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ON PARTITIONING COLORED POINTS

TAKAHISA TODA

Abstract. P. Kirchberger proved that, for a finite subset X of Rd such
that each point in X is painted with one of two colors, if every d+ 2 or
fewer points in X can be separated along the colors, then all the points
in X can be separated along the colors. In this paper, we show a more
colorful theorem.

1. Introduction

Let us imagine that red candles and blue candles are placed on the top of
a cake. We want to cut it with a knife into two pieces in such a way that all
the red candles are on one of the two pieces and all the blue candles are on
the other piece. A question is when we can cut it successfully. The following
Kirchberger’s theorem [5] answers this question in a general setting. Let X
be a finite subset of Rd consisting of red points and blue points. We say that
a subset S of X can be separated along the colors if there is a hyperplane h

such that all the red points in S are contained in h+ and all the blue points
in S are contained in h−. Here h+ and h− are the two open halfspaces
associated with h. Kirchberger’s theorem states that if every d+ 2 or fewer
points in X can be separated along the colors, then all the points in X can
be separated along the colors.

We consider a more colorful cake cutting problem. Suppose that we have
a cake with candles each of which is painted with one of k colors. We want
to cut it with a knife by several times in such a way that all candles with the
same color are on one of the pieces, although candles with different colors
must not be on the same piece. Let us formally describe this setting. Let
X be a finite subset of Rd, and suppose that each point in X is painted
with one of k colors. We say that a subset S of X can be partitioned by

hyperplanes along the colors if there is a family F of hyperplanes satisfying
the following three conditions:

(1) every hyperplane in F avoids the points in S;
(2) for any two points in S with different colors, there is a hyperplane

in F separating them;
(3) no hyperplane in F separates points in S with the same color.

Clearly this notion for 2 colors is identical to the notion of separations.
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Our Contribution: We prove the following theorem. If every (d + 1) ·
ηd(k) + k or fewer points in X can be partitioned by hyperplanes along the
colors, then all the points in X can be partitioned by hyperplanes along the
colors, where ηd(k) is given by

ηd(k) =
d∑

i=0

(
k − 2

i

)
.

Related Work: In [1] [6], they studied other colorful Kirchberger theorems.
They introduced the notion of separations for k colors as follows. Let Ai be

a finite set of points painted with the i-th color. They say that
⋃k

i=1Ai is

separated if
⋂k

i=1 convAi = ∅, where convAi denotes the convex hull of Ai.
By the separation theorem, this notion for 2 colors is identical to the notion
of separations introduced by hyperplanes. Their theorems are based on this
notion. We remark that our notion of partitions is essentially different from
theirs.

In Section 2, we introduce basic notions. In Section 3, we calculate the
maximum cardinality of minimal transversals for the full subdivisions of
H(X), which is essential to our main theorem. In Section 4, we prove the
main theorem. In Section 5, we put a conclusion.

2. Basic Notions

Let X be a nonempty set, and let P be a collection of subsets of X. The
collection P is called a partition of X if it has the following three properties:

(1) each member of P is nonempty;
(2) any two distinct members of P are disjoint;
(3) the union of all the members of P is X.

The set X is called the support of this partition P . Each member of P is
called a component of P . In this paper we will only deal with partitions of
a finite set. Let Y be a nonempty subset of X. For a partition P of X, we
write P |Y for the restriction of P to Y , i.e.

P |Y := {U ∩ Y |U is a component of P} \ {∅}.

We say that the pair (X, C) of a finite set X and a collection of partitions
of X is a division. By abuse of notation, a collection of partitions having
a common support, say C itself, is called a division. A subset of C is called
a subdivision of C. Two elements a and b in X are separated by a partition
P if a and b lie in different components of P . A division (X, C) is full if
every two distinct elements in X can be separated by some partition in C.
In particular, a subset S of C is a full subdivision of C if (X,S) is full.

We introduce a key concept in this paper.

