Parametric Evaluations of the Rogers Ramanujan Continued Fraction

Nikos Bagis

Department of Informatics
Aristotele University of Thessaloniki
Thessaloniki, Greece
nikosbagis@hotmail.gr

Abstract

In this article with the help of the inverse function of the singular moduli we evaluate the Rogers Ranmanujan continued fraction and his first derivative.

1 Introductory Definitions and Formulas

For $|q|<1$, the Rogers Ramanujan continued fraction (RRCF) (see [6]) is defined as

$$
\begin{equation*}
R(q):=\frac{q^{1 / 5}}{1+} \frac{q^{1}}{1+} \frac{q^{2}}{1+} \frac{q^{3}}{1+} \cdots \tag{1}
\end{equation*}
$$

We also define

$$
\begin{gather*}
(a ; q)_{n}:=\prod_{k=0}^{n-1}\left(1-a q^{k}\right) \tag{2}\\
f(-q):=\prod_{n=1}^{\infty}\left(1-q^{n}\right)=(q ; q)_{\infty} \tag{3}
\end{gather*}
$$

Ramanujan give the following relations which are very useful:

$$
\begin{align*}
& \frac{1}{R(q)}-1-R(q)=\frac{f\left(-q^{1 / 5}\right)}{q^{1 / 5} f\left(-q^{5}\right)} \tag{4}\\
& \frac{1}{R^{5}(q)}-11-R^{5}(q)=\frac{f^{6}(-q)}{q f^{6}\left(-q^{5}\right)} \tag{5}
\end{align*}
$$

From the Theory of Elliptic Functions (see [6],[7],[10]),

$$
\begin{equation*}
K(x)=\int_{0}^{\pi / 2} \frac{1}{\sqrt{1-x^{2} \sin (t)^{2}}} d t \tag{6}
\end{equation*}
$$

is the Elliptic integral of the first kind. It is known that the inverse elliptic nome $k=k_{r}, k_{r}^{\prime 2}=1-k_{r}^{2}$ is the solution of the equation

$$
\begin{equation*}
\frac{K\left(k_{r}^{\prime}\right)}{K(k)}=\sqrt{r} \tag{7}
\end{equation*}
$$

where $r \in \mathbf{R}_{+}^{*}$. When r is rational then the k_{r} are algebraic numbers. We can also write the function f using elliptic functions. It holds (see [10]):

$$
\begin{equation*}
f(-q)^{8}=\frac{2^{8 / 3}}{\pi^{4}} q^{-1 / 3}\left(k_{r}\right)^{2 / 3}\left(k_{r}^{\prime}\right)^{8 / 3} K\left(k_{r}\right)^{4} \tag{8}
\end{equation*}
$$

also holds

$$
\begin{equation*}
f\left(-q^{2}\right)^{6}=\frac{2 k_{r} k_{r}^{\prime} K\left(k_{r}\right)^{3}}{\pi^{3} q^{1 / 2}} \tag{9}
\end{equation*}
$$

From [5] it is known that

$$
\begin{equation*}
R^{\prime}(q)=1 / 5 q^{-5 / 6} f(-q)^{4} R(q) \sqrt[6]{R(q)^{-5}-11-R(q)^{5}} \tag{10}
\end{equation*}
$$

Consider now for every $0<x<1$ the equation

$$
x=k_{r}
$$

which, have solution

$$
\begin{equation*}
r=k^{(-1)}(x) \tag{11}
\end{equation*}
$$

Hence for example

$$
k^{(-1)}\left(\frac{1}{\sqrt{2}}\right)=1
$$

With the help of $k^{(-1)}$ function we evaluate the Rogers Ramanujan continued fraction.

2 Propositions

The relation between $k_{25 r}$ and k_{r} is (see [6] pg. 280):

$$
\begin{equation*}
k_{r} k_{25 r}+k_{r}^{\prime} k_{25 r}^{\prime}+2 \cdot 4^{1 / 3}\left(k_{r} k_{25 r} k_{r}^{\prime} k_{25 r}^{\prime}\right)^{1 / 3}=1 \tag{12}
\end{equation*}
$$

For to solve equation (12) we give the following

Proposition 1.

