AN EXPLICIT EXAMPLE OF FROBENIUS PERIODICITY

HOLGER BRENNER AND ALMAR KAID

Abstract

In this note we show that the restriction of the cotangent bundle $\Omega_{\mathbb{P}^{2}}$ of the projective plane to a Fermat curve C of degree d in characteristic $p \equiv-1 \bmod 2 d$ is, up to tensoration with a certain line bundle, isomorphic to its Frobenius pull-back. This leads to a Frobenius periodicity $F^{*}(\mathcal{E}) \cong \mathcal{E}$ on the Fermat curve of degree $2 d$, where $\mathcal{E}=$ $\operatorname{Syz}\left(U^{2}, V^{2}, W^{2}\right)(3)$.

Mathematical Subject Classification (2010): primary: 14H60; secondary: 13D40
Keywords: semistable vector bundle, syzygy bundle, Fermat curve, Frobenius periodicity, Hilbert-Kunz theory

1. Introduction

Let C be a smooth projective curve defined over a field K of characteristic $p>0$. If F denotes the absolute Frobenius morphism $F: C \rightarrow C$, then we say that a vector bundle \mathcal{E} on C admits an (s, t)-Frobenius periodicity if there are natural numbers s and $t, t>s$, such that $F^{t^{*}}(\mathcal{E}) \cong F^{s^{*}}(\mathcal{E})$. Of particular interest are vector bundles which admit a $(0, t)$-Frobenius periodicity, i.e., $F^{t *}(\mathcal{E}) \cong \mathcal{E}$. By the classical theorem of H. Lange and U. Stuhler [19, Satz 1.4] such a bundle is étale trivializable, i.e., there exists an étale covering $f: D \rightarrow C$ such that $f^{*}(\mathcal{E}) \cong \mathcal{O}_{D}^{r}$ where $r=\operatorname{rk}(\mathcal{E})$. Hence a vector bundle \mathcal{E} with a $(0, t)$-Frobenius periodicity comes from a (continuous) representation $\rho: \pi_{1}(C) \rightarrow G L_{r}(K)$ of the étale fundamental group $\pi_{1}(C)$ of the curve (see [ibid., Proposition 1.2]). We recall that a vector bundle which can be trivialized under an étale covering does not necessarily admit a Frobenius periodicity (see [9, Example 2.10] or [2, Example below Theorem 1.1]).

Quasicoherent modules over a scheme of positive characteristic allowing a Frobenius periodicity appear under several names (\mathcal{F}-finite modules, unit $\mathcal{O}_{X}[F]$-modules) and from several perspectives (D-modules, local cohomology, Cartier modules, constructible sheaves on the étale site, Riemann-Hilbert correspondence) in the literature. Beside [19] we mention work of Katz [17, Proposition 4.1.1], Lyubeznik [21], Emerton and Kisin [11], Blickle [3] and Blickle and Böckle [4].

Despite the importance of vector bundles having a Frobenius periodicity, it is not easy to write down non-trivial explicit examples. For a line bundle
the condition becomes $F^{t^{*}} \mathcal{L}=\mathcal{L}^{q}=\mathcal{L}\left(\right.$ with $\left.q=p^{t}\right)$, so \mathcal{L} must be a torsion element in Pic C of order $q-1$. For higher rank, a necessary condition is that the bundle \mathcal{S} has degree 0 and is semistable. By the periodicity it follows that the bundle is in fact strongly semistable, meaning that $F^{t^{*}}(\mathcal{E})$ is semistable for all $t \geq 0$. On the other hand, if the curve C and the bundle \mathcal{E} are defined over a finite field and \mathcal{E} is strongly semistable of degree 0 , then there is necessarily a (s, t)-Frobenius periodicity due to the fact that the number of isomorphism classes of semistable vector bundles of fixed rank and degree is finite ([19, Satz 1.9]). Nevertheless, it is still hard to detect the periodicity s and t. If we have an extension $0 \rightarrow \mathcal{O}_{C} \rightarrow \mathcal{S} \rightarrow \mathcal{O} \rightarrow 0$ given by $c \in H^{1}\left(C, \mathcal{O}_{C}\right)$, then its Frobenius pull-back is given by the class $F^{*}(c)$, and one can get (semistable, but not stable) examples by looking at the Frobenius action on $H^{1}\left(C, \mathcal{O}_{C}\right)$.

In this note we provide a down to earth example of a stable rank-2 vector bundle \mathcal{E} on a suitable Fermat curve admitting a $(0,1)$-Frobenius periodicity. Moreover, this periodicity only depends on a congruence condition of the characteristic of the base field, not on its algebraic structure. Our main tools will be results of P. Monsky on the Hilbert-Kunz multiplicity of Fermat hypersurface rings and the geometric approach to Hilbert-Kunz theory developed independently by the first author in [7] and V. Trivedi in [26].

The results of this article are contained in Chapter 4 of the PhD-thesis [14] of the second author. Related results on the free resolution of Frobenius powers on a Fermat ring can be found in the preprint [18]. We thank Manuel Blickle, Aldo Conca, Neil Epstein and Andrew Kustin for useful discussions.

2. A LEMMA ON GLOBAL SECTIONS

To begin with we recall the notions of a syzygy bundle. Let K be a field and let R be a normal standard-graded K-domain of dimension $d \geq 2$. Then homogeneous R_{+}-primary elements f_{1}, \ldots, f_{n} (i.e., $\sqrt{\left(f_{1}, \ldots, f_{n}\right)}=R_{+}$) of degrees d_{1}, \ldots, d_{n} define a short exact (presenting) sequence

$$
0 \longrightarrow \operatorname{Syz}\left(f_{1}, \ldots, f_{n}\right) \longrightarrow \bigoplus_{i=1}^{n} \mathcal{O}_{X}\left(-d_{i}\right) \xrightarrow{f_{1}, \ldots, f_{n}} \mathcal{O}_{X} \longrightarrow 0
$$

on the projective scheme $X=\operatorname{Proj} R$. The kernel $\operatorname{Syz}\left(f_{1}, \ldots, f_{n}\right)$ is locally free and is called the syzygy bundle for the elements f_{1}, \ldots, f_{n}.

In this article we only deal with restrictions of syzygy bundles of the form $\operatorname{Syz}\left(X^{a}, Y^{a}, Z^{a}\right), a \in \mathbb{N} \backslash\{0\}$, on $\mathbb{P}^{2}=\operatorname{Proj} K[X, Y, Z]$ to a plane curve C. Our main interest will be the case $a=1$ which corresponds via the Euler sequence to the cotangent bundle $\left.\Omega_{\mathbb{P}^{2}}\right|_{C}$ on the projective plane. Since there will be no confusion in the sequel we also denote the restricted bundle on the curve by $\operatorname{Syz}\left(X^{a}, Y^{a}, Z^{a}\right)$.

Let K be a field and consider a smooth plane curve of the form

$$
V_{+}\left(Z^{d}-P(X, Y)\right) \subset \mathbb{P}^{2}=\operatorname{Proj} K[X, Y, Z]
$$

where $P(X, Y) \in K[X, Y]$ denotes a homogeneous polynomial of degree d. In this situation we can compute global sections of a rank-2 syzygy bundle of the form $\operatorname{Syz}\left(X^{a_{1}}, Y^{a_{2}}, Z^{a_{3}}\right)$ by the following lemma which is a slight improvement over [6, Lemma 1]. It relates the sheaves $\operatorname{Syz}\left(X^{a_{1}}, Y^{a_{2}}, Z^{a_{3}}\right)$ with the sheaves $\operatorname{Syz}\left(X^{a_{1}}, Y^{a_{2}}, P(X, Y)^{k}\right)$ which come from \mathbb{P}^{1} via the Noetherian normalization $C=V_{+}\left(Z^{d}-P(X, Y)\right) \rightarrow \mathbb{P}^{1}=\operatorname{Proj} K[X, Y]$. We will use this result several times in the proof of our main theorem in the next section.

