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GEOMETRY OF THE LOCUS OF POLYNOMIALS OF DEGREE 4

WITH ITERATIVE ROOTS

BEATA STRYCHARZ-SZEMBERG, TOMASZ SZEMBERG

Abstract. We study polynomial iterative roots of polynomials and describe the locus of
complex polynomials of degree 4 admitting a polynomial iterative square root.

1. Introduction

We begin by recalling some basic notions about iterations. Let M be an arbitrary set
and let f : M −→ M be a function.

Definition 1.1. The iterates of f are defined recursively by

• f0(x) = x for all x ∈ M ;
• fn+1(x) = f(fn(x)) for all x ∈ M and n ≥ 0.

Example 1.2. Let f : C −→ C be a linear polynomial f(z) = az + b. Then

f0(z) = z;
f1(z) = az + b;
f2(z) = a(az + b) + b = a2z + ab+ b;
f3(z) = a3z + a2b+ ab+ b;
...
fn(z) = anz + (an−1 + an−2 + · · ·+ a+ 1)b.

It is natural to ask if a given function g can be represented as an iterate of another
function f . If this is the case, then we say that f is an iterative root of g. This is defined
precisely below.

Definition 1.3. We say that a function f is an iterative root of order r ≥ 2 of a function g,
if the following functional equation is satisfied

f r = g

and r is the least integer for which this equation holds.

The problem of the existence of iterative roots appear in the literature already at the
beginning of the 19th century, notably in the works of Abel and Babbage, see eg. [Bab].
In the present note we consider this problem for complex polynomials in one variable.
Iterations of polynomials of more variables were studied recently in [CSZ].

2. Complex polynomials and algebraic sets

We recall some notions necessary in the further considerations.

Definition 2.1. a) A complex polynomial g(z) of one variable z of degree d is an expression
of the form

g(z) = bdz
d + bd−1z

d−1 + · · ·+ b1z + b0,

with b0, . . . , bd ∈ C and bd 6= 0. If d = 0, then also b0 = 0 is allowed.
1
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b) The set P (d) of polynomials of degree ≤ d is a vector space of dimension d+ 1 with
natural coordinates (bd, bd−1, . . . , b0).

c) The set of normalized polynomials Pn(d) of degree d (i.e. those with bd = 1) is an
affine subspace of P (d), which we identify with C

d via natural coordinates (bd−1, bd−2, . . . , b0).

Complex polynomials in more variables are defined similarly. Their set has a structure
of ring and is denoted usually by C[z1, . . . , zn].

Definition 2.2. An (affine) algebraic set in C
n is a set X defined by a (finite) number of

polynomial equations

X =



















f1(z1, . . . , zn) = 0
f2(z1, . . . , zn) = 0

...
...

...
fk(z1, . . . , zn) = 0

where f1, . . . , fk ∈ C[z1, . . . , zn].

One of fundamental theorems in algebraic geometry is Hilbert’s Nullstellensatz [Hul,
Theorem 1.16]. It associates to any algebraic subset X ⊂ C

n its vanishing ideal I(X). The
transcendence degree of the quotient field C(X) of the quotient ring C[z1, . . . , zn]/I(X) is
the dimension of X.

3. Iterative roots of complex polynomials

Motivated by the ideas recalled in the Introduction we are led to the following problem.

Question 3.1. Do complex polynomials in one variable of given degree d admit iterative
roots?

This question is very general and a little bit ambiguous at the same time. First of all
note, that if f is a polynomial of degree e, then f r is a polynomial of degree er, so there
are obvious constrains involving the degree for the existence of polynomial iterative roots.
For example a polynomial whose degree d is a prime cannot admit any polynomial roots
with r ≥ 2.

Sending a polynomial f ∈ P (d) to its r−th iterate f r ∈ P (dr) is an algebraic mapping.
This means the coefficients of f r are polynomial expressions in coefficients of f . The image
is thus an algebraic set and its dimension is bounded by d + 1, the dimension of P (d),
whereas the dimension of P (dr) is (dr + 1). This implies that a general polynomial of
degree dr has no polynomial root of order r. It is interesting to have some criteria. This
motivated our Theorem 4.2.