The solution of the equation

$$
\begin{equation*}
x^{6}+x^{3}\left(-16+10 x^{2}\right) w+15 x^{4} w^{2}-20 x^{3} w^{3}+15 x^{2} w^{4}+x\left(10-16 x^{2}\right) w^{5}+w^{6}=0 \tag{13}
\end{equation*}
$$

when we know the w is given by

$$
\begin{gather*}
\frac{y^{1 / 2}}{w^{1 / 2}}=\frac{w^{1 / 2}}{x^{1 / 2}}= \\
=\frac{1}{2} \sqrt{4+\frac{2}{3}\left(\frac{L^{1 / 6}}{M^{1 / 6}}-4 \frac{M^{1 / 6}}{L^{1 / 6}}\right)^{2}}+\frac{1}{2} \sqrt{\frac{2}{3}}\left(\frac{L^{1 / 6}}{M^{1 / 6}}-4 \frac{M^{1 / 6}}{L^{1 / 6}}\right) \tag{14}
\end{gather*}
$$

where

$$
\begin{equation*}
w=\sqrt{\frac{L(18+L)}{6(64+3 L)}}<1 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
M=\frac{18+L}{64+3 L} \tag{16}
\end{equation*}
$$

If happens $x=k_{r}$ and $y=k_{25 r}$, then $r=k^{(-1)}(x)$ and $w^{2}=k_{25 r} k_{r},\left(w^{\prime}\right)^{2}=$ $k_{25 r}^{\prime} k_{r}^{\prime}$.

Proof.

The relation (14) can be found using Mathematica. See also [6].

Proposition 2.

If $q=e^{-\pi \sqrt{r}}$ and

$$
\begin{equation*}
a=a_{r}=\left(\frac{k_{r}^{\prime}}{k_{25 r}^{\prime}}\right)^{2} \sqrt{\frac{k_{r}}{k_{25 r}}} M_{5}(r)^{-3} \tag{17}
\end{equation*}
$$

Then

$$
\begin{equation*}
a_{r}=R(q)^{-5}-11-R^{5}(q) \tag{18}
\end{equation*}
$$

Where $M_{5}(r)$ is root of: $(5 x-1)^{5}(1-x)=256\left(k_{r}\right)^{2}\left(k_{r}^{\prime}\right)^{2} x$.
Proof.
Suppose that $N=n^{2} \mu$, where n is positive integer and μ is positive real then it holds that

$$
\begin{equation*}
K\left[n^{2} \mu\right]=M_{n}(\mu) K[\mu] \tag{19}
\end{equation*}
$$

Where $K[\mu]=K\left(k_{\mu}\right)$
The following formula for $M_{5}(r)$ is known

$$
\begin{equation*}
\left(5 M_{5}(r)-1\right)^{5}\left(1-M_{5}(r)\right)=256\left(k_{r}\right)^{2}\left(k_{r}^{\prime}\right)^{2} M_{5}(r) \tag{20}
\end{equation*}
$$

Thus if we use (5) and (8) and the above consequence of the Theory of Elliptic Functions, we get:

$$
R^{-5}(q)-11-R^{5}(q)=\frac{f^{6}(-q)}{q f^{6}\left(-q^{5}\right)}=a=a_{r}
$$

See also [4],[5].

3 The Main Theorem

From Proposition 2 and relation $w^{2}=k_{25 r} k_{r}$ we get

$$
\begin{equation*}
w^{5}-k_{r}^{2} w=\frac{k_{r}^{3}\left(k_{r}^{2}-1\right)}{a_{r} M_{5}(r)^{3}} \tag{21}
\end{equation*}
$$

Combining (13) and (21), we get:

$$
\begin{align*}
& {\left[-10 k_{r}^{4}+26 k_{r}^{6}+a_{r} M_{5}(r)^{3} k_{r}^{6}-16 k_{r}^{8}\right]+\left[-k_{r}^{3}-6 a_{r} M_{5}(r)^{3} k_{r}^{3}+k_{r}^{5}-6 a_{r} M_{5}(r)^{3} k_{r}^{5}\right] w+} \\
& \quad+\left[a_{r} M_{5}(r)^{3} k_{r}^{2}+15 a_{r} M_{5}(r) k_{r}^{4}\right] w^{2}-20 a_{r} M_{5}(r)^{3} k_{r}^{3} w^{3}+15 a_{r} M_{5}(r)^{3} k_{r}^{2} w^{4}=0 \tag{22}
\end{align*}
$$