Lemma 2.1. Let K be a field and let $P(X, Y) \in K[X, Y]$ be a homogeneous polynomial of degree d. Suppose the plane curve

$$
C:=\operatorname{Proj}\left(K[X, Y, Z] /\left(Z^{d}-P(X, Y)\right)\right)
$$

is smooth. Further, fix $a_{1}, a_{2}, a_{3} \in \mathbb{N}_{+}$and write $a_{3}=d k+t$ with $0 \leq t<d$. Then we have for every $m \in \mathbb{Z}$ a surjective sheaf morphism

$$
\begin{aligned}
\varphi_{m}: \mathcal{S}_{k}(m-t) \oplus \mathcal{S}_{k+1}(m) & \longrightarrow \operatorname{Syz}\left(X^{a_{1}}, Y^{a_{2}}, Z^{a_{3}}\right)(m) \\
\left(f_{1}, f_{2}, f_{3}\right),\left(g_{1}, g_{2}, g_{3}\right) & \longmapsto\left(Z^{t} f_{1}+g_{1}, Z^{t} f_{2}+g_{2}, f_{3}+Z^{d-t} g_{3}\right)
\end{aligned}
$$

for every $m \in \mathbb{Z}$, where $\mathcal{S}_{i}:=\operatorname{Syz}\left(X^{a_{1}}, Y^{a_{2}}, P(X, Y)^{i}\right)$ for $i \geq 0$. Moreover, the corresponding map on global sections

$$
\Gamma\left(C, \mathcal{S}_{k}(m-t)\right) \oplus \Gamma\left(C, \mathcal{S}_{k+1}(m)\right) \longrightarrow \Gamma\left(C, \operatorname{Syz}\left(X^{a_{1}}, Y^{a_{2}}, Z^{a_{3}}\right)(m)\right)
$$

is surjective for every $m \in \mathbb{Z}$.
Proof. We consider the sheaf morphism

$$
\mathcal{O}_{C}\left(m-t-a_{1}\right) \oplus \mathcal{O}_{C}\left(m-t-a_{2}\right) \oplus \mathcal{O}_{C}(m-t-d k)
$$

\oplus

which maps $\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right) \mapsto\left(Z^{t} s_{1}+s_{4}, Z^{t} s_{2}+s_{5}, s_{3}+Z^{d-t} s_{6}\right)$. Clearly, $\widetilde{\varphi_{m}}$ maps $\mathcal{S}_{k}(m-t) \oplus \mathcal{S}_{k+1}(m)$ into $\operatorname{Syz}\left(X^{a_{1}}, Y^{a_{2}}, Z^{a_{3}}\right)(m)$. Hence, the map φ_{m} is obtained from $\widetilde{\varphi_{m}}$ via restriction to $\mathcal{S}_{k}(m-t) \oplus \mathcal{S}_{k+1}(m)$ and is therefore a morphism of sheaves. It is enough to prove that φ_{m} is surjective on global sections for all m. Let $s:=(F, G, H) \in \Gamma\left(C, \operatorname{Syz}\left(X^{a_{1}}, Y^{a_{2}}, Z^{a_{3}}\right)(m)\right)$ be a non-trivial global section, i.e., $F X^{a_{1}}+G Y^{a_{2}}+H Z^{a_{3}}=0$ and $\operatorname{deg}(F)+a_{1}=$ $\operatorname{deg}(G)+a_{2}=\operatorname{deg}(H)+a_{3}=m$. We write

$$
\begin{aligned}
F & =F_{0}+F_{1} Z+F_{2} Z^{2}+\ldots+F_{d-1} Z^{d-1} \\
G & =G_{0}+G_{1} Z+G_{2} Z^{2}+\ldots+G_{d-1} Z^{d-1} \\
H & =H_{0}+H_{1} Z+H_{2} Z^{2}+\ldots+H_{d-1} Z^{d-1}
\end{aligned}
$$

with $F_{i}, G_{i}, H_{i} \in K[X, Y]$ for $i=0, \ldots, d-1$. We have $Z^{a_{3}}=Z^{d k+t}=$ $\left(Z^{d}\right)^{k} Z^{t}=P(X, Y)^{k} Z^{t}$. Since s is a syzygy we obtain (by considering the $K[X, Y]]$-component corresponding to Z^{i} a system of equations

$$
F_{i} Z^{i} X^{a_{1}}+G_{i} Z^{i} Y^{a_{2}}+H_{j(i)} Z^{j(i)} Z^{a_{3}}=0
$$

where $j(i) \equiv i-t \bmod d$. Thus $s=(F, G, H)$ is the sum of the syzygies

$$
s_{i}:=\left(F_{i} Z^{i}, G_{i} Z^{i}, H_{j(i)} Z^{j(i)}\right) \in \Gamma\left(C, \operatorname{Syz}\left(X^{a_{1}}, Y^{a_{2}}, Z^{a_{3}}\right)(m)\right) .
$$

We show that each of these summands does either come from $\Gamma\left(C, \mathcal{S}_{k+1}(m)\right)$ or from $\Gamma\left(C, \mathcal{S}_{k}(m-t)\right)$. We fix one equation

$$
F_{i_{0}} Z^{i_{0}} X^{a_{1}}+G_{i_{0}} Z^{i_{0}} Y^{a_{2}}+H_{j\left(i_{0}\right)} Z^{j\left(i_{0}\right)} Z^{a_{3}}=0
$$

with $j\left(i_{0}\right) \equiv i_{0}-t \bmod d$. First, we treat the case where $i_{0}<t$, hence $j\left(i_{0}\right)=i_{0}-t+d$. Factoring out $Z^{i_{0}}$ and replacing $Z^{a_{3}}$ by $P(X, Y)^{k} Z^{t}$ yields

$$
\begin{aligned}
0 & =Z^{i_{0}}\left(F_{i_{0}} X^{a_{1}}+G_{i_{0}} Y^{a_{2}}+H_{j\left(i_{0}\right)} Z^{d-t} P(X, Y)^{k} Z^{t}\right) \\
& =Z^{i_{0}}\left(F_{i_{0}} X^{a_{1}}+G_{i_{0}} Y^{a_{2}}+H_{j\left(i_{0}\right)} P(X, Y)^{k+1}\right)
\end{aligned}
$$

Hence $g_{i_{0}}:=\left(Z^{i_{0}} F_{i_{0}}, Z^{i_{0}} G_{i_{0}}, Z^{i_{0}} H_{j\left(i_{0}\right)}\right) \in \Gamma\left(C, \mathcal{S}_{k+1}(m)\right)$ and $\varphi_{m}\left(g_{i_{0}}\right)=s_{i_{0}}$. Next, we consider the case $i_{0} \geq t$, hence $j\left(i_{0}\right)=i_{0}-t$. We factor out Z^{t} and replace $Z^{a_{3}}$. This gives

$$
\begin{aligned}
0 & =F_{i_{0}} Z^{j\left(i_{0}\right)+t} X^{a_{1}}+G_{i_{0}} Z^{j\left(i_{0}\right)+t} Y^{a_{2}}+H_{j\left(i_{0}\right)} Z^{j\left(i_{0}\right)} P(X, Y)^{k} Z^{t} \\
& =Z^{t}\left(F_{i_{0}} Z^{j\left(i_{0}\right)} X^{a_{1}}+G_{i_{0}} Z^{j\left(i_{0}\right)} Y^{a_{2}}+H_{j\left(i_{0}\right)} Z^{j\left(i_{0}\right)} P(X, Y)^{k}\right)
\end{aligned}
$$

Hence we have $h_{i_{0}}:=\left(F_{i_{0}} Z^{j\left(i_{0}\right)}, G_{i_{0}} Z^{j\left(i_{0}\right)}, H_{j\left(i_{0}\right)} Z^{j\left(i_{0}\right)}\right) \in \Gamma\left(C, \mathcal{S}_{k}(m-t)\right)$ and $\varphi_{m}\left(h_{i_{0}}\right)=s_{i_{0}}$.

