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Abstract

In this article with the help of the inverse function of the

singular moduli we evaluate the Rogers Ranmanujan continued

fraction and his first derivative.

1 Introductory Definitions and Formulas

For |q| < 1, the Rogers Ramanujan continued fraction (RRCF) (see [6]) is
defined as

R(q) :=
q1/5

1+

q1

1+

q2

1+

q3

1+
· · · (1)

We also define

(a; q)n :=

n−1
∏

k=0

(1− aqk) (2)

f(−q) :=
∞
∏

n=1

(1− qn) = (q; q)∞ (3)

Ramanujan give the following relations which are very useful:

1

R(q)
− 1−R(q) =

f(−q1/5)

q1/5f(−q5)
(4)

1

R5(q)
− 11−R5(q) =

f6(−q)

qf6(−q5)
(5)

From the Theory of Elliptic Functions (see [6],[7],[10]),

K(x) =

∫ π/2

0

1
√

1− x2 sin(t)2
dt (6)

is the Elliptic integral of the first kind. It is known that the inverse elliptic
nome k = kr, k

′2
r = 1− k2r is the solution of the equation

K (k′r)

K(k)
=

√
r (7)
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where r ∈ R∗
+. When r is rational then the kr are algebraic numbers.

We can also write the function f using elliptic functions. It holds (see [10]):

f(−q)8 =
28/3

π4
q−1/3(kr)

2/3(k′r)
8/3K(kr)

4 (8)

also holds

f(−q2)6 =
2krk

′
rK(kr)

3

π3q1/2
(9)

From [5] it is known that

R′(q) = 1/5q−5/6f(−q)4R(q) 6
√

R(q)−5 − 11−R(q)5 (10)

Consider now for every 0 < x < 1 the equation

x = kr,

which, have solution
r = k(−1)(x) (11)

Hence for example

k(−1)

(

1√
2

)

= 1

With the help of k(−1) function we evaluate the Rogers Ramanujan continued
fraction.

2 Propositions

The relation between k25r and kr is (see [6] pg. 280):

krk25r + k′rk
′
25r + 2 · 41/3(krk25rk′rk′25r)1/3 = 1 (12)

For to solve equation (12) we give the following

Proposition 1.
The solution of the equation

x6 + x3(−16+10x2)w+15x4w2 − 20x3w3 +15x2w4 + x(10− 16x2)w5 +w6 = 0
(13)

when we know the w is given by

y1/2

w1/2
=

w1/2

x1/2
=

=
1

2

√

4 +
2

3

(

L1/6

M1/6
− 4

M1/6

L1/6

)2

+
1

2

√

2

3

(

L1/6

M1/6
− 4

M1/6

L1/6

)

(14)
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where

w =

√

L(18 + L)

6(64 + 3L)
< 1 (15)

and

M =
18 + L

64 + 3L
(16)

If happens x = kr and y = k25r, then r = k(−1)(x) and w2 = k25rkr, (w
′)2 =

k′25rk
′
r.

Proof.
The relation (14) can be found using Mathematica. See also [6].

Proposition 2.
If q = e−π

√
r and

a = ar =

(

k′r
k′25r

)2√
kr
k25r

M5(r)
−3 (17)

Then
ar = R(q)−5 − 11−R5(q) (18)

Where M5(r) is root of: (5x− 1)5(1− x) = 256(kr)
2(k′r)

2x.
Proof.
Suppose that N = n2µ, where n is positive integer and µ is positive real then
it holds that

K[n2µ] = Mn(µ)K[µ] (19)

Where K[µ] = K(kµ)
The following formula for M5(r) is known

(5M5(r) − 1)5(1−M5(r)) = 256(kr)
2(k′r)

2M5(r) (20)

Thus if we use (5) and (8) and the above consequence of the Theory of Elliptic
Functions, we get:

R−5(q)− 11−R5(q) =
f6(−q)

qf6(−q5)
= a = ar

See also [4],[5].

3 The Main Theorem

From Proposition 2 and relation w2 = k25rkr we get

w5 − k2rw =
k3r(k

2
r − 1)

arM5(r)3
(21)
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Combining (13) and (21), we get:

[−10k4r+26k6r+arM5(r)
3k6r−16k8r ]+[−k3r−6arM5(r)

3k3r+k5r−6arM5(r)
3k5r ]w+

+[arM5(r)
3k2r + 15arM5(r)k

4
r ]w

2 − 20arM5(r)
3k3rw

3 + 15arM5(r)
3k2rw

4 = 0
(22)

Solving with respect to arM5(r)
3, we get

arM5(r)
3 =

16k6r − 26k4r − wk3r + 10k2r + wkr
k4r − 6k3rw − 20k3rw + 15w2k2r − 6krw + 15w4 + w2

(23)

Also we have

K(k25r)