On the other hand, one might wonder if given a polynomial g(z) there exists arbitrary
function such that

f r = g

with no assumptions whatsoever on the regularity of f . This question seems to be much
harder. We collect together what is known about Question 3.1 to put our result in a
perspective.

3.1. Constant polynomials. A polynomial g of degree 0 is a constant function g(z) = b0.
It is clear that g is its own iterative root of arbitrary degree i.e. gr = g for all r ≥ 1.
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3.2. Linear polynomials. A linear polynomial g : C ∋ z −→ az + b ∈ C with a 6= 0 has
iterative roots of arbitrary order r.

Proof. If a 6= 1, then set simply c := a
1

r (we take one of the roots of order r of a),
d := b

1+c+···+cr−1 = b 1−c

1−a
and define f(z) = cz+ d. Then f is an iterative root of g of order

r, compare Example 1.2.
If a = 1 i.e. g(z) = z + b, then clearly f(z) = z + b

r
is the iterative of g of order r.

If b = 0, then for α an arbitrary root of 1 of order r the polynomial f(z) = α · z is an
iterative root of g(z) = z.

It follows from the proof that a complex linear polynomial admits at least r distinct
iterative roots of order r, which are linear polynomials as well. One cannot however hope
for an iterative version of the fundamental theorem of algebra. Indeed, the identity g(z) = z
has infinitely many polynomial iterative square roots of the form f(z) = −z + b with
arbitrary b ∈ C.

3.3. Quadratic polynomials. As the degree d = 2 is a prime, there cannot exist any
polynomial iterative roots. On the other hand in [RSS] Rice, Schweizer and Sklar proved
a surprising result to the effect that a quadratic complex polynomial does not admit any
iterative root i.e., with no assumption on the regularity of a root.

Theorem 3.2 (Rice-Schweizer-Sklar). Let g(z) be a quadratic complex polynomial and
r ≥ 2 an integer. Then there does not exist any function f : C −→ C such that f r = g.

Remark 3.3. Note that the result strongly depends on the ground field. For example
there exist iterative square roots of some real quadratic polynomials, see [Bro] for details.

3.4. Cubic polynomials. The degree is again a prime, so there are no polynomial roots.
Choczewski and Kuczma claim in [C-K] that the degree 3 counterpart of Theorem 3.2 holds.
However the factorization in [C-K, Formula 20] is false and the rest of their argument fails,
so that we don’t know for sure.

3.5. Quartic polynomials. Obviously there are quartic polynomials which are iterative
squares of quadratic polynomials. As remarked already above a general quartic polynomial
is not an iterative square, so it is natural to ask how to distinguish those which are among
all the others. In this note we show that there exists a rational surface S in the space Pn(4)
of normalized polynomials of degree 4, which parametrizes iterative squares. The precise
statement is given in Theorem 4.2, which is our main result. Degree 4 is in a sense the
first interesting case because there are quartic polynomials which have polynomial iterative
roots of order 2 and such which haven’t.

3.6. An overview. We summarize facts presented in this section in the following table.

degree which have polynomial iterative roots which have iterative roots

0 all all

1 all all

2 none none

3 none none (?)

4 a proper algebraic subset ???
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The following problem is quite natural (the evidence might be to sparse to rise a con-
jecture). We stress again, that in view of Remark 3.3 it is crucial, that we are over the
complex numbers.

Question 3.4. Let g be a complex polynomial in one variable which has an iterative root
of order r. Does there exist a polynomial iterative root of g of order r?

Note that one cannot hope that any iterative root of a polynomial is a polynomial itself.
For example the identity g(z) = z has also rational functions f(z) = a

z
with arbitrary

a ∈ C, a 6= 0 as iterative square roots (and more complicated functions as well).

4. The main result

We begin by showing that it is enough to consider normalized polynomials i.e. to work
in the space Pn(4). Let L(z) = az + b be a linear polynomial, a 6= 0. Then L is a bijective
mapping of the complex plane with the inverse L−1(z) = 1

a
z − b

a
. We have the following

observation.

