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Abstract. - We study numerically the influence of density and strain rate on the diffusion and
mobility of a single tagged particle in a sheared colloidal suspension. We determine independently
the time-dependent velocity autocorrelation functions and, through a novel method, the response
functions with respect to a small force. While both the diffusion coefficient and the mobility depend
on the strain rate the latter exhibits a rather weak dependency. Somewhat surprisingly, we find
that the initial decay of response and correlation functions coincide, allowing for an interpretation
in terms of an ’effective temperature’. Such a phenomenological effective temperature recovers the
Einstein relation in nonequilibrium. We show that our data is well described by two expansions
to lowest order in the strain rate.

Introduction. – The mobility of a single spherical
particle immersed in a solvent determines the velocity of
the particle in response to an applied external force. For
small Reynolds numbers Stokes’ law yields the famous ex-
pression µ−10 = 3πηa in terms of the sphere diameter a and
the solvent viscosity η in thermal equilibrium. This free
mobility µ0 is intimately related to spontaneous solvent
fluctuations through the Einstein relation. For a suspen-
sion of interacting particles, even without hydrodynamic
coupling, the mobility µ of a single tagged particle is re-
duced. This reflects the fact that work is necessary to dis-
place neighboring particles in order for the tagged particle
to move, leading to larger dissipation. Still, in equilibrium
the Einstein relation

D = kBTµ (1)

equates the effective, long-time diffusion coefficient D ob-
tained from measuring the mean square displacement of a
single tagged particle with its mobility through the solvent
temperature T , where kB is the Boltzmann constant.

The Einstein relation (1) is one out of many fluctuation-
dissipation relations valid in the linear response regime for
small perturbations of the equilibrium state [1]. It is cru-
cial to realize that also nonequilibrium steady states allow
for a linear response. However, driving the suspension
beyond the linear response regime, fluctuation-dissipation

relations such as the Einstein relation (1) need to be gen-
eralized to nonequilibrium. There are two basic strategies
discussed in the literature. The first strategy is to intro-
duce an additive correction taking on the form of another
correlation function [2–4]. This correlation function in-
volves another observable that can be related either to
entropy production [5] or ’dynamical activity’ [6]. Such
an approach has been demonstrated experimentally for a
single driven colloidal particle [7–9]. The second strategy
introduces a multiplicative correction through an effective
temperature [10, 11] replacing T in Eq. (1). Originally
developed in the context of aging, glassy dynamics and
weakly driven systems, effective temperatures have also
been investigated in shear driven supercooled liquids [12].

Self-diffusion in sheared interacting suspensions has
been studied extensively in computer simulations [12–16]
and experiments [17,18] as well as analytically [19–21]. A
large body of publications studies supercooled conditions
in relation with the glass transition [12, 18, 22]. Most of
these works focus on the self-diffusion coefficient as this
quantity is easily obtained from experiments and simu-
lations. The mobility of a tagged particle has been ad-
dressed somewhat less prominently and mostly in ana-
lytic calculations [21,23]. In this Letter we determine nu-
merically both the full time-dependent velocity response
and autocorrelation functions for a tagged particle of a
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Fig. 1: a) Simple shear flow with strain rate γ̇. b) Pair distribu-
tion function g(r) in the xy plane for volume fraction φ = 0.3
and strain rate γ̇ = 1. Centered on any particle, the function
g(r) quantifies the probability to find another particle at r.
While isotropic in equilibrium, the pair distribution function is
distorted through external flow.

hard-core Yukawa suspension driven into a nonequilibrium
steady state through simple shear flow. In contrast to pre-
vious work, explicit knowledge of the response function
allows us to calculate and discuss the mobility as a func-
tion of density and strain rate. We use a novel method
to efficiently obtain the time-dependent response function
of the velocity with respect to a small force applied to a
single particle. Similar methods to extract the response of
a system using only unperturbed steady state trajectories
have been discussed in Refs. [24, 25].