Remark 2.2. It is easy to see that the morphisms $\varphi_{m}, m \in \mathbb{Z}$, are injective on both summands, i.e., the induced mappings

$$
\mathcal{S}_{k}(m-t) \longrightarrow \operatorname{Syz}\left(X^{a_{1}}, Y^{a_{2}}, Z^{a_{3}}\right)(m),\left(f_{1}, f_{2}, f_{3}\right) \longmapsto\left(Z^{t} f_{1}, Z^{t} f_{2}, f_{3}\right)
$$

and

$$
\mathcal{S}_{k+1}(m) \longrightarrow \operatorname{Syz}\left(X^{a_{1}}, Y^{a_{2}}, Z^{a_{3}}\right)(m),\left(g_{1}, g_{2}, g_{3}\right) \longmapsto\left(g_{1}, g_{2}, Z^{d-t} g_{3}\right)
$$

are both injective.
Remark 2.3. The sheaves \mathcal{S}_{k} and \mathcal{S}_{k+1} are the pull-backs

$$
\pi^{*}\left(\operatorname{Syz}_{\mathbb{P}^{1}}\left(X^{a_{1}}, Y^{a_{2}}, P(X, Y)^{k}\right)\right) \text { and } \pi^{*}\left(\operatorname{Syz}_{\mathbb{P}^{1}}\left(X^{a_{1}}, Y^{a_{2}}, P(X, Y)^{k+1}\right)\right)
$$

respectively under the Noetherian normalization $\pi: C \rightarrow \mathbb{P}^{1}=\operatorname{Proj} K[X, Y]$. In particular, \mathcal{S}_{k} and \mathcal{S}_{k+1} split as a direct sum of line bundles. If $t=0$ we have $\operatorname{Syz}_{C}\left(X^{a_{1}}, Y^{a_{2}}, Z^{a_{3}}\right) \cong \operatorname{Syz}_{C}\left(X^{a_{1}}, Y^{a_{2}}, P(X, Y)^{k}\right)$ and the bundle is therefore already defined on \mathbb{P}^{1}.

3. Frobenius periodicity up to a twist

Let C be a smooth projective curve defined over a field of positive characteristic. It is a well-known fact that the pull-back of a semistable vector bundle under the (absolute) Frobenius morphism is in general not semistable anymore; see for instance the example of Serre in [13, Example 3.2]. Using syzygy bundles on Fermat curves one can produce fairly easy examples of this phenomenon.

Example 3.1. Let $C:=\operatorname{Proj}\left(\bar{F}_{3}[X, Y, Z] /\left(X^{4}+Y^{4}-Z^{4}\right)\right.$ be the Fermat quartic in characteristic 3 . The cotangent bundle $\Omega_{\mathbb{P}^{2}}$ is stable on the projective plane (see for instance [8, Corollary 6.4]) and so is the restriction $\left.\Omega_{\mathbb{P}^{2}}\right|_{C}=\operatorname{Syz}(X, Y, Z)$ by Langer's restriction theorem [20, Theorem 2.19]. Its Frobenius pull-back is the syzygy bundle $\operatorname{Syz}\left(X^{3}, Y^{3}, Z^{3}\right)$. The curve equation yields the relation $X \cdot X^{3}+Y \cdot Y^{3}-Z \cdot Z^{3}=0$ and thus we obtain a non-trivial global section of $\left(F^{*}\left(\left.\Omega_{\mathbb{P}^{2}}\right|_{C}\right)\right)(4)$. But the degree of this bundle equals -4 and therefore $F^{*}\left(\left.\Omega_{\mathbb{P}^{2}}\right|_{C}\right)$ is not semistable.

A vector bundle \mathcal{E} such that $F^{e^{*}}(\mathcal{E})$ is semistable for all $e \geq 0$ is called strongly semistable. This notion goes back to Miyaoka (cf. [22, Section 5]). Before we state our main theorem, we prove the following Lemma separately.

Lemma 3.2. Let $d \geq 2$ be an integer and let K be a field of characteristic $p \equiv-1 \bmod 2 d$. Then $\left.\Omega_{\mathbb{P}^{2}}\right|_{C}$ is strongly semistable on the Fermat curve $C:=\operatorname{Proj}\left(K[X, Y, Z] /\left(X^{d}+Y^{d}-Z^{d}\right)\right)$.

Proof. We use Hilbert-Kunz theory and its geometric interpretation developed in [7] and [26]. The Hilbert-Kunz multiplicity $e_{H K}(R)$ of the homogeneous coordinate ring $R:=K[X, Y, Z] /\left(X^{d}+Y^{d}-Z^{d}\right)$ of the Fermat curve equals $\frac{3 d}{4}$ in characteristic $p \equiv-1 \bmod 2 d$ by Monsky's result [24, Theorem 2.3]. By [7, Corollary 4.6] this is equivalent to the strong semistability of $\left.\Omega_{\mathbb{P}^{2}}\right|_{C}$ in these characteristics.

Remark 3.3. Note that for $d=1$ we have $C \cong \mathbb{P}^{1}$ and $\left.\Omega_{\mathbb{P}^{2}}\right|_{C} \cong \mathcal{O}_{C}(-2) \oplus$ $\mathcal{O}_{C}(-1)$, i.e., $\left.\Omega_{\mathbb{P}^{2}}\right|_{C}$ is not even semistable. For a general characterization of strong semistability of $\left.\Omega_{\mathbb{P}^{2}}\right|_{C}$ on the Fermat curve of degree d depending on the characteristic of the base field see [14, Chapter 4]. The restriction of \mathcal{S} to every smooth projective curve of degree ≥ 7 is stable by Langer's restriction theorem [20, Theorem 2.19].

Theorem 3.4. Let $d \geq 2$ be an integer and let K be a field of characteristic $p \equiv-1 \bmod 2 d$. Then $\mathcal{E}:=\left.\Omega_{\mathbb{P}^{2}}\right|_{C}$ is strongly semistable on the Fermat curve $C:=\operatorname{Proj}\left(K[X, Y, Z] /\left(X^{d}+Y^{d}-Z^{d}\right)\right)$ and

$$
F^{*}(\mathcal{E}) \cong \mathcal{E}\left(-\frac{3(p-1)}{2}\right)
$$

Proof. The strong semistability of \mathcal{E} in characteristics $p \equiv-1 \bmod 2 d$ has already been proved in Lemma 3.2. So we have to show that $F^{*}(\mathcal{E}) \cong$ $\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right) \cong \mathcal{E}\left(-\frac{3(p-1)}{2}\right)$. Since the proof is quite long, we divide it into several steps. Note that, since semistability is preserved under base change, we may assume without loss of generality that K is algebraically closed.
Step 1. We write $p=d k+(d-1)$ with k odd. Accordingly, we set $t=d-1$. Further, we follow the notation of Lemma 2.1 and define the bundles

$$
\mathcal{S}_{k}:=\operatorname{Syz}\left(X^{p}, Y^{p},\left(X^{d}+Y^{d}\right)^{k}\right), \mathcal{S}_{k+1}:=\operatorname{Syz}\left(X^{p}, Y^{p},\left(X^{d}+Y^{d}\right)^{k+1}\right)
$$

We show that the surjective morphism

$$
\varphi_{\frac{3 p+1}{2}}: \mathcal{S}_{k}\left(\frac{3 p+1}{2}-t\right) \oplus \mathcal{S}_{k+1}\left(\frac{3 p+1}{2}\right) \longrightarrow \operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)\left(\frac{3 p+1}{2}\right)
$$

defined in Lemma 2.1 can be identified with

$$
\left(\mathcal{O}_{C}(-d+2) \oplus \mathcal{O}_{C}\right) \oplus \mathcal{O}_{C}^{2} \longrightarrow \operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)\left(\frac{3 p+1}{2}\right)
$$

