Birkhoff strata of the Grassmannian $\mathrm{Gr}^{(2)}$: Algebraic curves

B.G.Konopelchenko ${ }^{1}$ and G.Ortenzi ${ }^{2}$
${ }^{1}$ Dipartimento di Fisica, Università del Salento
and INFN, Sezione di Lecce, 73100 Lecce, Italy, konopel@le.infn.it
2 Dipartimento di Matematica Pura ed Applicazioni, Università di Milano Bicocca, 20125 Milano, Italy, giovanni.ortenzi@unimib.it

November 19, 2010

Abstract

Algebraic varieties and curves arising in Birkhoff strata of the Sato Grassmannian $\mathrm{Gr}^{(2)}$ are studied. It is shown that the big cell Σ_{0} contains the tower of families of the normal rational curves of all odd orders. Strata $\Sigma_{2 n}, n=1,2,3, \ldots$ contain hyperelliptic curves of genus n and their coordinate rings. Strata $\Sigma_{2 n+1}, n=0,1,2,3, \ldots$ contain $(2 m+1,2 m+3)$-plane curves for $n=2 m, 2 m-1$ $(m \geq 2)$ and $(3,4)$ and $(3,5)$ curves in Σ_{3}, Σ_{5} respectively. Curves in the strata $\Sigma_{2 n+1}$ have zero genus.

1 Introduction

Grassmannian $\mathrm{Gr}^{(2)}$ is a very important specialization of the universal Sato Grassmannian [1]. The most known its appearance is due to the connection with the theory of the KdV equation [2, 3. The present paper is devoted to the study of the Grassmannian $\mathrm{Gr}^{(2)}$ within the framework proposed recently in [4. The main idea of this approach is to analyze algebro-geometric structures arising in Sato Grassmannian, in our case in the Birkhoff strata of $\mathrm{Gr}^{(2)}$, without any a priori reference to any integrable system.

Recall that Sato Grassmannian Gr can be viewed as the set of closed vector subspaces in the infinite dimensional set of all formal Laurent series with coefficients in \mathbb{C} with certain special properties (see e.g. [2, 3). Each subspace $\mathrm{W} \subset \mathrm{Gr}$ possesses an algebraic basis $\left(w_{0}(z), w_{1}(z), w_{2}(z), \ldots\right)$ with the basis elements

$$
\begin{equation*}
w_{n}=\sum_{k=-\infty}^{n} a_{k}^{n} z^{k} \tag{1}
\end{equation*}
$$

of finite order n. Grassmannian Gr is a connected Banach manifold which exhibits a stratified structure [2. 3], i.e. $\mathrm{Gr}=\bigcup_{S} \Sigma_{S}$ where the stratum Σ_{S} is a subspace in Gr formed by elements of the form (11) such that possible values n are given by the infinite set $S=\left\{s_{0}, s_{1}, s_{2}, \ldots\right\}$ of integers s_{n} with $s_{0}<s_{1}<s_{2}<$ \ldots and $s_{n}=n$ for large n. Big cell Σ_{0} corresponds to $S=\{0,1,2, \ldots\}$. Other strata are associated with the sets S different from S_{0}.
$\mathrm{Gr}^{(2)}$ is the subset of elements W of Gr obeying the condition $z^{2} \cdot W \subset W$ [2, 3]. This condition imposes strong constraints on the Laurent series and on the structure of the strata. Namely, Birkhoff stratum Σ_{S} in $\mathrm{Gr}^{(2)}$ corresponds to the sets S such that $S+2 \subset S$, i.e. all possible S having the form (2) 3]

$$
\begin{equation*}
S_{m}=\{-m,-m+2,-m+4, \ldots, m, m+1, m+2, \ldots\} \tag{2}
\end{equation*}
$$

with $m=0,1,2, \ldots$. Codimension of Σ_{m} is $m(m+1) / 2$. One has $\operatorname{Gr}^{(2)}=\bigcup_{m \geq 0} \Sigma_{m}$.
In this paper, using the properties of the Birkhoff strata $\mathrm{Gr}^{(2)}$, we show that the big cell Σ_{0} contains a maximal closed subspace W_{0} which geometrically is a tower of infinite families of rational normal (Veronese) curves of all odd orders. It is demonstrated that the strata $\Sigma_{2 n}, n=1,2, \ldots$ contain subspaces $W_{2 n}$ closed with respect to multiplication if the coefficients of Laurent series w_{n} obey certain associativity constraints. Geometrically the subspaces $W_{2 n}$ represent infinite families of coordinate rings for the hyperelliptic curves of genus n. Then it is shown that the strata Σ_{3} and Σ_{5} contain $(3,4)$ and $(3,5)$
degenerate plane curves respectively. In the strata $\Sigma_{2 m+1}, m \geq 2$ one has families of ($2 m+1,2 m+3$) plane curves of zero genus.

In the second part of this work the tangent cohomology of the subspaces W_{n} and associated integrable systems of hydrodynamical type will be studied.

The paper is organized as follows. The big cell is discussed in section 2 . Stratum Σ_{1} is considered in section 3. Closed subspaces W_{2} in the stratum Σ_{2} and corresponding elliptic curves are studied in section 4. Stratum Σ_{3} and associated $(3,4)$ curves are analysed in section 5 . Section 6 is devoted to general strata $\Sigma_{2 n},(n=2,3,4, \ldots)$. Stratum Σ_{5} and the generic strata $\Sigma_{2 n+1},(n=3,4, \ldots)$ are discussed in section 7 .

2 Big cell

The principal stratum Σ_{0} for which $S=\{0,1,2, \ldots\}$ (called also big cell) is a dense open set and it has codimension zero [2, 3]. It possesses a canonical basis $\left(p_{0}, p_{1}, p_{2}, \ldots\right)$ where

$$
\begin{equation*}
p_{i}(z)=z^{i}+\sum_{k \geq 1} \frac{H_{k}^{i}}{z^{k}}, \quad i=0,1,2, \ldots \tag{3}
\end{equation*}
$$

with arbitrary H_{k}^{i}.
Accordingly to the approach proposed in [4] we first look for a subspace $W_{0} \subset \Sigma_{0}$ closed with respect to multiplication. Similar to the big cell in the general Gr one has

Lemma 2.1 Laurent series (3) obey the condition $z^{2} W_{0} \subset W_{0}$ and the equations

$$
\begin{equation*}
p_{j}(z) p_{k}(z)=\sum_{l \geq 0} C_{j k}^{l} p_{l}(z) \tag{4}
\end{equation*}
$$

if and only if

$$
\begin{align*}
H_{i}^{2 n} & =0, & & i=1,2,3, \ldots, n=0,1,2, \ldots, \\
H_{2 i}^{2 n+i} & =0, & & i=1,2,3, \ldots, n=0,1,2, \ldots \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
& H_{2(k+n)+1}^{2 m+1}-H_{2 k+1}^{2(m+n)+1}-\sum_{s=0}^{n-1} H_{2 s+1}^{2 m+1} H_{2 k+1}^{2(n-s)-1}=0, \\
& H_{2(k+n)+1}^{2 m+1}+H_{2(k+m)+1}^{2 n+1}+\sum_{l=0}^{k-1} H_{2 l+1}^{2 m+1} H_{2(k-l)-1}^{2 n+1}=0 . \tag{6}
\end{align*}
$$

The constants $C_{j k}^{l}$ are given by

$$
\begin{align*}
C_{2 n, 2 m}^{2 l} & =\delta_{m+n}^{l}, \\
C_{2 n, 2 m+1}^{2 l+1} & =\delta_{m+n}^{l}+H_{2(n-l)-1}^{2 m+1}, \tag{7}\\
C_{2 n+1,2 m+1}^{2 l} & =\delta_{m+n+1}^{l}+H_{2(m-l)+1}^{2 n+1}+H_{2(n-l)+1}^{2 m+1}
\end{align*}
$$

and $p_{2 n}=p_{2}{ }^{2}=z^{2 n}, n \geq 0$.
An immediate consequence of this lemma is given by the following
Proposition 2.2 The subspace $W_{0} \subset \Sigma_{0}$ with the elements of the form $w=\sum_{i=0}^{n} a_{i} p_{i}(z)$ with arbitrary a_{i} and $n \geq 0$ and parameters H_{k}^{i} obeying the constraints (6) and the condition $z^{2} W_{0} \subset W_{0}$ is closed with respect to multiplication $W_{0} \cdot W_{0} \subset W_{0}$. It is a maximal closed subspace in the big cell. This subspace W_{0} is an infinite dimensional associative commutative algebra with unity $p_{0}=1$.

