AN EXPLICIT EXAMPLE OF FROBENIUS PERIODICITY

HOLGER BRENNER AND ALMAR KAID

ABSTRACT. In this note we show that the restriction of the cotangent bundle $\Omega_{\mathbb{P}^2}$ of the projective plane to a Fermat curve C of degree d in characteristic $p \equiv -1 \mod 2d$ is, up to tensoration with a certain line bundle, isomorphic to its Frobenius pull-back. This leads to a Frobenius periodicity $F^*(\mathcal{E}) \cong \mathcal{E}$ on the Fermat curve of degree 2d, where $\mathcal{E} =$ $Syz(U^2, V^2, W^2)(3)$.

Mathematical Subject Classification (2010): primary: 14H60; secondary: 13D40

Keywords: semistable vector bundle, syzygy bundle, Fermat curve, Frobenius periodicity, Hilbert-Kunz theory

1. INTRODUCTION

Let C be a smooth projective curve defined over a field K of characteristic p > 0. If F denotes the absolute Frobenius morphism $F: C \to C$, then we say that a vector bundle \mathcal{E} on C admits an (s, t)-Frobenius periodicity if there are natural numbers s and t, t > s, such that $F^{t*}(\mathcal{E}) \cong F^{s*}(\mathcal{E})$. Of particular interest are vector bundles which admit a (0, t)-Frobenius periodicity, i.e., $F^{t*}(\mathcal{E}) \cong \mathcal{E}$. By the classical theorem of H. Lange and U. Stuhler [19, Satz 1.4] such a bundle is étale trivializable, i.e., there exists an étale covering $f: D \to C$ such that $f^*(\mathcal{E}) \cong \mathcal{O}_D^r$ where $r = \operatorname{rk}(\mathcal{E})$. Hence a vector bundle \mathcal{E} with a (0, t)-Frobenius periodicity comes from a (continuous) representation $\rho: \pi_1(C) \to GL_r(K)$ of the étale fundamental group $\pi_1(C)$ of the curve (see [ibid., Proposition 1.2]). We recall that a vector bundle which can be trivialized under an étale covering does not necessarily admit a Frobenius periodicity (see [9, Example 2.10] or [2, Example below Theorem 1.1]).

Quasicoherent modules over a scheme of positive characteristic allowing a Frobenius periodicity appear under several names (\mathcal{F} -finite modules, unit $\mathcal{O}_X[F]$ -modules) and from several perspectives (*D*-modules, local cohomology, Cartier modules, constructible sheaves on the étale site, Riemann-Hilbert correspondence) in the literature. Beside [19] we mention work of Katz [17, Proposition 4.1.1], Lyubeznik [21], Emerton and Kisin [11], Blickle [3] and Blickle and Böckle [4].

Despite the importance of vector bundles having a Frobenius periodicity, it is not easy to write down non-trivial explicit examples. For a line bundle the condition becomes $F^{t*}\mathcal{L} = \mathcal{L}^q = \mathcal{L}$ (with $q = p^t$), so \mathcal{L} must be a torsion element in Pic C of order q-1. For higher rank, a necessary condition is that the bundle \mathcal{S} has degree 0 and is semistable. By the periodicity it follows that the bundle is in fact strongly semistable, meaning that $F^{t*}(\mathcal{E})$ is semistable for all $t \geq 0$. On the other hand, if the curve C and the bundle \mathcal{E} are defined over a finite field and \mathcal{E} is strongly semistable of degree 0, then there is necessarily a (s, t)-Frobenius periodicity due to the fact that the number of isomorphism classes of semistable vector bundles of fixed rank and degree is finite ([19, Satz 1.9]). Nevertheless, it is still hard to detect the periodicity s and t. If we have an extension $0 \to \mathcal{O}_C \to \mathcal{S} \to \mathcal{O} \to 0$ given by $c \in H^1(C, \mathcal{O}_C)$, then its Frobenius pull-back is given by the class $F^*(c)$, and one can get (semistable, but not stable) examples by looking at the Frobenius action on $H^1(C, \mathcal{O}_C)$.

In this note we provide a down to earth example of a stable rank-2 vector bundle \mathcal{E} on a suitable Fermat curve admitting a (0,1)-Frobenius periodicity. Moreover, this periodicity only depends on a congruence condition of the characteristic of the base field, not on its algebraic structure. Our main tools will be results of P. Monsky on the Hilbert-Kunz multiplicity of Fermat hypersurface rings and the geometric approach to Hilbert-Kunz theory developed independently by the first author in [7] and V. Trivedi in [26].

The results of this article are contained in Chapter 4 of the PhD-thesis [14] of the second author. Related results on the free resolution of Frobenius powers on a Fermat ring can be found in the preprint [18]. We thank Manuel Blickle, Aldo Conca, Neil Epstein and Andrew Kustin for useful discussions.

2. A LEMMA ON GLOBAL SECTIONS

To begin with we recall the notions of a syzygy bundle. Let K be a field and let R be a normal standard-graded K-domain of dimension $d \ge 2$. Then homogeneous R_+ -primary elements f_1, \ldots, f_n (i.e., $\sqrt{(f_1, \ldots, f_n)} = R_+$) of degrees d_1, \ldots, d_n define a short exact (presenting) sequence

$$0 \longrightarrow \operatorname{Syz}(f_1, \dots, f_n) \longrightarrow \bigoplus_{i=1}^n \mathcal{O}_X(-d_i) \xrightarrow{f_1, \dots, f_n} \mathcal{O}_X \longrightarrow 0$$

on the projective scheme $X = \operatorname{Proj} R$. The kernel $\operatorname{Syz}(f_1, \ldots, f_n)$ is locally free and is called the *syzygy bundle* for the elements f_1, \ldots, f_n .

In this article we only deal with restrictions of syzygy bundles of the form $\operatorname{Syz}(X^a, Y^a, Z^a), a \in \mathbb{N} \setminus \{0\}$, on $\mathbb{P}^2 = \operatorname{Proj} K[X, Y, Z]$ to a plane curve C. Our main interest will be the case a = 1 which corresponds via the Euler sequence to the cotangent bundle $\Omega_{\mathbb{P}^2}|_C$ on the projective plane. Since there will be no confusion in the sequel we also denote the restricted bundle on the curve by $\operatorname{Syz}(X^a, Y^a, Z^a)$.

Let K be a field and consider a smooth plane curve of the form

$$V_+(Z^d - P(X, Y)) \subset \mathbb{P}^2 = \operatorname{Proj} K[X, Y, Z],$$

where $P(X,Y) \in K[X,Y]$ denotes a homogeneous polynomial of degree d. In this situation we can compute global sections of a rank-2 syzygy bundle of the form $\operatorname{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})$ by the following lemma which is a slight improvement over [6, Lemma 1]. It relates the sheaves $\operatorname{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})$ with the sheaves $\operatorname{Syz}(X^{a_1}, Y^{a_2}, P(X, Y)^k)$ which come from \mathbb{P}^1 via the Noetherian normalization $C = V_+(Z^d - P(X, Y)) \to \mathbb{P}^1 = \operatorname{Proj} K[X, Y]$. We will use this result several times in the proof of our main theorem in the next section.