Solving with respect to $a_{r} M_{5}(r)^{3}$, we get

$$
\begin{equation*}
a_{r} M_{5}(r)^{3}=\frac{16 k_{r}^{6}-26 k_{r}^{4}-w k_{r}^{3}+10 k_{r}^{2}+w k_{r}}{k_{r}^{4}-6 k_{r}^{3} w-20 k_{r}^{3} w+15 w^{2} k_{r}^{2}-6 k_{r} w+15 w^{4}+w^{2}} \tag{23}
\end{equation*}
$$

Also we have

$$
\begin{aligned}
\frac{K\left(k_{25 r}\right)}{K\left(k_{r}\right)}=M_{5}(r) & =\frac{1}{m}=\left(\sqrt{\frac{k_{25 r}}{k_{r}}}+\sqrt{\frac{k_{25 r}^{\prime}}{k_{r}^{\prime}}}-\sqrt{\frac{k_{25 r} k_{25 r}^{\prime}}{k_{r} k_{r}^{\prime}}}\right)^{-1} \\
& =\left(\frac{w}{k_{r}}+\frac{w^{\prime}}{k_{r}^{\prime}}-\frac{w w^{\prime}}{k_{r} k_{r}^{\prime}}\right)^{-1}
\end{aligned}
$$

The above equalities follow from ([6] pg. 280 Entry 13-xii) and the definition of w. Note that m is the multiplier.
Hence for given $0<w<1$ we find $L \in \mathbf{R}$ and we get the following parametric evaluation for the Rogers Ramanujan continued fraction

$$
\begin{gather*}
R\left(e^{-\pi \sqrt{r(L)}}\right)^{-5}-11-R\left(e^{-\pi \sqrt{r(L)}}\right)^{5}=a_{r}= \\
=\frac{16 k_{r}^{6}-26 k_{r}^{4}-w k_{r}^{3}+10 k_{r}^{2}+w k_{r}}{k_{r}^{4}-6 k_{r}^{3} w-20 k_{r} w^{3}+15 w^{2} k_{r}^{2}-6 k_{r} w+15 w^{4}+w^{2}}\left(\frac{w}{k_{r}}+\frac{w^{\prime}}{k_{r}^{\prime}}-\frac{w w^{\prime}}{k_{r} k_{r}^{\prime}}\right)^{3} \tag{24}
\end{gather*}
$$

Thus for a given w we find L and M from (15) and (16). Setting the values of M, L, w in (14) we get the values of x and y (see Proposition 1). Hence from (24) if we find $k^{(-1)}(x)=r$ we know $R\left(e^{-\pi \sqrt{r}}\right)$. The clearer result is:

Main Theorem.

When w is a given real number, we can find x from equation (14). Then for the Rogers Ramanujan continued fraction holds

$$
\begin{gather*}
R\left(e^{-\pi \sqrt{k^{(-1)}(x)}}\right)^{-5}-11-R\left(e^{-\pi \sqrt{k^{(-1)}(x)}}\right)^{5}=a_{r}= \\
=\frac{16 x^{6}-26 x^{4}-w x^{3}+10 x^{2}+w x}{x^{4}-6 x^{3} w-20 x w^{3}+15 w^{2} x^{2}-6 x w+15 w^{4}+w^{2}} \times \\
\quad \times\left(\frac{w}{x}+\frac{w^{\prime}}{\sqrt{1-x^{2}}}-\frac{w w^{\prime}}{x \sqrt{1-x^{2}}}\right)^{3} \tag{25}
\end{gather*}
$$

Note. In the case of $x=k_{r}$, then $k^{(-1)}(x)=r$ and we have the clasical evaluation with $k_{25 r}$ (see [12]).