K(kr)
= M5(r) =

1

m
=

(

√

k25r
kr

+

√

k′25r
k′r

−
√

k25rk′25r
krk′r

)−1

=

(

w

kr
+

w′

k′r
− ww′

krk′r

)−1

The above equalities follow from ([6] pg. 280 Entry 13-xii) and the definition of
w. Note that m is the multiplier.
Hence for given 0 < w < 1 we find L ∈ R and we get the following parametric
evaluation for the Rogers Ramanujan continued fraction

R
(

e−π
√

r(L)
)−5

− 11−R
(

e−π
√

r(L)
)5

= ar =

=
16k6r − 26k4r − wk3r + 10k2r + wkr

k4r − 6k3rw − 20krw3 + 15w2k2r − 6krw + 15w4 + w2

(

w

kr
+

w′

k′r
− ww′

krk′r

)3

(24)

Thus for a given w we find L and M from (15) and (16). Setting the values of
M , L, w in (14) we get the values of x and y (see Proposition 1). Hence from
(24) if we find k(−1)(x) = r we know R(e−π

√
r). The clearer result is:

Main Theorem.
When w is a given real number, we can find x from equation (14). Then for the
Rogers Ramanujan continued fraction holds

R
(

e−π
√

k(−1)(x)
)−5

− 11−R
(

e−π
√

k(−1)(x)
)5

= ar =

=
16x6 − 26x4 − wx3 + 10x2 + wx

x4 − 6x3w − 20xw3 + 15w2x2 − 6xw + 15w4 + w2
×

×
(

w

x
+

w′

√
1− x2

− ww′

x
√
1− x2

)3

(25)
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Note. In the case of x = kr, then k(−1)(x) = r and we have the clasical
evaluation with k25r (see [12]).

Theorem 1. (The first derivative)

R′
(

e−π
√

k(−1)(x)
)

=
24/3x1/2(1 − x2)

5w1/6w′2/3

(

w

x
+

w′

√
1− x2

− ww′

x
√
1− x2

)1/2

×

×R
(

e−π
√

k(−1)(x)
) K2(x)eπ

√
k(−1)(x)

π2
(26)

Proof.
Combining (8) and (10) and Proposition 2 we get the proof.

We see how the function k(−1)(x) plays the same role in other continued frac-
tions. Here we consider also the Ramanujan’s Cubic fraction (see [4]), which is
completely solvable using kr.
Define the function:

G(x) =
x

√

2
√
x− 3x+ 2x3/2 − 2

√
x
√

1− 3
√
x+ 4x− 3x3/2 + x2

(27)

Set for a given 0 < w3 < 1
x = G(w3) (28)

Then as in Main Theorem, for the Cubic continued fraction V (q), holds (see
[4]):

t = V
(

e−π
√

k(−1)(x)
)

=
(1− x2)1/3w

1/4
3

21/3x1/3(1 −√
w3)

(29)

Observe here that again we only have to know k(−1)(x).
If happens x = kr, for a certain r, then

k9r =
w3

kr
(30)

and if we set
T =

√

1− 8V (q)3, (31)

then holds

(kr)
2 = x2 =

(1− T )(3 + T )3

(1 + T )(3− T )3
(32)

which is solvable always in radicals quartic equation. When we know w3 we can
find kr = x from x = G(w3) and hence t.
The inverse also holds: If we know t = V (q) we can find T and hence kr = x.
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The w3 can be find by the degree 3 modular equation which is always solvable
in radicals:

√

krk′r +
√

k9rk′9r = 1

Let now
V (q) = z ⇔ q = V (−1)(z) (33)

if

Vi(t) :=

√

√

√

√

1−
√
1− 8t3

1 +
√
1− 8t3

(

3 +
√
1− 8t3

3−
√
1− 8t3

)3

(34)

then
Vi(V (e−π

√
x)) = kx (35)

or
V (e−π

√
r) = V

(−1)
i (kr)

V (e−π
√

k(−1)(x)) = V
(−1)
i (x)

or
e−π

√
k(−1)(x) = V (−1)(V

(−1)
i (x)) = (Vi ◦ V )(−1)(x)

and

k(−1)(Vi(V (q))) =
1

π2
log(q)2 = r (36)

Setting now values into (36) we get values for k(−1)(.). The function Vi(.) is an
algebraic function.

4 Some Evaluations of the Rogers Ramanujan

Continued Fraction

Note that if x = kr, r ∈ Q then we have the classical evaluations with kr and
k25r.
Evaluations.
1)

R(e−2π) =
−1

2
−

√
5

2
+

√

5 +
√
5

2

R′(e−2π) = 8

√

2

5

(

9 + 5
√
5− 2

√

50 + 22
√
5

)

e2π

π3
Γ

(

5

4

)4

2) Assume that x = 1√
2
, hence k(−1)

(

1√
2

)

= 1. From (16) which for this x can

be solved in radicals, with respect to w, we find

w =

√
2

4

(√
5− 1

)

− 1

2

√

7
√
5− 15
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Hence from

w′ =

√

√

1− w4

x2

√

1− x2

we get

w′ =

(

1 + 21
√

−30 + 14
√
5− 9

√

−150 + 70
√
5√

2

)1/4

Setting these values to (25) we get the value of ar and then R(q) in radicals.
The result is