Lemma 2.1. Let K be a field and let $P(X,Y) \in K[X,Y]$ be a homogeneous polynomial of degree d. Suppose the plane curve

$$C := \operatorname{Proj}(K[X, Y, Z] / (Z^d - P(X, Y)))$$

is smooth. Further, fix $a_1, a_2, a_3 \in \mathbb{N}_+$ and write $a_3 = dk + t$ with $0 \le t < d$. Then we have for every $m \in \mathbb{Z}$ a surjective sheaf morphism

$$\begin{aligned} \varphi_m : \mathcal{S}_k(m-t) \oplus \mathcal{S}_{k+1}(m) &\longrightarrow & \operatorname{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})(m) \\ (f_1, f_2, f_3), (g_1, g_2, g_3) &\longmapsto & (Z^t f_1 + g_1, Z^t f_2 + g_2, f_3 + Z^{d-t} g_3) \end{aligned}$$

for every $m \in \mathbb{Z}$, where $S_i := \text{Syz}(X^{a_1}, Y^{a_2}, P(X, Y)^i)$ for $i \ge 0$. Moreover, the corresponding map on global sections

$$\Gamma(C, \mathcal{S}_k(m-t)) \oplus \Gamma(C, \mathcal{S}_{k+1}(m)) \longrightarrow \Gamma(C, \operatorname{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})(m))$$

is surjective for every $m \in \mathbb{Z}$.

Proof. We consider the sheaf morphism

$$\mathcal{O}_C(m-t-a_1) \oplus \mathcal{O}_C(m-t-a_2) \oplus \mathcal{O}_C(m-t-dk)$$
 \oplus

$$\mathcal{O}_{C}(m-a_{1}) \oplus \mathcal{O}_{C}(m-a_{2}) \oplus \mathcal{O}_{C}(m-dk-d)$$

$$\downarrow^{\widetilde{\varphi_{m}}}$$

$$\mathcal{O}_{C}(m-a_{1}) \oplus \mathcal{O}_{C}(m-a_{2}) \oplus \mathcal{O}_{C}(m-a_{3})$$

which maps $(s_1, s_2, s_3, s_4, s_5, s_6) \mapsto (Z^t s_1 + s_4, Z^t s_2 + s_5, s_3 + Z^{d-t} s_6)$. Clearly, $\widetilde{\varphi_m}$ maps $\mathcal{S}_k(m-t) \oplus \mathcal{S}_{k+1}(m)$ into $\operatorname{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})(m)$. Hence, the map φ_m is obtained from $\widetilde{\varphi_m}$ via restriction to $\mathcal{S}_k(m-t) \oplus \mathcal{S}_{k+1}(m)$ and is therefore a morphism of sheaves. It is enough to prove that φ_m is surjective on global sections for all m. Let $s := (F, G, H) \in \Gamma(C, \operatorname{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})(m))$ be a non-trivial global section, i.e., $FX^{a_1} + GY^{a_2} + HZ^{a_3} = 0$ and $\operatorname{deg}(F) + a_1 = \operatorname{deg}(G) + a_2 = \operatorname{deg}(H) + a_3 = m$. We write

$$F = F_0 + F_1 Z + F_2 Z^2 + \ldots + F_{d-1} Z^{d-1}$$

$$G = G_0 + G_1 Z + G_2 Z^2 + \ldots + G_{d-1} Z^{d-1}$$

$$H = H_0 + H_1 Z + H_2 Z^2 + \ldots + H_{d-1} Z^{d-1}$$

with $F_i, G_i, H_i \in K[X, Y]$ for $i = 0, \ldots, d-1$. We have $Z^{a_3} = Z^{dk+t} = (Z^d)^k Z^t = P(X, Y)^k Z^t$. Since s is a syzygy we obtain (by considering the K[X, Y])-component corresponding to Z^i a system of equations

$$F_i Z^i X^{a_1} + G_i Z^i Y^{a_2} + H_{j(i)} Z^{j(i)} Z^{a_3} = 0$$

where $j(i) \equiv i - t \mod d$. Thus s = (F, G, H) is the sum of the syzygies

$$s_i := (F_i Z^i, G_i Z^i, H_{j(i)} Z^{j(i)}) \in \Gamma(C, \operatorname{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})(m)).$$

We show that each of these summands does either come from $\Gamma(C, \mathcal{S}_{k+1}(m))$ or from $\Gamma(C, \mathcal{S}_k(m-t))$. We fix one equation

$$F_{i_0}Z^{i_0}X^{a_1} + G_{i_0}Z^{i_0}Y^{a_2} + H_{j(i_0)}Z^{j(i_0)}Z^{a_3} = 0$$

with $j(i_0) \equiv i_0 - t \mod d$. First, we treat the case where $i_0 < t$, hence $j(i_0) = i_0 - t + d$. Factoring out Z^{i_0} and replacing Z^{a_3} by $P(X, Y)^k Z^t$ yields

$$0 = Z^{i_0}(F_{i_0}X^{a_1} + G_{i_0}Y^{a_2} + H_{j(i_0)}Z^{d-t}P(X,Y)^kZ^t)$$

= $Z^{i_0}(F_{i_0}X^{a_1} + G_{i_0}Y^{a_2} + H_{j(i_0)}P(X,Y)^{k+1}).$

Hence $g_{i_0} := (Z^{i_0}F_{i_0}, Z^{i_0}G_{i_0}, Z^{i_0}H_{j(i_0)}) \in \Gamma(C, \mathcal{S}_{k+1}(m))$ and $\varphi_m(g_{i_0}) = s_{i_0}$. Next, we consider the case $i_0 \ge t$, hence $j(i_0) = i_0 - t$. We factor out Z^t and replace Z^{a_3} . This gives

$$0 = F_{i_0} Z^{j(i_0)+t} X^{a_1} + G_{i_0} Z^{j(i_0)+t} Y^{a_2} + H_{j(i_0)} Z^{j(i_0)} P(X, Y)^k Z^t$$

= $Z^t (F_{i_0} Z^{j(i_0)} X^{a_1} + G_{i_0} Z^{j(i_0)} Y^{a_2} + H_{j(i_0)} Z^{j(i_0)} P(X, Y)^k).$

Hence we have $h_{i_0} := (F_{i_0}Z^{j(i_0)}, G_{i_0}Z^{j(i_0)}, H_{j(i_0)}Z^{j(i_0)}) \in \Gamma(C, \mathcal{S}_k(m-t))$ and $\varphi_m(h_{i_0}) = s_{i_0}$.

Remark 2.2. It is easy to see that the morphisms φ_m , $m \in \mathbb{Z}$, are injective on both summands, i.e., the induced mappings

$$\mathcal{S}_k(m-t) \longrightarrow \operatorname{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})(m), \ (f_1, f_2, f_3) \longmapsto (Z^t f_1, Z^t f_2, f_3)$$

and

$$\mathcal{S}_{k+1}(m) \longrightarrow \operatorname{Syz}(X^{a_1}, Y^{a_2}, Z^{a_3})(m), \ (g_1, g_2, g_3) \longmapsto (g_1, g_2, Z^{d-t}g_3)$$

are both injective.