Theorem 1. (The first derivative)

$$
\begin{align*}
R^{\prime}\left(e^{-\pi \sqrt{k^{(-1)}(x)}}\right) & =\frac{2^{4 / 3} x^{1 / 2}\left(1-x^{2}\right)}{5 w^{1 / 6} w^{2 / 3}}\left(\frac{w}{x}+\frac{w^{\prime}}{\sqrt{1-x^{2}}}-\frac{w w^{\prime}}{x \sqrt{1-x^{2}}}\right)^{1 / 2} \times \\
& \times R\left(e^{-\pi \sqrt{k^{(-1)}(x)}}\right) \frac{K^{2}(x) e^{\pi \sqrt{k^{(-1)}(x)}}}{\pi^{2}} \tag{26}
\end{align*}
$$

Proof.

Combining (8) and (10) and Proposition 2 we get the proof.

We see how the function $k^{(-1)}(x)$ plays the same role in other continued fractions. Here we consider also the Ramanujan's Cubic fraction (see [4]), which is completely solvable using k_{r}.
Define the function:

$$
\begin{equation*}
G(x)=\frac{x}{\sqrt{2 \sqrt{x}-3 x+2 x^{3 / 2}-2 \sqrt{x} \sqrt{1-3 \sqrt{x}+4 x-3 x^{3 / 2}+x^{2}}}} \tag{27}
\end{equation*}
$$

Set for a given $0<w_{3}<1$

$$
\begin{equation*}
x=G\left(w_{3}\right) \tag{28}
\end{equation*}
$$

Then as in Main Theorem, for the Cubic continued fraction $V(q)$, holds (see [4]):

$$
\begin{equation*}
t=V\left(e^{-\pi \sqrt{k^{(-1)}(x)}}\right)=\frac{\left(1-x^{2}\right)^{1 / 3} w_{3}^{1 / 4}}{2^{1 / 3} x^{1 / 3}\left(1-\sqrt{w_{3}}\right)} \tag{29}
\end{equation*}
$$

Observe here that again we only have to know $k^{(-1)}(x)$.
If happens $x=k_{r}$, for a certain r, then

$$
\begin{equation*}
k_{9 r}=\frac{w_{3}}{k_{r}} \tag{30}
\end{equation*}
$$

and if we set

$$
\begin{equation*}
T=\sqrt{1-8 V(q)^{3}} \tag{31}
\end{equation*}
$$

then holds

$$
\begin{equation*}
\left(k_{r}\right)^{2}=x^{2}=\frac{(1-T)(3+T)^{3}}{(1+T)(3-T)^{3}} \tag{32}
\end{equation*}
$$

which is solvable always in radicals quartic equation. When we know w_{3} we can find $k_{r}=x$ from $x=G\left(w_{3}\right)$ and hence t.
The inverse also holds: If we know $t=V(q)$ we can find T and hence $k_{r}=x$.

The w_{3} can be find by the degree 3 modular equation which is always solvable in radicals:

$$
\sqrt{k_{r} k_{r}^{\prime}}+\sqrt{k_{9 r} k_{9 r}^{\prime}}=1
$$

Let now

$$
\begin{equation*}
V(q)=z \Leftrightarrow q=V^{(-1)}(z) \tag{33}
\end{equation*}
$$

if

$$
\begin{equation*}
V_{i}(t):=\sqrt{\frac{1-\sqrt{1-8 t^{3}}}{1+\sqrt{1-8 t^{3}}}\left(\frac{3+\sqrt{1-8 t^{3}}}{3-\sqrt{1-8 t^{3}}}\right)^{3}} \tag{34}
\end{equation*}
$$

then

$$
\begin{equation*}
V_{i}\left(V\left(e^{-\pi \sqrt{x}}\right)\right)=k_{x} \tag{35}
\end{equation*}
$$

or

$$
\begin{gathered}
V\left(e^{-\pi \sqrt{r}}\right)=V_{i}^{(-1)}\left(k_{r}\right) \\
V\left(e^{-\pi \sqrt{k^{(-1)}(x)}}\right)=V_{i}^{(-1)}(x)
\end{gathered}
$$

or

$$
e^{-\pi \sqrt{k^{(-1)}(x)}}=V^{(-1)}\left(V_{i}^{(-1)}(x)\right)=\left(V_{i} \circ V\right)^{(-1)}(x)
$$

and

$$
\begin{equation*}
k^{(-1)}\left(V_{i}(V(q))\right)=\frac{1}{\pi^{2}} \log (q)^{2}=r \tag{36}
\end{equation*}
$$

Setting now values into (36) we get values for $k^{(-1)}($.$) . The function V_{i}($.$) is an$ algebraic function.