Lemma 4.1. Let
g(z) = bdz

d + bd−1z
d−1 + · · ·+ b1z + b0

be a complex polynomial of degree d. There exists a normalized polynomial gn, which is
linear conjugate to g i.e. gn = L−1 ◦ g ◦ L for some L(z) = az + b as above.

Proof. Elementary calculation shows that

(L−1 ◦ g ◦ L)(z) = (bd · a
d−1)zd + terms of lower degree.

Since we work over the complex numbers there exists a ∈ C such that

bd · a
d−1 = 1

and the assertion of the Lemma follows.

It is a general fact, that existence of iterative roots is invariant under conjugation. Indeed,
assume that

γ = ϕr

holds and let λ be any bijection. Then λ−1 ◦ γ ◦ λ has λ ◦ ϕ ◦ λ as its iterative root of
order r. Hence it is enough to consider normalized polynomials.

Let f(z) = z2 + a1z + a0 be a normalized quadratic polynomial. Then

f2(z) = z4 + 2a1 · z
3 + (2a0 + a21 + a1) · z

2 + (2a1a0 + a21) · z + (a20 + a1a0 + a0).

This calculation can be interpreted in terms of the polynomial mapping

(1) ϕ : Pn(2) = C
2 ∋ (a1, a0) →















b3 = 2a1
b2 = 2a0 + a21 + a1
b1 = 2a1a0 + a21
b0 = a20 + a1a0 + a0

∈ C
4 = Pn(4).

We denote the image of this mapping by S.
Eliminating the variables a0 and a1 in the above equations either by hand or using

Singular [DGPS] as we did, leads to the following equations for S:

b43 − 8b2b
2
3 − 12b23 + 16b22 + 32b2 − 16b3 − 64b0 = 0;(2)

b33 − 4b2b3 + 8b1 = 0

Up to rearranging the terms we just proved our main result.
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Theorem 4.2. Let g(z) = z4 + b3z
3 + b2z

2 + b1z + b0 be a normalized complex quartic
polynomial. There exists a normalized polynomial f(z) = z2 + a1z + a0 of degree 2 such
that f2 = g if and only if

b0 =
1

64
(b43 − 8b2b

2
3 − 12b23 + 16b22 + 32b2 − 16b3) and b1 = −

1

8
(b33 − 4b2b3).

In this case

(3) a1 =
1

2
b3 and a0 = −

1

8
b23 −

1

4
b3 +

1

2
b2.

Remark 4.3. Whereas equations (2) distinguish iterative squares exactly in the same
manner as for example the vanishing of the discriminant of a polynomial distinguishes
polynomials with multiple roots, the forms (3) show that a polynomial square root can be
easily computed effectively.

Remark 4.4. As pointed out by the referee it might happen that a normalized polynomial
has an iterative root which is not normalized. Indeed, if α is an arbitrary cubic root of 1,
then the second iterate of h(z) = αz2 + β1z + β0 is a normalized polynomial of degree 4.

As we saw in Lemma 4.1, the polynomials h(z) in Remark 4.4 and f(z) in Theorem 4.2
are linearly conjugate, for example by Lα(z) = α · z which sends

f(z) = z2 + a1z + a0 to h(z) = αz2 + a1z + α2a0,

i.e. β1 = a1 and β0 = α2a0. The second iterates of the above polynomials are normalized
polynomials, of course again conjugate by Lα.