Remark 2.3. The sheaves S_k and S_{k+1} are the pull-backs

$$\pi^*(\operatorname{Syz}_{\mathbb{P}^1}(X^{a_1}, Y^{a_2}, P(X, Y)^k)) \text{ and } \pi^*(\operatorname{Syz}_{\mathbb{P}^1}(X^{a_1}, Y^{a_2}, P(X, Y)^{k+1}))$$

respectively under the Noetherian normalization $\pi: C \to \mathbb{P}^1 = \operatorname{Proj} K[X, Y]$. In particular, \mathcal{S}_k and \mathcal{S}_{k+1} split as a direct sum of line bundles. If t = 0 we have $\operatorname{Syz}_C(X^{a_1}, Y^{a_2}, Z^{a_3}) \cong \operatorname{Syz}_C(X^{a_1}, Y^{a_2}, P(X, Y)^k)$ and the bundle is therefore already defined on \mathbb{P}^1 .

3. FROBENIUS PERIODICITY UP TO A TWIST

Let C be a smooth projective curve defined over a field of positive characteristic. It is a well-known fact that the pull-back of a semistable vector bundle under the (absolute) Frobenius morphism is in general not semistable anymore; see for instance the example of Serre in [13, Example 3.2]. Using syzygy bundles on Fermat curves one can produce fairly easy examples of this phenomenon.

Example 3.1. Let $C := \operatorname{Proj}(\overline{\mathbb{F}}_3[X, Y, Z]/(X^4 + Y^4 - Z^4))$ be the Fermat quartic in characteristic 3. The cotangent bundle $\Omega_{\mathbb{P}^2}$ is stable on the projective plane (see for instance [8, Corollary 6.4]) and so is the restriction $\Omega_{\mathbb{P}^2}|_C = \operatorname{Syz}(X, Y, Z)$ by Langer's restriction theorem [20, Theorem 2.19]. Its Frobenius pull-back is the syzygy bundle $\operatorname{Syz}(X^3, Y^3, Z^3)$. The curve equation yields the relation $X \cdot X^3 + Y \cdot Y^3 - Z \cdot Z^3 = 0$ and thus we obtain a non-trivial global section of $(F^*(\Omega_{\mathbb{P}^2}|_C))(4)$. But the degree of this bundle equals -4 and therefore $F^*(\Omega_{\mathbb{P}^2}|_C)$ is not semistable.

A vector bundle \mathcal{E} such that $F^{e^*}(\mathcal{E})$ is semistable for all $e \geq 0$ is called *strongly semistable*. This notion goes back to Miyaoka (cf. [22, Section 5]). Before we state our main theorem, we prove the following Lemma separately.

Lemma 3.2. Let $d \ge 2$ be an integer and let K be a field of characteristic $p \equiv -1 \mod 2d$. Then $\Omega_{\mathbb{P}^2}|_C$ is strongly semistable on the Fermat curve $C := \operatorname{Proj}(K[X,Y,Z]/(X^d + Y^d - Z^d)).$

Proof. We use Hilbert-Kunz theory and its geometric interpretation developed in [7] and [26]. The Hilbert-Kunz multiplicity $e_{HK}(R)$ of the homogeneous coordinate ring $R := K[X, Y, Z]/(X^d + Y^d - Z^d)$ of the Fermat curve equals $\frac{3d}{4}$ in characteristic $p \equiv -1 \mod 2d$ by Monsky's result [24, Theorem 2.3]. By [7, Corollary 4.6] this is equivalent to the strong semistability of $\Omega_{\mathbb{P}^2}|_C$ in these characteristics.

Remark 3.3. Note that for d = 1 we have $C \cong \mathbb{P}^1$ and $\Omega_{\mathbb{P}^2}|_C \cong \mathcal{O}_C(-2) \oplus \mathcal{O}_C(-1)$, i.e., $\Omega_{\mathbb{P}^2}|_C$ is not even semistable. For a general characterization of strong semistability of $\Omega_{\mathbb{P}^2}|_C$ on the Fermat curve of degree d depending on the characteristic of the base field see [14, Chapter 4]. The restriction of \mathcal{S} to every smooth projective curve of degree ≥ 7 is stable by Langer's restriction theorem [20, Theorem 2.19].

Theorem 3.4. Let $d \ge 2$ be an integer and let K be a field of characteristic $p \equiv -1 \mod 2d$. Then $\mathcal{E} := \Omega_{\mathbb{P}^2}|_C$ is strongly semistable on the Fermat curve $C := \operatorname{Proj}(K[X, Y, Z]/(X^d + Y^d - Z^d))$ and

$$F^*(\mathcal{E}) \cong \mathcal{E}(-\frac{3(p-1)}{2}).$$

Proof. The strong semistability of \mathcal{E} in characteristics $p \equiv -1 \mod 2d$ has already been proved in Lemma 3.2. So we have to show that $F^*(\mathcal{E}) \cong$ $\operatorname{Syz}(X^p, Y^p, Z^p) \cong \mathcal{E}(-\frac{3(p-1)}{2})$. Since the proof is quite long, we divide it into several steps. Note that, since semistability is preserved under base change, we may assume without loss of generality that K is algebraically closed.

Step 1. We write p = dk + (d - 1) with k odd. Accordingly, we set t = d - 1. Further, we follow the notation of Lemma 2.1 and define the bundles

$$S_k := Syz(X^p, Y^p, (X^d + Y^d)^k), \ S_{k+1} := Syz(X^p, Y^p, (X^d + Y^d)^{k+1}).$$

We show that the surjective morphism

$$\varphi_{\frac{3p+1}{2}}: \mathcal{S}_k(\frac{3p+1}{2}-t) \oplus \mathcal{S}_{k+1}(\frac{3p+1}{2}) \longrightarrow \operatorname{Syz}(X^p, Y^p, Z^p)(\frac{3p+1}{2})$$

defined in Lemma 2.1 can be identified with

$$(\mathcal{O}_C(-d+2)\oplus\mathcal{O}_C)\oplus\mathcal{O}_C^2\longrightarrow \operatorname{Syz}(X^p,Y^p,Z^p)(\frac{3p+1}{2}).$$

We consider the vector bundle $\operatorname{Syz}(U^{k+1}, V^{k+1}, (U+V)^k)(\frac{3k+1}{2})$ on the projective line $\mathbb{P}^1 = \operatorname{Proj} K[U, V]$. Since the degree of this bundle is -1, it has to have a non-trivial global section. Substituting $U = X^d$ and $V = Y^d$ yields a non-trivial syzygy

$$FX^{dk+d} + GY^{dk+d} + H(X^d + Y^d)^k = (FX)X^p + (GY)Y^p + H(X^d + Y^d)^k = 0$$

of total degree $\frac{3dk+d}{2}$. That is, we have a non-trivial global section of $S_k(\frac{3dk+d}{2})^k$.