Sheared hard-core Yukawa fluid. – The N col-
loidal particles interact through the purely repulsive
Yukawa potential

u(r) =

{
ε e
−κ(r−1)

r (r > 1)

∞ (r < 1)
(2)

with hard core exclusion. The two potential parameters
are the energy ε at contact and the screening length κ−1

determining the range of interactions. Changing κ in-
terpolates between hard-sphere (large κ) and coulombic
(small κ) interactions. Throughout the paper we employ
dimensionless units and measure length in units of the
particle diameter a and energies in units of kBT . The
time scale 3πa3η/kBT is set by the time a particle diffuses
a distance equal to its diameter. In particular, employ-
ing these units the mobility and diffusion coefficient of
a free particle reduce to unity, D0 = µ0 = 1. We set
κ−1 = 0.2 and choose ε = 8 such that the liquid is sta-
ble for a large pressure range [26]. We explore the liquid
phase at four volume fractions φ ≡ 0.1, 0.2, 0.3, 0.4, where
φ = πN(a/L)3/6 with L the side length of the cubic sim-
ulation box. The highest density φ = 0.4 is close to the
equilibrium freezing transition, which occurs at a pressure
28.9 [26] (for φ = 0.4 the measured pressure in our simu-
lation is 27.6). For comparison, the freezing transition in
a hard sphere suspension occurs at φ ' 0.494 [27].

We employ Brownian dynamics simulations, for de-
tails see the appendix. The suspension is driven into
a nonequilibrium steady state through simple shear flow

u(r) = γ̇yex with strain rate γ̇ (which equals the Péclet
number in our units), see Fig. 1a). The equations of mo-
tion are ṙk = v0

k and

v̇0
k = −∇kU − [v0

k − u(rk)] + fk + ξk, (3)

where the dimensionless mass is set to one. Physically,
this choice implies that momenta relax on the diffusive
time scale. Besides the forces due to the potential en-
ergy U ≡

∑
k<k′ u(|rk − rk′ |) we allow for direct forces fk.

The stochastic noise ξk modeling the interactions with the
solvent has zero mean and correlations 〈ξki(t)ξk′j(t′)〉 =
2δijδkk′δ(t − t′), where i, j = x, y, z is the vector com-
ponent. In Eq. (3), we neglect hydrodynamic coupling
between different particles due to the solvent.

For the shear flow turned on we correct the particle
velocities {v0

k} by the external flow and investigate the
relative velocity vk = v0

k − u(rk). We are interested in
the dynamics of a single tagged particle interacting with
the remaining N − 1 particles in the suspension. Since all
particles are identical we designate particle 1 as the tagged
particle and drop the subscript; in the following r and v
are the position and relative velocity of the tagged particle,
respectively. We define the response of this velocity

Rij(t− t′; γ̇) ≡ δ〈vi(t)〉
δfj(t′)

(4)

with respect to an additional small force f . In addition,
we define the relative velocity autocorrelation matrix

Cij(t− t′; γ̇) ≡ 〈vi(t)vj(t′)〉0. (5)

The brackets 〈· · ·〉0 refer to an average with respect to the
unperturbed steady state whereas 〈·〉 is the average with
the external force applied. In equilibrium (γ̇ = 0) the
fluctuation-dissipation theorem Rij(t) = Cij(t) holds.

Response function. – Sampling the correlation
function (5) is straightforward. The direct way to ob-
tain the response matrix (4) from simulations would be
through a step perturbation of the force and the subse-
quent recording of the tagged particle’s velocity. Such a
protocol has to be repeated many times and the corre-
sponding response function follows as the time-derivative
of the mean velocity. Here, we follow another route and
determine the response function through the path inte-
gral representation of the fluctuation-dissipation theorem
(FDT) for nonequilibrium steady states. The FDT in its
general form reads

Rij(t− t′; γ̇) = 〈vi(t)Bj(t
′)〉0

with observable Bj(t) = δ lnP/δfj(t)|f=0 conjugate to the
perturbation force f acting on the tagged particle. The
stochastic path weight is

P [{ξk(t)}; f(t)] = N exp

{
−1

4

N∑
k=1

∫
dt ξ2k(t)