We consider the vector bundle $\operatorname{Syz}\left(U^{k+1}, V^{k+1},(U+V)^{k}\right)\left(\frac{3 k+1}{2}\right)$ on the projective line $\mathbb{P}^{1}=\operatorname{Proj} K[U, V]$. Since the degree of this bundle is -1 , it has to have a non-trivial global section. Substituting $U=X^{d}$ and $V=Y^{d}$ yields a non-trivial syzygy
$F X^{d k+d}+G Y^{d k+d}+H\left(X^{d}+Y^{d}\right)^{k}=(F X) X^{p}+(G Y) Y^{p}+H\left(X^{d}+Y^{d}\right)^{k}=0$
of total degree $\frac{3 d k+d}{2}$. That is, we have a non-trivial global section of $\mathcal{S}_{k}\left(\frac{3 d k+d}{2}\right)$ on the curve C. We have $\Gamma\left(C, \mathcal{S}_{k}\left(\frac{3 d k+d}{2}-1\right)\right)=0$ because otherwise the twisted semistable Frobenius pull-back $\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)\left(\frac{3 d k+d}{2}+d-2\right)$ of degree $-d$ would have a non-trivial global section too (see Remark 2.2) which is impossible by semistability. Since $\operatorname{deg}\left(\mathcal{S}_{k}\left(\frac{3 d k+d}{2}\right)\right)=(-d+2) d$, we obtain the splitting (rewrite $\frac{3 d k+d}{2}=\frac{3 p+1}{2}-(d-1)=\frac{3 p+1}{2}-t$)

$$
\mathcal{S}_{k}\left(\frac{3 p+1}{2}-t\right) \cong \mathcal{O}_{C}(-d+2) \oplus \mathcal{O}_{C}
$$

The other summand $\mathcal{S}_{k+1}\left(\frac{3 d k+d}{2}+d-1\right)$ has degree 0 . It follows once again from Lemma 2.1 and the semistability of $\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)$ that

$$
\Gamma\left(C, \mathcal{S}_{k+1}\left(\frac{3 d k+d}{2}+d-2\right)\right)=0
$$

i.e., $\mathcal{S}_{k+1}\left(\frac{3 d k+d}{2}+d-1\right)$ splits as (rewrite $\frac{3 d k+d}{2}+d-1=\frac{3 p+1}{2}$)

$$
\mathcal{S}_{k+1}\left(\frac{3 p+1}{2}\right) \cong \mathcal{O}_{C}^{2}
$$

Step 2. Let $(F X, G Y, H)$ be the non-trivial global section of $\mathcal{S}_{k}\left(\frac{3 p+1}{2}-t\right)$ constructed above (corresponding to the component \mathcal{O}_{C}). We show that $H(P) \neq 0$ for every point $P=(x, y, z) \in C$ satisfying $z^{d}=x^{d}+y^{d}=0$.

The last component H of the section $(F X, G Y, H)$ is a homogeneous polynomial in X^{d} and Y^{d} (it stems by construction from a syzygy on \mathbb{P}^{1} in U and $V)$. Let $P=(x, y, z) \in C$ be a point on the curve such that $z^{d}=x^{d}+y^{d}=0$. Then $x^{d}=-y^{d}$ which implies $x=\zeta y$ where ζ is a d th root of -1 . In particular, $P=(\zeta y, y, 0)$. Since K is algebraically closed, $\operatorname{char}(K) \neq 2$ and $p \equiv-1$ $\bmod 2 d$, the group $\mu_{2 d}(K)$ of $(2 d)$ th roots of unity in K has order $2 d$. Hence, we have

$$
X^{d}+Y^{d}=\prod_{\zeta}(X-\zeta Y)
$$

where $\zeta \in \mu_{2 d}(K)$ runs through the elements with the property $\zeta^{d}=-1$ (there are exactly d such roots). Now assume $H(P)=0$. Then $H\left(P^{\prime}\right)=0$ for all points P^{\prime} of the form $P^{\prime}=(\zeta y, y, 0)$. So $X^{d}+Y^{d}$ has to divide H, i.e., $H=\tilde{H}\left(X^{d}+Y^{d}\right)$ with a homogeneous polynomial $\tilde{H} \in K[X, Y]$. So we have a relation

$$
(F X) X^{p}+(G Y) Y^{p}+\tilde{H}\left(X^{d}+Y^{d}\right)^{k+1}=0
$$

of total degree $\frac{3 p+1}{2}-t$. That is, we have a non-trivial section of the bundle $\mathcal{S}_{k+1}\left(\frac{3 p+1}{2}-t\right)$. This section maps by Lemma 2.1 and Remark 2.2 to a nontrivial global section of $\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)\left(\frac{3 p+1}{2}-t\right)$. But

$$
\operatorname{deg}\left(\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)\left(\frac{3 p+1}{2}-t\right)\right)=(3 p+1-2 t-3 p) d=(1-2 t) d<0
$$

Hence, the section contradicts the semistability of $\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)$.
Step 3. We show that in the surjective sheaf homomorphism

$$
\varphi_{\frac{3 p+1}{2}}:\left(\mathcal{O}_{C}(-d+2) \oplus \mathcal{O}_{C}\right) \oplus \mathcal{O}_{C}^{2} \longrightarrow \operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)\left(\frac{3 p+1}{2}\right)
$$

the summand $\mathcal{O}_{C}(-d+2)$ is not necessary, i.e.,

$$
\varphi_{\frac{3 p+1}{2}}: \mathcal{O}_{C}^{3}=\mathcal{O}_{C} \oplus \mathcal{O}_{C}^{2} \longrightarrow \operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)\left(\frac{3 p+1}{2}\right)
$$

is also surjective.
Set $m:=\frac{3 p+1}{2}$. By the Nakayama lemma, we can check surjectivity pointwise over the residue field K at every point $P=(x, y, z) \in C$. For this we have to find two linearly independent vectors in the image. First we treat the case $z \neq 0$. We show that we even have a surjective map

$$
\mathcal{S}_{k+1}(m)=\mathcal{O}_{C}^{2} \longrightarrow \operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)(m) .
$$

We take basic sections

$$
f=\left(f_{1}, f_{2}, f_{3}\right), g=\left(g_{1}, g_{2}, g_{3}\right) \in \Gamma\left(C, \mathcal{S}_{k+1}(m)\right) \cong \Gamma\left(C, \mathcal{O}_{C}^{2}\right)
$$

Their images are $\tilde{f}=\left(f_{1}, f_{2}, Z f_{3}\right)$ and $\tilde{g}=\left(g_{1}, g_{2}, Z g_{3}\right)$. Assume there is a relation $\tilde{f}(P)+\lambda \tilde{g}(P)=0$ with $\lambda \in K^{\times}$. Looking at each component this
gives the equations

$$
\begin{aligned}
f_{1}(P)+\lambda g_{1}(P) & =0 \\
f_{2}(P)+\lambda g_{2}(P) & =0 \\
\left(f_{3}(P)+\lambda g_{3}(P)\right) z & =0
\end{aligned}
$$

But since $z \neq 0$, the latter equation would mean $f_{3}(P)+\lambda g_{3}(P)=0$ and therefore we would obtain a relation $f(P)+\lambda g(P)=0$ which contradicts the assumption.