of total degree $\frac{3dk+d}{2}$. That is, we have a non-trivial global section of $S_k(\frac{3dk+d}{2})$ on the curve C. We have $\Gamma(C, S_k(\frac{3dk+d}{2}-1)) = 0$ because otherwise the twisted semistable Frobenius pull-back $\operatorname{Syz}(X^p, Y^p, Z^p)(\frac{3dk+d}{2}+d-2)$ of degree -d would have a non-trivial global section too (see Remark 2.2) which is impossible by semistability. Since $\operatorname{deg}(S_k(\frac{3dk+d}{2})) = (-d+2)d$, we obtain the splitting (rewrite $\frac{3dk+d}{2} = \frac{3p+1}{2} - (d-1) = \frac{3p+1}{2} - t$)

$$\mathcal{S}_k(\frac{3p+1}{2}-t) \cong \mathcal{O}_C(-d+2) \oplus \mathcal{O}_C$$

The other summand $S_{k+1}(\frac{3dk+d}{2}+d-1)$ has degree 0. It follows once again from Lemma 2.1 and the semistability of $Syz(X^p, Y^p, Z^p)$ that

$$\Gamma(C, \mathcal{S}_{k+1}(\frac{3dk+d}{2}+d-2)) = 0,$$

i.e., $S_{k+1}(\frac{3dk+d}{2}+d-1)$ splits as (rewrite $\frac{3dk+d}{2}+d-1=\frac{3p+1}{2}$)

$$\mathcal{S}_{k+1}(\frac{3p+1}{2}) \cong \mathcal{O}_C^2.$$

<u>Step 2.</u> Let (FX, GY, H) be the non-trivial global section of $\mathcal{S}_k(\frac{3p+1}{2}-t)$ constructed above (corresponding to the component \mathcal{O}_C). We show that $H(P) \neq 0$ for every point $P = (x, y, z) \in C$ satisfying $z^d = x^d + y^d = 0$. The last component H of the section (FX, GY, H) is a homogeneous polynomial in X^d and Y^d (it stems by construction from a syzygy on \mathbb{P}^1 in U and V). Let $P = (x, y, z) \in C$ be a point on the curve such that $z^d = x^d + y^d = 0$. Then $x^d = -y^d$ which implies $x = \zeta y$ where ζ is a *d*th root of -1. In particular, $P = (\zeta y, y, 0)$. Since K is algebraically closed, $\operatorname{char}(K) \neq 2$ and $p \equiv -1 \mod 2d$, the group $\mu_{2d}(K)$ of (2d)th roots of unity in K has order 2d. Hence, we have

$$X^d + Y^d = \prod_{\zeta} (X - \zeta Y),$$

where $\zeta \in \mu_{2d}(K)$ runs through the elements with the property $\zeta^d = -1$ (there are exactly *d* such roots). Now assume H(P) = 0. Then H(P') = 0for all points P' of the form $P' = (\zeta y, y, 0)$. So $X^d + Y^d$ has to divide H, i.e., $H = \tilde{H}(X^d + Y^d)$ with a homogeneous polynomial $\tilde{H} \in K[X, Y]$. So we have a relation

$$(FX)X^{p} + (GY)Y^{p} + \tilde{H}(X^{d} + Y^{d})^{k+1} = 0$$

of total degree $\frac{3p+1}{2} - t$. That is, we have a non-trivial section of the bundle $S_{k+1}(\frac{3p+1}{2} - t)$. This section maps by Lemma 2.1 and Remark 2.2 to a non-trivial global section of $\text{Syz}(X^p, Y^p, Z^p)(\frac{3p+1}{2} - t)$. But

$$\deg(\operatorname{Syz}(X^p, Y^p, Z^p)(\frac{3p+1}{2} - t)) = (3p+1-2t-3p)d = (1-2t)d < 0.$$

Hence, the section contradicts the semistability of $Syz(X^p, Y^p, Z^p)$. Step 3. We show that in the surjective sheaf homomorphism

$$\varphi_{\frac{3p+1}{2}}: (\mathcal{O}_C(-d+2) \oplus \mathcal{O}_C) \oplus \mathcal{O}_C^2 \longrightarrow \operatorname{Syz}(X^p, Y^p, Z^p)(\frac{3p+1}{2})$$

the summand $\mathcal{O}_C(-d+2)$ is not necessary, i.e.,

$$\varphi_{\frac{3p+1}{2}}: \mathcal{O}_C^3 = \mathcal{O}_C \oplus \mathcal{O}_C^2 \longrightarrow \operatorname{Syz}(X^p, Y^p, Z^p)(\frac{3p+1}{2})$$

is also surjective.

Set $m := \frac{3p+1}{2}$. By the Nakayama lemma, we can check surjectivity pointwise over the residue field K at every point $P = (x, y, z) \in C$. For this we have to find two linearly independent vectors in the image. First we treat the case $z \neq 0$. We show that we even have a surjective map

$$\mathcal{S}_{k+1}(m) = \mathcal{O}_C^2 \longrightarrow \operatorname{Syz}(X^p, Y^p, Z^p)(m)$$

We take basic sections

$$f = (f_1, f_2, f_3), g = (g_1, g_2, g_3) \in \Gamma(C, \mathcal{S}_{k+1}(m)) \cong \Gamma(C, \mathcal{O}_C^2).$$

Their images are $\tilde{f} = (f_1, f_2, Zf_3)$ and $\tilde{g} = (g_1, g_2, Zg_3)$. Assume there is a relation $\tilde{f}(P) + \lambda \tilde{g}(P) = 0$ with $\lambda \in K^{\times}$. Looking at each component this

gives the equations

$$f_1(P) + \lambda g_1(P) = 0, f_2(P) + \lambda g_2(P) = 0, f_3(P) + \lambda g_3(P) z = 0.$$

But since $z \neq 0$, the latter equation would mean $f_3(P) + \lambda g_3(P) = 0$ and therefore we would obtain a relation $f(P) + \lambda g(P) = 0$ which contradicts the assumption.

Now we deal with the case z = 0, i.e., P = (x, y, 0). Let

(

$$f = (FX, GY, H) \in \Gamma(C, \mathcal{S}_k(m-t)) \cong \Gamma(C, \mathcal{O}_C(-d+2) \oplus \mathcal{O}_C)$$

be the section (corresponding to \mathcal{O}_C which we have found in step 1. The image of f in the bundle $\operatorname{Syz}(X^p, Y^p, Z^p)(m)$ is the section (Z^tFX, Z^tGY, H) . Evaluated at P we obtain the vector v = (0, 0, H(P)). Since $0 = z^d = x^d + y^d$ we have $H(P) \neq 0$ by step 2. Now we take a section $0 \neq g = (g_1, g_2, g_3) \in$ $\Gamma(C, \mathcal{S}_{k+1}(m)) \cong \Gamma(C, \mathcal{O}_C^2)$. The image of g equals (g_1, g_2, Zg_3) . Evaluation at P gives the vector $w = (g_1(P), g_2(P), 0)$, where either $g_1(P)$ or $g_2(P)$ is not 0 (otherwise $g_3(P)$ would be 0 as well). Hence we have found a vector wsuch that v, w are linearly independent over K.