Definition 1. Let (X, C) be a full division. A subset of C is called a transver-
sal for the full subdivisions of C if it intersects all the full subdivisions of C,
that is, it contains at least one member from each full subdivision of C.
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Proposition 2.1. Let (X, C) be a full division. A minimal transversal for

the full subdivisions of C has the form Ca|b for some pair (a, b) of elements in

X, where Ca|b denotes the set of all members of C that separate two elements

a and b in X.

Proof. Let T be a minimal transversal for the full subdivisions of C. We
prove that Ca|b ⊆ T for some pair (a, b) of distinct elements in X. Assume
the opposite. From this assumption, for each pair (a, b) of distinct elements
in X, there is a member of Ca|b which does not belong to T , which implies
that every two distinct elements in X can be separated by some member of
C \T . Thus C \T is full and has no common member to T . This contradicts
that T is a transversal. Therefore T contains some Ca|b.

We observe that Ca|b is a transversal for the full subdivisions of C. In-
deed, by definition, for each full subdivision F of C there is a member of F
separating a and b. This implies that F has a common member to Ca|b.

From the minimality of T , we obtain that T = Ca|b. �

In the remaining part of this section, we make a supplementary remark
on a related concept to divisions. A separoid [2] is a set together with a
binary relation on its subsets, denoted by | , satisfying the following axioms:

(1) S | T ⇒ T | S;
(2) S | T ⇒ S ∩ T = ∅;
(3) S | T and U ⊆ S ⇒ U | T .

Given a division (X, C), it induces a separoid over X by declaring that
S | T if there is a member P of C such that S and T are contained in
different components of P . Clearly (X, C) can be recovered from the separoid
provided that every member of C consists of at most two components. In
this paper, we shall be concerned with C itself rather than the separation
relation | induced by C.

3. Arrangement of points in R
d

In this section, we will deal with a certain collection H(X) of partitions
induced by hyperplanes in R

d and calculate the maximum cardinality of
minimal transversals for the full subdivisions of H(X).

Let X be a finite subset of R
d. We say that a partition P of X can

be realized by a hyperplane if P = {X} or there is a hyperplane h such
that P = {X ∩ h+,X ∩ h−}, where h+ and h− are the two open halfspaces
associated with h.

Notation. We denote by H(X) the set of all partitions of X that can be
realized by hyperplanes and by Ha|b(X) the set of all members of H(X) that
separate two elements a and b in X. We defineHa∼b(X) := H(X)\Ha|b(X),
which is the set of all members of H(X) that do not separate a and b.

The following proposition is well-known (see [4]).
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Proposition 3.1. Let X be a set of k points in R
d. The cardinality of H(X)

is at most

φd(k) :=

d∑

i=0

(
k − 1

i

)
.

In particular, if the points are in general position, then the cardinality is

exactly φd(k).

Recall that every minimal transversal for the full subdivisions of H(X)
has the form Ha|b(X) for some pair (a, b). We remark that Ha|b(X) is a
transversal but need not be minimal. Suppose that three distinct points a, b,
and c in X are collinear and that c lies between a and b. Then every member
of H(X) separating a and c also separates a and b, while every member of
H(X) separating c and b does not separate a and c. ThusHa|c(X) is a proper
subset of Ha|b(X), which implies that Ha|b(X) is not a minimal transversal.

Proposition 3.2. Let X be a set of points in R
d. If no three points in X

are collinear, then every Ha|b(X) for two distinct elements a and b in X is

a minimal transversal for the full subdivisions of H(X).

We omit the proof, which is straightforward.

Notation. Let X be a set of k (≥ 2) points in R
d. We denote by τ(X)

the minimum cardinality of minimal transversals for the full subdivisions
of H(X), and by τd(k) the minimum of all τ(X) for k-point sets X whose
points are in general position in R

d.

Lemma 3.3. Let X be a set of k (≥ 2) points in general position in R
d.

We have
d∑

i=1

(
k − 2

i− 1

)
≤ τ(X) .

Proof. Let T be a minimal transversal for the full subdivisions of H(X). By
Proposition 2.1, T has the form Ha|b(X) for some pair (a, b). Let us fix such
two points a and b, and define Xa := X \{a}. For each member P of H(X),
its restriction P |Xa

to Xa can be realized by a hyperplane. Conversely,
every partition of Xa realized by a hyperplane can be constructed in this
way. Thus we derive

H(Xa) = {P |Xa
|P ∈ H(X)} .