From now on, we assume that α is a primitive cubic root. Starting with h(z) instead of
f(z) we get a mapping ϕα similarly as in (1)

ϕα : Pn(2) = C
2 ∋ (a1, a0) →















b3 = 2α2a1
b2 = 2α2a0 + αa21 + αa1
b1 = 2αa1a0 + a21
b0 = αa20 + a1a0 + a0

∈ C
4 = Pn(4).

and by the same token we have the map ϕα2 . We denote the images of these maps by Sα

and Sα2 respectively. It is clear that the conjugation by Lα, respectively by Lα2(z) = α2 · z
induces isomorphisms of S with Sα and Sα2 . It suffices to understand the geometry of
S. It is surprisingly simply. Since S is the graph of a polynomial mapping in variables b2
and b3, it is a rational surface. It has an isolated singularity in the point (0, 0, 0, 0) which
corresponds to the polynomial z4. This polynomial sits in the intersection C := S∩Sα∩Sα2 ,
hence it has three distinct polynomial square roots: z2, α · z2 and α2 · z2. It is natural to
ask if there are more such polynomials.

5. Multiple roots and geometry

Here we show that C is an irreducible rational curve, hence in particular there is a one
parameter family of quartic polynomials with triple iterative roots of order 2.

Proposition 5.1. Let g(z) = z4 + β · z3 + 3
8
β2 · z2 + 1

16
β3 · z + 1

256
β4 − 1

4
β with β ∈ C

arbitrary. Then g has three distinct iterative roots of order 2.

Proof. A naive idea to describe all polynomials with multiple iterative roots would be to
consider pairwise intersections of surfaces S, Sα and Sα2 . This is doable but the computa-
tions are nasty. Here we compute instead iterates of quadratic polynomials. Let

fα(z) = αz2 + b1z + b0,
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then we have

(4) f2(z) = α3z4 + 2α2b1z
3 + (2α2b0 + αb21 + αb1)z

2 + (2αb0b1 + b21)z + (αb20 + b0b1 + b0).

It is clear that f2(z) is a normalized polynomial if and only if α is a cubic root of 1. We
assume that α is a primitive root. We write

f1(z) = z2 + a1z + a0, and fα2(z) = α2z2 + c1z + c0.

We get formula for f2
1 (z), respectively f2

α2(z) replacing in (4) α by 1, respectively by α2.
With second iterates of f1, fα and fα2 computed, we compare coefficients at correspond-

ing powers of z. We begin with f1 and fα, which corresponds to computing the intersection
of S with Sα. We get the following system of equations















a1 = α2b1
2a0 + a21 + a1 = 2α2b0 + αb21 + αb1

2a1a0 + a21 = 2αb0b1 + b21
a20 + a1a0 + a0 = αb20 + b0b1 + b0

Using elimination (we were again aided by Singular but it can be done also directly) we get






b1 = αa1
b0 = 1

4
α(a1 − 2α2)a1

a0 = 1
4
(a1 − 2)a1

With β := 2a1 we can write two iterative square roots of g(z) explicitly as

f1(z) = z2 + 1
2
βz − 1

16
β(βα2 + βα+ 4),

fα(z) = αz2 + 1
2
βαz − 1

16
β(β + βα2 + 4).

The intersection curve Γ := S ∩ Sα is thus parametrized by the polynomial mapping

C ∋ β →

(

β,
3

8
β2,

1

16
β3,

1

256
β4 −

1

4
β

)

∈ Pn(4) = C
4.

In particular this curve is rational and irreducible. It is not hard to check in the same way,
that Sα2 intersects S and Sα exactly along Γ. Alternatively one could argue with the cyclic
group of order 3 generated by α acting on the whole picture. In any case Γ = C and the
third iterative root of g is

fα2(z) = α2z2 + 1
2
βα2z − 1

16
β(β + βα+ 4).

Proposition 5.1 has the following somewhat surprising consequence.

Corollary 5.2. A normalized quartic polynomial has

a) either no polynomial iterative square root (it lies in the complement of the set S ∪
Sα ∪ Sα2 ⊂ Pn(4));

b) or one polynomial square root (it is a point in (S ∪ Sα ∪ Sα2) \ C);
c) or three polynomial square roots (it is a point on the curve C).

It would be interesting to know if the geometric picture carries over to the general setting
i.e. if the geometry of the set of polynomials of degree dr, which are r-th iterative powers
of polynomials of degree d has a similar description and if one can characterize polynomials
with multiple iterative polynomial roots. We hope to come back to this question in the
next future.
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