Step 4. So far we have shown that we have a surjective morphism

$$\mathcal{O}_C^3 \longrightarrow \operatorname{Syz}(X^p, Y^p, Z^p)(\frac{3p+1}{2}) \longrightarrow 0.$$

Since det(Syz(X^p, Y^p, Z^p)($\frac{3p+1}{2}$)) $\cong \mathcal{O}_C(1)$ we have a short exact sequence

$$0 \longrightarrow \mathcal{O}_C(-1) \longrightarrow \mathcal{O}_C^3 \longrightarrow \operatorname{Syz}(X^p, Y^p, Z^p)(\frac{3p+1}{2}) \longrightarrow 0.$$

Dualizing and tensoring with $\mathcal{O}_C(-1)$ gives

$$0 \longrightarrow (\operatorname{Syz}(X^p, Y^p, Z^p)(\frac{3p+1}{2}))^{\vee}(-1) \longrightarrow \mathcal{O}_C^3(-1) \longrightarrow \mathcal{O}_C \longrightarrow 0$$

where the map $\mathcal{O}_{C}^{3}(-1) \to \mathcal{O}_{C}$ is given by some linear forms L_{1}, L_{2}, L_{3} in the homogeneous coordinate ring $R = K[X, Y, Z]/(X^{d} + Y^{d} - Z^{d})$. In particular, we have $(\operatorname{Syz}(X^{p}, Y^{p}, Z^{p})(\frac{3p+1}{2}))^{\vee}(-1) \cong \operatorname{Syz}(L_{1}, L_{2}, L_{3})$. We show that $\{L_{1}, L_{2}, L_{3}\}$ and $\{X, Y, Z\}$ generate the same ideal in R. Assume to the contrary that L_{1}, L_{2}, L_{3} are linearly dependent. Such an equation yields a non-trivial section of $\operatorname{Syz}(L_{1}, L_{2}, L_{3})(1)$. This bundle has degree $\operatorname{deg}(\operatorname{Syz}(L_{1}, L_{2}, L_{3})(1)) = (2 - 3)d = -d < 0$. But since $\operatorname{Syz}(X^{p}, Y^{p}, Z^{p})$ is semistable, so is $(\operatorname{Syz}(X^{p}, Y^{p}, Z^{p})(\frac{3p+1}{2}))^{\vee}$ and thus also $\operatorname{Syz}(L_{1}, L_{2}, L_{3})$. So the section contradicts the semistability.

Step 5. We have already proved that

$$\mathcal{E} \cong \operatorname{Syz}(X, Y, Z) \cong (\operatorname{Syz}(X^p, Y^p, Z^p)(\frac{3p+1}{2}))^{\vee}(-1).$$

Since $Syz(X^p, Y^p, Z^p)$ is a bundle of rank 2, we have

$$\operatorname{Syz}(X^p, Y^p, Z^p) \cong \operatorname{Syz}(X^p, Y^p, Z^p)^{\vee} \otimes \mathcal{O}_C(-3p).$$

So finally we obtain

$$\begin{aligned} \mathcal{E} &\cong \operatorname{Syz}(X,Y,Z) \\ &\cong (\operatorname{Syz}(X^p,Y^p,Z^p)(\frac{3p+1}{2}))^{\vee}(-1) \\ &\cong \operatorname{Syz}(X^p,Y^p,Z^p)^{\vee} \otimes \mathcal{O}_C(-\frac{3p+1}{2}) \otimes \mathcal{O}_C(-1) \\ &\cong \operatorname{Syz}(X^p,Y^p,Z^p) \otimes \mathcal{O}_C(3p) \otimes \mathcal{O}_C(-\frac{3p+1}{2}) \otimes \mathcal{O}_C(-1) \\ &\cong \operatorname{Syz}(X^p,Y^p,Z^p)(\frac{3(p-1)}{2}), \end{aligned}$$

and consequently $F^*(\mathcal{E}) \cong \operatorname{Syz}(X^p, Y^p, Z^p) \cong \mathcal{E}(-\frac{3(p-1)}{2})$ which finishes the proof. \Box

Remark 3.5. We also comment on the case $p \equiv 1 \mod 2d$. Then we write p = dk + 1 with k even and set t = 1. The syzygy bundle $\operatorname{Syz}(U^k, V^k, (U + V)^{k+1})(\frac{3k}{2})$ on $\mathbb{P}^1 = \operatorname{Proj} K[U, V]$ has degree -1 and therefore has to have a non-trivial global section. Substituting $U = X^d$ and Y^d and multiplying with XY gives then a syzygy

$$(FY)X^{p} + (GX)Y^{p} + (HXY)(X^{d} + Y^{d})^{k+1} = 0,$$

i.e., a global section of $S_{k+1}(\frac{3dk}{2}+2)$ on the Fermat curve. As in the proof of Theorem 3.4 we obtain the splittings (rewrite $\frac{3dk}{2}+2=\frac{3p+1}{2}$)

$$\mathcal{S}_{k+1}(\frac{3p+1}{2}) \cong \mathcal{O}_C(-d+2) \oplus \mathcal{O}_C \text{ and } \mathcal{S}_k(\frac{3p+1}{2}-t) \cong \mathcal{O}_C^2.$$

Unfortunately, we do not know how to prove an analog of step 2 in these characteristics, i.e., to show that $H(P) \neq 0$ for every point $P = (x, y, z) \in C$ with $z^d = x^d + y^d = 0$. Here the reasoning of the proof (step 2) of Theorem 3.4 would lead to a section of $\text{Syz}(X^p, Y^p, (X^d + Y^d)^{k+2})$ which is not helpful to get a contradiction.

Remark 3.6. We cannot expect that Theorem 3.4 holds in every characteristic p where $\Omega_{\mathbb{P}^2}|_C$ is strongly semistable. For example, consider in characteristic 2 the Fermat cubic $C = \operatorname{Proj}(K[X,Y,Z]/(X^3 + Y^3 - Z^3))$, which is an elliptic curve. It is a well-known fact that semistable vector bundles on elliptic curves are strongly semistable (see for instance [27, appendix]). Hence $\Omega_{\mathbb{P}^2}|_C \cong \operatorname{Syz}(X,Y,Z)$ is strongly semistable by [5, Proposition 6.2]. The pullback $F^*(\Omega_{\mathbb{P}^2}|_C) \cong \operatorname{Syz}(X^2,Y^2,Z^2)$ has for the first time non-trivial global sections in total degree 3, namely the (only) syzygy (X,Y,-Z) which comes from the equation of the curve. This section gives rise to the short exact sequence

 $0 \longrightarrow \mathcal{O}_C \longrightarrow \operatorname{Syz}(X^2, Y^2, Z^2)(3) \longrightarrow \mathcal{O}_C \longrightarrow 0,$

i.e., $\operatorname{Syz}(X^2, Y^2, Z^2)(3)$ is the bundle F_2 in Atiyah's classification [1]. Since the Hasse invariant of C is 0, we have $F^*(F_2) \cong \mathcal{O}_C^2$ and therefore $F^*(\Omega_{\mathbb{P}^2}|_C) \ncong \Omega_{\mathbb{P}^2}|_C(-\frac{3(p-1)}{2})$. We have $F^{2^*}(\Omega_{\mathbb{P}_2}|_C) \cong \mathcal{O}_C(-6) \oplus \mathcal{O}_C(-6)$ and we obtain (up to a twist) the periodicity $F^{3^*}(\Omega_{\mathbb{P}^2}|_C) \cong (F^{2^*}(\Omega_{\mathbb{P}^2}|_C))(-6)$.

