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SCHEME OF LINES ON A FAMILY OF 2-DIMENSIONAL QUADRICS:

GEOMETRY AND DERIVED CATEGORY

ALEXANDER KUZNETSOV

Abstract. Given a generic family Q of 2-dimensional quadrics over a smooth 3-dimensional base Y we

consider the relative Fano scheme M of lines of it. The scheme M has a structure of a generically conic

bundle M → X over a double covering X → Y ramified in the degeneration locus of Q → Y . The double

covering X → Y is singular in a finite number of points (corresponding to the points y ∈ Y such that

the quadric Qy degenerates to a union of two planes), the fibers of M over such points are unions of two

planes intersecting in a point.

The main result of the paper is a construction of a semiorthogonal decomposition for the derived

category of coherent sheaves on M . This decomposition has three components, the first is the derived

category of a small resolution X+ of singularities of the double covering X → Y , the second is a twisted

resolution of singularities of X (given by the sheaf of even parts of Clifford algebras on Y ), and the third

is generated by a completely orthogonal exceptional collection.

1. Introduction

The subject of this note is a description of the structure of the derived category of coherent sheaves

on the relative scheme of lines for a family of 2-dimensional quadrics. We had two motivations for

investigation of this category — first of all it has an interesting structure and exhibits some interesting

features. For example, it combines the minimal resolution of singularities and the twisted resolution of

singularities of a certain double covering of the base of the family.

The second, and the most important motivation, comes from investigation of the derived categories of

some special double covers of P3 and their relation to Enriques surfaces. See the companion paper [IK]

for details.

The precise formulation of the main result of the paper is the following. Consider a family of 2-

dimensional quadrics q : Q → Y . This means that we are given a projectivization of a rank 4 vector

bundle V on Y and a divisor Q ⊂ PY (V) of relative degree 2 which is flat over Y . Such divisor is given

by a line subbundle L ⊂ S2V∨.

Given this we consider the relative Fano scheme of lines of Q over Y . By definition this is the zero

locus on the relative Grassmannian GrY (2,V) of the global section

s ∈ Γ(GrY (2,V),L
∨ ⊗ S2U∨),

where U ⊂ V is the tautological subbundle on the Grassmannian. We denote this relative Fano scheme

by M . The fibers My of the projection ρ : M → Y have the following structure

• My is a disjoint union of two smooth conics, if the quadric Qy is smooth;

• My is a single smooth conic (with a nonreduced scheme structure), if the quadric Qy has corank 1;

• My is a union of two planes intersecting in a point, if the quadric Qy has corank 2;

• My is a single plane (with a nonreduced scheme structure), if the quadric Qy has corank 3.

I was partially supported by RFFI grants 08-01-00297, 09-01-12170, 10-01-93110, 10-01-93113, NSh-4713.2010.1, and

Russian Presidential grant for young scientists MD-2712.2009.1.
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2 ALEXANDER KUZNETSOV

From now on we assume that the family Q → Y is sufficiently generic, that is generic fiber is smooth,

and the codimension of the locus Dr ⊂ Y of quadrics of corank r equals r(r+1)/2. In this case we have

the Stein factorization for the morphism ρ : M → Y :

M
µ

//

ρ
  A

AA
AA

AA
A X

f~~~~
~~

~~
~~

Y

where f : X → Y is the double covering ramified in the divisor D1, and µ : M → X is generically a conic

bundle.

The main result of this paper is a description of the derived category of M when dimY = 3. Then the

above genericity assumptions imply that D3 = ∅ and D2 consists of a finite number N of isolated points

y1, . . . , yN . Additionally we assume that D1 has an ordinary double point (an ODP or a node for short)

in each of yi. The last assumption is equivalent to smoothness of M if Q is smooth.

To state the answer we need the following ingredients. First, consider the sheaf of even parts of Clifford

algebras B0 on Y associated with the family Q → Y (see [K2] for details). As an O-module it is given by

B0 = OY ⊕ Λ2V ⊗ L ⊕ Λ4V ⊗ L2

with the Clifford multiplication. If Q is smooth then the category Db(Y,B0) is also smooth and can be

thought of as a twisted noncommutative resolution of the double covering X.

Second, note that X has N isolated ordinary double points over D2, so being 3-dimensional it has 2N

small resolutions of singularities in the category of Moishezon varieties. To fix one of these resolutions

we should choose for each point yi ∈ D2 one of the planes in the corank 2 quadric Qyi , or equivalently

one of the planes in the fiber Myi of M over Y .

Let us pick one of these resolutions and denote it by σ+ : X+ → X. Let us denote the planes in Myi

corresponding to this choice by Σ+
i , and the complementary planes by Σ−

i , so that Myi = Σ+
i ∪ Σ−

i .

The main result of this paper is the following

Theorem 1.1. Assume that Q → Y is a family of quadrics, Y and Q are smooth, dimY = 3, and the

degeneration locus D1 has a finite number of ordinary double points {y1, . . . , yN} = D2. Then the relative

Fano scheme M of lines of Q over Y is smooth and there is a semiorthogonal decomposition

Db(M) = 〈Db(X+),Db(Y,B0), {OΣ+

i
}Ni=1〉.

Here the third component is a completely orthogonal exceptional collection.

The proof goes as follows. In section 2 we prove smoothness of M and investigate the local structure

of M around the planes Σ±
i . In particular, we check that the sheaves OΣ+

i
form a completely orthogonal

exceptional collection in Db(M). In section 3 we recall some facts about the sheaf of even parts of Clifford

algebras B0 and construct a fully faithful embedding Db(Y,B0) → Db(M). In section 4 we show that

there is a birational transformation of M , a flip in N planes Σ+
i , transforming it into a P

1-fibration

µ+ : M+ → X+ over a small resolution X+ → X. This gives an identification of the orthogonal to

the collection {OΣ+

i
}Ni=1 in Db(M) with Db(M+). In section 5 we construct a fully faithful embedding

Db(X+) → Db(M+) and identify the complement with Db(Y,B0).