The last statement follows from the equivalence of equations (6) to the associativity conditions

$$
\begin{equation*}
\sum_{s} C_{i j}^{s} C_{k s}^{r}-C_{i k}^{s} C_{j s}^{r}=0 \tag{8}
\end{equation*}
$$

for the structure constants $C_{j k}^{l}$.
Relations (4) written explicitly, i.e.

$$
\begin{align*}
p_{2 n} p_{2 m} & =p_{2(m+n)}, \\
p_{2 n} p_{2 m+1} & =p_{2(m+n)+1}+\sum_{s=0}^{n-1} H_{2 s+1}^{2 m+1} p_{2(n-s)-1} \tag{9}\\
p_{2 n+1} p_{2 m+1} & =p_{2(m+n+1)}+\sum_{s=0}^{m} H_{2 s+1}^{2 n+1} p_{2(m-s)}+\sum_{s=0}^{n} H_{2 s+1}^{2 m+1} p_{2(n-s)},
\end{align*}
$$

imply that

$$
\begin{align*}
& z^{2}=p_{1}^{2}-2 H_{1}^{1} \\
& p_{3}=p_{1}^{3}-3 H_{1}^{1} p_{1} \\
& p_{5}={p_{1}}^{5}-5 H_{1}^{1} p_{1}^{3}+\frac{15}{2}{H_{1}^{1}}^{2} p_{1} \tag{10}
\end{align*}
$$

or equivalently

$$
\begin{equation*}
\lambda=p_{1}^{2}-2 H_{1}^{1}, \quad p_{2 n+1}=\alpha_{n}(\lambda) p_{1} \tag{11}
\end{equation*}
$$

where $\lambda=z^{2}$ and $\alpha_{n}(\lambda)=\prod_{s=1}^{n}\left(\lambda-\frac{H_{2(n-s)+1}^{1}}{2(n-s)+1}\right)$.
Similar to [4] one can treat $\lambda, p_{1}, p_{3}, \ldots$ as the affine coordinates. So one has the following geometrical interpretation of the subspace W_{0}.

Proposition 2.3 Big cell Σ_{0} contains an infinite-dimensional algebraic variety Γ_{0} with the ideal

$$
\begin{equation*}
\left\langle\lambda-p_{1}^{2}+2 H_{1}^{1}, l_{1}^{(2)}, l_{1}^{(2)}, \ldots\right\rangle \tag{12}
\end{equation*}
$$

where $l_{n}^{(2)}=p_{2 n+1}-\alpha(\lambda) p_{1}$ and the variables H_{k}^{j} obey the constraints (6). This variety Γ_{0} is an infinite tower of infinite families of rational normal (Veronese) curves of all odd orders.

Formulas (10) represent a canonical parameterization of rational normal curves (see e.g. [6]). For instance, the curves defines by the first two equations (10) is the classical twisted cubic in the three-dimensional space with the coordinates $\left(\lambda, p_{1}, p_{3}\right)$.

There is an infinite set of independent variables among all H_{k}^{j} constrained by conditions (6). A natural set of independent H_{k}^{j} is given by $H_{1}^{1}, H_{3}^{1}, H_{5}^{1}, \ldots$

It is also easy to see using (11)that the ideal $I_{0}^{(2)}$ contains singular "hyperelliptic" curves of genus zero given by the equations

$$
\begin{equation*}
p_{2 n+1}^{2}=\left(\lambda+2 H_{1}^{1}\right) \alpha_{n}(\lambda)^{2} . \tag{13}
\end{equation*}
$$

Infinite family of algebraic varieties described in Proposition 2.3 is in its turn the algebraic variety in the affine space with coordinates $p_{i},(i=1,2,3, \ldots)$ and $H_{k}^{j},(j, k=1,2,3, \ldots)$ defined by the quadrics

$$
\begin{equation*}
f_{j k}=p_{j} p_{k}-p_{j+k}-\sum_{s=0}^{k} H_{s}^{j} p_{s}-\sum_{s=0}^{j} H_{s}^{k} p_{s}=0 \tag{14}
\end{equation*}
$$

and equations (6).

3 Stratum Σ_{1}

The stratum Σ_{1} is the lowest stratum different from the big cell and it corresponds to $m=1$ and $S=\{-1,1,2, \ldots\}$. Due to the absence of zero order element w_{0} the canonical basis is of the form

$$
\begin{equation*}
p_{i}(z)=z^{i}+H_{0}^{i}+\sum_{k \geq 1} \frac{H_{k}^{i}}{z^{k}}, \quad i=1,2,3, \ldots \tag{15}
\end{equation*}
$$

Lemma 3.1 A set W_{1} of Laurent series (15) obey the condition $z^{2} \cdot W_{1} \subset W_{1}$ and the equations

$$
\begin{equation*}
p_{j}(z) p_{k}(z)=\sum_{l \geq 1} C_{j k}^{l} p_{l}(z), \quad j, k=1,2,3, \ldots \tag{16}
\end{equation*}
$$

if and only if the parameters H_{k}^{j} satisfy the constraints

$$
\begin{align*}
& H_{0}^{2 j+k}+H_{0}^{2 j} H_{0}^{2 k}=0, \\
& H_{0}^{2(k+j)+1}+H_{0}^{2 k+1} H_{0}^{2 j+1}+\sum_{l=0}^{j-1} H_{2 l+1}^{2 k+1} H_{0}^{2(j-l)-1}=0, \\
& H_{2(j+l)+1}^{2 k+1}+H_{0}^{2 j} H_{2 l+1}^{2 k+1}-H_{2 l+1}^{2(k+j)+1}-H_{0}^{2 j} H_{2 l+1}^{2 k+1}-H_{2(l+j)+1}^{2 k+1}-\sum_{s=0}^{j-1} H_{2 s+1}^{2 k+1} H_{2 l+1}^{2(j-s)-1}=0, \tag{17}\\
& H_{0}^{2(k+j+1)}+H_{0}^{2 k+1} H_{0}^{2 j+1}+\sum_{s=0}^{k-1} H_{0}^{2(k-s)} H_{2 s+1}^{2 j+1}+\sum_{s=0}^{j-1} H_{0}^{2(j-s)} H_{2 s+1}^{2 k+1}=0, \\
& H_{2(l+k)+1}^{2 j+1}+H_{2(l+j)+1}^{2 k+1}+\sum_{s=0}^{l-1} H_{2 s+1}^{2 j+1} H_{2(l-s)-1}^{2 k+1}-\sum_{s=0}^{k-1} H_{2(l+k)+1}^{2 j+1}-\sum_{s=0}^{j-1} H_{2(l+j)+1}^{2 k+1}=0
\end{align*}
$$

and

$$
\begin{align*}
C_{2 j, 2 k}^{2 l} & =\delta_{j+k}^{l}+H_{0}^{2 j} \delta_{k}^{l}+H_{0}^{2 k} \delta_{j}^{l} \\
C_{2 j, 2 k+1}^{2 l+1} & =\delta_{j+k}^{l}+H_{0}^{2 j} \delta_{k}^{l}+H_{0}^{2 k} \delta_{j}^{l}+H_{2(j-l)+1}^{2 k+1}, \\
C_{2 j+1,2 k+1}^{2 l+1} & =H_{0}^{2 k+1} \delta_{j}^{l}+H_{0}^{2 j+1} \delta_{k}^{l}, \tag{18}\\
C_{2 j+1,2 k+1}^{2 l} & =\delta_{j+k+1}^{l}+H_{2(l+k)+1}^{2 j+1}+H_{2(l+j)+1}^{2 k+1} .
\end{align*}
$$