4. A COMPUTATION OF THE HILBERT-KUNZ FUNCTION

We recall that the *Hilbert-Kunz function* of a standard graded ring R of characteristic p > 0 with graded maximal ideal \mathfrak{m} is the function

$$e \mapsto \varphi_R(e) := \operatorname{length}(R/\mathfrak{m}^{[p^\circ]})$$

where $\mathfrak{m}^{[p^e]}$ denotes the extended ideal under the *e*-th iteration of the Frobenius endomorphism on R; see for instance [23] for this rather complicated function and its properties. As a consequence of Theorem 3.4 we obtain the complete Hilbert-Kunz function of the Fermat ring $R = K[X, Y, Z]/(X^d + Y^d - Z^d)$ in characteristics $p \equiv -1 \mod 2d$. The following result is implicitly contained in [12, Lemma 5.6] of P. Monsky and C. Han.

Corollary 4.1. Let $d \ge 2$ be a positive integer and let K be a field of characteristic $p \equiv -1 \mod 2d$. Then the Hilbert-Kunz function of the Fermat ring $R = K[X, Y, Z]/(X^d + Y^d - Z^d)$ is

$$\varphi_R(e) = \frac{3d}{4}p^{2e} + 1 - \frac{3d}{4}.$$

Proof. Since the length of $R/\mathfrak{m}^{[p^e]}$, $\mathfrak{m} = (X, Y, Z)$, does not change if one enlarges the base field, we may assume that K is algebraically closed. Hence, $\varphi_R(e) = \sum_{m=0}^{\infty} \dim_K (R/\mathfrak{m}^{[p^e]})_m$ (this sum is in fact finite since the algebras $R/\mathfrak{m}^{[p^e]}$ have finite length). It follows from the presenting sequence of $\operatorname{Syz}(X, Y, C)$ on the Fermat curve $C = \operatorname{Proj} R$ that (setting $q := p^e$)

(*)
$$\dim_{K}(R/\mathfrak{m}^{[q]})_{m} = h^{0}(C, \mathcal{O}_{C}(m)) - 3h^{0}(C, \mathcal{O}_{C}(m-q)) + h^{0}(C, \operatorname{Syz}(X^{q}, Y^{q}, Z^{q})(m)).$$

By Theorem 3.4 we have $\operatorname{Syz}(X^p, Y^p, Z^p) \cong \operatorname{Syz}(X, Y, Z)(-\frac{3(p-1)}{2})$ and consequently $\operatorname{Syz}(X^q, Y^q, Z^q) \cong \operatorname{Syz}(X, Y, Z)(-\frac{3(q-1)}{2})$ for all $q = p^e, e \ge 1$. The global evaluation of the presenting sequence of $\mathcal{E}(k) := \operatorname{Syz}(X, Y, Z)(k)$ gives the exact sequence

$$0 \longrightarrow \Gamma(C, \mathcal{E}(k)) \longrightarrow \Gamma(C, \mathcal{O}_C(k-1)^3) \longrightarrow \Gamma(C, \mathcal{O}_C(k)) \longrightarrow K \longrightarrow 0$$

for k = 0 and the short exact sequence

$$0 \longrightarrow \Gamma(C, \mathcal{E}(k)) \longrightarrow \Gamma(C, \mathcal{O}_C(k-1)^3) \longrightarrow \Gamma(C, \mathcal{O}_C(k)) \longrightarrow 0$$

for $k \geq 1$. Hence we obtain

$$h^{0}(C, \mathcal{E}(k)) = \begin{cases} 3h^{0}(C, \mathcal{O}_{C}(k-1)) - h^{0}(C, \mathcal{O}_{C}(k)) + 1 \text{ if } k = 0, \\ 3h^{0}(C, \mathcal{O}_{C}(k-1)) - h^{0}(C, \mathcal{O}_{C}(k)) \text{ if } k \neq 0. \end{cases}$$

For $k \ge d-2$ we have by Riemann-Roch $h^0(C, \mathcal{O}_C(k)) = dk - g + 1$, where g is the genus of the curve. Since $p \equiv -1 \mod 2d$, this holds in particular for $k \ge \frac{p+1}{2}$. So the geometric formula for the Hilbert-Kunz function (*) gives (in order to obtain an easier calculation we sum up to 2q):

$$\begin{split} \varphi_R(e) &= \sum_{m=0}^{2q} h^0(C, \mathcal{O}_C(m)) - 3 \sum_{m=0}^{2q} h^0(C, \mathcal{O}_C(m-q)) \\ &+ 3 \sum_{m=0}^{2q} h^0(C, \mathcal{O}_C(m - \frac{3(q-1)}{2} - 1)) \\ &- \sum_{m=0}^{2q} h^0(C, \mathcal{O}_C(m - \frac{3(q-1)}{2})) + 1 \\ &= \sum_{m=0}^{2q} h^0(C, \mathcal{O}_C(m)) - 3 \sum_{m=0}^{q} h^0(C, \mathcal{O}_C(m)) \\ &+ 3 \sum_{m=0}^{\frac{q+1}{2}} h^0(C, \mathcal{O}_C(m)) - \sum_{m=0}^{\frac{q+3}{2}} h^0(C, \mathcal{O}_C(m)) + 1 \\ &= \sum_{m=\frac{q+5}{2}}^{2q} h^0(C, \mathcal{O}_C(m)) - 3 \sum_{m=\frac{q+3}{2}}^{q} h^0(C, \mathcal{O}_C(m)) + 1 \\ &= \sum_{m=\frac{q+5}{2}}^{2q} (dm - g + 1) - 3 \sum_{m=\frac{q+3}{2}}^{q} (dm - g + 1) + 1 \\ &= d \left(q(2q + 1) - \frac{(q+3)(q+5)}{8} \right) - \frac{3g(q-1)}{2} + \frac{3(q-1)}{2} \\ &- 3d \left(\frac{q(q+1)}{2} - \frac{(q+1)(q+3)}{8} \right) + \frac{3g(q-1)}{2} - \frac{3(q-1)}{2} + 1 \\ &= \frac{3d}{4}q^2 + 1 - \frac{3d}{4}. \end{split}$$

Thus we have obtained the desired formula for the Hilbert-Kunz function of the ring R.

Remark 4.2. Corollary 4.1 matches for d = 3 with the result [10, Theorem 4] of Buchweitz and Chen, which says that the Hilbert-Kunz function of the

homogeneous coordinate ring of a plane elliptic curve defined over a field K of odd characteristic p equals $\frac{9}{4}p^{2e} - \frac{5}{4}$.

5. Examples of a (0,1)-Frobenius periodicity on Fermat curves

In this section, we show how to get via Theorem 3.4 non-trivial examples of (0, 1)-Frobenius periodicities, i.e., we give explicit examples of vector bundles \mathcal{E} on certain Fermat curves such that $\mathcal{E} \cong F^*(\mathcal{E})$.

