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Abstract

In this article with the help of the inverse function of the
singular moduli we evaluate the Rogers Ranmanujan continued
fraction and his first derivative.

1 Introductory Definitions and Formulas

For |¢| < 1, the Rogers Ramanujan continued fraction (RRCF) (see [6]) is
defined as

R
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We also define »
(aiq)n == [ ] (1 — aq") (2)
k=0
f=g) = [0 -¢") = (@) (3)
n=1

Ramanujan give the following relations which are very useful:
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From the Theory of Elliptic Functions (see [6],[7],[10]),
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is the Elliptic integral of the first kind. It is known that the inverse elliptic
nome k = k., k/? =1 — k2 is the solution of the equation
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where r € R7.. When r is rational then the &, are algebraic numbers.
We can also write the function f using elliptic functions. It holds (see [10]):
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also holds
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From [5] it is known that

R'(q) =1/5¢"%%f(—q)*R(q) ¥/R(q)~® — 11 — R(q)® (10)

Consider now for every 0 < < 1 the equation

x:kra

which, have solution
r=k"Y(x) (11)

()

With the help of £~ function we evaluate the Rogers Ramanujan continued
fraction.

Hence for example

2 Propositions
The relation between ko5, and k, is (see [6] pg. 280):
krkasy + Kikbs, + 2 - 43 (kypkos Kl ks, ) /3 =1 (12)

For to solve equation (12) we give the following

Proposition 1.
The solution of the equation

25 4 23 (=16 4 102%)w + 15z w? — 2023w 4+ 152%w* + 2(10 — 162%)w® +w® =0
(13)
when we know the w is given by
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where

L(18 1 L)
=/ —>"=<1 15
Y=\ 664+ 3L) (15)
and 184 L
M= —"— 16
64 4+ 3L (16)
If happens = = k, and y = kas,, then r = k(- (z) and w? = kos, Ky, (w')? =
k/257‘k;"
Proof.

The relation (14) can be found using Mathematica. See also [6].

Proposition 2.
If g= e ™V" and

K \° [k
a=a,= r " Mg (r)73 17
Qﬁ) M (1) a7)
Then
ar = R(q)™° =11 - R*(q) (18)
Where Ms(r) is root of: (5z —1)°(1 — x) = 256(k,)% (k. ).
Proof.

Suppose that N = n?u, where n is positive integer and p is positive real then
it holds that
K[n2u] = My (1)K (19)

Where Ku] = K(k,)
The following formula for Ms(r) is known

(5Ms(r) = 1)°(1 = Ms(r)) = 256(ky)* (k;.)* Ms(r) (20)

Thus if we use (5) and (8) and the above consequence of the Theory of Elliptic
Functions, we get:

5 . _ pb o fﬁ(_q) —a=a
R™(q) — 11 R(q)—iqf(;(_q5)— =a,

See also [4],[5].

3 The Main Theorem
From Proposition 2 and relation w? = kos, .k, we get
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Combining (13) and (21), we get:
[—10k24+-26Kk8 +a, M5 (r)2 kS —16k3)+ [k —6a, Ms(r)3 k3 +k2 —6a, Ms(r)* k2 w+

+[a, Ms(r)3k2 + 15a, Ms(r)kw? — 20a, Ms(r)*k3w® + 150, Ms(r)* k2w* = 0
(22)
Solving with respect to a, Ms5(r)3, we get

16k8 — 26k} — wk? + 10k? + wk,
kx — 6k3w — 20k3w + 15w?k2 — 6k, w + 15w* 4+ w?

arMs(r)® = (23)

Also we have
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The above equalities follow from ([6] pg. 280 Entry 13-xii) and the definition of
w. Note that m is the multiplier.

Hence for given 0 < w < 1 we find L € R and we get the following parametric
evaluation for the Rogers Ramanujan continued fraction

R (emmV) P _L-R (e ’“<L>)5 —a, =

B 16k8 — 26k* — wk? + 10k2 + wk, w o w o oww \?
Kk} — 63w — 20k, w3 + 15w2k2 — 6k,w + 15wt +w? \ k. k. kK.
(

Thus for a given w we find L and M from (15) and (16). Setting the values of
M, L, w in (14) we get the values of z and y (see Proposition 1). Hence from
(24) if we find k(=1 (z) = 7 we know R(e~"V"). The clearer result is:

Main Theorem.
When w is a given real number, we can find z from equation (14). Then for the
Rogers Ramanujan continued fraction holds

R (e—ﬂ\/W) P l-R (e‘“/’“(T)(””))5 =a, =

1628 — 262* — wa?® + 1022 + wx y
x4 — 623w — 20zw3 + 15w?x? — 6w + 15w + w?

X(E+ v ww )3 (25)
T V1-—22 2v1-—22



Note. In the case of 2 = k,, then k(- (z) = 7 and we have the clasical
evaluation with kos, (see [12]).

Theorem 1. (The first derivative)

4/3,.1/2 2 1/2
R’(e—WM):2/x/(1_I) w, w o w "
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Proof.

Combining (8) and (10) and Proposition 2 we get the proof.

We see how the function k(=1 (z) plays the same role in other continued frac-
tions. Here we consider also the Ramanujan’s Cubic fraction (see [4]), which is
completely solvable using k..

Define the function:

Glz) = - (27)
\/2\/5 — 3z 4+ 223/2 — 2,/x\/1 — 3/x + 4z — 323/2 + 22
Set for a given 0 < w3 < 1
x = G(ws3) (28)

Then as in Main Theorem, for the Cubic continued fraction V(g), holds (see

[4]):

2\1/3,,,1/4
t=V (e*”v“’l)(ﬂ“)) _ (=2 P, (29)
21/3$1/3(1 _ /—w3)

Observe here that again we only have to know k(~1)(z).
If happens = = k.., for a certain r, then
w3

For = 2 (30)

and if we set
T=+1-8V(g)?, (31)

then holds ( ) Ty
1-T)3+
k) =a® = —— - —— = 32
k) =2 = G mE—T1)p (82)
which is solvable always in radicals quartic equation. When we know ws we can
find k, = z from © = G(w3) and hence t.