Now we deal with the case $z=0$, i.e., $P=(x, y, 0)$. Let

$$
f=(F X, G Y, H) \in \Gamma\left(C, \mathcal{S}_{k}(m-t)\right) \cong \Gamma\left(C, \mathcal{O}_{C}(-d+2) \oplus \mathcal{O}_{C}\right)
$$

be the section (corresponding to \mathcal{O}_{C} which we have found in step 1. The image of f in the bundle $\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)(m)$ is the section $\left(Z^{t} F X, Z^{t} G Y, H\right)$. Evaluated at P we obtain the vector $v=(0,0, H(P))$. Since $0=z^{d}=x^{d}+y^{d}$ we have $H(P) \neq 0$ by step 2 . Now we take a section $0 \neq g=\left(g_{1}, g_{2}, g_{3}\right) \in$ $\Gamma\left(C, \mathcal{S}_{k+1}(m)\right) \cong \Gamma\left(C, \mathcal{O}_{C}^{2}\right)$. The image of g equals $\left(g_{1}, g_{2}, Z g_{3}\right)$. Evaluation at P gives the vector $w=\left(g_{1}(P), g_{2}(P), 0\right)$, where either $g_{1}(P)$ or $g_{2}(P)$ is not 0 (otherwise $g_{3}(P)$ would be 0 as well). Hence we have found a vector w such that v, w are linearly independent over K.
Step 4. So far we have shown that we have a surjective morphism

$$
\mathcal{O}_{C}^{3} \longrightarrow \operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)\left(\frac{3 p+1}{2}\right) \longrightarrow 0
$$

Since $\operatorname{det}\left(\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)\left(\frac{3 p+1}{2}\right)\right) \cong \mathcal{O}_{C}(1)$ we have a short exact sequence

$$
0 \longrightarrow \mathcal{O}_{C}(-1) \longrightarrow \mathcal{O}_{C}^{3} \longrightarrow \operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)\left(\frac{3 p+1}{2}\right) \longrightarrow 0
$$

Dualizing and tensoring with $\mathcal{O}_{C}(-1)$ gives

$$
0 \longrightarrow\left(\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)\left(\frac{3 p+1}{2}\right)\right)^{\vee}(-1) \longrightarrow \mathcal{O}_{C}^{3}(-1) \longrightarrow \mathcal{O}_{C} \longrightarrow 0
$$

where the map $\mathcal{O}_{C}^{3}(-1) \rightarrow \mathcal{O}_{C}$ is given by some linear forms L_{1}, L_{2}, L_{3} in the homogeneous coordinate ring $R=K[X, Y, Z] /\left(X^{d}+Y^{d}-Z^{d}\right)$. In particular, we have $\left(\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)\left(\frac{3 p+1}{2}\right)\right)^{\vee}(-1) \cong \operatorname{Syz}\left(L_{1}, L_{2}, L_{3}\right)$. We show that $\left\{L_{1}, L_{2}, L_{3}\right\}$ and $\{X, Y, Z\}$ generate the same ideal in R. Assume to the contrary that L_{1}, L_{2}, L_{3} are linearly dependent. Such an equation yields a non-trivial section of $\operatorname{Syz}\left(L_{1}, L_{2}, L_{3}\right)(1)$. This bundle has degree $\operatorname{deg}\left(\operatorname{Syz}\left(L_{1}, L_{2}, L_{3}\right)(1)\right)=(2-3) d=-d<0$. But since $\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)$ is semistable, so is $\left(\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)\left(\frac{3 p+1}{2}\right)\right)^{\vee}$ and thus also $\operatorname{Syz}\left(L_{1}, L_{2}, L_{3}\right)$. So the section contradicts the semistability.
Step 5. We have already proved that

$$
\mathcal{E} \cong \operatorname{Syz}(X, Y, Z) \cong\left(\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)\left(\frac{3 p+1}{2}\right)\right)^{\vee}(-1)
$$

Since $\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)$ is a bundle of rank 2, we have

$$
\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right) \cong \operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)^{\vee} \otimes \mathcal{O}_{C}(-3 p)
$$

So finally we obtain

$$
\begin{aligned}
\mathcal{E} & \cong \operatorname{Syz}(X, Y, Z) \\
& \cong\left(\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)\left(\frac{3 p+1}{2}\right)\right)^{\vee}(-1) \\
& \cong \operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)^{\vee} \otimes \mathcal{O}_{C}\left(-\frac{3 p+1}{2}\right) \otimes \mathcal{O}_{C}(-1) \\
& \cong \operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right) \otimes \mathcal{O}_{C}(3 p) \otimes \mathcal{O}_{C}\left(-\frac{3 p+1}{2}\right) \otimes \mathcal{O}_{C}(-1) \\
& \cong \operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right)\left(\frac{3(p-1)}{2}\right)
\end{aligned}
$$

and consequently $F^{*}(\mathcal{E}) \cong \operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right) \cong \mathcal{E}\left(-\frac{3(p-1)}{2}\right)$ which finishes the proof.

Remark 3.5. We also comment on the case $p \equiv 1 \bmod 2 d$. Then we write $p=d k+1$ with k even and set $t=1$. The syzygy bundle $\operatorname{Syz}\left(U^{k}, V^{k},(U+\right.$ $\left.V)^{k+1}\right)\left(\frac{3 k}{2}\right)$ on $\mathbb{P}^{1}=\operatorname{Proj} K[U, V]$ has degree -1 and therefore has to have a non-trivial global section. Substituting $U=X^{d}$ and Y^{d} and multiplying with $X Y$ gives then a syzygy

$$
(F Y) X^{p}+(G X) Y^{p}+(H X Y)\left(X^{d}+Y^{d}\right)^{k+1}=0
$$

i.e., a global section of $\mathcal{S}_{k+1}\left(\frac{3 d k}{2}+2\right)$ on the Fermat curve. As in the proof of Theorem 3.4 we obtain the splittings (rewrite $\frac{3 d k}{2}+2=\frac{3 p+1}{2}$)

$$
\mathcal{S}_{k+1}\left(\frac{3 p+1}{2}\right) \cong \mathcal{O}_{C}(-d+2) \oplus \mathcal{O}_{C} \text { and } \mathcal{S}_{k}\left(\frac{3 p+1}{2}-t\right) \cong \mathcal{O}_{C}^{2}
$$

Unfortunately, we do not know how to prove an analog of step 2 in these characteristics, i.e., to show that $H(P) \neq 0$ for every point $P=(x, y, z) \in C$ with $z^{d}=x^{d}+y^{d}=0$. Here the reasoning of the proof (step 2) of Theorem 3.4 would lead to a section of $\operatorname{Syz}\left(X^{p}, Y^{p},\left(X^{d}+Y^{d}\right)^{k+2}\right)$ which is not helpful to get a contradiction.

Remark 3.6. We cannot expect that Theorem 3.4 holds in every characteristic p where $\left.\Omega_{\mathbb{P}^{2}}\right|_{C}$ is strongly semistable. For example, consider in characteristic 2 the Fermat cubic $C=\operatorname{Proj}\left(K[X, Y, Z] /\left(X^{3}+Y^{3}-Z^{3}\right)\right)$, which is an elliptic curve. It is a well-known fact that semistable vector bundles on elliptic curves are strongly semistable (see for instance [27, appendix]). Hence $\left.\Omega_{\mathbb{P}^{2}}\right|_{C} \cong \operatorname{Syz}(X, Y, Z)$ is strongly semistable by [5, Proposition 6.2]. The pullback $F^{*}\left(\left.\Omega_{\mathbb{P}^{2}}\right|_{C}\right) \cong \operatorname{Syz}\left(X^{2}, Y^{2}, Z^{2}\right)$ has for the first time non-trivial global sections in total degree 3 , namely the (only) syzygy ($X, Y,-Z$) which comes
from the equation of the curve. This section gives rise to the short exact sequence

$$
0 \longrightarrow \mathcal{O}_{C} \longrightarrow \operatorname{Syz}\left(X^{2}, Y^{2}, Z^{2}\right)(3) \longrightarrow \mathcal{O}_{C} \longrightarrow 0
$$

i.e., $\operatorname{Syz}\left(X^{2}, Y^{2}, Z^{2}\right)(3)$ is the bundle F_{2} in Atiyah's classification [1]. Since the Hasse invariant of C is 0 , we have $F^{*}\left(F_{2}\right) \cong \mathcal{O}_{C}^{2}$ and therefore $F^{*}\left(\left.\Omega_{\mathbb{P}^{2}}\right|_{C}\right) \not \neq$ $\left.\Omega_{\mathbb{P}^{2}}\right|_{C}\left(-\frac{3(p-1)}{2}\right)$. We have $F^{2^{*}}\left(\left.\Omega_{\mathbb{P}_{2}}\right|_{C}\right) \cong \mathcal{O}_{C}(-6) \oplus \mathcal{O}_{C}(-6)$ and we obtain (up to a twist) the periodicity $F^{3^{*}}\left(\left.\Omega_{\mathbb{P}^{2}}\right|_{C}\right) \cong\left(F^{2^{*}}\left(\left.\Omega_{\mathbb{P}^{2}}\right|_{C}\right)\right)(-6)$.