4 Some Evaluations of the Rogers Ramanujan Continued Fraction

Note that if $x=k_{r}, r \in \mathbf{Q}$ then we have the classical evaluations with k_{r} and $k_{25 r}$.

Evaluations.

1)

$$
\begin{gathered}
R\left(e^{-2 \pi}\right)=\frac{-1}{2}-\frac{\sqrt{5}}{2}+\sqrt{\frac{5+\sqrt{5}}{2}} \\
R^{\prime}\left(e^{-2 \pi}\right)=8 \sqrt{\frac{2}{5}(9+5 \sqrt{5}-2 \sqrt{50+22 \sqrt{5}})} \frac{e^{2 \pi}}{\pi^{3}} \Gamma\left(\frac{5}{4}\right)^{4}
\end{gathered}
$$

2) Assume that $x=\frac{1}{\sqrt{2}}$, hence $k^{(-1)}\left(\frac{1}{\sqrt{2}}\right)=1$. From (16) which for this x can be solved in radicals, with respect to w, we find

$$
w=\frac{\sqrt{2}}{4}(\sqrt{5}-1)-\frac{1}{2} \sqrt{7 \sqrt{5}-15}
$$

Hence from

$$
w^{\prime}=\sqrt{\sqrt{1-\frac{w^{4}}{x^{2}}} \sqrt{1-x^{2}}}
$$

we get

$$
w^{\prime}=\left(\frac{1+21 \sqrt{-30+14 \sqrt{5}}-9 \sqrt{-150+70 \sqrt{5}}}{\sqrt{2}}\right)^{1 / 4}
$$

Setting these values to (25) we get the value of a_{r} and then $R(q)$ in radicals. The result is

$$
\begin{aligned}
& R\left(e^{-\pi}\right)^{-5}-11-R\left(e^{-\pi}\right)^{5}=-\frac{1}{8}(3+\sqrt{5}-\sqrt{-30+14 \sqrt{5}})[1-\sqrt{5}+\sqrt{-30+14 \sqrt{5}}+ \\
& \left.+2^{3 / 8}(-3+\sqrt{5}-\sqrt{-30+14 \sqrt{5}})(1+21 \sqrt{-30+14 \sqrt{5}}-9 \sqrt{-150+70 \sqrt{5}})^{1 / 4}\right]^{3} \times \\
& \quad \times[\sqrt{-1574+704 \sqrt{5}}-655 \sqrt{-30+14 \sqrt{5}}+293 \sqrt{-150+70 \sqrt{5}}]^{-1}
\end{aligned}
$$

3)Set $w=1 / 64$ and $a=1359863889, b=36855$, then

$$
x=
$$

$$
9(\sqrt{a}+b)^{5 / 6}\left[491526^{1 / 3}(\sqrt{a}+b)^{1 / 6}-960(\sqrt{a}+b)^{5 / 6}+2 \cdot 6^{2 / 3}(\sqrt{a}+b)^{3 / 2}-\right.
$$

$$
-2 \cdot 6^{5 / 6}(\sqrt{a}+b)^{1 / 6} \sqrt{ }\left[-86980957248+36855 \cdot 2^{2 / 3} 3^{1 / 6} \sqrt{453287963} \cdot(36855+\right.
$$

$$
+\sqrt{a})^{2 / 3}-2358720 \sqrt{a}+150958080 \cdot 6^{1 / 3}(\sqrt{a}+b)^{1 / 3}+
$$

$$
\left.+4096 \cdot 2^{1 / 3} 3^{5 / 6} \sqrt{453287963}(\sqrt{a}+b)^{1 / 3}+453025819 \cdot 6^{2 / 3}(\sqrt{a}+b)^{2 / 3}\right]+
$$

$$
+384 \cdot 2^{2 / 3} 3^{1 / 6} \sqrt{ }\left[-2358720-64 \sqrt{a}+8192 \cdot 6^{1 / 3}(\sqrt{a}+b)^{1 / 3}+\right.
$$

$$
\left.+12285 \cdot 6^{2 / 3}(\sqrt{a}+b)^{2 / 3}+2^{2 / 3} 3^{1 / 6} \sqrt{453287963}(\sqrt{a}+b)^{2 / 3}\right]^{-1}
$$