}
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Fig. 2: Comparison of the off-diagonal components Rxy(t) and
Ryx(t) for strain rate γ̇ = 1.0 and the four simulated volume
fractions: a) φ = 0.1, b) φ = 0.2, c) φ = 0.3, and d) φ = 0.4.
Increasing the density, the two curves approach each other until
for the highest density they almost lie on top of each other.
Note the changing time scale.

with normalization constant N . From Eq. (3) we see that
a perturbation of f is equivalent to a perturbation of ξ
with δξi(t)/δfj(t

′) = −δijδ(t− t′) we immediately obtain
Bj = ξj/2 and therefore

Rij(t− t′; γ̇) =
1

2
〈vi(t)ξj(t′)〉0. (6)

Since in a computer simulation we have direct access to
the noise we can exploit such an expression to obtain the
response function through a steady state correlation func-
tion. While Eq. (6) has been known before [4, 28], to the
best of our knowledge so far it has not been exploited to
obtain the response function numerically.

To understand the influence of the shear flow on the
particle motion it is instructive to look at the off-diagonal
components Rxy and Ryx plotted in Fig. 2. The compo-
nent Ryx describes the mean behavior of a tagged particle
when we apply a force parallel to the shear flow and mea-
sure its velocity perpendicular in y direction. The behav-
ior of Ryx can be explained by looking at the pair distribu-
tion function in Fig. 1b), which is deformed compared to
its equilibrium isotropic shape. In order to move faster at
short times the particle moves up (Ryx is positive) to over-
come its neighbors through a region of lower probability
to encounter another particle. At a later time the particle
is pushed back (Ryx is negative) due to interactions with
other particles which become more pronounced at higher
densities. Interchanging x and y-direction, the same argu-
ments hold for the component Rxy. However, since we pull
the particle up it enters a region where the surrounding
fluid moves faster due to the shear flow. Hence, the parti-
cle is accelerated and the response of the relative velocity

is negative for small times. With increasing density the
particle cannot move far in y-direction, making the veloc-
ity differences smaller. The qualitative difference between
the two curves diminishes and for φ = 0.4 both almost lie
on top of each other. Hence, the effect of the shear flow on
a single particle is more and more symmetric as particle
motion becomes correlated at higher densities.

Diffusion and mobility. – We now turn to the
nonequilibrium diffusion coefficients and mobilities,

Dij ≡
∫ ∞
0

dt Cij(t), µij ≡
∂〈vi〉
∂fj

=

∫ ∞
0

dt Rij(t), (7)

which are obtained through integrating the velocity au-
tocorrelation and response matrix, respectively. The mo-
bility is defined as the velocity change in response to a
small force applied to the tagged particle, perturbing the
steady state reached through shearing the solvent. The
diffusion coefficients are related to the velocity autocor-
relation through a Green-Kubo kind relation. They are
plotted in Fig. 3 and increase with increasing strain rate.
From our data we find that we can distinguish diffusion
parallel to the shear flow with D‖ = Dxx and diffusion
perpendicular with D⊥ = Dyy = Dzz. In shear flow the
tagged particle moves between layers of different flow ve-
locity effectively leading to larger fluctuations, allowing
the particle to explore phase space faster. At low density
the diffusion D‖ parallel to the shear flow is substantially
enhanced compared to D⊥ even though we subtract out
the external flow. However, the difference between the two
diffusion coefficients vanishes with increasing density.

In Fig. 4 we plot the reduced mobility µ(φ, γ̇)/µeq(φ)
versus strain rate γ̇ for the four simulated densities with
equilibrium (γ̇ = 0) mobility µeq. We find that the diag-
onal components of the mobility matrix are equal within
error bars and we obtain the shown mobilities through
averaging over the three directions. The off-diagonal com-
ponents are somewhat harder to obtain due to large sta-
tistical errors but are clearly much smaller than their di-
agonal counterparts (data not shown). The dependence