The inverse also holds: If we know ¢t = V(¢) we can find T and hence k, = x.



The w3 can be find by the degree 3 modular equation which is always solvable

in radicals:
Vkrkl + \/korkl, =1

Let now
Vi =26q=VN(z) (33)
if
Vitt) = |- VI=8B (34 VI8 (34)
SN 14+ VI =88 (3 V1 -8
then
Vi(V(e ™) = k, (35)
N Ve =V )
V(eVRE) = v )
or o™ VECD (@) _ V(_l)(Vi(fl)(:c)) = (V; o V)0 (2)
and
HDWV(@) = — log(@)? =1 (36)

Setting now values into (36) we get values for k(=1 (.). The function V;(.) is an
algebraic function.

4 Some Evaluations of the Rogers Ramanujan
Continued Fraction

Note that if z = k., » € Q then we have the classical evaluations with k, and

kasy.
Evaluations.
1)
-1 5 5 5
Ry = 2L Y0 [5H V5
2 2 2

2 2r 5\"
R(e2) =8,/= (9+5v5—2\/50+22v5 ) 1 (2
5 3 4
2) Assume that x = \/Li’ hence k(—1) (%) = 1. From (16) which for this z can
be solved in radicals, with respect to w, we find

w=22 (V1) - Ly1vE-15
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Hence from

4
w’:\/\/l—w—Q\/l—xQ
X

1/4
e <1 +211/=30 + 14v/5 — 9/~ 150 + 70\/5>

we get

V2

Setting these values to (25) we get the value of a, and then R(q) in radicals.
The result is

R(e™™)°—11-R(e™™)® = —é (3 +v5 — /=30 + 14\/5> [1—v5+1/ =30 + 14V/5+
+23/8 <—3 +v5— /=30 + 14\/5> <1 + 21\/—30 +14v5 — 9\/—150 + 70\/5) 1/4]3><

x [\ —1574 4 704/5 — 6551/ —30 + 14v/5 + 2931/ 150 + 70v/5]

3)Set w = 1/64 and a = 1359863889, b = 36855, then

v =
9 (va+1b)""° 491526/ (vVa+b)"® — 960 (Va +b)”° + 2623 (Va+b)** -
—2.65/5 (a +b)"/® \/[-86980957248 + 36855 - 22/331/6\/453287963 - (36855-+
+v/a)?/? — 2358720y/a + 150958080 - 6/ (V/a + b)1/3 +
+4096 - 21/339/6\/153287963 (va + b)'/* + 453025819 - 6%/3 (v/a + b) |+
+384 - 22/331/6, /[ 2358720 — 64+/a + 8192 - 6'/% (\/a + b) Yy
+12285 - 62/3 (\a + b)*/* 4 22/331/5\/153287963 (Va + b) /") !

4) For

277 n 13v/385
108 108

we get
277 | 13V/385
12

_ 12
447

Hence
1/2



_(_=8om 1075+/55
B 18 18
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+ E\/5(25740148 — 3470530V 55))

5) Set ¢ = e~ ™V then from

V(e™T) = VI (kyy) = Vo

and from

s 1-V(g)+V(g)?
V(g'?) = \/V(Q) 142V (q) +4V(q)?

We can evaluate all

V(go(n)) = bo(n) = Algebraic function of ry

where
go(n) = e~V
and
Vi(V(go(n))) = Vi(bo(n)) = Ky on

hence ’

HED V(b)) = £
An example for rg = 2 is

V(ef’”/ﬁ) =1+ g

1 3 1/3
V(e ™V2/3) = 5175 <_1 + \[§>

V(e ™) = py?

Where p3 can be evaluated in radicals but for simplicity we give the polynomial
form.

—1 — 72z — 6408z 4 5004823 + 512642 — 4608z° 4+ 5122° = 0

Then respectively we get the values

kD (—49 +35v2 +44/3(99 — 70\/§)> =2/9 (37)

R (Vi) = 2/81 (38)



Hence
ECY (Vi(bo(n)) = ro/97 (39)

and s 5
R (e‘”m/yl) —11—-R (e_”mmn) =

1628 — 2622 — wyzd + 1022 + whay, y
zd — 6z3w, — 20z, wd + 15w2r2 — 6z w, + 15wE + w?

3
W, w! wWpw!

x| —+ — — = 40
(iﬂn Vi-22  x, 1—:6%) (40)
Where z,, = V;(bo(n)) = known. The w,, are given from (13) (in this case we

don’t find a way to evaluate w,, in radicals, but as a solution of (13)).
6) Set now

—64 + a + /4096 + a(88 + a)
Wo =

then

—64 + a + /4096 + a(88 + a)
2
V6 (—4 + \/—2 + 285 + al/3al/0 + a1/3) al/s

R (e VEE0) 11 - g (eVEE) A

o —

where the A(a) is a known algebraic function of a and can calculated from the
Main Theorem. Setting arbitrary real values to a we get algebraic evaluations
of the RRCF as in evaluation 4.

If we set

—64 + 2 + /4096 + (88 + )
2
V6 (—4 + z1/6 \/—2 + % + 2l + x1/3) z1/6

g(w) ==

and if we manage to write k, in the form g(a,) for a certain a, i.e.
Vi(V(e=™")) = k, = g(a,), then

R =t () a4 (5
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