R(e−π)−5−11−R(e−π)5 = −1

8

(

3 +
√
5−

√

−30 + 14
√
5

)

[1−
√
5+

√

−30 + 14
√
5+

+23/8
(

−3 +
√
5−

√

−30 + 14
√
5

)(

1 + 21

√

−30 + 14
√
5− 9

√

−150 + 70
√
5

)1/4

]3×

×[

√

−1574 + 704
√
5− 655

√

−30 + 14
√
5 + 293

√

−150 + 70
√
5]−1

3)Set w = 1/64 and a = 1359863889, b = 36855, then

x =

9
(√

a+ b
)5/6

[4915261/3
(√

a+ b
)1/6 − 960

(√
a+ b

)5/6
+ 2 · 62/3

(√
a+ b

)3/2 −

−2 · 65/6
(√

a+ b
)1/6 √

[−86980957248+ 36855 · 22/331/6
√
453287963 · (36855+

+
√
a)2/3 − 2358720

√
a+ 150958080 · 61/3

(√
a+ b

)1/3
+

+4096 · 21/335/6
√
453287963

(√
a+ b

)1/3
+ 453025819 · 62/3

(√
a+ b

)2/3
]+

+384 · 22/331/6√[−2358720− 64
√
a+ 8192 · 61/3

(√
a+ b

)1/3
+

+12285 · 62/3
(√

a+ b
)2/3

+ 22/331/6
√
453287963

(√
a+ b

)2/3
]−1

4) For

w =

√

277

108
+

13
√
385

108

we get

x =

√

277
12 + 13

√
385

12

4 +
√
7

Hence

R






exp






−π · k(−1)





√

277
12 + 13

√
385

12

4 +
√
7





1/2










=
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=

(

−−8071

18
+

1075
√
55

18
+

1

18

√

5(25740148− 3470530
√
55)

)1/5

5) Set q = e−π
√
r0 , then from

V (e−π
√
r0) = V

(−1)
i (kr0) = V0

and from

V (q1/3) = 3

√

V (q)
1− V (q) + V (q)2

1 + 2V (q) + 4V (q)2

We can evaluate all

V (q0(n)) = b0(n) = Algebraic function of r0

where
q0(n) = e−π

√
r0/3

n

and
Vi(V (q0(n))) = Vi(b0(n)) = kr0/9n

hence
k(−1)(Vi(b0(n))) =

r0
9n

An example for r0 = 2 is

V (e−π
√
2) = −1 +

√

3

2

V (e−π
√
2/3) =

1

21/3

(

−1 +

√

3

2

)1/3

V (e−π
√
2/9) = ρ

1/3
3

Where ρ3 can be evaluated in radicals but for simplicity we give the polynomial
form.

−1− 72x− 6408x2 + 50048x3 + 51264x4 − 4608x5 + 512x6 = 0

. . .

Then respectively we get the values

k(−1)

(

−49 + 35
√
2 + 4

√

3(99− 70
√
2)

)

= 2/9 (37)

k(−1)
(

Vi(ρ
1/3
3 )

)

= 2/81 (38)

. . .
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Hence
k(−1) (Vi(b0(n))) = r0/9

n (39)

and

R
(

e−π
√
r0/3

n
)−5

− 11−R
(

e−π
√
r0/3

n
)5

=

=
16x6

n − 26x4
n − wnx

3
n + 10x2

n + wnxn

x4
n − 6x3

nwn − 20xnw3
n + 15w2

nx
2
n − 6xnwn + 15w4

n + w2
n

×

×
(

wn

xn
+

w′
n

√

1− x2
n

− wnw
′
n

xn

√

1− x2
n

)3

(40)

Where xn = Vi(b0(n)) = known. The wn are given from (13) (in this case we
don’t find a way to evaluate wn in radicals, but as a solution of (13)).
6) Set now

w0 =
−64 + a+

√

4096 + a(88 + a)

6
√
6
√
a

then

x0 =
−64 + a+

√

4096 + a(88 + a)
√
6
(

−4 +
√

−2 + 16
a1/3 + a1/3a1/6 + a1/3

)2

a1/6

R
(

e−π
√

k(−1)(x0)
)−5

− 11−R
(

e−π
√

k(−1)(x0)
)5

:= A(a)

where the A(a) is a known algebraic function of a and can calculated from the
Main Theorem. Setting arbitrary real values to a we get algebraic evaluations
of the RRCF as in evaluation 4.
If we set

g(x) :=
−64 + x+

√

4096 + x(88 + x)
√
6
(

−4 + x1/6
√

−2 + 16
x1/3 + x1/3 + x1/3

)2

x1/6

and if we manage to write kr in the form g(ar) for a certain ar i.e.
Vi(V (e−π

√
r)) = kr = g(ar), then

R
(

e−π
√
r
)−5

− 11−R
(

e−π
√
r
)5

= A(ar) = A
(

g(−1)(kr)
)
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