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

D
⊥
,
D

‖

γ̇

φ = 0.1

φ = 0.2

φ = 0.3

φ = 0.4

D‖
D⊥

Fig. 3: Diffusion coefficients D‖ parallel and D⊥ perpendicular
to the shear flow vs. strain rate γ̇ for the four different volume
fractions φ. For a free particle D⊥ = D‖ = 1.
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Fig. 4: Reduced mobilities µ/µeq vs. strain rate γ̇ for the four
different volume fractions φ. The lines are fits to Eq. (8).

of the absolute value of the mobility on the strain rate is
rather weak and for the lowest density φ = 0.1 it is even
constant. Such a weak dependence suggests that the abil-
ity of the solvent to reorganize in response to dragging
the tagged particle out of the ’cage’ formed by neighbor-
ing particles is only slightly affected by the presence of the
shear flow. Going to supercooled conditions, this is likely
to break down [29].

To explain the dependence of the mobility on the strain
rate we consider the mean velocity of the tagged particle
from Eq. (3),

〈v〉 = 〈F(1)〉+ f = −(N/L)3
∫

dr g(r)∇u(r) + f .

Here, g(r;φ, γ̇, f) is the pair distribution function to find a
second particle at r if there is a particle at the origin, see
Fig. 1b), and F(1) ≡ −∇1U is the force exerted by neigh-
boring particles on the tagged particle. The effects of the
shear flow and the force f enter only through the struc-
ture information encoded in the pair distribution function.
We can expand g into a Taylor series for small forces f .
On the other hand, it is well known that the structure of
the suspension in the presence of shear flow is singularly
perturbed from its isotropic equilibrium form [30, 31], re-
quiring an asymptotic expansion in powers of γ̇1/2. Such
an expansion in lowest order leads to

µ(φ, γ̇) ≈ µeq(φ)
[
1 + χ(φ)γ̇1/2

]
. (8)

In principle the coefficients χ(φ) could be obtained from
the knowledge of the perturbed pair distribution function
g(r). Here, we determine them through fitting the mobil-
ity, see the lines in Fig. 4. The fits show a good agreement
with the simulated data for all strain rates and densities
even though we have only retained the lowest order of the
expansion (8).

Einstein relation. – In Fig. 5 we plot Rxx(t) and
Cxx(t) as functions of time for different volume fractions.
The correlation functions have been scaled by a constant

factor 1/θx to match the initial decay of the response func-
tions. This procedure reveals a rather good agreement
between response and correlation function even for longer
times (this holds also for the yy and zz components). We
approximate the ratio

Cii(t;φ, γ̇)

Rii(t;φ, γ̇)
≈ θi(φ, γ̇) ≈ 1 + αi(φ)γ̇2 (9)

by these constant factors. Using Rii(0) = 1 we can inter-
pret θi ≈ 〈v2i 〉0 as effective temperatures since they equal
approximately the velocity fluctuations of the tagged par-
ticle. We have also checked the distribution functions of
the velocity which are Gaussian with width

√
θi as ex-

pected.

In Eq. (9) we expand the correlation function to second
order in the strain rate (due to the symmetry of simple
shear flow there is no first order) with fit parameters αi.
This expansion becomes exact in the case of interacting
particles with linear forces [32]. In the insets of Fig. 5 the
factors θi for the three directions x, y, and z are shown to
follow this quadratic prediction. Similar to the diffusion
coefficients we can distinguish a factor θ‖ = θx parallel,
and a factor θ⊥ = θy = θz perpendicular to the shear
flow. Again, increasing the density the difference between
the two directions vanishes.

Two points are noteworthy. First, no simple proportion-
ality can be found between the off-diagonal components of
the response and the correlation matrix. Both have a qual-
itatively different shape (data not shown). In particular,
the off-diagonal response components are strictly zero at
t = 0 whereas, in nonequilibrium, the off-diagonal veloc-
ity correlations are different from zero. Second, there is a
fundamental difference compared to the effective temper-
ature discussed for non-stationary, glassy dynamics out
of equilibrium. There, fluctuation and dissipation are re-
lated by an effective temperature at low frequencies (i.e.,
on long time scales) while the initial decay of response
and correlations is governed by the bath temperature [10].
Moreover, the effective temperature evolves slowly as the
system approaches equilibrium. In contrast, in our case
already the initial decay is governed by a temperature
θi > 1. The effect of this temperature extends into the
tails of response and correlation functions. It is only for
high densities that we observe a deviation in the tails as
can be seen in Fig. 5c).