In the last section 6 we discuss another way of proving Theorem 1.1 and suggest some further directions

of investigation.

Acknowledgement: I would like to thank L.Katzarkov, D.Orlov, and Yu.Prokhorov for helpful

discussions.
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2. Geometry of M

For each quadric Qy in the family Q → Y denote by Ky ⊂ Vy the kernel of the corresponding quadratic

form (thus P(Ky) is the singular locus ofQy). Note that the differential of the section s ∈ Γ(Y,L−1⊗S2V∨)

at y gives a linear map TyY → S2V∨
y . Composing it with the natural projection S2V∨

y → S2K∨
y we obtain

a map

κy : TyY → S2K∨
y .

In term of these maps one can check the smoothness of Q and M .

Proposition 2.1. Assume that Y is smooth. Then

(1) Q is smooth if and only if for any y ∈ Y and any subspace K ⊂ Ky with dimK ≤ 1, the

composition TyY //S2K∨
y

//S2K∨ is surjective;

(2) M is smooth if and only if for any y ∈ Y and any embedding K → Ky with dimK ≤ 2, the

composition TyY //S2K∨
y

//S2K∨ is surjective.

Proof: The question is local so we can assume that V is a trivial bundle, V ∼= V ⊗OY . Then the result

is a simple local calculation. �

Remark 2.2. This result generalizes to arbitrary relative isotropic Grassmannians of families of quadrics

of arbitrary dimension. The smoothness of the Grassmannian of k-dimensional subspaces is equivalent

to the surjectivity of the corresponding map for all K with dimK ≤ k.

Corollary 2.3. Assume that Y is smooth and D3 = ∅. Then M is smooth if and only if Q is smooth

and for any y ∈ D2 the map κy : TyY → S2K∨
y is surjective.

Another consequence of smoothness of Q is smoothness of D1 \D2. On the other hand, the points of

D2 are always singular on D1. In fact they are ordinary double points if M is smooth.

Lemma 2.4. Assume that Q is smooth and dimY = 3. Then M is smooth if and only if D2 is a finite

number of points and any point of D2 is an ordinary double point of D1.

Proof: Take any y ∈ D2, so that dimKy = 2. The map TyY → S2K∨
y can be thought of as a net of

quadrics on Ky parameterized by TyY . Its degeneration locus in P(TyY ) is a conic, either nondegenerate

(if the map TyY → S2K∨
y is surjective) or singular (since the kernel of the map lies in the singular locus).

But on the other hand, this degeneration locus is the base of the tangent cone to D1 at yi. So, if yi is an

ODP of D1, the conic should be nondegenerate, hence the map should be surjective. �

Remark 2.5. Note also that if the map κy for y ∈ D2 is surjective, then it is an isomorphism (since

dimTyY = dimS2K∨
y = 3).

For each point yi ∈ D2 we have Qyi = P(W+
i ) ∪ P(W−

i ), both W+
i and W−

i being a 3-dimensional

subspaces in Vyi , the fiber of V over yi. These planes intersect along the line P(Kyi). We put

W 0
i = Kyi = W+

i ∩W−
i .

Consequently, Myi = Gr(2,W+
i ) ∪ Gr(2,W−

i ) = Σ+
i ∪ Σ−

i , both Σ+
i and Σ−

i are planes. These planes

intersect in a point Pi = Gr(2,W 0
i ). Choose arbitrary point y = yi ∈ D2 and one of the planes Σ = Σ±

i .

Proposition 2.6. If a point y ∈ D2 is an ODP of D1 then NΣ/M
∼= OΣ(−1)⊕OΣ(−1).

Proof: Choosing a local trivialization of the bundle V we obtain an isomorphism

NΣ/GrY (2,V)
∼= NΣ/Gr(2,Vy) ⊕ TyY ⊗OΣ

∼= U∨ ⊕ TyY ⊗OY .
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On the other hand, NM/GrY (2,V)
∼= S2U∨ ⊗ L∨. Hence the standard exact sequence

0 → NΣ/M → NΣ/GrY (2,V) → (NM/GrY (2,V))|Σ → 0

gives

0 → NΣ/M → U∨
|Σ ⊕ TyY ⊗OΣ → S2U∨

|Σ → 0.

Since Σ = Gr(2,W ), W ⊂ Vy, the cohomology exact sequence looks like

0 → H0(Σ,NΣ/M ) → W ∗ ⊕ TyY → S2W ∗ → H1(Σ,NΣ/M ) → 0.

Consider the map W ∗ ⊕ TyY → S2W ∗. Its first component is the multiplication by the equation of the

line Ky = W 0 ⊂ W . Hence the sequence can be rewritten as

0 → H0(Σ,NΣ/M ) → TyY → S2K∨
y → H1(Σ,NΣ/M ) → 0.

The middle map here is just the map κy, hence by Remark 2.5 it is an isomorphism. Thus the bundle

NΣ/M is acyclic, hence it is isomorphic to OΣ(−1)⊕OΣ(−1). �

From now on we assume that every point yi ∈ D2 is an ODP of D1.

Corollary 2.7. We have (ωM )|Σ±

i

∼= OΣ±

i
(−1).

Proof: By adjunction formula OΣ(−3) ∼= ωΣ
∼= ωM |Σ⊗detNΣ/M

∼= ωM |Σ⊗OΣ(−2), hence the claim. �

The most important corollary is the following

Corollary 2.8. The structure sheaf OΣ ∈ Db(M) is exceptional.

Proof: We have an isomorphism Ext t(OΣ,OΣ) ∼= ΛtNΣ/M
∼= Λt(OΣ(−1)⊕OΣ(−1)). Note that for t = 1,

and t = 2 this sheaf on Σ = P
2 is acyclic. Hence Ext

•(OΣ,OΣ) ∼= H•(Σ,Hom(OΣ,OΣ)) ∼= H•(Σ,OΣ)

implies exceptionality of OΣ. �

Another simple observation is that Σ±
i with different i are completely orthogonal.