The analysis of the constraints (17) gives

$$
\begin{equation*}
H_{i}^{2 n}=0, \quad n, i=1,2,3, \ldots \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{0}^{2 n}=-\left(-H_{0}^{2}\right)^{n}, \quad n=1,2,3, \ldots \tag{20}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
p_{2 n}(z)=z^{2 n}-\left(-H_{0}^{2}\right)^{n}, \quad n=1,2,3, \ldots \tag{21}
\end{equation*}
$$

For the elements $p_{2 n+1}$ one instead has

$$
\begin{align*}
& p_{2}=p_{1}^{2}-2 H_{0}^{1} p_{1} \\
& p_{3}=p_{1}^{3}-3 H_{0}^{1}{p_{1}}^{2}-\left(3 H_{1}^{1}-3 H_{0}^{1^{2}}\right) p_{1} \tag{22}
\end{align*}
$$

Similar to the big cell one has a subspace W_{1} in Σ_{1} closed with respect to multiplication which algebraically is an infinite-dimensional commutative associative algebra A_{1} with the structure constants given by (18) in the basis (15). Geometrically W_{1} is an infinite tower of families of rational normal curves of all odd orders passing through the origin $p_{1}=p_{2}=p_{3}=\cdots=0$.

The fact that for the stratum Σ_{1} one has results which are similar to those for big cell is not that surprising. Indeed, taking into account the relations (17), namely

$$
\begin{equation*}
2 H_{1}^{1}-H_{0}^{2}+H_{0}^{1^{2}}=0, \quad H_{0}^{3}+H_{0}^{1} H_{0}^{2}+H_{0}^{1} H_{1}^{1}=0 \tag{23}
\end{equation*}
$$

and the formula (21), i.e. $p_{2}=z^{2}+H_{0}^{2}$, one can rewrite equations (22) as

$$
\begin{align*}
z^{2} & =\left(p_{1}-H_{0}^{1}\right)^{2}-2 H_{1}^{1} \\
p_{3}-H_{0}^{3} & =\left(p_{1}-H_{0}^{1}\right)^{3}-3 H_{1}^{1}\left(p_{1}-H_{0}^{1}\right) \tag{24}
\end{align*}
$$

In the variables

$$
\begin{equation*}
\tilde{p}_{1}=p_{1}-H_{0}^{1}, \quad \tilde{p}_{3}=p_{3}-H_{0}^{3} \tag{25}
\end{equation*}
$$

the equations (24) the first two equations (11) for the big cell. It is a direct check that in the variables

$$
\begin{equation*}
\tilde{p}_{k}=p_{k}-H_{0}^{k}, \quad k=1,2,3, \ldots \tag{26}
\end{equation*}
$$

all equations (22) coincide with equations (11) for the big cell.
Thus the result for the stratum Σ_{1} and big cell are connected by a simple change of variables (26). Similar situation take place for other strata Σ_{m} with odd m.

4 Stratum $\Sigma_{\boldsymbol{2}}$ and elliptic curves

For the stratum Σ_{2} with $S=\{-2,0,2,3,4, \ldots\}$ the positive order elements of the canonical basis are given by

$$
\begin{align*}
& p_{0}=1+\sum_{k \geq 1} \frac{H_{k}^{0}}{z^{k}} \\
& p_{j}=z^{j}+H_{-1}^{j} z+\sum_{k \geq 1} \frac{H_{k}^{j}}{z^{k}}, \quad k, j=2,3,4, \ldots . \tag{27}
\end{align*}
$$

Analogue of the Lemmas 2.1 and 3.1 is given by
Lemma 4.1 A set W_{2} of Laurent series (27) obey the equations

$$
\begin{equation*}
p_{j}(z) p_{k}(z)=\sum_{l=0,2,3, \ldots} C_{j k}^{l} p_{l}(z) \tag{28}
\end{equation*}
$$

and the condition $z^{2} W_{2} \subset W_{2}$ is satisfied if and only if

$$
\begin{align*}
H_{k}^{2 n} & =0, & & k=-1,1,2,3, \ldots, \quad n=0,1,2, \ldots, \\
H_{k}^{2 n+1} & =0, & & n, k=1,2,3, \ldots \tag{29}
\end{align*}
$$

and

$$
\begin{align*}
& H_{2(k+n)+1}^{2 m+1}-H_{2 k+1}^{2(m+n)+1}-\sum_{s=-1}^{n-2} H_{2 s+1}^{2 m+1} H_{2 k+1}^{2(n-s)+1}=0, \\
& H_{2(n+k)+1}^{2 m+1}+H_{2(m+k)+1}^{2 n+1}+\sum_{s=-1}^{k} H_{2 s+1}^{2 m+1} H_{2(l-s)-1}^{2 n+1}=0 . \tag{30}
\end{align*}
$$

Constants $C_{j k}^{l}$ are given by

$$
\begin{align*}
C_{2 n, 2 m}^{2 l}= & \delta_{m+n}^{l} \\
C_{2 n, 2 m+1}^{2 l+1}= & \delta_{m+n}^{l}+H_{2(n-l)-1}^{2 n+1}, \\
C_{2 n+1,2 m+1}^{2 l}= & \delta_{m+n+1}^{l}+H_{2(m-l)+1}^{2 n+1}+H_{2(n-l)+1}^{2 m+1}+H_{-1}^{2 n+1} H_{-1}^{2 m+1} \delta_{2}^{l} \tag{31}\\
& +\left(H_{-1}^{2 n+1} H_{1}^{2 m+1}+H_{1}^{2 n+1} H_{-1}^{2 m+1}\right) \delta_{0}^{l} .
\end{align*}
$$

which imply

$$
\begin{align*}
p_{2 n} p_{2 m}= & p_{2(m+n)}, \\
p_{2 n} p_{2 m+1}= & p_{2(m+n)+1}+\sum_{k=-1}^{n-2} H_{2 k+1}^{2 n+1} p_{2(n-k)-1}, \\
p_{2 n+1} p_{2 m+1}= & p_{2(m+n+1)}+\sum_{k=-1}^{m} H_{2 k+1}^{2 n+1} p_{2(m-k)}+\sum_{k=-1}^{n} H_{2 k+1}^{2 m+1} p_{2(n-k)} \tag{32}\\
& +H_{-1}^{2 n+1} H_{-1}^{2 m+1} p_{2}+\left(H_{-1}^{2 n+1} H_{1}^{2 m+1}+H_{1}^{2 n+1} H_{-1}^{2 m+1}\right)
\end{align*}
$$

and $p_{2 n}=z^{2 n}, n \geq 0$.
As a consequence, one has
Proposition 4.2 The stratum Σ_{2} contains a maximal closed subspace W_{2} with elements of the form

$$
\begin{equation*}
w=\sum_{i=0,2,3, \ldots} a_{i} p_{i}(z) \tag{33}
\end{equation*}
$$

with arbitrary n and a_{i} and parameters H_{k}^{j} obeying the constraints (29), (30) and such that $z^{2} W_{2} \subset W_{2}$. The relations (28) readily imply that all $p_{i}(z)$ are generated by two elements z^{2} and p_{3}.