We can finally write down a simple generalized Einstein
relation

Dii = θiµ (10)

for the diagonal components of the diffusion matrix. In-
serting the expansions for mobility [Eq. (8)] and effective
temperature [Eq. (9)] we find that Dii−µeq ∼ γ̇1/2 to low-
est order. Such a dependence was also found in molecular
dynamics simulations for a Lennard-Jones fluid [13, 14].
Due to the small χ/αi ratios we cannot resolve this γ̇1/2

dependence here.
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In Fig. 6 we test the putative effective temperature by
comparing θ⊥µ to the numerically obtained diffusion coef-
ficient D⊥ perpendicular to the shear flow. The mobility
for φ = 0.1 is independent of strain rate and the diffusion
follows the quadratic prediction D⊥ ∝ γ̇2. While we find
a good agreement for the two lowest densities, the effec-
tive temperature underestimates the diffusion coefficient
at intermediate strain rates and high densities since the
diffusion coefficient qualitatively changes and approaches
a linear function D⊥ ∝ γ̇ at high densities. This indicates
that the differences in the tails of response and velocity
autocorrelation funtions become more important. Also,
higher order terms might be required in the expansion of
mobility and effective temperature.

Experimental realization. – We briefly discuss how
our findings could be tested in experiments. Of course, the
route via Eq. (6) to obtain the velocity response matrix
through the explicit knowledge of the noise is not available
in experiments. Moreover, the direct route, i.e. perturbing
only a single particle within a suspension and measuring
its time-dependent mean velocity, is experimentally chal-
lenging and, as we find in our simulations, also statistically
more demanding.
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Fig. 6: Test of the Einstein relation D⊥ = θ⊥µ with effective
temperature θ⊥ from Eq. (9) and mobility from Eq. (8). The
curves show a very good agreement for the lowest two densities
but start to deviate at higher densities.

Despite the difficulties it is still interesting to obtain this
response function since it immediately yields the nonequi-
librium mobility. We now assume that the tagged particle
undergoes overdamped motion which is certainly the rele-
vant limit for experiments. The Langevin equation for the
tagged particle reads

ṙ− γ̇yex = F(1) + f + ξ. (11)

The replacement of the noise in Eq. (6) by Eq. (11) is per-
missible since the Jacobian arising due to the change of
variables is independent of f . We then obtain an experi-
mentally accessible expression for the response function

Rij(t) =
1

2

[
Cij(t)− 〈vi(t)F (1)

j (0)〉0
]

(12)

for components i, j = y, z perpendicular to the shear flow.
Let us assume that we record the particle position rk at
times tk ≡ kτ with time resolution τ , e.g., through video
microscopy. The velocity is then approximated through
the finite difference vk = (rk − rk−1)/τ . In principle, the
force F(1) on the tagged particle can be calculated from
the knowledge of the pair potential and the positions of
all neighboring particles.

Conclusions. – We have studied a hard-core Yukawa
colloidal system at different densities driven into a
nonequilibrium steady state through shear flow. In par-
ticular, we investigate diffusion and mobility of a single
tagged particle for four volume fractions φ and intermedi-
ate strain rates γ̇ 6 1. The self-diffusion coefficient is cal-
culated through the Green-Kubo relation from the single
particle’s velocity autocorrelation function. The mobility
is obtained from the particle’s response function through
integration. For systems governed by stochastic dynamics,
this response function can be obtained efficiently from the
correlation function Eq. (6) measured in the unperturbed
steady state. While for low densities we can clearly dis-
tinguish quantities measured parallel and perpendicular to
the shear flow, this difference vanishes for high densities.