Lemma 2.9. If i 6= j then Ext
•(OΣ±

i
,OΣ±

j
) = 0.

Proof: The planes Σ±
i and Σ±

j are contained in fibers of M over different points yi, yj ∈ Y , hence there

is no local Ext’s between their structure sheaves. Hence global Ext’s also vanish. �

Thus choosing one plane for each yi we obtain a completely orthogonal exceptional collection

Corollary 2.10. The collection {OΣ+

i
}Ni=1 is a completely orthogonal exceptional collection in Db(M).

3. The Clifford algebra

For the precise definition and basic results about the sheaves of even parts of Clifford algebras, see [K2].

Here we remind some of their properties.

Recall that the besides the sheaf of algebras B0 = OY ⊕ Λ2V ⊗ L ⊕ Λ4V ⊗ L2 on Y , we also have

a natural sequence of sheaves of B0-modules, the first of them is the odd part of the sheaf of Clifford

algebras B1, which as a sheaf of OY -modules is given by

B1 = V ⊕ Λ3V ⊗ L

and with the action of B0 given by the Clifford multiplication. The other sheaves Bk in the sequence are

obtained from B0 and B1 by an appropriate twist

B−2k = B0 ⊗ Lk, B1−2k = B1 ⊗ Lk.
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This sequence can be thought of as a sequence of powers of a line bundle. In particular, the functors

−⊗B0
Bl and HomB0

(Bl,−) are exact and we have

Bk ⊗B0
Bl

∼= Bk+l, RHomB0
(Bl,Bk) ∼= Bk−l. (1)

Let α denote the embedding M → GrY (2,V). Let g denote c1(U
∨), the positive generator of the

relative Picard group Pic(GrY (2,V)/Y ). Since M is the zero locus of s ∈ Γ(GrY (2, V ),L∨ ⊗ S2U∨) we

have the Koszul resolution for its structure sheaf

0 → L3(−3g) → L2 ⊗ S2U(−g) → L⊗ S2U → O → α∗OM → 0. (2)

Now we will show that M also comes with a sequence of naturally defined B0-modules. To unburden the

notation we denote the pullbacks of the sheaves Bk to GrY (2,V) by the same letters. For each k ∈ Z

consider the morphism U ⊗Bk−1 → Bk of sheaves of B0-modules on GrY (2,V) induced by the embedding

U ⊂ V and the Clifford multiplication V ⊗ Bk → Bk+1.

Proposition 3.1. There are isomorphisms Coker(U ⊗ Bk−1 → Bk) ∼= α∗Sk, where

S2k+1 = (V/U) ⊗ L−k, (3)

and there is an exact sequence

0 → L−k → S2k → detV ⊗ L1−k(g) → 0. (4)

Moreover, the sheaves Sk have a structure of B0-modules such that

Sk ⊗B0
Bl

∼= Sk+l, RHomB0
(Bl,Sk) ∼= Sk−l. (5)

Finally, for each k there is an exact sequence

0 → O(−2g)⊗ Bk−4 → U(−g)⊗ Bk−3 → U ⊗ Bk−1 → Bk → α∗Sk → 0. (6)

Proof: First let us check that the cokernels are supported on M scheme-theoretically. For this we note

that the composition of the maps S2U ⊗Bk−2 → U⊗Bk−1 → Bk (both of which are induced by the action

of V on B) coincides with the map S2U ⊗ Bk−2
∼= S2U ⊗ Bk ⊗ L → Bk induced by the section s defining

the family Q (this follows from the definition of the Clifford multiplication). It follows that the cokernel

is a quotient of α∗α
∗Bk, hence it can be written as α∗Sk, where Sk is a sheaf of B0-modules on M . Note

also that the formulas (5) follow from the definition of Sk combined with equations (1) and exactness of

functors −⊗B0
Bl and HomB0

(Bl,−). So, it remains to verify (3), (4) and (6).

For this consider the maps Bk−4 → Bk−3 ⊗ U∨ obtained by the partial dualization from the maps

U ⊗ Bk−4 → Bk−3. Also consider the composition U ⊗ Bk−3 → V ⊗ Bk−3 → V∨ ⊗ Bk−1 → U∨ ⊗ Bk−1,

where the middle map is induced by the double action of V on B. Finally, after appropriate twistings

and identification U∨(−g) ∼= U , we compose a sequence

0 → O(−2g) ⊗ Bk−4 → U(−g)⊗ Bk−3 → U ⊗ Bk−1 → Bk → 0.

It is easy to check that the compositions of the arrows are zero, so the constructed sequence of maps is a

complex. Note that each term of the complex is naturally filtered. Consider the spectral sequence of the

filtered complex in case k = 0. The first term looks like

O(−2g) ⊗ Λ4V ⊗ L4

O(−2g) ⊗ Λ2V ⊗ L3 // U(−g)⊗ Λ3V ⊗ L3

O(−2g) ⊗ L2 // U(−g) ⊗ V ⊗ L2 // U ⊗ Λ3V ⊗ L2 // Λ4V ⊗ L2

U ⊗ V ⊗ L // Λ2V ⊗ L

O
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The rows are natural complexes with maps corresponding to the wedge multiplication. Their cohomology

are easy to compute, so it is not difficult to see that the second term looks like

detV ⊗ L4(−2g)
,,XXXXXX

L3(−3g)
,,XXXXXXXXXXX detV ⊗ L3 ⊗ S2U

,,YYYYYYY

L2 ⊗ S2U(−g)

,,YYYYYYYYYYYYY
detV ⊗ L2 ⊗ S2U(g)

,,YYYYYY

L ⊗ S2U

,,YYYYYYYYYYYYYYYYYYY detV ⊗ L ⊗O(g)

O

The arrows here are induced by s. So, it is easy to see that the bottom chain is the Koszul complex of s,

while the top chain is the same complex twisted by detV⊗L(g). Hence the spectral sequence degenerates

in the third term and shows that the cohomology of the above complex is supported in degree zero and

is an extension of α∗α
∗(detV ⊗ L(g)) by α∗α

∗O. Since we already know that it is supported on M , we

conclude that it can be written as α∗S0, where S0 is an extension of detV ⊗ L(g) by O on M . This

gives (4) and (6) for S0.