4. A computation of the Hilbert-Kunz function

We recall that the Hilbert-Kunz function of a standard graded ring R of characteristic $p>0$ with graded maximal ideal \mathfrak{m} is the function

$$
e \longmapsto \varphi_{R}(e):=\operatorname{length}\left(R / \mathfrak{m}^{\left[p^{e}\right]}\right),
$$

where $\mathfrak{m}^{\left[p^{e}\right]}$ denotes the extended ideal under the e-th iteration of the Frobenius endomorphism on R; see for instance [23] for this rather complicated function and its properties. As a consequence of Theorem 3.4 we obtain the complete Hilbert-Kunz function of the Fermat ring $R=K[X, Y, Z] /\left(X^{d}+Y^{d}-Z^{d}\right)$ in characteristics $p \equiv-1 \bmod 2 d$. The following result is implicitly contained in [12, Lemma 5.6] of P. Monsky and C. Han.

Corollary 4.1. Let $d \geq 2$ be a positive integer and let K be a field of characteristic $p \equiv-1 \bmod 2 d$. Then the Hilbert-Kunz function of the Fermat ring $R=K[X, Y, Z] /\left(X^{d}+Y^{d}-Z^{d}\right)$ is

$$
\varphi_{R}(e)=\frac{3 d}{4} p^{2 e}+1-\frac{3 d}{4}
$$

Proof. Since the length of $R / \mathfrak{m}^{\left[p^{e}\right]}, \mathfrak{m}=(X, Y, Z)$, does not change if one enlarges the base field, we may assume that K is algebraically closed. Hence, $\varphi_{R}(e)=\sum_{m=0}^{\infty} \operatorname{dim}_{K}\left(R / \mathfrak{m}^{\left[p^{e}\right]}\right)_{m}$ (this sum is in fact finite since the algebras $R / \mathfrak{m}^{\left[p^{e}\right]}$ have finite length). It follows from the presenting sequence of $\operatorname{Syz}(X, Y, C)$ on the Fermat curve $C=\operatorname{Proj} R$ that $\left(\operatorname{setting} q:=p^{e}\right)$

$$
\begin{align*}
\operatorname{dim}_{K}\left(R / \mathfrak{m}^{[q]}\right)_{m}= & h^{0}\left(C, \mathcal{O}_{C}(m)\right)-3 h^{0}\left(C, \mathcal{O}_{C}(m-q)\right) \tag{*}\\
& +h^{0}\left(C, \operatorname{Syz}\left(X^{q}, Y^{q}, Z^{q}\right)(m)\right)
\end{align*}
$$

By Theorem 3.4 we have $\operatorname{Syz}\left(X^{p}, Y^{p}, Z^{p}\right) \cong \operatorname{Syz}(X, Y, Z)\left(-\frac{3(p-1)}{2}\right)$ and consequently $\operatorname{Syz}\left(X^{q}, Y^{q}, Z^{q}\right) \cong \operatorname{Syz}(X, Y, Z)\left(-\frac{3(q-1)}{2}\right)$ for all $q=p^{e}, e \geq 1$. The global evaluation of the presenting sequence of $\mathcal{E}(k):=\operatorname{Syz}(X, Y, Z)(k)$ gives the exact sequence

$$
0 \longrightarrow \Gamma(C, \mathcal{E}(k)) \longrightarrow \Gamma\left(C, \mathcal{O}_{C}(k-1)^{3}\right) \longrightarrow \Gamma\left(C, \mathcal{O}_{C}(k)\right) \longrightarrow K \longrightarrow 0
$$

for $k=0$ and the short exact sequence

$$
0 \longrightarrow \Gamma(C, \mathcal{E}(k)) \longrightarrow \Gamma\left(C, \mathcal{O}_{C}(k-1)^{3}\right) \longrightarrow \Gamma\left(C, \mathcal{O}_{C}(k)\right) \longrightarrow 0
$$

for $k \geq 1$. Hence we obtain

$$
h^{0}(C, \mathcal{E}(k))=\left\{\begin{array}{l}
3 h^{0}\left(C, \mathcal{O}_{C}(k-1)\right)-h^{0}\left(C, \mathcal{O}_{C}(k)\right)+1 \text { if } k=0, \\
3 h^{0}\left(C, \mathcal{O}_{C}(k-1)\right)-h^{0}\left(C, \mathcal{O}_{C}(k)\right) \text { if } k \neq 0 .
\end{array}\right.
$$

For $k \geq d-2$ we have by Riemann-Roch $h^{0}\left(C, \mathcal{O}_{C}(k)\right)=d k-g+1$, where g is the genus of the curve. Since $p \equiv-1 \bmod 2 d$, this holds in particular for $k \geq \frac{p+1}{2}$. So the geometric formula for the Hilbert-Kunz function (*) gives (in order to obtain an easier calculation we sum up to $2 q$):

$$
\begin{aligned}
\varphi_{R}(e)= & \sum_{m=0}^{2 q} h^{0}\left(C, \mathcal{O}_{C}(m)\right)-3 \sum_{m=0}^{2 q} h^{0}\left(C, \mathcal{O}_{C}(m-q)\right) \\
& +3 \sum_{m=0}^{2 q} h^{0}\left(C, \mathcal{O}_{C}\left(m-\frac{3(q-1)}{2}-1\right)\right) \\
& -\sum_{m=0}^{2 q} h^{0}\left(C, \mathcal{O}_{C}\left(m-\frac{3(q-1)}{2}\right)\right)+1 \\
= & \sum_{m=0}^{2 q} h^{0}\left(C, \mathcal{O}_{C}(m)\right)-3 \sum_{m=0}^{q} h^{0}\left(C, \mathcal{O}_{C}(m)\right) \\
& +3 \sum_{m=0}^{\frac{q+1}{2}} h^{0}\left(C, \mathcal{O}_{C}(m)\right)-\sum_{m=0}^{\frac{q+3}{2}} h^{0}\left(C, \mathcal{O}_{C}(m)\right)+1 \\
= & \sum_{m=\frac{q+5}{2 q}}^{2 q} h^{0}\left(C, \mathcal{O}_{C}(m)\right)-3 \sum_{m=\frac{q+3}{2}}^{q} h^{0}\left(C, \mathcal{O}_{C}(m)\right)+1 \\
= & \sum_{m=\frac{q+5}{2}}^{2 q}(d m-g+1)-3 \sum_{m=\frac{q+3}{2}}^{q}(d m-g+1)+1 \\
= & d\left(q(2 q+1)-\frac{(q+3)(q+5)}{8}\right)-\frac{3 g(q-1)}{2}+\frac{3(q-1)}{2} \\
= & \frac{3 d}{4} q^{2}+1-\frac{3 d}{4} .
\end{aligned}
$$

Thus we have obtained the desired formula for the Hilbert-Kunz function of the ring R.

Remark 4.2. Corollary 4.1 matches for $d=3$ with the result [10, Theorem 4] of Buchweitz and Chen, which says that the Hilbert-Kunz function of the
homogeneous coordinate ring of a plane elliptic curve defined over a field K of odd characteristic p equals $\frac{9}{4} p^{2 e}-\frac{5}{4}$.

5. Examples of a (0,1)-Frobenius periodicity on Fermat curves

In this section, we show how to get via Theorem 3.4 non-trivial examples of $(0,1)$-Frobenius periodicities, i.e., we give explicit examples of vector bundles \mathcal{E} on certain Fermat curves such that $\mathcal{E} \cong F^{*}(\mathcal{E})$.