Surprisingly, the diagonal components of the response
(i.e., the response is measured in the direction of the ap-
plied force) and correlation matrix can be matched over
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a large time range. The resulting proportionality factor
can be interpreted as an effective temperature, effectively
restoring the Einstein relation connecting diffusion and
mobility. Moreover, this proportionality factor is well ap-
proximated by a quadratic expansion in the strain rate.
It will be important to study how general such a simple
effective temperature is for driven interacting colloidal sus-
pensions and whether it extends to other observables. We
believe that the methodology presented here will lead to
new insights in the numerical study of dense colloidal sus-
pension, e.g., for microscopic stress fluctuations [32, 35].
Finally, the influence of hydrodynamic interactions on our
results remains to be investigated.
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Appendix: Simulation details. – The simulated
systems consist of N = 1728 particles in a cubic simu-
lation box. Since we are interested in the bulk behavior
of the suspension we employ periodic boundary conditions
and account for the shear flow through Lees-Edwards slid-
ing bricks. The equations of motion are integrated by
a stochastic version of the velocity Verlet algorithm [33],
where the velocity appearing in the force term at the right
hand side of Eq. (3) is taken from the mid-step velocity.
The time step is set to ∆t = 0.0005 � (κ

√
〈v2i 〉)−1 ∼

0.08 . . . 0.2. We equilibrate the suspension and then slowly
increase the strain rate to the final value. Correlation func-
tions have been obtained by averaging over 400 particle
trajectories with 300,000 time steps each. These trajecto-
ries have been determined in two independent runs from
randomly chosen particles.

To implement the hard-core repulsion and prevent par-
ticles from overlapping, the following simple algorithm is
employed (see also Refs. [16, 34] and references therein).
After every particle has been moved, but before new forces
are calculated, we store all overlapping particle pairs and
remove these overlaps as follows. For each pair both of the
particles are moved backwards in time along their respec-
tive velocity vector up to the point where they collided.
This time 0 < s < ∆t is stored. Knowing the positions
and velocities at the impact, we compute the connection
vector e between both particles. We decompose the ve-

locities into v
‖
1,2 = eeTv1,2 and v⊥1,2 = (1 − eeT )v1,2.

Only the parts parallel to e can change. Using the usual
elastic collision rule preserving momentum and kinetic en-
ergy of the particles we obtain the after-collision velocities

v′1 = v⊥1 + v
‖
2 and v′2 = v⊥2 + v

‖
1. From the positions of

their collision the particles are then propagated forward
with time step s along the new velocity vectors. This pro-
cedure is repeated as long as overlapping pairs exist.
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51, 4704 (1995).
[24] C. Chatelain, J. Stat. Mech. P06006 (2004).
[25] L. Berthier, Phys. Rev. Lett. 98, 220601 (2007).
[26] F. E. Azhar, M. Baus, J.-P. Ryckaert, and E. J. Meijer,

J. Chem. Phys. 112, 5121 (2000).
[27] V. J. Anderson and H. N. W. Lekkerkerker, Nature 416,

811 (2002).
[28] P. Calabrese and A. Gambassi, J. Phys. A: Math. Gen.

38, R133 (2005).
[29] P. Habdas et al., Europhys. Lett. 67, 477 (2004).
[30] J. K. G. Dhont, An Introduction to Dynamics of Colloids

(Elsevier, Amsterdam, 1996).
[31] W. B. Russel, D. A. Saville, and W. R. Schowalter, Col-

loidal Dispersions (Cambridge University Press, Cam-
bridge, 1995).

[32] T. Speck and U. Seifert, Phys. Rev. E 79, 040102 (2009).
[33] D. Frenkel and B. Smit, Understanding Molecular Simu-

lation (Academic Press, San Diego, 2002).
[34] P. Strating, Phys. Rev. E 59, 2175 (1999).
[35] J. Zausch and J. Horbach, EPL 88, 60001 (2009).

p-6


	Introduction. –
	Sheared hard-core Yukawa fluid. –
	Response function. –
	Diffusion and mobility. –
	Einstein relation. –
	Experimental realization. –
	Conclusions. –
	Appendix: Simulation details. –
	