4) For

$$
w=\sqrt{\frac{277}{108}+\frac{13 \sqrt{385}}{108}}
$$

we get

$$
x=\frac{\sqrt{\frac{277}{12}+\frac{13 \sqrt{385}}{12}}}{4+\sqrt{7}}
$$

Hence

$$
R\left(\exp \left[-\pi \cdot k^{(-1)}\left(\frac{\sqrt{\frac{277}{12}+\frac{13 \sqrt{385}}{12}}}{4+\sqrt{7}}\right)^{1 / 2}\right]\right)=
$$

$$
=\left(-\frac{-8071}{18}+\frac{1075 \sqrt{55}}{18}+\frac{1}{18} \sqrt{5(25740148-3470530 \sqrt{55})}\right)^{1 / 5}
$$

5) Set $q=e^{-\pi \sqrt{r_{0}}}$, then from

$$
V\left(e^{-\pi \sqrt{r_{0}}}\right)=V_{i}^{(-1)}\left(k_{r_{0}}\right)=V_{0}
$$

and from

$$
V\left(q^{1 / 3}\right)=\sqrt[3]{V(q) \frac{1-V(q)+V(q)^{2}}{1+2 V(q)+4 V(q)^{2}}}
$$

We can evaluate all

$$
V\left(q_{0}(n)\right)=b_{0}(n)=\text { Algebraic function of } r_{0}
$$

where

$$
q_{0}(n)=e^{-\pi \sqrt{r_{0}} / 3^{n}}
$$

and

$$
V_{i}\left(V\left(q_{0}(n)\right)\right)=V_{i}\left(b_{0}(n)\right)=k_{r_{0} / 9^{n}}
$$

hence

$$
k^{(-1)}\left(V_{i}\left(b_{0}(n)\right)\right)=\frac{r_{0}}{9^{n}}
$$

An example for $r_{0}=2$ is

$$
\begin{gathered}
V\left(e^{-\pi \sqrt{2}}\right)=-1+\sqrt{\frac{3}{2}} \\
V\left(e^{-\pi \sqrt{2} / 3}\right)=\frac{1}{2^{1 / 3}}\left(-1+\sqrt{\frac{3}{2}}\right)^{1 / 3} \\
V\left(e^{-\pi \sqrt{2} / 9}\right)=\rho_{3}^{1 / 3}
\end{gathered}
$$

Where ρ_{3} can be evaluated in radicals but for simplicity we give the polynomial form.

$$
-1-72 x-6408 x^{2}+50048 x^{3}+51264 x^{4}-4608 x^{5}+512 x^{6}=0
$$

Then respectively we get the values

$$
\begin{gather*}
k^{(-1)}(-49+35 \sqrt{2}+4 \sqrt{3(99-70 \sqrt{2})})=2 / 9 \tag{37}\\
k^{(-1)}\left(V_{i}\left(\rho_{3}^{1 / 3}\right)\right)=2 / 81 \tag{38}
\end{gather*}
$$

Hence

$$
\begin{equation*}
k^{(-1)}\left(V_{i}\left(b_{0}(n)\right)\right)=r_{0} / 9^{n} \tag{39}
\end{equation*}
$$

and

$$
\begin{gather*}
R\left(e^{-\pi \sqrt{r_{0}} / 3^{n}}\right)^{-5}-11-R\left(e^{-\pi \sqrt{r_{0}} / 3^{n}}\right)^{5}= \\
=\frac{16 x_{n}^{6}-26 x_{n}^{4}-w_{n} x_{n}^{3}+10 x_{n}^{2}+w_{n} x_{n}}{x_{n}^{4}-6 x_{n}^{3} w_{n}-20 x_{n} w_{n}^{3}+15 w_{n}^{2} x_{n}^{2}-6 x_{n} w_{n}+15 w_{n}^{4}+w_{n}^{2}} \times \\
\times\left(\frac{w_{n}}{x_{n}}+\frac{w_{n}^{\prime}}{\sqrt{1-x_{n}^{2}}}-\frac{w_{n} w_{n}^{\prime}}{x_{n} \sqrt{1-x_{n}^{2}}}\right)^{3} \tag{40}
\end{gather*}
$$