Analogously, consider the complex for k = 1. The first term of the spectral sequence looks like

O(−2g)⊗ Λ3V ⊗ L3 // U(−g)⊗ Λ4V ⊗ L3

O(−2g) ⊗ V ⊗ L2 // U(−g)⊗ Λ2V ⊗ L2 // U ⊗ Λ4V ⊗ L2

U(−g)⊗ L // U ⊗ Λ2V ⊗ L // Λ3V ⊗ L

U // V

The maps are induced by the wedge multiplication, so one can check that the second term looks like

V/U ⊗ L3(−3g)
,,YYYYYYY

V/U ⊗ L2 ⊗ S2U(−g)
,,YYYYYYY

V/U ⊗ L ⊗ S2U

**VVVVVVV

V/U

The maps are induced by s, so it is the Koszul complex of s tensored with V/U , hence S1
∼= V/U . This

gives (3) and (6) for S1. For other Sk we deduce (3), (4) and (6) by a suitable twist. �

Applying the functor ρ∗ to the resolutions (6) twisted by O(−g) we deduce the following

Corollary 3.2. We have ρ∗(Sk) ∼= Bk, ρ∗(Sk(−g)) = 0.

Corollary 3.3. The extension in (4) is nontrivial.

Proof: Assume that S0
∼= O ⊕ detV ⊗ L(g). Then

ρ∗(S0(−g)) ∼= ρ∗((O ⊕ detV ⊗ L(g))(−g)) ∼= ρ∗(O(−g)⊕ detV ⊗ L).

Using (2) it is easy to see that ρ∗OM = OY ⊕ detV ⊗L2 and ρ∗(O(−g)) = detV ⊗L⊕ (detV)2 ⊗L3, so

the RHS is nontrivial, which contradicts 3.2. �

Corollary 3.4. We have ρ∗(S∨
k ) = 0.



SCHEME OF LINES ON A FAMILY OF QUADRICS: GEOMETRY AND DERIVED CATEGORY 7

Proof: Indeed, since Sk is of rank 2 and detSk = detV ⊗L1−k(g), we have S∨
k
∼= Sk(−g)⊗det V∨⊗Lk−1,

hence its pushforward is a twist of ρ∗(Sk(−g)) which is zero. �

Another consequence is the following

Corollary 3.5. We have ρ∗(S
∨
l ⊗ Sk) ∼= Bk−l.

Proof: First of all consider the case l = 0. Then dualizing (4) we obtain an exact triple

0 → detV∨ ⊗ L−1(−g) → S∨
0 → OM → 0.

Tensoring it by Sk, pushing forward and using 3.2, we obtain the claim. Now for arbitrary l the formula

follows by tensoring with B−l and using (5). �

Now we can describe the embedding Db(Y,B0) → Db(M).

Theorem 3.6. The functor Φ : Db(Y,B0) → Db(M), F 7→ S0 ⊗B0
ρ∗F is fully faithful. Moreover,

Φ(Bk) ∼= Sk.

Proof: First, note that

Hom(Φ(F),G) = Hom(S0 ⊗B0
ρ∗F ,G) ∼= HomB0

(ρ∗F ,S∨
0 ⊗OM

G) ∼= HomB0
(F , ρ∗(S

∨
0 ⊗OM

G)).

Thus the right adjoint functor Φ! : Db(M) → Db(Y,B0) is given by

Φ!(G) = ρ∗(S
∨
0 ⊗OM

G)

(the structure of B0-module is induced by that of S∨
0 ). So, to check full faithfulness it suffices to compute

Φ! ◦ Φ. For this we note that

Φ!(Φ(F)) = ρ∗(S
∨
0 ⊗OM

S0 ⊗B0
ρ∗F) ∼= ρ∗(S

∨
0 ⊗OM

S0)⊗B0
F ∼= B0 ⊗B0

F ∼= F

(we applied 3.5). Thus Φ! ◦ Φ ∼= id, so Φ is fully faithful. Finally, Φ(Bk) = S0 ⊗B0
Bk

∼= Sk by (5). �

We conclude the section with the following simple calculation.

Lemma 3.7. For each i and each k we have (Sk)|Σ±

i

∼= OΣ±

i
⊕OΣ±

i
(1).

Proof: Restrict (3) and (4) to Σ = Σ±
i . Since O(g) restricts to Σ as OΣ(1) we obtain the claim for even

k. For odd k we have to describe the restriction of V/U to Σ. Since Σ = Gr(2,W ) ⊂ Gr(2,Vy), we have

on Σ an exact sequence

0 → W/U → V/U → Vy/W ⊗OΣ → 0.

The first term is OΣ(1) and the third is OΣ. Hence (V/U)|Σ ∼= OΣ ⊕OΣ(1). �

4. The flip

From now on we choose one of the planes P(W±
i ) ⊂ Qyi for each point yi, say P(W+

i ), and the

corresponding plane Σ+
i = Gr(2,W+

i ) ⊂ M . Recall that the normal bundles of Σ+
i in M are O(−1) ⊕

O(−1). Let us apply the composition of flips in all these planes and denote byM+ the resulting Moishezon

variety. More precisely, consider the blowup ξ : M̃ → M of M in the union of all Σ+
i . Then each of the

exceptional divisors Ei = ξ−1(Σ+
i ) is isomorphic to Σ+

i × P
1 and its normal bundle is O(−1,−1). Hence
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in the category of Moishezon varieties it can be blown down onto a line Li
∼= P

1 ⊂ M+. Thus we have a

diagram ⊔
Ei

{{wwwwwwww

##G
GG

GG
GG

GG

��⊔
Σ+
i

��

M̃
ξ

{{vv
vv

vv
vv

vv ξ+

##H
HH

HH
HH

HH
H

⊔
Li

��
M M+

By a result of Bondal and Orlov we have the following

Proposition 4.1 ([BO]). The functor ξ∗(ξ
+)∗ : Db(M+) → Db(M) is fully faithful. Moreover, there is

a semiorthogonal decomposition

Db(M) = 〈ξ∗(ξ
+)∗(Db(M+)), {OΣ+

i
}Ni=1〉.