Using (32) one can show that the set of independent relations (28) is given by

$$
\begin{equation*}
p_{3}^{2}=\lambda^{3}+2 H_{-1}^{3} \lambda^{2}+\left(2 H_{-1}^{3}{ }^{2}+2 H_{1}^{3}\right) \lambda+2 H_{-1}^{3} H_{1}^{3}+2 H_{3}^{3} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{2 n+1}=\left(\lambda^{n-1}-\sum_{i=0}^{n-2} H_{-1}^{2(n-i)-1} \lambda^{i}\right) p_{3} \tag{35}
\end{equation*}
$$

This relation is obtained obtained using iteratively the formula

$$
\begin{equation*}
p_{2 n+1}=\lambda p_{2 n-1}+H_{-1}^{2 n-1} p_{3} \tag{36}
\end{equation*}
$$

Proposition 4.3 Subspace W_{2} is an infinite-dimensional commutative associative algebra with the basis $1, p_{2}, p_{3}, p_{4}, \ldots$ isomorphic to $\mathbb{C}\left[\lambda, p_{3}\right] / C_{6}$
where

$$
\begin{equation*}
C_{6}=p_{3}^{2}-\lambda^{3}-2 H_{-1}^{3} \lambda^{2}-\left(2{H_{-1}^{3}}^{2}+2 H_{1}^{3}\right) \lambda-\left(2 H_{-1}^{3} H_{1}^{3}+2 H_{3}^{3}\right) \tag{37}
\end{equation*}
$$

Proof Associativity follows from the fact that the conditions (29) and (30) are equivalent to the condition

$$
\begin{equation*}
\sum_{s=0,2,3, \ldots} C_{j k}^{s} C_{s l}^{r}=\sum_{s=0,2,3, \ldots} C_{l k}^{s} C_{s j}^{r} \quad j, k, l, r=0,2,3, \ldots \tag{38}
\end{equation*}
$$

for the constants $C_{j k}^{l}$ given by (32).
Treating now λ, p_{3}, p_{5} and H_{k}^{j} as affine coordinates one has the following geometrical interpretation of the subspace W_{2}.

Proposition 4.4 The subspace W_{2} is an infinite dimensional algebraic variety Γ_{2} in the affine space with coordinates $p_{j},(j=2,3,4, \ldots), H_{k}^{j},(j=3,5,7, \ldots, k=-1,1,3,5, \ldots)$ defined by the intersection of quadrics

$$
\begin{equation*}
f_{j k}=p_{j} p_{k}-p_{j+k}-\sum_{l=0,2,3, \ldots}^{j+k-1} C_{j k}^{l} p_{l}(z)=0 \tag{39}
\end{equation*}
$$

and quadrics (30). An ideal $I^{(2)}$ of this variety is

$$
\begin{equation*}
I^{(2)}=\left\langle C_{6}, l_{5}^{(2)}, l_{7}^{(2)}, l_{9}^{(2)}, \ldots\right\rangle \tag{40}
\end{equation*}
$$

where $l_{2 n+1}^{(2)}=p_{2 n+1}-\left(\lambda^{n-1}-\sum_{i=0}^{n-2} H_{-1}^{2(n-i)-1} \lambda^{i}\right) p_{3}$.

Since $W_{2} \sim \mathbb{C}\left[\lambda, p_{3}\right] / C_{6}$ one can view Γ_{2} as the infinite family of coordinate rings of the elliptic curve $C_{6}=0$ parameterized by the variables H_{k}^{j} obeying the conditions (29) and (30). Analyzing these conditions one concludes that there is an infinite set of independent variables among all H_{k}^{j}, for example $H_{-1}^{3}, H_{1}^{3}, H_{3}^{3}, H_{5}^{3}, \ldots$

It is a direct check that the curve $C_{6}=0$ has genus one. So the stratum Σ_{2} contains an infinite family of elliptic curves parameterized by $H_{-1}^{3}, H_{1}^{3}, H_{3}^{3}$.

The ideal $I^{(2)}$ contains singular hyperelliptic curves of all orders and of genus 1 given by

$$
\begin{equation*}
p_{2 n+1}^{2}=\left(\lambda^{n-1}-\sum_{i=0}^{n-2} H_{-1}^{2(n-i)-1} \lambda^{i}\right)^{2}\left(\lambda^{2}+2 H_{-1}^{3} \lambda^{2}+\left(2 H_{-1}^{3}{ }^{2}+2 H_{1}^{3}\right) \lambda+2 H_{-1}^{3} H_{1}^{3}+2 H_{3}^{3}\right) \tag{41}
\end{equation*}
$$

5 Stratum $\Sigma_{3}:(3,4)$ curves of zero genus

Next case corresponds to $S=\{-3,-1,1,3,4,5, \ldots\}$. Due to the absence of elements of orders zero and two positive elements of the canonical basis are given by

$$
\begin{align*}
& p_{1}=z+H_{0}^{j}+\sum_{k \geq 1} \frac{H_{k}^{1}}{z^{k}} \\
& p_{j}=z^{j}+H_{-2}^{j} z^{2}+H_{0}^{j}+\sum_{k \geq 1} \frac{H_{k}^{j}}{z^{k}}, \quad j=3,4,5, \ldots \tag{42}
\end{align*}
$$

Since $p_{1}{ }^{2}$ has the order two a closed subspace can be generated only by the elements $p_{3}, p_{4}, p_{5}, \ldots$.
Lemma 5.1 A set W_{3} of Laurent series $p_{j}(z), j=3,4,5, \ldots$ obey the equations

$$
\begin{equation*}
p_{j}(z) p_{k}(z)=\sum_{l=3,4,5, \ldots} C_{j k}^{l} p_{l}(z), \quad j, k=3,4,5, \ldots \tag{43}
\end{equation*}
$$

and the condition $z^{2} W_{3} \subset W_{3}$ if and only if

$$
\begin{align*}
& p_{j}=z^{j}+H_{-2}^{j} z^{2}+H_{0}^{j}, \quad j \geq 5 \tag{44}\\
& H_{-2}^{j}+H_{-2}^{j-2} H_{-2}^{4}-H_{0}^{j-2}=0 \\
& H_{0}^{j}+H_{-2}^{j-2} H_{0}^{4}=0 \tag{45}
\end{align*}
$$

and

$$
\begin{align*}
& H_{0}^{4}+2 H_{0}^{3} H_{-2}^{3}-H_{-2}^{3}{ }^{2} H_{-2}^{4}-H_{-2}^{4}{ }^{2}=0 \\
& {H_{0}^{3}}^{2}-H_{-2}^{3}{ }^{2} H_{0}^{4}-H_{-2}^{4} H_{0}^{4}=0 \tag{46}
\end{align*}
$$

Proof Let us begin with the condition $z^{2 n} W_{3} \subset W_{3}$. One has

$$
\begin{equation*}
z^{2 n} p_{m}(z)=z^{2 n+m}+\cdots+H_{2 n-1}^{m} z+\ldots \tag{47}
\end{equation*}
$$

In W_{3} there is no element which contains the term of order one. Hence, with necessity $H_{2 n-1}^{m}=0$ for all $n=1,2,3, \ldots$ and $n=3,4,5, \ldots$, i.e.

$$
\begin{equation*}
p_{j}(z)=z^{j}+H_{-2}^{j} z^{2}+H_{0}^{j}+\sum_{n \geq 1} \frac{H_{2 n}^{j}}{z^{2 n}}, \quad j=3,4,5, \ldots \tag{48}
\end{equation*}
$$

Then considering the product $p_{2 k+1} p_{j}$ one has

$$
\begin{equation*}
p_{2 k+1}(z) p_{j}(z)=z^{2 k+j+1}+\cdots+H_{2 k}^{j} z+\ldots \tag{49}
\end{equation*}
$$

The terms of the order $z^{i}, i \geq 3$ can be represented as a superposition of $p_{3}, p_{4}, \ldots, p_{2 k+j+1}$ giving the constants $C_{j k}^{l}$ while the coefficient in front of z should vanish. Hence $H_{2 k}^{j}=0$ for all $k=1,2,3, \ldots$. So

$$
\begin{equation*}
p_{j}=z^{j}+H_{-2}^{j} z^{2}+H_{0}^{j} \quad j \geq 3 \tag{50}
\end{equation*}
$$