Example 5.1. Let $d \geq 2$ and let K be a field of characteristic $p \equiv-1 \bmod 2 d$. The ring homomorphism

$$
K[X, Y, Z] /\left(X^{d}+Y^{d}-Z^{d}\right) \longrightarrow K[U, V, W] /\left(U^{2 d}+V^{2 d}-W^{2 d}\right)
$$

which sends $X \mapsto U^{2}, Y \mapsto V^{2}$ and $Z \mapsto W^{2}$ induces a finite cover $f: C^{2 d} \rightarrow$ C^{d}, where C^{i} denotes the Fermat curve of degree i. Since $f^{*}\left(\mathcal{O}_{C^{d}}(1)\right) \cong$ $\mathcal{O}_{C^{2 d}}(2)$, we see that $\operatorname{deg}(f)=4$. The group $\mathbb{Z} /(2) \times \mathbb{Z} /(2)$ acts on $C^{2 d}$ by sending (u, v, w) either to $(u, v, w),(-u, v, w),(u,-v, w)$ or $(u, v,-w)$, and C^{d} is the quotient of this action. Moreover, f is a finite separable morphism and therefore f preserves semistability. Theorem 3.4 gives, via pull-back under f, the isomorphic vector bundles

$$
\begin{aligned}
\operatorname{Syz}_{C^{2 d}}\left(U^{2 p}, V^{2 p}, W^{2 p}\right) & \cong f^{*}\left(\operatorname{Syz}_{C^{d}}\left(X^{p}, Y^{p}, Z^{p}\right)\right) \\
& \cong f^{*}\left(\operatorname{Syz}_{C^{d}}(X, Y, Z)\left(-\frac{3(p-1)}{2}\right)\right) \\
& \cong f^{*}\left(\operatorname{Syz}_{C^{d}}(X, Y, Z)\right) \otimes f^{*}\left(\mathcal{O}_{C^{d}}\left(-\frac{3(p-1)}{2}\right)\right) \\
& \cong \operatorname{Syz}_{C^{2 d}}\left(U^{2}, V^{2}, W^{2}\right)(-3(p-1))
\end{aligned}
$$

on the Fermat curve $C^{2 d}$. In particular, we have the periodicity

$$
\operatorname{Syz}_{C^{2 d}}\left(U^{2}, V^{2}, W^{2}\right)(3) \cong F^{*}\left(\operatorname{Syz}_{C^{2 d}}\left(U^{2}, V^{2}, W^{2}\right)(3)\right)
$$

(note that this bundle has degree 0 and is not trivial since there are no nontrivial global sections below the degree of the curve).

Remark 5.2. By the classical result [19, Satz 1.4] of H. Lange and U. Stuhler the periodicity $\mathrm{Syz}_{C^{2 d}}\left(U^{2}, V^{2}, W^{2}\right)(3) \cong F^{*}\left(\mathrm{Syz}_{C^{2 d}}\left(U^{2}, V^{2}, W^{2}\right)(3)\right)$ in Example 5.1 implies the existence of an étale cover

$$
g: D \longrightarrow C^{2 d}
$$

such that

$$
g^{*}\left(\operatorname{Syz}_{C^{2 d}}\left(U^{2}, V^{2}, W^{2}\right)(3)\right) \cong \mathcal{O}_{D}^{2}
$$

Moreover, by [19, Proposition 1.2] the bundle $\mathrm{Syz}_{C^{2 d}}\left(U^{2}, V^{2}, W^{2}\right)(3)$ comes from a (continuous) representation

$$
\rho: \pi_{1}\left(C^{2 d}\right) \longrightarrow G L_{2}(K)
$$

of the algebraic fundamental group $\pi_{1}\left(C^{2 d}\right)$. It would be interesting to see how the étale trivialization g and the representation ρ look explicitly in this example.
Remark 5.3. In this remark we show that $\mathcal{E}:=\operatorname{Syz}\left(U^{2}, V^{2}, W^{2}\right)(3)$ is not étale trivializable in characteristic 0 . We consider this bundle on the smooth projective relative curve

$$
\mathcal{C}^{2 d}:=\operatorname{Proj}\left(\mathbb{Z}_{2 d}[U, V, W] /\left(U^{2 d}+V^{2 d}-Z^{2 d}\right)\right) \longrightarrow \operatorname{Spec} \mathbb{Z}_{2 d}
$$

For a prime number $p \nmid 2 d$ the special fiber $\mathcal{C}_{p}^{2 d}$ over (p) is the (smooth) Fermat curve over the finite field \mathbb{F}_{p}. The generic fiber $\mathcal{C}_{0}^{2 d}$ over (0) is the Fermat curve over \mathbb{Q}. To prove that $\mathcal{E}_{0}:=\left.\mathcal{E}\right|_{\mathcal{C}_{0}^{2 d}}$ is not étale trivializable on $\mathcal{C}_{0}^{2 d}$ we use once again Hilbert-Kunz theory (cf. also the proof of Lemma 3.2). Note that \mathcal{E}_{0} is semistable by [5, Proposition 2]. If $d \geq 4$ is even (the case $d=2$ is trivial) we consider prime numbers $p \equiv d \pm 1 \bmod 2 d$ and if $d \geq 3$ is odd we look at prime numbers $p \equiv d \bmod 2 d$. In these characteristics, [24, Theorem 2.3] yields that the Hilbert-Kunz multiplicity $e_{H K}\left(R_{p}\right)$ of the homogeneous coordinate ring R_{p} of the Fermat curve $C^{d} \rightarrow \operatorname{Spec} \mathbb{F}_{p}$ of degree d equals
$e_{H K}\left(R_{p}\right)=\frac{3 d}{4}+\frac{(d(d-3))^{2}}{4 d p^{2}}$ if d is even and $e_{H K}\left(R_{p}\right)=\frac{3 d}{4}+\frac{d^{3}}{4 p^{2}}$ if d is odd.
Hence, $\left.\Omega_{\mathbb{P}^{2}}\right|_{C^{d}}$ is not strongly semistable by [7, Corollary 4.6]. Since we can realize the fibers $\mathcal{C}_{p}^{2 d}$, as in Example 5.1, as coverings $f: \mathcal{C}_{p}^{2 d} \rightarrow C^{d}$, the bundles $\mathcal{E}_{p}:=\left.\mathcal{E}\right|_{\mathcal{C}_{p}^{2 d}} \cong f^{*}\left(\left.\Omega_{\mathbb{P}^{2}}\right|_{C^{d}}\right)(3)$ are not strongly semistable either. Note that by the well-known theorem of Dirichlet (cf. [25, Chapitre VI, §4, Théorème and Corollaire]) there are infinitely many such fibers. Therefore, there is no étale cover $g: D \rightarrow \mathcal{C}_{0}^{2 d}$ such that $g^{*}\left(\mathcal{E}_{0}\right) \cong \mathcal{O}_{D}^{2}$.