Where $x_{n}=V_{i}\left(b_{0}(n)\right)=$ known. The w_{n} are given from (13) (in this case we don't find a way to evaluate w_{n} in radicals, but as a solution of (13)).
6) Set now

$$
w_{0}=\frac{-64+a+\sqrt{4096+a(88+a)}}{6 \sqrt{6} \sqrt{a}}
$$

then

$$
\begin{gathered}
x_{0}=\frac{-64+a+\sqrt{4096+a(88+a)}}{\sqrt{6}\left(-4+\sqrt{-2+\frac{16}{a^{1 / 3}}+a^{1 / 3}} a^{1 / 6}+a^{1 / 3}\right)^{2} a^{1 / 6}} \\
R\left(e^{-\pi \sqrt{k^{(-1)}\left(x_{0}\right)}}\right)^{-5}-11-R\left(e^{-\pi \sqrt{k^{(-1)}\left(x_{0}\right)}}\right)^{5}:=A(a)
\end{gathered}
$$

where the $A(a)$ is a known algebraic function of a and can calculated from the Main Theorem. Setting arbitrary real values to a we get algebraic evaluations of the RRCF as in evaluation 4.
If we set

$$
g(x):=\frac{-64+x+\sqrt{4096+x(88+x)}}{\sqrt{6}\left(-4+x^{1 / 6} \sqrt{-2+\frac{16}{x^{1 / 3}}+x^{1 / 3}}+x^{1 / 3}\right)^{2} x^{1 / 6}}
$$

and if we manage to write k_{r} in the form $g\left(a_{r}\right)$ for a certain a_{r} i.e. $V_{i}\left(V\left(e^{-\pi \sqrt{r}}\right)\right)=k_{r}=g\left(a_{r}\right)$, then

$$
R\left(e^{-\pi \sqrt{r}}\right)^{-5}-11-R\left(e^{-\pi \sqrt{r}}\right)^{5}=A\left(a_{r}\right)=A\left(g^{(-1)}\left(k_{r}\right)\right)
$$

References

[1]: M.Abramowitz and I.A.Stegun, 'Handbook of Mathematical Functions'. Dover Publications, New York. 1972.
[2]: G.E.Andrews, 'Number Theory'. Dover Publications, New York. 1994.
[3]: G.E.Andrews, Amer. Math. Monthly, 86, 89-108(1979).
[4]: Nikos Bagis, 'The complete evaluation of Rogers Ramanujan and other continued fractions with elliptic functions'. arXiv:1008.1304v1.
[5]: Nikos Bagis and M.L. Glasser, 'Integrals related with Rogers Ramanujan continued fraction and q-products'. arXiv:0904.1641. (2009)
[6]: B.C.Berndt, 'Ramanujan's Notebooks Part III'. Springer Verlang, New York (1991)
[7]: I.S. Gradshteyn and I.M. Ryzhik, 'Table of Integrals, Series and Products'. Academic Press (1980).
[8]: L. Lorentzen and H. Waadeland, Continued Fractions with Applications. Elsevier Science Publishers B.V., North Holland (1992).
[9]: S.H.Son, 'Some integrals of theta functions in Ramanujan's lost notebook'. Proc. Canad. No. Thy Assoc. No. 5 (R.Gupta and K.S.Williams, eds.), Amer. Math. Soc., Providence.
[10]: E.T.Whittaker and G.N.Watson, 'A course on Modern Analysis'. Cambridge U.P. (1927)
[11]: I.J. Zucker, 'The summation of series of hyperbolic functions'. SIAM J. Math. Ana.10.192. (1979)
[12]: B.C. Berndt, H.H.Chan, S.S Huang, S.Y.Kang, J.Sohn and S.H.Son, 'The Rogers Ramanujan Continued Fraction'. (page stored in the Web).