Further, we will need a detailed description of the fibers of M+ over X. Let xi = f−1(yi) be the nodal

points of X and Xsm = X \ {yi}
N
i=1 be the smooth locus of X.

Lemma 4.2. There is a regular morphism M+ → X such that the diagram

M̃
ξ

~~~~
~~

~~
~~ ξ+

!!C
CC

CC
CC

C

M

µ
  B

BB
BB

BB
B M+

}}zz
zz

zz
zz

X

commutes. Moreover, over the smooth locus Xsm the maps M → X and M+ → X coincide. Finally,

the fiber M+
xi

of M+ over xi is the blowup Σ̃−
i of Σ−

i in the points Pi and the line Li = ξ+(Ei) is the

(−1)-curve on Σ̃−
i .

Proof: The first claim is evident — since the map ξ+ : M̃ → M+ is a contraction of divisors Ei, and the

map µ ◦ ξ : M̃ → X contract each of these divisors to a point, we conclude that µ ◦ ξ factors through ξ+.

Moreover, since ξ and ξ+ are identities over Xsm, it follows that the morphisms M → X and M+ → X

coincide over Xsm. Finally, note that the fiber of M̃ over xi is the union of Ei and the proper preimage

of Σ−
i . Since ξ is the blowup of Σ+

i , and Σ+
i intersect Σ−

i transversally at Pi, the proper preimage of

Σ−
i is the blowup Σ̃−

i of Σ−
i at Pi. Note also that Ei ∩ Σ̃−

i = Li is the fiber of Ei → Σ+
i over Pi and

simultaneously the (−1)-curve on Σ̃−
i . Finally, since the map ξ+ is the contraction of Ei = Σ+

i ×Li onto

Li, hence it doesn’t change Σ̃−
i , so the fiber M+

xi
coincides with Σ̃−

i . �

Note that Σ̃−
i being the blowup of a plane in a point is isomorphic to a Hirzebruch surface F1. In

particular, it has a canonical contraction Σ̃−
i → P

1 which induces an isomorphism of the exceptional

section Li ⊂ Σ̃−
i onto P

1. Denote (the pullback to Σ̃−
i of) the generator of the Picard group of Σi by h

and the class of the exceptional line Li ⊂ Σ̃−
i by l. Then the class of the fiber of the projection Σ̃−

i → P
1

is h− l.

Lemma 4.3. We have ωM+|Σ̃−

i

∼= OΣ̃−

i
(−h− l).

Proof: Note that ω
M̃

= ξ∗ωM(
∑

Ei) = ξ∗+ωM+(2
∑

Ei). Hence ξ∗+ωM+ = ξ∗ωM (−
∑

Ei). Hence

ξ∗+ωM+|Σ̃−

i

∼= ξ∗ωM |Σ̃−

i
⊗O(−Ei)|Σ̃−

i

∼= OΣ̃−

i
(−h)⊗OΣ̃−

i
(−l) ∼= OΣ̃−

i
(−h− l).



SCHEME OF LINES ON A FAMILY OF QUADRICS: GEOMETRY AND DERIVED CATEGORY 9

But ξ+ is an isomorphism on Σ̃−
i , hence the claim. �

It turns out that M+ has a very simple structure — it is a P
1-fibration over a small resolution of X.

Proposition 4.4. The map M+ → X factors through a composition M+
µ+ //X+

σ+ //X , where the

map µ+ : M+ → X+ is a P
1-fibration and σ+ : X+ → X is a small resolution of singularities. The

restriction of the map µ+ to the fiber M+
xi

= Σ̃−
i coincides with the projection Σ̃−

i → P
1. The curve

Ci = µ+(Σ̃
−
i )

∼= P
1 is the exceptional locus of X+ over xi ∈ X.

Proof: We apply to M+ relative Minimal Model Program over X, see [Na]. Since the relative MMP

commutes with the base change, let us first look at M+ \
⊔

Σ̃−
i which is the preimage of Xsm. The map

M+ \
⊔

Σ̃−
i → Xsm is a P

1-fibration, so its relative Picard group is Z, and the relative canonical class is

ample, hence the first (and the last) step of the MMP forM+\
⊔

Σ̃−
i is the contraction M+\

⊔
Σ̃−
i → Xsm.

Now consider what happens over an analytic neighborhood of singular points. Let x = xi be one of

singular points. Consider an analytic neighborhood U of x in X and its preimage M+
U ⊂ M+. Then the

relative (over U) effective cone of M+
U is generated by curves in the special fiber M+

x = Σ̃−, that is by

the (−1)-curve L and by the fiber of the projection Σ̃− → P
1. By Lemma 4.3 the canonical class KM+/X

restricts to Σ̃− as −h − l, hence L is K-positive, while the fiber is K-negative. Hence the first step in

MMP is the contraction of the ray generated by the fiber of the projection Σ̃− → P
1. By MMP this

contraction should be either

(1) a flip, or

(2) a divisorial contraction, or

(3) a conic bundle.

By a result of Kawamata [Ka] the case of a flip is impossible, since the center of a flip in dimension 4

is always a P
2, while in our case the only compact surface in M+

U is M+
x = Σ̃− which is a Hirzebruch

surface F1. Similarly, a divisorial contraction is impossible, since then the first step of MMP on M+
U \ Σ̃−

i

would also be a divisorial contraction, while as we have shown above it is a P
1-fibration.

Thus the first step of MMP for M+
U is a conic bundle M+

U → X+
U . Once again, over U \ {x} this

conic bundle should coincide with the P
1-fibration M+ \

⊔
Σ̃−
i → Xsm, hence gluing all these conic

bundles for all singular points xi, we obtain a global conic bundle structure on M+, that is a global map

µ+ : M+ → X+ for some Moishezon variety X+. Now we apply [Te] and conclude that X+ is necessarily

smooth, hence X+ is a resolution of singularities of X. Further, the restriction of the map µ+ to Σ̃−
i is

a conic bundle which contracts all the fibers of the projection Σ̃−
i → P

1, hence the fiber of X+ over xi is

the image Ci of Σ̃
−
i . Since X+ is smooth and the fiber of X+ over xi is Ci

∼= P
1, the map σ+ : X+ → X

is a small resolution of singularities. So, it remains to check that µ+ : M+ → X+ is a P
1-fibration.

Since we already know that µ+ is a conic bundle, we should check that its degeneration locus is empty.

But the degeneration locus of a conic bundle is a divisor, while M+ → X+ is nondegenerate over the

complement Xsm = X+ \ (⊔Ci) of a finite number of curves, hence the degeneration locus is empty. �
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Denoting f+ = f ◦ σ+, ρ+ = f+ ◦ µ+, we obtain a commutative diagram

M̃
ξ