This observation is somehow related to the Grothendieck-Katz p-curvature conjecture [16, (I quat)] which states the following: Let R be a \mathbb{Z}-domain of finite type, $\mathbb{Z} \subseteq R$, and $\mathcal{X} \rightarrow \operatorname{Spec} R$ a smooth projective morphism of relative dimension $d \geq 1$. If \mathcal{E} is a vector bundle on $\mathcal{X} \rightarrow \operatorname{Spec} R$ equipped with an integrable connection ∇ such that $\left.\nabla\right|_{\mathcal{E}_{\mathfrak{p}}}$ has p-curvature 0 on the special fiber $\mathcal{X}_{\mathfrak{p}}$ for almost all closed points $\mathfrak{p} \in \operatorname{Spec} R$, then there exists an étale cover $g: Y \rightarrow \mathcal{X}_{0}$ of the generic fiber \mathcal{X}_{0} such that $\left(g^{*}\left(\mathcal{E}_{0}\right), g^{*}\left(\nabla_{0}\right)\right)$ is trivial. For a detailed account on integrable connections and p-curvature see [15] and [16]. In our example of the relative Fermat curve $\mathcal{C}^{2 d}$, we have for infinitely many prime numbers $p \equiv-1 \bmod 2 d$ the Frobenius descent $F^{*}\left(\mathcal{E}_{p}\right) \cong \mathcal{E}_{p}$ on $\mathcal{C}_{p}^{2 d}$. By the so-called Cartier-correspondence [15, Theorem 5.1] this is equivalent to the existence of an integrable connection ∇_{p} on \mathcal{E}_{p} with vanishing p-curvature. If one could establish a connection on \mathcal{E} (since \mathcal{E} is a vector bundle over a curve, this connection would be automatically integrable) which is compatible with the connections on the special fibers $\mathcal{C}_{p}^{2 d}, p \equiv-1 \bmod 2 d$, then our example would show that the Grothendieck-Katz conjecture does not hold if one only requires vanishing p-curvature for infinitely many closed points.

Remark 5.4. In this remark we assume that the base field is algebraically closed. We consider the Verschiebung

$$
V: \mathcal{M}_{C^{2 d}}\left(2, \mathcal{O}_{C^{2 d}}\right) \longrightarrow \mathcal{M}_{C^{2 d}}\left(2, \mathcal{O}_{C^{2 d}}\right),[\mathcal{E}] \longmapsto\left[F^{*}(\mathcal{E})\right]
$$

induced by the Frobenius morphism on $C^{2 d}$. We recall that the Verschiebung is a rational map from the moduli space $\mathcal{M}_{C^{2 d}}\left(2, \mathcal{O}_{C^{2 d}}\right)$ parametrizing (up to S-equivalence) semistable vector bundles on $C^{2 d}$ of rank 2 and trivial determinant to itself. The vector bundle $\mathcal{S}:=\operatorname{Syz}_{\mathbb{P}^{2}}\left(U^{2}, V^{2}, W^{2}\right)$ is stable on the projective plane $\mathbb{P}^{2}=\operatorname{Proj} K[U, V, W]$ by [8, Corollary 6.4]. Since the discriminant of this bundle equals $\Delta(\mathcal{S})=4 c_{2}(\mathcal{S})-c_{1}(\mathcal{S})^{2}=12$, the restriction of \mathcal{S} to every smooth projective curve of degree ≥ 7 remains stable by Langer's restriction theorem [20, Theorem 2.19]. In particular, $\left.\mathcal{S}\right|_{C^{2 d}} \cong \operatorname{Syz}_{C^{2 d}}\left(U^{2}, V^{2}, W^{2}\right)(3)$ is stable on the Fermat curve $C^{2 d}$ for $d \geq 4$. Hence, for $d \geq 4$ the bundle $\mathrm{Syz}_{C^{2 d}}\left(U^{2}, V^{2}, W^{2}\right)(3)$ defines a closed point of $\mathcal{M}_{C^{2 d}}\left(2, \mathcal{O}_{C}\right)$ which is fixed under the Verschiebung V.
Remark 5.5. We may pull-back the vector bundle $\mathcal{E}=\operatorname{Syz}\left(U^{2}, V^{2}, W^{2}\right)(3)$ along the cone mapping

$$
p: T=\operatorname{Spec} K[U, V, W] /\left(U^{2 d}+V^{2 d}-W^{2 d}\right) \backslash\{\mathfrak{m}\} \rightarrow C^{2 d}
$$

to obtain the bundle $\mathcal{G}=p^{*}(\mathcal{E})$ on the punctured spectrum with the property $F^{*}(\mathcal{G}) \cong \mathcal{G}$. This can however not be extended to get a Frobenius periodicity on the module level, since $F^{*} \Gamma(T, \mathcal{G}) \neq \Gamma\left(T, F^{*} \mathcal{G}\right)$. A Frobenius periodicity for a coherent R-module M, where R is a local noetherian domain, implies that M is free. This observation follows by looking at Fitting ideals of a free resolution (we thank Manuel Blickle and Neil Epstein for this remark).

References

1. M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957), 414-452.
2. I. Biswas and L. Ducrohet, An analog of a theorem of Lange and Stuhler for principal bundles, C.R. Acad. Sci. Paris, Ser. I 345 (2007), no. 9, 495-497.
3. M. Blickle, Minimal γ-sheaves, Algebra and Number Theory 2 (2008), no. 3, 347-368.
4. M. Blickle and G. Böckle, Cartier modules: finiteness results, Preprint (2009).
5. H. Brenner, Computing the tight closure in dimension two, Math. Comput. 74 (2005), no. 251, 1495-1518.
6. \qquad , On a problem of Miyaoka, Number Fields and Function Fields - Two Parallel Worlds (B. Moonen R. Schoof G, van der Geer, ed.), Progress in Mathematics, vol. 239, Birkhäuser, 2005, pp. 51-59.
7. \qquad , The rationality of the Hilbert-Kunz multiplicity in graded dimension two, Math. Ann. 334 (2006), no. 1, 91-110.
8. _L_Looking out for stable syzygy bundles, Adv. Math. 219 (2008), no. 2, 401-427.
9. H. Brenner and A. Kaid, On deep Frobenius descent and flat bundles, Math. Res. Lett. 15 (2008), no. 5-6, 1101-1115.
10. R.-O. Buchweitz and Q. Chen, Hilbert-Kunz functions of cubic curves and surfaces, J. Algebra 197 (1997), no. 1, 246-267.
11. M. Emerton and M. Kisin, The Riemann-Hilbert Correspondence for Unit F-Crystals, Astérisque, vol. 293, Société Mathématique de France, 2004.
12. C. Han and P. Monsky, Some surprising Hilbert-Kunz functions, Math. Z. 214 (1993), 119-135.
13. R. Hartshorne, Ample vector bundles on curves, Nagoya Math. J. 43 (1971), 73-89.
14. A. Kaid, On semistable and strongly semistable syzygy bundles, PhD-thesis, University of Sheffield, 2009.
15. N. M. Katz, Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 175-232.
16. \qquad , Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math. 18 (1972), 1-118.
17. , p-adic properties of modular forms, Modular Functions of One Variable, Lect. Notes in Math., vol. 350, 1973, pp. 69-190.
18. A. Kustin, H. Rahmati, and A. Vraciu, The resolution of the bracket powers of the maximal ideal in a diagonal hypersurface, Preprint (2010).
19. H. Lange and U. Stuhler, Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe, Math. Zeitschrift 156 (1977), 73-83.
20. A. Langer, Moduli spaces of sheaves and principal G-bundles, Algebraic geometry, Seattle 2005 (D. Abramovich et al., ed.), Proc. Symp. Pure Math., vol. 80, AMS, 2009, pp. 273-308.
21. G. Lyubeznik, F-modules: applications to local cohomology and D-modules in characteristic $p>0$, J. reine angew. Math. 491 (1997), 65-130.
22. Y. Miyaoka, The Chern class and Kodaira dimension of a minimal variety, Algebraic Geometry, Sendai 1985, Adv. Stud. Pure Math., vol. 10, 1987, pp. 449-476.
23. P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983), 43-49.
24. , The Hilbert-Kunz multiplicity of an irreducible trinomial, J. Algebra 304 (2006), no. 3, 1101-1107.
25. J. P. Serre, Cours d'arithmétique, Presses Universitaires de France, 1970.
26. V. Trivedi, Semistability and Hilbert-Kunz multiplicity for curves, J. Algebra 284 (2005), no. 2, 627-644.
27. L. W. Tu, Semistable bundles over an elliptic curve, Adv. Math. 98 (1993), 1-26.

Universität Osnabrück, Fachbereich 6: Mathematik/Informatik, Albrechtstr. 28A, 49069 Osnabrück, Germany

E-mail address: hbrenner@uni-osnabrueck.de and akaid@uni-osnabrueck.de