Example 5.1. Let $d \ge 2$ and let K be a field of characteristic $p \equiv -1 \mod 2d$. The ring homomorphism

$$K[X, Y, Z]/(X^d + Y^d - Z^d) \longrightarrow K[U, V, W]/(U^{2d} + V^{2d} - W^{2d})$$

which sends $X \mapsto U^2$, $Y \mapsto V^2$ and $Z \mapsto W^2$ induces a finite cover $f : C^{2d} \to C^d$, where C^i denotes the Fermat curve of degree *i*. Since $f^*(\mathcal{O}_{C^d}(1)) \cong \mathcal{O}_{C^{2d}}(2)$, we see that $\deg(f) = 4$. The group $\mathbb{Z}/(2) \times \mathbb{Z}/(2)$ acts on C^{2d} by sending (u, v, w) either to (u, v, w), (-u, v, w), (u, -v, w) or (u, v, -w), and C^d is the quotient of this action. Moreover, f is a finite separable morphism and therefore f preserves semistability. Theorem 3.4 gives, via pull-back under f, the isomorphic vector bundles

$$\begin{split} \operatorname{Syz}_{C^{2d}}(U^{2p}, V^{2p}, W^{2p}) &\cong & f^*(\operatorname{Syz}_{C^d}(X^p, Y^p, Z^p)) \\ &\cong & f^*(\operatorname{Syz}_{C^d}(X, Y, Z)(-\frac{3(p-1)}{2})) \\ &\cong & f^*(\operatorname{Syz}_{C^d}(X, Y, Z)) \otimes f^*(\mathcal{O}_{C^d}(-\frac{3(p-1)}{2})) \\ &\cong & \operatorname{Syz}_{C^{2d}}(U^2, V^2, W^2)(-3(p-1)) \end{split}$$

on the Fermat curve C^{2d} . In particular, we have the periodicity

$$\operatorname{Syz}_{C^{2d}}(U^2, V^2, W^2)(3) \cong F^*(\operatorname{Syz}_{C^{2d}}(U^2, V^2, W^2)(3))$$

(note that this bundle has degree 0 and is not trivial since there are no nontrivial global sections below the degree of the curve).

Remark 5.2. By the classical result [19, Satz 1.4] of H. Lange and U. Stuhler the periodicity $\operatorname{Syz}_{C^{2d}}(U^2, V^2, W^2)(3) \cong F^*(\operatorname{Syz}_{C^{2d}}(U^2, V^2, W^2)(3))$ in Example 5.1 implies the existence of an étale cover

$$g: D \longrightarrow C^{2d}$$

such that

$$g^*(\operatorname{Syz}_{C^{2d}}(U^2, V^2, W^2)(3)) \cong \mathcal{O}_D^2.$$

Moreover, by [19, Proposition 1.2] the bundle $Syz_{C^{2d}}(U^2, V^2, W^2)(3)$ comes from a (continuous) representation

$$\rho: \pi_1(C^{2d}) \longrightarrow GL_2(K)$$

of the algebraic fundamental group $\pi_1(C^{2d})$. It would be interesting to see how the étale trivialization g and the representation ρ look explicitly in this example.

Remark 5.3. In this remark we show that $\mathcal{E} := \text{Syz}(U^2, V^2, W^2)(3)$ is not étale trivializable in characteristic 0. We consider this bundle on the smooth projective relative curve

$$\mathcal{C}^{2d} := \operatorname{Proj}(\mathbb{Z}_{2d}[U, V, W] / (U^{2d} + V^{2d} - Z^{2d})) \longrightarrow \operatorname{Spec} \mathbb{Z}_{2d}.$$

For a prime number $p \not| 2d$ the special fiber C_p^{2d} over (p) is the (smooth) Fermat curve over the finite field \mathbb{F}_p . The generic fiber C_0^{2d} over (0) is the Fermat curve over \mathbb{Q} . To prove that $\mathcal{E}_0 := \mathcal{E}|_{\mathcal{C}_0^{2d}}$ is not étale trivializable on \mathcal{C}_0^{2d} we use once again Hilbert-Kunz theory (cf. also the proof of Lemma 3.2). Note that \mathcal{E}_0 is semistable by [5, Proposition 2]. If $d \geq 4$ is even (the case d = 2 is trivial) we consider prime numbers $p \equiv d \pm 1 \mod 2d$ and if $d \geq 3$ is odd we look at prime numbers $p \equiv d \mod 2d$. In these characteristics, [24, Theorem 2.3] yields that the Hilbert-Kunz multiplicity $e_{HK}(R_p)$ of the homogeneous coordinate ring R_p of the Fermat curve $C^d \to \operatorname{Spec} \mathbb{F}_p$ of degree d equals

$$e_{HK}(R_p) = \frac{3d}{4} + \frac{(d(d-3))^2}{4dp^2}$$
 if d is even and $e_{HK}(R_p) = \frac{3d}{4} + \frac{d^3}{4p^2}$ if d is odd.

Hence, $\Omega_{\mathbb{P}^2}|_{C^d}$ is not strongly semistable by [7, Corollary 4.6]. Since we can realize the fibers \mathcal{C}_p^{2d} , as in Example 5.1, as coverings $f: \mathcal{C}_p^{2d} \to C^d$, the bundles $\mathcal{E}_p := \mathcal{E}|_{\mathcal{C}_p^{2d}} \cong f^*(\Omega_{\mathbb{P}^2}|_{C^d})(3)$ are not strongly semistable either. Note that by the well-known theorem of Dirichlet (cf. [25, Chapitre VI, §4, Théorème and Corollaire]) there are infinitely many such fibers. Therefore, there is no étale cover $g: D \to \mathcal{C}_0^{2d}$ such that $g^*(\mathcal{E}_0) \cong \mathcal{O}_D^2$.

This observation is somehow related to the Grothendieck-Katz p-curvature conjecture [16, (I quat)] which states the following: Let R be a \mathbb{Z} -domain of finite type, $\mathbb{Z} \subseteq R$, and $\mathcal{X} \to \operatorname{Spec} R$ a smooth projective morphism of relative dimension $d \geq 1$. If \mathcal{E} is a vector bundle on $\mathcal{X} \to \operatorname{Spec} R$ equipped with an integrable connection ∇ such that $\nabla|_{\mathcal{E}_{\mathfrak{p}}}$ has *p*-curvature 0 on the special fiber $\mathcal{X}_{\mathfrak{p}}$ for almost all closed points $\mathfrak{p} \in \operatorname{Spec} R$, then there exists an étale cover $g: Y \to \mathcal{X}_0$ of the generic fiber \mathcal{X}_0 such that $(g^*(\mathcal{E}_0), g^*(\nabla_0))$ is trivial. For a detailed account on integrable connections and p-curvature see [15] and [16]. In our example of the relative Fermat curve \mathcal{C}^{2d} , we have for infinitely many prime numbers $p \equiv -1 \mod 2d$ the Frobenius descent $F^*(\mathcal{E}_p) \cong \mathcal{E}_p$ on \mathcal{C}_p^{2d} . By the so-called Cartier-correspondence [15, Theorem 5.1] this is equivalent to the existence of an integrable connection ∇_p on \mathcal{E}_p with vanishing *p*-curvature. If one could establish a connection on \mathcal{E} (since \mathcal{E} is a vector bundle over a curve, this connection would be automatically integrable) which is compatible with the connections on the special fibers \mathcal{C}_p^{2d} , $p \equiv -1 \mod 2d$, then our example would show that the Grothendieck-Katz conjecture does not hold if one only requires vanishing *p*-curvature for infinitely many closed points.