The coefficients H_{-2}^{j} and H_{0}^{j} are not all independent. Indeed, the relations

$$
\begin{align*}
& z^{2} p_{3}=p_{5}+H_{-2}^{3} p_{4} \\
& z^{2} p_{4}=p_{6}+H_{-2}^{4} p_{4} \\
& z^{4} p_{3}=p_{7}+H_{-2}^{3} p_{6}+H_{0}^{3} p_{4} \tag{51}
\end{align*}
$$

imply

$$
\begin{align*}
H_{-2}^{5}-H_{0}^{3}+H_{-2}^{3} H_{-2}^{4} & =0 \\
H_{0}^{5}+H_{-2}^{3} H_{0}^{4} & =0 \\
H_{-2}^{6}-H_{0}^{4}+H_{-2}^{4}{ }^{2} & =0 \\
H_{0}^{6}+H_{-2}^{4} H_{0}^{4} & =0 \tag{52}\\
H_{-2}^{7}+H_{-2}^{3} H_{-2}^{6}+H_{0}^{3} H_{-2}^{4} & =0, \\
H_{0}^{7}+H_{-2}^{3} H_{0}^{6}+H_{0}^{3} H_{0}^{4} & =0,
\end{align*}
$$

and so on. The relations (52) are the lowest members of the relations (45). Using these relations, one can express all H_{-2}^{j}, H_{0}^{j} with $j=5,6,7, \ldots$ in terms of H_{-2}^{3}, H_{0}^{3} and H_{-2}^{4}, H_{0}^{4}.

Furthermore, the vanishing of the coefficients in front of z^{2} and z^{0} in the relation

$$
\begin{equation*}
p_{3}^{2}-\left(p_{6}+2 H_{-2}^{3} p_{5}+H_{-2}^{3}{ }^{2} p_{4}+2 H_{0}^{3} p_{3}\right)=0 \tag{53}
\end{equation*}
$$

is equivalent to the conditions

$$
\begin{align*}
& H_{-2}^{6}-2 H_{-2}^{3} H_{-2}^{5}-H_{-2}^{3}{ }^{2} H_{-2}^{4}=0 \\
& H_{0}^{6}-{H_{0}^{3}}^{2}-2 H_{-2}^{3} H_{0}^{5}-H_{-2}^{3}{ }^{2} H_{0}^{4}=0 \tag{54}
\end{align*}
$$

Finally taking into account (52), one gets the constraints (46). So there are only two independent parameters among all coefficients H_{-2}^{j} and H_{0}^{j}. The simplest choice is to take H_{-2}^{3} and H_{-2}^{4} as independent variables. At last, the direct calculation gives

$$
\begin{equation*}
C_{j k}^{l}=\delta_{j+k}^{l}+H_{-2}^{k} \delta_{j+2}^{l}+H_{0}^{k} \delta_{j}^{l}+H_{-2}^{j} \delta_{k+2}^{l}+H_{0}^{j} \delta_{k}^{l}+H_{-2}^{j} H_{-2}^{k} \delta_{4}^{l} \tag{55}
\end{equation*}
$$

An immediate consequence of the Lemma 5.1 is given by
Proposition 5.2 The stratum Σ_{3} contains the subspace W_{3} closed with respect to multiplication W_{3}. $W_{3} \subset W_{3}$. Elements of W_{3} have the form $w=\sum_{j=3}^{n} a_{j} p_{j}(z)$ with arbitrary n and a_{i} and p_{i} of the form (44) with H_{-2}^{j}, H_{0}^{j} obeying the constraints (45) and (46). The subspace W_{3} is an infinite-dimensional associative and commutative algebra A_{3} with the basis 44) and structure constants (55).

A geometrical interpretation of W_{3} is provided by
Proposition 5.3 The subspace W_{3} can be viewed as the two parametric family of algebraic varieties defined by the relations

$$
\begin{equation*}
p_{j} p_{k}-\sum_{l} C_{j k}^{l} p_{l}=p_{j} p_{k}-\left(p_{j+k}+H_{-2}^{k} p_{j+2}+H_{0}^{k} p_{j}+H_{-2}^{j} p_{k+2}+H_{0}^{j} p_{k}+H_{-2}^{j} H_{-2}^{k} p_{4}\right)=0 \tag{56}
\end{equation*}
$$

The ideal of this family contains the plane $(3,4)$ curve (in the terminology of [7]) defined by the equation

$$
\begin{align*}
& p_{4}{ }^{3}-p_{3}{ }^{4}+4 H_{-2}^{3} p_{3} p_{4}{ }^{2}-\left(3 H_{-2}^{4}-2 H_{-2}^{3}{ }^{2}\right) p_{3}{ }^{2} p_{4}-\left(-4 H_{0}^{3}+2 H_{-2}^{3} H_{-2}^{4}\right) p_{3}{ }^{3} \\
& -\left(3 H_{0}^{4}+4 H_{0}^{3} H_{-2}^{3}+H_{-2}^{3}{ }^{4}+H_{-2}^{3}{ }^{2} H_{-2}^{4}\right) p_{4}{ }^{2}-\left(4 H_{-2}^{3}{ }^{2} H_{0}^{3}+8 H_{-2}^{3} H_{0}^{4}-2 H_{-2}^{3} H_{-2}^{4}{ }^{2}\right. \\
& \left.-6 H_{0}^{3} H_{-2}^{4}-2 H_{-2}^{3}{ }^{3} H_{-2}^{4}\right) p_{3} p_{4}-\left(-3 H_{0}^{4} H_{-2}^{4}+6 H_{0}^{3}{ }^{2}-6 H_{0}^{3} H_{-2}^{3} H_{-2}^{4}+2 H_{-2}^{3}{ }^{2} H_{0}^{4}\right. \\
& \left.+H_{-2}^{3}{ }^{2} H_{-2}^{4}{ }^{2}+H_{-2}^{4}{ }^{3}\right) p_{3}{ }^{2}-\left(-3 H_{0}^{4^{2}}-2{H_{0}^{3}}^{2} H_{-2}^{3}{ }^{2}-2 H_{-2}^{3}{ }^{2} H_{0}^{4} H_{-2}^{4}-2 H_{-2}^{3}{ }^{4} H_{0}^{4}\right. \tag{57}\\
& \left.+3{H_{0}^{3}}^{2} H_{-2}^{4}+2 H_{0}^{3} H_{-2}^{3} H_{-2}^{4}{ }^{2}-8 H_{0}^{3} H_{-2}^{3} H_{0}^{4}+2 H_{0}^{3} H_{-2}^{3}{ }^{3} H_{-2}^{4}\right) p_{4}-\left(-4 H_{0}^{3}{ }^{3}-4 H_{-2}^{3} H_{0}^{4^{2}}\right. \\
& +6 H_{0}^{3} H_{0}^{4} H_{-2}^{4}-4 H_{0}^{3} H_{0}^{4} H_{-2}^{3}{ }^{2}+6 H_{0}^{3}{ }^{2} H_{-2}^{3} H_{-2}^{4}+2 H_{0}^{4} H_{-2}^{3} H_{-2}^{4}{ }^{2}+2 H_{0}^{4} H_{-2}^{3}{ }^{3} H_{-2}^{4} \\
& \left.-2 H_{0}^{3} H_{-2}^{3}{ }^{2} H_{-2}^{4}{ }^{2}-2 H_{0}^{3} H_{-2}^{4}{ }^{3}\right) p_{3}=0
\end{align*}
$$

where $H_{-2}^{3}, H_{0}^{3}, H_{-2}^{4}$ and H_{0}^{4} obey the constraints (46). The (3,4) curve (57) have zero genus.
Proof By direct calculation with the use of polynomial form (44) of p_{j}.
Comparing the results of this and previous section, one observes an essential difference between the geometrical properties of the subspaces W_{2} and W_{3}. This is due to the quite different form of the Laurent series belonging to W_{i} which is the consequence of a different situation with elements of the first order in z. Namely, though in both cases W_{i} does not contain the element $p_{1}(z)$, The absence in W_{3} of the terms of order z in $p_{j}(z)$ leads to a strong constraints leading to the polinomiality of $p_{j}(z)$.

