rp) =
3d

4
+
(d(d− 3))2

4dp2
if d is even and eHK(Rp) =

3d

4
+

d3

4p2
if d is odd.

Hence, ΩP2 |Cd is not strongly semistable by [7, Corollary 4.6]. Since we can
realize the fibers C2d

p , as in Example 5.1, as coverings f : C2d
p → Cd, the bun-

dles Ep := E|C2d
p

∼= f∗(ΩP2 |Cd)(3) are not strongly semistable either. Note that

by the well-known theorem of Dirichlet (cf. [25, Chapitre VI, §4, Théorème
and Corollaire]) there are infinitely many such fibers. Therefore, there is no
étale cover g : D → C2d

0 such that g∗(E0) ∼= O2
D.

This observation is somehow related to the Grothendieck-Katz p-curvature
conjecture [16, (I quat)] which states the following: Let R be a Z-domain of
finite type, Z ⊆ R, and X → SpecR a smooth projective morphism of relative
dimension d ≥ 1. If E is a vector bundle on X → SpecR equipped with an
integrable connection ∇ such that ∇|Ep

has p-curvature 0 on the special fiber
Xp for almost all closed points p ∈ SpecR, then there exists an étale cover
g : Y → X0 of the generic fiber X0 such that (g∗(E0), g

∗(∇0)) is trivial. For a
detailed account on integrable connections and p-curvature see [15] and [16].
In our example of the relative Fermat curve C2d, we have for infinitely many
prime numbers p ≡ −1 mod 2d the Frobenius descent F ∗(Ep) ∼= Ep on C2d

p . By
the so-called Cartier-correspondence [15, Theorem 5.1] this is equivalent to the
existence of an integrable connection ∇p on Ep with vanishing p-curvature. If
one could establish a connection on E (since E is a vector bundle over a curve,
this connection would be automatically integrable) which is compatible with
the connections on the special fibers C2d

p , p ≡ −1 mod 2d, then our example
would show that the Grothendieck-Katz conjecture does not hold if one only
requires vanishing p-curvature for infinitely many closed points.
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Remark 5.4. In this remark we assume that the base field is algebraically
closed. We consider the Verschiebung

V : MC2d(2,OC2d) 99K MC2d(2,OC2d), [E ] 7−→ [F ∗(E)]

induced by the Frobenius morphism on C2d. We recall that the Verschiebung
is a rational map from the moduli space MC2d(2,OC2d) parametrizing (up
to S-equivalence) semistable vector bundles on C2d of rank 2 and trivial
determinant to itself. The vector bundle S := Syz

P2(U2, V 2,W 2) is stable
on the projective plane P2 = ProjK[U, V,W ] by [8, Corollary 6.4]. Since
the discriminant of this bundle equals ∆(S) = 4c2(S) − c1(S)

2 = 12, the
restriction of S to every smooth projective curve of degree ≥ 7 remains
stable by Langer’s restriction theorem [20, Theorem 2.19]. In particular,
S|C2d

∼= SyzC2d(U2, V 2,W 2)(3) is stable on the Fermat curve C2d for d ≥ 4.
Hence, for d ≥ 4 the bundle SyzC2d(U2, V 2,W 2)(3) defines a closed point of
MC2d(2,OC) which is fixed under the Verschiebung V .

Remark 5.5. We may pull-back the vector bundle E = Syz(U2, V 2,W 2)(3)
along the cone mapping

p : T = SpecK[U, V,W ]/(U2d + V 2d −W 2d) \ {m} → C2d

to obtain the bundle G = p∗(E) on the punctured spectrum with the property
F ∗(G) ∼= G. This can however not be extended to get a Frobenius periodicity
on the module level, since F ∗Γ(T,G) 6= Γ(T, F ∗G). A Frobenius periodicity
for a coherent R-module M , where R is a local noetherian domain, implies
that M is free. This observation follows by looking at Fitting ideals of a free
resolution (we thank Manuel Blickle and Neil Epstein for this remark).
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