~~~~
~~

~~
~~ ξ+

!!C
CC

CC
CC

C

M

µ

��

flip
//_______

ρ

  B
BB

BB
BB

B M+

µ+

��

ρ+

}}zz
zz

zz
zz

Y

X

f

>>||||||||
X+

σ+

oo
f+

aaDDDDDDDD

(7)

Since the map µ+ : Db(M+) → Db(X+) is a P
1-fibration, the functor µ∗

+ : Db(X+) → Db(M+) is fully

faithful. Composing with the functor given by the flip we obtain

Corollary 4.5. The functor ξ∗ξ
∗
+µ

∗
+ : Db(X+) → Db(M) is fully faithful.

Thus we have constructed all the required components in Db(M). It remains to check that they

generate the whole category. This is done in the next section.

5. Derived category of M+

As it was shown in the previous section, M+ is a P
1-bundle over X+. Locally in the ètale topology

this can be represented as a projectivization of a rank 2 vector bundle. In general, these local bundles do

not glue into a global vector bundle, however their local endomorphism algebras glue and give a sheaf of

Azumaya algebras on X+. We denote this sheaf by B+, it is defined by the P
1-fibtation up to a Morita

equivalence. The following result of Bernardara [Be] describes the derived category of M+.

Proposition 5.1 ([Be]). There is a semiorthogonal decomposition

Db(M+) = 〈Db(X+),Db(X+,B+)〉.

So, to prove Theorem 1.1 it remains to check that the functor ξ∗ξ
∗
+ takes Db(X+,B+) to Φ(Db(Y,B0)).

For this we construct analogues of the bundles Sk on M+. Recall that Ei
∼= Σ+

i × Li
∼= P

2 × P
1.

Lemma 5.2. There are vector bundles Rk of rank 2 on M+ such that there is a short exact sequence

0 → ξ∗Sk → ξ∗+Rk → ⊕OEi
(0,−1) → 0. (8)

Proof: By Lemma 3.7 we have an isomorphism (ξ∗S∨
k )|Ei

∼= OEi
⊕OEi

(−1, 0). Consider the composition

ξ∗S∨
k → (ξ∗S∨

k )|Ei
→ OEi

(−1, 0), where the second map is the unique projection. This map is clearly

surjective. Denote the kernel of the sum of these maps over i by F , so that we have an exact triple

0 → F → ξ∗S∨
k → ⊕OEi

(−1, 0) → 0.

Let us check that F is a pullback of a vector bundle from M+. Since ξ+ : M̃ → M+ is a smooth blowup,

it suffices to check that F|Ei
is a pullback of a vector bundle from Li. Let us restrict the above exact

sequence to Ei. Since N
Ei/M̃

∼= OEi
(−1,−1) we obtain an exact sequence

0 → OEi
(0, 1) → F|Ei

→ OEi
⊕OEi

(−1, 0) → OEi
(−1, 0) → 0.

The last map is the projection to the second summand, hence we have an exact triple

0 → OEi
(0, 1) → F|Ei

→ OEi
→ 0.
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Since Ext
1(OEi

,OEi
(0, 1)) ∼= H1(Ei,OEi

(0, 1)) = 0, we see that F|Ei
∼= OEi

⊕ OEi
(0, 1). So, F|Ei

is

a pullback of OLi
⊕ OLi

(1), hence F is a pullback of a vector bundle on M+ which restricts to Li as

OLi
⊕OLi

(1). Now we define Rk as the dual of this vector bundle. So, by definition we have the following

exact sequence

0 → ξ∗+R
∨
k → ξ∗S∨

k → ⊕OEi
(−1, 0) → 0. (9)

Dualizing this sequence and taking into account that

RHom(OEi
(−1, 0),O

M̃
) ∼= OEi

(1, 0) ⊗N
Ei/M̃

[−1] ∼= OEi
(0,−1)[−1]

we obtain (8). �

The bundles Rk enjoy a lot of interesting properties.

Lemma 5.3. We have (ρ+)∗R
∨
k = 0.

Proof: Indeed, using commutativity of (7) we deduce

(ρ+)∗R
∨
k = (ρ+)∗(ξ+)∗ξ

∗
+R

∨
k = ρ∗ξ∗ξ

∗
+R

∨
k .

Applying the functor ρ∗ξ∗ to (9) we obtain a triangle

ρ∗ξ∗ξ
∗
+R

∨
k → ρ∗ξ∗ξ

∗S∨
k → ⊕ρ∗ξ∗OEi

(−1, 0).