We note also that due to the presence of the element $p_{0}=1$ of zero order in W_{2} one has $z^{2} \in W_{2}$ while $z^{2} \notin W_{3}$. As a consequence, for instance, one can choose p_{3}, p_{4} and $z^{2} p_{3}$ as the generators of the algebra A_{3} instead of p_{3}, p_{4} and p_{5}.

A way to avoid the polinomiality of all $p_{j}(z) \in W_{3}$ would be to relax the condition $z^{2} W_{3} \subset W_{3}$. Since z^{2} is not an element of W_{3} it would be natural not to require that the product of z^{2} and an element of W_{3} belongs to W_{3}, but instead to require that $z^{2} W_{3} \subset \Sigma_{3}$. The presence of the element $p_{1}(z)$ in Σ_{3}, allows us to avoid immediate constraints on $p_{j}(z)$ followed from the relations of the type (47) and (49). for instance, instead of the conditions (51) one gets the following ones

$$
\begin{align*}
& z^{2} p_{3}-p_{5}-H_{-2}^{3} p_{4}=H_{1}^{3} p_{1} \\
& z^{2} p_{4}-p_{6}-H_{-2}^{4} p_{4}=H_{1}^{4} p_{1} \tag{58}
\end{align*}
$$

and so on. In virtue of the equations of this type one obtains an infinite set of relations for H_{k}^{j}. Computer analysis strongly indicates that these conditions again lead to the constraint $H_{k}^{j}=0, k=1,2,3, \ldots$, $j=3,4,5, \ldots$, i.e. to the polinomiality of all $p_{j}(z)$.

6 Strata $\Sigma_{2 n}$. Hyperelliptic curves of genus n

Stratum $\Sigma_{2 n}$ with arbitrary n is characterized by $S=\{-2 n,-2 n+2,-2 n+4, \ldots, 0,2,4, \ldots, 2 n, 2 n+$ $1,2 n+2, \ldots\}$. So it does not contain, in particular, n elements of the order $1,3,5, \ldots, 2 n-1$ and the positive order elements of the canonical basis are given by

$$
\begin{align*}
& p_{0}=1+\sum_{k \geq 1} \frac{H_{k}^{0}}{z^{k}} \\
& p_{j}=z^{j}+\sum_{k=0}^{j-1} H_{-2 k-1}^{j} z^{2 k+1}+\sum_{k \geq 1} \frac{H_{k}^{j}}{z^{k}}, \quad j=2,4,6, \ldots, 2 n-2, \tag{59}\\
& p_{j}=z^{j}+\sum_{k=0}^{n-1} H_{-2 k-1}^{j} z^{2 k+1}+\sum_{k \geq 1} \frac{H_{k}^{j}}{z^{k}} \quad j=2 n, 2 n+1,2 n+2,2 n+3, \ldots .
\end{align*}
$$

In this case one has

Lemma 6.1 A set $W_{2 n}$ of Laurent series (59) obey the condition $z^{2} W_{2 n} \subset W_{2 n}$ and equations

$$
\begin{equation*}
p_{j}(z) p_{k}(z)=\sum_{l} C_{j k}^{l} p_{l}(z) \tag{60}
\end{equation*}
$$

if and only if

$$
\begin{align*}
H_{k}^{2 m} & =0, & & m=0,1,2, \ldots, k=-2 n+2,-2 n+4, \ldots,-2,0,1,2,3, \ldots \\
H_{2 k}^{2 m+1} & =0, & m & =0,1,2, \ldots k=-n,-n+1,-n+2, \ldots \tag{61}
\end{align*}
$$

and

$$
\begin{align*}
& H_{2(l+k)+1}^{2 j+1}-H_{2 l+1}^{2(j+k)+1}-\sum_{s=-n}^{k-1} H_{2 s+1}^{2 j+1} H_{2 l+1}^{2(k-s)-1}=0, \\
& H_{2(l+k)+1}^{2 j+1}+H_{2(l+j)+1}^{2 k+1}+\sum_{s=-n}^{-1} H_{2 s+1}^{2 j+1} H_{2(l-s)-1}^{2 k+1}+\sum_{r=-n}^{-1} H_{2 r+1}^{2 k+1} H_{2(l-r)-1}^{2 j+1}+\sum_{s=0}^{l-n} H_{2 s+1}^{2 j+1} H_{2(l-s)-1}^{2 k+1}=0 . \tag{62}
\end{align*}
$$

Rewriting equation (60) separately for p_{j} with even and odd j, i.e.

$$
\begin{align*}
p_{2 j} p_{2 k}= & p_{2(j+k)}, \\
p_{2 j} p_{2 k+1}= & p_{2(j+k)+1}+\sum_{s=-n}^{k-1} H_{2 s+1}^{2 j+1} p_{2(k-s)-1}, \\
p_{2 j+1} p_{2 k+1}= & p_{2(j+k+1)}+\sum_{s=-n}^{j} H_{2 s+1}^{2 j+1} p_{2(j-s)}+\sum_{s=-n}^{k} H_{2 s+1}^{2 k+1} p_{2(k-s)} \tag{63}\\
& +\sum_{s=-n}^{-1} \sum_{r=-n}^{-1} H_{2 s+1}^{2 j+1} H_{2 r+1}^{2 k+1} p_{-2(s+r+1)}+\sum_{s=-n}^{-1} \sum_{r=0}^{-s-1} H_{2 s+1}^{2 j+1} H_{2 r+1}^{2 k+1} p_{-2(s+r+1)} \\
& +\sum_{r=-n}^{-1} \sum_{s=0}^{-r-1} H_{2 s+1}^{2 j+1} H_{2 r+1}^{2 k+1} p_{-2(s+r+1)},
\end{align*}
$$

one concludes that

$$
\begin{align*}
p_{2 m} & =\left(z^{2}\right)^{m}, \tag{64}\\
p_{2 m+1} & =\alpha(\lambda) p_{2 n+1}, \quad m=n+1, n+2, \ldots, \lambda=z^{2}
\end{align*}
$$

for suitable $\alpha(\lambda) \in \mathbb{C}[\lambda]$. Moreover

$$
\begin{equation*}
p_{2 n+1}^{2}=\lambda^{2 n+1}+\sum_{k=0}^{n} u_{k} \lambda^{k}=0 \tag{65}
\end{equation*}
$$

where the coefficients u_{k} can be obtained from

$$
\begin{equation*}
p_{2 n+1}^{2}=\lambda^{2 n+1}+2 \sum_{s=0}^{2 n} H_{2(n-s)+1}^{2 n+1} \lambda^{s}+\sum_{k=-n}^{n+1} \sum_{s=0}^{n-k-1} H_{2 k+1}^{2 n+1} H_{-2(s+k)-1}^{2 n+1} \lambda^{s} . \tag{66}
\end{equation*}
$$

Thus, one has
Proposition 6.2 The stratum $\Sigma_{2 n}$ for $n=2,3,4, \ldots$ contains maximal subspace $W_{2 n}$ closed with respect to multiplication with elements of the form

$$
\begin{equation*}
w=\sum_{k \geq 0} a_{2 k} \lambda^{k}+\sum_{k \geq n} b_{2 k+1}(\lambda) p_{2 k+1} \tag{67}
\end{equation*}
$$

with parameters H_{k}^{j} obeying the constraints (61) and (62).