Remark 5.4. In this remark we assume that the base field is algebraically closed. We consider the *Verschiebung*

$$V: \mathcal{M}_{C^{2d}}(2, \mathcal{O}_{C^{2d}}) \dashrightarrow \mathcal{M}_{C^{2d}}(2, \mathcal{O}_{C^{2d}}), \ [\mathcal{E}] \longmapsto [F^*(\mathcal{E})]$$

induced by the Frobenius morphism on C^{2d} . We recall that the Verschiebung is a rational map from the moduli space $\mathcal{M}_{C^{2d}}(2, \mathcal{O}_{C^{2d}})$ parametrizing (up to *S*-equivalence) semistable vector bundles on C^{2d} of rank 2 and trivial determinant to itself. The vector bundle $\mathcal{S} := \operatorname{Syz}_{\mathbb{P}^2}(U^2, V^2, W^2)$ is stable on the projective plane $\mathbb{P}^2 = \operatorname{Proj} K[U, V, W]$ by [8, Corollary 6.4]. Since the discriminant of this bundle equals $\Delta(\mathcal{S}) = 4c_2(\mathcal{S}) - c_1(\mathcal{S})^2 = 12$, the restriction of \mathcal{S} to every smooth projective curve of degree ≥ 7 remains stable by Langer's restriction theorem [20, Theorem 2.19]. In particular, $\mathcal{S}|_{C^{2d}} \cong \operatorname{Syz}_{C^{2d}}(U^2, V^2, W^2)(3)$ is stable on the Fermat curve C^{2d} for $d \geq 4$. Hence, for $d \geq 4$ the bundle $\operatorname{Syz}_{C^{2d}}(U^2, V^2, W^2)(3)$ defines a closed point of $\mathcal{M}_{C^{2d}}(2, \mathcal{O}_C)$ which is fixed under the Verschiebung V.

Remark 5.5. We may pull-back the vector bundle $\mathcal{E} = \text{Syz}(U^2, V^2, W^2)(3)$ along the cone mapping

$$p: T = \operatorname{Spec} K[U, V, W] / (U^{2d} + V^{2d} - W^{2d}) \setminus \{\mathfrak{m}\} \to C^{2d}$$

to obtain the bundle $\mathcal{G} = p^*(\mathcal{E})$ on the punctured spectrum with the property $F^*(\mathcal{G}) \cong \mathcal{G}$. This can however not be extended to get a Frobenius periodicity on the module level, since $F^*\Gamma(T,\mathcal{G}) \neq \Gamma(T,F^*\mathcal{G})$. A Frobenius periodicity for a coherent *R*-module *M*, where *R* is a local noetherian domain, implies that *M* is free. This observation follows by looking at Fitting ideals of a free resolution (we thank Manuel Blickle and Neil Epstein for this remark).

References

- M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957), 414–452.
- I. Biswas and L. Ducrohet, An analog of a theorem of Lange and Stuhler for principal bundles, C.R. Acad. Sci. Paris, Ser. I 345 (2007), no. 9, 495–497.
- 3. M. Blickle, *Minimal γ-sheaves*, Algebra and Number Theory 2 (2008), no. 3, 347–368.
- 4. M. Blickle and G. Böckle, *Cartier modules: finiteness results*, Preprint (2009).
- H. Brenner, Computing the tight closure in dimension two, Math. Comput. 74 (2005), no. 251, 1495–1518.
- On a problem of Miyaoka, Number Fields and Function Fields Two Parallel Worlds (B. Moonen R. Schoof G, van der Geer, ed.), Progress in Mathematics, vol. 239, Birkhäuser, 2005, pp. 51–59.
- <u>—</u>, The rationality of the Hilbert-Kunz multiplicity in graded dimension two, Math. Ann. **334** (2006), no. 1, 91–110.
- 8. _____, Looking out for stable syzygy bundles, Adv. Math. 219 (2008), no. 2, 401-427.
- H. Brenner and A. Kaid, On deep Frobenius descent and flat bundles, Math. Res. Lett. 15 (2008), no. 5-6, 1101–1115.
- R.-O. Buchweitz and Q. Chen, Hilbert-Kunz functions of cubic curves and surfaces, J. Algebra 197 (1997), no. 1, 246–267.

- M. Emerton and M. Kisin, The Riemann-Hilbert Correspondence for Unit F-Crystals, Astérisque, vol. 293, Société Mathématique de France, 2004.
- C. Han and P. Monsky, Some surprising Hilbert-Kunz functions, Math. Z. 214 (1993), 119–135.
- 13. R. Hartshorne, Ample vector bundles on curves, Nagoya Math. J. 43 (1971), 73-89.
- 14. A. Kaid, On semistable and strongly semistable syzygy bundles, PhD-thesis, University of Sheffield, 2009.
- N. M. Katz, Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 175–232.
- _____, Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math. 18 (1972), 1–118.
- <u>p-adic properties of modular forms</u>, Modular Functions of One Variable, Lect. Notes in Math., vol. 350, 1973, pp. 69–190.
- 18. A. Kustin, H. Rahmati, and A. Vraciu, The resolution of the bracket powers of the maximal ideal in a diagonal hypersurface, Preprint (2010).
- H. Lange and U. Stuhler, Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe, Math. Zeitschrift 156 (1977), 73–83.
- A. Langer, Moduli spaces of sheaves and principal G-bundles, Algebraic geometry, Seattle 2005 (D. Abramovich et al., ed.), Proc. Symp. Pure Math., vol. 80, AMS, 2009, pp. 273–308.
- G. Lyubeznik, F-modules: applications to local cohomology and D-modules in characteristic p > 0, J. reine angew. Math. 491 (1997), 65–130.
- Y. Miyaoka, The Chern class and Kodaira dimension of a minimal variety, Algebraic Geometry, Sendai 1985, Adv. Stud. Pure Math., vol. 10, 1987, pp. 449–476.
- 23. P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983), 43-49.
- The Hilbert-Kunz multiplicity of an irreducible trinomial, J. Algebra 304 (2006), no. 3, 1101–1107.
- 25. J. P. Serre, Cours d'arithmétique, Presses Universitaires de France, 1970.
- V. Trivedi, Semistability and Hilbert-Kunz multiplicity for curves, J. Algebra 284 (2005), no. 2, 627–644.
- 27. L. W. Tu, Semistable bundles over an elliptic curve, Adv. Math. 98 (1993), 1–26.

UNIVERSITÄT OSNABRÜCK, FACHBEREICH 6: MATHEMATIK/INFORMATIK, ALBRECHTSTR. 28A, 49069 OSNABRÜCK, GERMANY

E-mail address: hbrenner@uni-osnabrueck.de and akaid@uni-osnabrueck.de