The second term equals to ρ∗S
∨
k which is zero by Corollary 3.4. Since ρ ◦ ξ contracts Ei to the point yi,

the third term is ⊕H•(Ei,OEi
(−1, 0)) ⊗Oyi , so it is also zero. Hence (ρ+)∗R

∨
k = 0. �

Proposition 5.4. The bundle Rk restricts to any fiber of µ+ : M+ → X+ as O(1)⊕O(1). Moreover

Rk|Σ̃−

i

∼= OΣ̃−

i
(h)⊕OΣ̃−

i
(l). (10)

Proof: We are going to prove instead that R∨
k restricts to all fibers as O(−1) ⊕ O(−1). For fibers of

µ+ : M+ \
⊔

Σ̃−
i → X+ \

⊔
Ci this follows from Lemma 5.3. So it remains to investigate the restriction

of R∨
k to Σ̃−

i . For this we restrict (9):

0 → (R∨
k )|Σ̃−

i
→ OΣ̃−

i
⊕OΣ̃−

i
(−h) → OLi

→ 0.

It follows that either (10) holds, or (R∨
k )|Σ̃−

i

∼= OΣ̃−

i
(−h − l) ⊕ OΣ̃−

i
. In the former case we are done

since both OΣ̃−

i
(h) and OΣ̃−

i
(l) restrict as O(1) to any fiber of Σ̃−

i over Ci. Let us check that the case

(R∨
k )|Σ̃−

i

∼= OΣ̃−

i
(−h− l)⊕OΣ̃−

i
is impossible.

For this we note that by Lemma 5.3

0 = Ext
•(Oyi , (ρ+)∗R

∨
k ) = Ext

•(ρ∗+Oyi ,R
∨
k ).

On the other hand, the cohomology sheaves Hl = Hl(ρ∗+Oyi) are supported on Σ̃−
i . Moreover, Hl = 0

for l > 0 (since ρ∗+ is right exact) and H0 ∼= OΣ̃−

i
. Consider the spectral sequence

Ext
q(Hp,R∨

k ) ⇒ Ext
q−p(ρ∗+Oyi ,R

∨
k ) = 0.

Note that by Serre duality on M+ we have

Ext
q(Hi,R∨

k )
∼= Ext

4−q(R∨
k ,H

i ⊗ ωM+)∨ ∼= H4−q(M+,Hi ⊗Rk ⊗ ωM+)∨.
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The RHS vanishes for q 6∈ {2, 3, 4} since the sheaf Hi is supported on Σ̃−
i and dim Σ̃−

i = 2. Hence the

line q = 3 doesn’t change in the spectral sequence. But if (R∨
k )|Σ̃−

i

∼= OΣ̃−

i
(−h− l)⊕OΣ̃−

i
then

Ext
3(H0,R∨

k )
∼= H1(M+,OΣ̃−

i
⊗Rk ⊗ ωM+)∨ ∼=

∼= H1(Σ̃−
i , (OΣ̃−

i
(h+ l)⊕OΣ̃−

i
)⊗OΣ̃−

i
(−h− l)) ∼=

∼= H1(Σ̃−
i ,OΣ̃−

i
⊕OΣ̃−

i
(−h− l)) ∼= k

gives a nontrivial element in Ext
3(ρ∗+Oyi ,R

∨
k ), which is impossible. �

Now let us describe the Morita equivalence class of B+ in terms of Rk.

Proposition 5.5. There is an Azumaya algebra B′ on X+ which is Morita-equivalent to B+ and such

that we have End(R0) ∼= µ∗
+B

′, an isomorphism of algebras.

Proof: Note that End(R0) restricts trivially to all fibers of the P
1-fibration M+ → X+. Therefore

End(R0) ∼= µ∗
+B

′, where B′ = (µ+)∗ End(R0). So, we have to check that B′ is Morita-equivalent to B+.

Consider the sheaf F = (µ+)∗R0. Let us check that it has a structure of a B′ − B+-bimodule and gives

a Morita-equivalence.

Choose an ètale covering u : U → X+ such that M+
U = M+ ×X+ U is a projectivization of a vector

bundle E on U . Let u : M+
U → M+ and µU : M+

U → U denote the projections:

M+
U

u //

µU

��

M+

µ+

��
U

u // X+

Note that the bundle u∗R0⊗OM+

U
/U (−1) restricts trivially to all fibers of M+

U over U . Hence there exists

a bundle RU on U such that

u∗R0
∼= µ∗

URU ⊗OM+

U
/U (1).

Therefore u∗(µ+)∗R0
∼= (µU )∗u

∗R0
∼= RU ⊗ E∗. On the other hand,

u∗B′ ∼= u∗(µ+)∗ End(R0) ∼= (µU )∗u
∗ End(R0) ∼=

∼= (µU )∗ End(µ
∗
URU ⊗OM+

U
/U (1))

∼= (µU )∗µ
∗
U End(RU ) ∼= End(RU ),

while u∗B+ ∼= End(E) by definition of B+. We see that u∗(µ+)∗R0 gives a Morita equivalence between

u∗B′ and u∗B+. Since u : U → X+ is an ètale covering, we conclude that B′ and B+ are Morita-equivalent

as well. �

From now on we replace B+ by a Morita-equivalent Azumaya algebra B′. This change does not spoil

the decomposition of Theorem 5.1, it still holds after the change. On the other hand, after the change

we have

End(R0) ∼= µ∗
+B

+. (11)

Now we can relate (this new) B+ and B0.

Lemma 5.6. We have (f+)∗B
+ ∼= B0, an isomorphism of sheaves of algebras.

Proof: First of all

(f+)∗B
+ ∼= (f+)∗(µ+)∗(ξ+)∗ξ

∗
+µ

∗
+B

+ ∼= f∗µ∗ξ∗ξ
∗
+ End(R0) ∼= ρ∗ξ∗ξ

∗
+ End(R0).

On the other hand, tensoring (8) with ξ∗S∨
0 and (9) with ξ∗+R0 we obtain sequences

0 → ξ∗ End(S0) → ξ∗S∨
0 ⊗ ξ∗+R0 → ⊕(OEi

(0,−1) ⊕OEi
(−1,−1)) → 0,
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0 → ξ∗+ End(R0) → ξ∗S∨
0 ⊗ ξ∗+R0 → ⊕(OEi

(−1, 0) ⊕OEi
(−1,−1)) → 0.