Proposition 6.3 The subspace $W_{2 n}$ is the infinite-dimensional commutative associative algebra $A_{2 n}$ isomorphic to $\mathbb{C}\left[\lambda, p_{2 n+1}\right] / C_{2 n+1}$ where $\lambda=z^{2}$ and

$$
\begin{equation*}
C_{2 n+1}=p_{2 n+1}^{2}-\lambda^{2 n+1}-\sum_{k=0}^{n} u_{k} \lambda^{k}=0 \tag{68}
\end{equation*}
$$

and u_{k} are given by (66)
Proof Associativity of the algebra $A_{2 n}$ is the consequence of the equivalence of the constraints (61) and (62) and the associativity conditions

$$
\begin{equation*}
\sum_{s} C_{j k}^{s} C_{l s}^{r}=\sum_{s} C_{l k}^{s} C_{j s}^{r} \tag{69}
\end{equation*}
$$

for the constants $C_{j k}^{l}$ defined in (60) i.e.

$$
\begin{align*}
C_{2 j, 2 k}^{2 l}= & \delta_{j+k}^{l}, \\
C_{2 j+1,2 k}^{2 l+1}= & \delta_{j+k}^{l}+H_{2(k-l)-1}^{2 j+1}, \\
C_{2 j, 2 k}^{2 l}= & \delta_{j+k}^{l}+H_{2(j-l)+1}^{2 j+1}+H_{2(k-l)+1}^{2 k+1}+\sum_{s=-n-1}^{-1} \sum_{r=-n-1}^{-1} H_{2 s+1}^{2 j+1} H_{2 r+1}^{2 k+1} \delta_{-2(s+r+1)}^{l} \tag{70}\\
& +\sum_{s=-n-1}^{-1} \sum_{r=0}^{-s-1} H_{2 s+1}^{2 j+1} H_{2 r+1}^{2 k+1} \delta_{-2(s+r+1)}^{l}+\sum_{r=-n-1}^{-1} \sum_{s=0}^{-r-1} H_{2 s+1}^{2 j+1} H_{2 r+1}^{2 k+1} \delta_{-(s+r+1)}^{l} .
\end{align*}
$$

Interpreting $\lambda, p_{2 n+1}, p_{2 n+3}, \ldots$ as the local affine coordinates we first observe that the equation

$$
\begin{equation*}
C_{2 n+1}=0 \tag{71}
\end{equation*}
$$

defines a hyperelliptic curve of genus n. It is parameterized by $2 n+1$ arbitrary quantities $H_{-2 n+1}^{2 n+1}$, $H_{-2 n+1}^{2 n+3}, \ldots H_{+1}^{2 n+1}, \ldots, H_{2 n+1}^{2 n+1}$. Their variation generates an infinite family of hyperellliptic curves. One has

Proposition 6.4 The subspace $W_{2 n}$ in $\Sigma_{2 n}$ is an infinite-dimensional algebraic variety $\Gamma_{2 n}$ defined by the relations (60), (61), (62), (68). Its ideal is

$$
\begin{equation*}
I_{2 n+1}=\left\langle C_{2 n+1}, l_{2 n+3}^{(n)}, l_{2 n+5}^{(n)}, \ldots\right\rangle \tag{72}
\end{equation*}
$$

where $l_{2 m+1}^{(n)}=p_{2 m+1}-\alpha_{m}(\lambda) p_{2 n+1}, m=n+1, n+2, n+3, \ldots$.
In other words the variety $\Gamma_{2 n}$ is the intersection of the cubic $C_{2 n+1}=0$ and infinite set of algebraic curves $l_{2 m+1}^{(n)}, m=n+1, n+2, n+3, \ldots$. One can easily see that the ideal $I_{2 n}$ contains higher order hyperelliptic curves but all of them have genus n.

Thus stratum $\Sigma_{2 n}$ is characterized by the presence of the plane hyperelliptic curves $C_{2 n+1}$ of genus n in the closed subspace $W_{2 n}$. This is due to the presence of n gaps (elements $\left.p_{1}(z), p_{3}(z), \ldots, p_{2 n-1}(z)\right)$ in the basis of $W_{2 n}$. The fact that for hyperelliptic curves (Riemann surfaces) of genus n one has n (Weierstrass) gaps in a generic point is well known in the theory of abelian functions (see e.g. [8]). Probably not that known observation is that these gaps and consequently the properties of corresponding algebraic curves are prescribed by the structure of the Birkhoff strata $\Sigma_{2 n}$ in $\mathrm{Gr}^{(2)}$. In different context an appearance of hyperelliptic curves in Birkhoff strata of $\mathrm{Gr}^{(2)}$ has been observed in 9 .

$7 \quad$ Strata $\Sigma_{2 n+1}$

Stratum $\Sigma_{2 n+1}, n=2,3,4, \ldots$ is characterized by $S=\{-2 n-1,-2 n+1, \ldots,-1,1,3, \ldots, 2 n+1,2 n+$ $2, \ldots\}$. So, the positive order elements of the canonical basis in $\Sigma_{2 n+1}$ are of the form

$$
\begin{align*}
& p_{j}(z)=z^{j}+H_{-j+1}^{j} z^{j-2}+H_{j+2}^{j} z^{j-2}+\cdots+H_{0}^{j}+\sum_{k \geq 1} \frac{H_{k}^{j}}{z^{k}}, \quad j=1,3, \ldots, 2 n-1 \tag{73}\\
& p_{j}(z)=z^{j}+H_{-2 n}^{j} z^{2 n}+H_{-2 n+1}^{j} z^{2 n-1}+\cdots+H_{0}^{j}+\sum_{k \geq 1} \frac{H_{k}^{j}}{z^{k}}, \quad j=2 n+1,2 n+2, \ldots .
\end{align*}
$$

Closed subspaces in $\Sigma_{2 n+1}$ have different structure for different n. In order to see this let us begin with Σ_{5}. In this case the elements (73) of the canonical basis are

$$
\begin{align*}
& p_{1}=z+H_{0}^{1}+\sum_{k \geq 1} \frac{H_{k}^{1}}{z^{k}}, \\
& p_{3}=z^{3}+H_{-2}^{3} z^{2}+H_{0}^{1}+\sum_{k \geq 1} \frac{H_{k}^{1}}{z^{k}} \tag{74}\\
& p_{j}=z^{j}+H_{-4}^{j} z^{4}+H_{-2}^{j} z^{2}+H_{0}^{j}+\sum_{k \geq 1} \frac{H_{k}^{j}}{z^{k}} \quad j=5,6,7, \ldots .
\end{align*}
$$

It is easy to see that the maximal closed subspace W_{5} in Σ_{5} is the subspace with the basis $\left(p_{3}, p_{5}, p_{6}, \ldots\right)$.

Lemma 7.1 A set W_{5} of the Laurent series $p_{3}, p_{5}, p_{6}, \ldots$ obey the equations

$$
\begin{equation*}
p_{j}(z) p_{k}(z)=\sum_{l=3,5,6, \ldots} C_{j k} p_{l}(z) \tag{75}
\end{equation*}
$$

and the condition $z^{2} W_{5} \subset W_{5}$ if and only if $H_{k}^{j}=0, j=3,5,6, \ldots, k=1,2,3, \ldots$, i.e. all p_{j} are polynomials and $H_{k}^{j}, k=-4,-2,0$ obey the constraints

$$
\begin{align*}
& H_{0}^{5}=0 \quad H_{-2}^{5}=H_{0}^{3}, \quad H_{-4}^{5}=H_{-2}^{3}, \\
& H_{0}^{6}=-{H_{0}^{3}}^{2}, \quad H_{-2}^{6}=-2 H_{0}^{3} H_{-2}^{3}, \quad H_{-4}^{6}=-H_{-2}^{3}{ }^{2}, \tag{76}
\end{align*}
$$

The proof of the polynomiality of $p_{j}(z)$ is exactly the same as for W_{3} (Lemma 5.1). The constraints (76) follow from equations (75) and the condition $z^{5} W_{5} \subset W_{5}$. For instance one has $z^{2} p_{3}=p_{5}, z^{2} p_{5}=$ $p_{7}+H_{-4}^{5} p_{6}$ etc. . The constants $C_{j k}^{l}$ are given by

$$
\begin{equation*}
C_{j k}^{l}=\delta_{j+k}^{l}+\sum_{s=0}^{2} H_{-2 s}^{j} \delta_{2 s+k}^{l}+\sum_{s=0}^{2} H_{-2 s}^{k} \delta_{2 s+j}^{l}+\sum_{s, r=0}^{2} H_{-2 s}^{j} H_{-2 r}^{k} \delta_{2(r+s)}^{l}, \quad j, k \geq 3 \tag{77}
\end{equation*}
$$

where, for sake of compactess, we use $H_{-4}^{3}=0$. As a consequence of this lemma one has
Proposition 7.2 The stratum Σ_{5} contains a maximal subspace W_{5} closed with respect to multiplication $W_{5} \cdot W_{5} \subset W_{5}$. Elements of W_{5} have the form $w=\sum_{i=3,5,6,7, \ldots} a_{i} p_{i}(z)$ with arbitrary a_{i}, n and H_{-4}^{j}, H_{-2}^{j}, H_{0}^{j} obeying the constraints (52).