Pushing these sequences along ρ ◦ ξ and noting that Ei is contracted to a point we conclude that

ρ∗ξ∗ξ
∗
+ End(R0) ∼= ρ∗ξ∗(ξ

∗S∨
0 ⊗ ξ∗+R0) ∼= ρ∗ξ∗ξ

∗ End(S0).

On the other hand ρ∗ξ∗ξ
∗ End(S0) ∼= ρ∗ End(S0) ∼= B0 (see 3.5 for the last isomorphism). �

The isomorphism (f+)∗B
+ ∼= B0 gives by adjunction a morphism f∗

+B0 → B+ which equips B+ with a

structure of a B0-module. Now we define the functor Db(Y,B0) → Db(X+,B+) by F 7→ F ⊗B0
B+. The

right adjoint functor then is (f+)∗ : D
b(X+,B+) → Db(Y,B0). Their composition takes F to

(f+)∗(f
∗
+F ⊗B0

B+) ∼= F ⊗B0
(f+)∗B

+ = F ⊗B0
B0 = F.

This implies that this functor is fully faithful, and the orthogonal to its image consists of all objects G

such that (f+)∗G = 0. Since f+ is the contraction of (−1,−1) curves Ci, any object G in Db(X+) such

that (f+)∗G = 0 is a complex with cohomology being direct sums of OCi
(−1). Since B+ is an Azumaya

algebra, the forgetful functor Db(X+,B+) → Db(X+) commutes with sheaf cohomology, hence each of

these direct sums of OCi
(−1) should be a B+-module. So, it remains to check that there is no such

B+-modules.

For this we note that (10) implies End(R0)|Σ̃−

i

∼= OΣ̃−

i
⊕OΣ̃−

i
(h− l)⊕OΣ̃−

i
(l−h)⊕OΣ̃−

i
. Therefore we

have B+
|Ci

∼= OCi
⊕OCi

(1) ⊕OCi
(−1) ⊕OCi

∼= End(OCi
⊕OCi

(−1)), hence the category of B+-modules

supported on Ci is equivalent to the category of sheaves on Ci, the equivalence taking a sheaf F to

F ⊗ (OCi
⊕OCi

(−1)) ∼= F ⊕ F (−1). It is clear that if F ⊕ F (−1) is a direct sum of O(−1) then F = 0.

Thus we have checked that Db(Y,B0) ∼= Db(X+,B+).

Finally, we compute the composition of the equivalence Db(Y,B0) ∼= Db(X+,B+), and embeddings

Db(X+,B+) → Db(M+) → Db(M). It acts on F ∈ Db(Y,B0) as

F 7→ ξ∗ξ
∗
+(µ

∗
+(f

∗
+F ⊗B0

B+)⊗B+ R0) ∼= ξ∗ξ
∗
+(ρ

∗
+F ⊗B0

R0) ∼= ξ∗(ξ
∗
+ρ

∗
+F ⊗B0

ξ∗+R0).

Note that ξ∗+ρ
∗
+F

∼= ξ∗ρ∗F , so tensoring (8) by it we obtain

ξ∗ρ∗F ⊗B0
ξ∗S0 → ξ∗ρ∗F ⊗B0

ξ∗+R0 → ⊕(ξ∗ρ∗F ⊗B0
OEi

(0,−1)).

Since ξ∗OEi
(0,−1) = 0, applying ξ∗ we see that

ξ∗(ξ
∗ρ∗F ⊗B0

ξ∗S0) ∼= ρ∗F ⊗B0
S0,

which gives the required isomorphism of functors. This proves Theorem 1.1.

6. Concluding remarks and further questions

Remark 6.1. There is another way of proving Theorem 1.1, avoiding use of Moishezon varieties. For this

one has to perform another birational modification of M . First, consider the blowup M ′ → M in points

Pi = Σ+
i ∩ Σ−

i . Let E′
i
∼= P

3 be the exceptional divisors of this blowup. Then the proper preimages

of the planes Σ+
i and Σ−

i are Hirzebruch surfaces Σ̃−
i , Σ̃

+
i ⊂ M ′ which do not intersect. Moreover, the

(−1)-curves L±
i on Σ̃±

i are skew-lines in E′
i. One can check that the normal bundle to Σ̃±

i in M ′ restricts

as O(−1) ⊕ O(−1) to any fiber of Σ̃±
i over P

1. Hence one can make a (relative over P
1) flop in all 2N

surfaces Σ̃±
i simultaneously. We will obtain an algebraic variety M ′′ over X. The special fibers M ′′

xi
will

coincide with blowups E′′
i of E′

i in the lines L±
i (and each of the surfaces Σ̃±

i will be replaced by P
1 ×P

1,

coinciding with the exceptional divisor of E′′
i over L±

i ). Then by the same arguments as in Proposition 4.4

one can show that the map M ′′ → X factors as a P
1-fibration M ′′ → X ′, where X ′ is the blowup of X

in all points xi. Then a careful analysis of the relation of the categories Db(M ′′) and Db(M) allows to

prove Theorem 1.1.
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An interesting question for the further investigation is to describe the category Db(M) without re-

strictions on the dimension of Y . A natural approach would be to consider first the universal family of

quadrics and then to apply a base change argument (see [K1]) to obtain a decomposition in general case.

Unfortunately, the approach of this paper does not work in this general setup because of the following

effect — assume for simplicity that D3 = ∅, but dimD2 > 0. Since the fibers of M over D2 are the unions

of two planes, we have an unramified double covering D̃2 → D2. This covering in general is connected.

Therefore, we cannot pick up one of the planes Σ+ in all the fibers over D2 and make a flip in them.

However, the approach suggested in 6.1 may work, and I guess that in case D3 = ∅ should work without

big changes. As for the case of nonempty D3, a deeper analysis of the behavior of M over D3 (and

possibly more birational transformations) is required.

Another question which may prove interesting is investigation of the derived category of the relative

scheme of lines (or other isotropic Grassmannians) of a family of quadrics of dimension bigger than 2.
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