Algebraically W_{5} is an infinite-dimensional commutative associative algebra A_{5} of polynomials with the structure constants given by (77). Geometrically W_{5} is the infinite algebraic variety Γ_{5} defined by the equations (75) and (52).

First equations of the set of equations (75) are

$$
\begin{align*}
p_{3}^{2} & =p_{6}+2 H_{-2}^{3} p_{5}+2 H_{0}^{3} p_{3} \\
p_{3} p_{5} & =p_{8}+2 H_{-2}^{3} p_{7}+H_{-2}^{3}{ }^{2} p_{6}++2 H_{0}^{3} p_{5} \tag{78}
\end{align*}
$$

and so on. So the algebra A_{5} is generated by p_{3}, p_{5} and p_{7}.
It is not also difficult to show that an ideal of the variety Γ_{5} contains the family of plane $(3,5)$ curve

$$
\begin{equation*}
p_{5}^{3}-p_{3}{ }^{5}+2 H_{-2}^{3} p_{3}^{3} p_{5}-H_{-2}^{3}{ }^{2} p_{3} p_{5}^{2}+2 H_{0}^{3} p_{3}^{4}-2 H_{0}^{3} H_{-2}^{3} p_{3}^{2} p_{5}-H_{0}^{3^{2}} p_{3}^{3}=0 \tag{79}
\end{equation*}
$$

parameterized by two variables H_{-2}^{3} and H_{0}^{3}. Due to the polinomiality of p_{3} and p_{5} in z, the genus of of curve (79) is obviously equal to zero. The ideal of the varieties contains another rational plane curve given by

$$
\begin{align*}
& p_{6}{ }^{5}-p_{5}{ }^{6}+6 H_{-2}^{3} p_{5} p_{6}{ }^{4}+14 H_{-2}^{3}{ }^{2} p_{5}{ }^{2} p_{6}{ }^{3}-\left(-6 H_{0}^{3}-16 H_{-2}^{3}{ }^{3}\right) p_{5}{ }^{3} p_{6}{ }^{2}-\left(-16 H_{0}^{3} H_{-2}^{3}-9 H_{-2}^{3}{ }^{4}\right) p_{5}{ }^{4} p_{6} \\
& -\left(-10 H_{0}^{3} H_{-2}^{3}{ }^{2}-2 H_{-2}^{3}{ }^{5}\right) p_{5}{ }^{5}+2{H_{0}^{3}}^{2} p_{6}{ }^{4}+8 H_{0}^{3}{ }^{2} H_{-2}^{3} p_{5} p_{6}{ }^{3}+10 H_{-2}^{3}{ }^{2} H_{0}^{3}{ }^{2} p_{5}{ }^{2} p_{6}{ }^{2} \\
& -\left(-14 H_{0}^{3}{ }^{3}-4 H_{-2}^{3}{ }^{3} H_{0}^{3^{2}}\right) p_{5}^{3} p_{6}+20 H_{0}^{3}{ }^{3} H_{-2}^{3} p_{5}{ }^{4}+H_{0}^{3}{ }^{4} p_{6}{ }^{3}+2 H_{0}^{34} H_{-2}^{3} p_{5} p_{6}{ }^{2}+8 H_{0}^{3}{ }^{5} p_{5}{ }^{3}=0 \tag{80}
\end{align*}
$$

The stratum Σ_{5} exhibits the main features of higher strata $\Sigma_{4 m-1},(m=1,2,3, \ldots)$. The maximal closed subspaces $W_{4 m-1}$ have the basis $\left(p_{2 m+1}, p_{2 m+3}, \ldots, p_{4 m-1}, p_{4 m}, p_{4 m+1}, \ldots\right)$ while the stratum $\Sigma_{4 m+1},(m=1,2,3, \ldots)$ have the basis $\left(p_{2 m+1}, p_{2 m+3}, \ldots, p_{4 m-1}, p_{4 m+1}, p_{4 m+2}, \ldots\right)$ with the respective p_{j}. Then one can demonstrate an analog of the Lemma 7.1 for $\Sigma_{4 m \pm 1}$ which in particular says that all $p_{j}(z)$ are polynomials in z obeying the equations

$$
\begin{equation*}
p_{j}(z) p_{k}(z)=\sum_{l} C_{j k}^{l} p_{l}(z), \quad j, k, l=2 m+1,2 m+3, \ldots \tag{81}
\end{equation*}
$$

together with certain constraints on H_{-k}^{j}.
Consequently one has closed subspaces $W_{4 m \pm 1}$ in $\Sigma_{4 m \pm 1}$ which algebraically are commutative and associative algebras and geometrically they represent families of algebraic varieties $\Gamma_{4 m \pm 1}$ defined by the equation (81). Ideals of the varieties $\Gamma_{4 m \pm 1}$ contain plane $(2 m+1,2 m+3)$ curve

$$
\begin{equation*}
p_{2 m+1}^{2 m+3}-p_{2 m+3}^{2 m+1}+\cdots=0, \quad m=1,2,3, \ldots \tag{82}
\end{equation*}
$$

of zero genus.
Properties of these rational curves will be discussed elsewhere.

Acknowledgements

B.K. thanks V. M. Buchstaber and B. Dubrovin for useful discussions. This work has been partially supported by PRIN grant no 28002K9KXZ and by FAR 2009 (Sistemi dinamici Integrabili e Interazioni fra campi e particelle) of the University of Milano Bicocca.

References

[1] Sato, M., Sato, Y.: Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. Nonlinear partial differential equations in applied science, 259-271, North-Holland Math. Stud., 81, North-Holland, Amsterdam, 1983.
[2] Segal, G., Wilson, G.: Loop groups and equations of KdV type, Inst. Hautes tudes Sci. Publ. Math. No. 61, 5-65 (1985)
[3] Pressley, A., Segal, G.: Loop Groups. Oxford University Press (1988)
[4] Konopelchenko, B. G., Ortenzi, G.: Algebraic curves in Birkhoff strata of Sato Grassmannian,. arXiv:1005.2053
[5] Konopelchenko, B. G., Ortenzi, G.: Birkhoff strata in the Grassmannian Gr ${ }^{(2)}$: tangent cohomology and integrable systems (in preparation)
[6] Harris, J.: Algebraic geometry: a first course. Springer-Verlag, Berlin (1992)
[7] Buchstaber, V.M., Leikin, D.V., Enolskii, V.Z.: Rational analogues of Abelian functions. Funktsional. Anal. i Prilozhen. 33:2, 115 (1999) translated in Functional Anal. Appl. 33, 8394 (1999)
[8] Baker, H. F.: Abelian functions, Cambridge, 1987
[9] Kodama, Y., Konopelchenko, B.G.: Singular sector of the Burgers-Hopf hierarchy and deformations of hyperelliptic curves. J. Phys. A 35, no. 31, L489-L500 (2002)