We observe that, for each member R of H(Xa), there are at most two
members P of H(X) satisfying R = P |Xa

. Indeed, for R = {U1, U2}, such
candidates are described as P := {U1 ∪ {a}, U2} and P ′ := {U1, U2 ∪ {a}},
if any. Since the point b lies in either U1 or U2, one of P and P ′ separates
a and b, and the other does not. From this observation we derive

|H(X)| − |H(Xa)| ≤ |Ha|b(X)| = |T |.
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Figure 1. Let X be a set of six points in R
2 consisting of

the vertices b, c, d, e, f of a regular pentagon and its center a.
In order to calculate τ(X), it suffices to deal with the three
cases (a), (b), and (c) illustrated above. The cardinalities of
Ha|b(X), Hb|c(X), and Hc|f (X) are 6, 6, and 10, respectively.
Thus we obtain τ(X) = 6. On the other hand, we have
φ2(6) − φ2(5) = 5. If we move one of the six points, say a,
closer to another point, say b, as illustrated in (d), then the
cardinality of Ha|b(X) becomes 5, and the equality τ(X) =
φ2(6)− φ2(5) holds in this case.

Since Xa consists of points in general position, we derive

|H(X)| − |H(Xa)| = φd(k)− φd(k − 1)

=
d∑

i=0

{(
k − 1

i

)
−

(
k − 2

i

)}

=

d∑

i=1

(
k − 2

i− 1

)
.

Note that
(
k−1

i

)
=

(
k−2

i

)
+

(
k−2

i−1

)
holds for i ≥ 1: this is clear in the case

k − 1 > i, and the equation holds even in the case k − 1 ≤ i because
(
k−2

i

)

becomes 0. �

Figure 1 shows that the equality in the lemma above does not hold in
general.



6 TAKAHISA TODA

Proposition 3.4. For d ≥ 1 and k ≥ 2, we have

τd(k) =

d∑

i=1

(
k − 2

i− 1

)
.

Proof. Let X be a set of k points in general position in R
d. Let us fix two

distinct points a and b in X. We show that if we move a “sufficiently closer”
to b as shown in Figure 1, then we obtain

|Ha|b(X)| =
d∑

i=1

(
k − 2

i− 1

)
.

This is sufficient for the proof because the right-hand side is a lower bound
for all τ(X) for k-point sets X whose points are in general position in R

d.
For each member P of Ha|b(X), let us choose a hyperplane hP which

realizes P , and denote by h+P the one of the two open halfspaces associated
with hP which contains b. Let us choose a point c lying between a and b so
that c lies in h+P for all P ∈ Ha|b(X) and the points in (X \ {a}) ∪ {c} are
in general position. Clearly we can choose such a point.

Let us define X ′ := (X \ {a}) ∪ {c}. By construction, Hc|b(X
′) has the

following property: for each member P of Hc|b(X
′), there is a member P ′

of Hc∼b(X
′) satisfying P |X′

c
= P ′|X′

c
, where X ′

c := X ′ \ {c}. We can easily
check this fact. From the observation in the proof of Lemma 3.3, we derive

|Hc|b(X
′)| = |H(X ′)| − |H(X ′

c)|

=
d∑

i=1

(
k − 2

i− 1

)
.

�

Notation. Let X be a set of k (≥ 2) points in R
d. We denote by η(X)

the maximum cardinality of minimal transversals for the full subdivisions
of H(X), and by ηd(k) the maximum of all η(X) for k-point sets X whose
points are in general position in R

d.

Proposition 3.5. For d ≥ 1 and k ≥ 2, we have

τd(k) + ηd(k) = φd(k).

Proof. Let X be a set of k points in general position in R
d, and let a and

b be two distinct points in X. We will present another k-point set X ′ such
that |Ha|b(X)| + |Ha′|b′(X

′)| = φd(k) for some pair (a′, b′) of points in X ′.
Let us fix a member P of Ha|b(X), and suppose that a hyperplane hP

realizes P . Let us construct the projective space extending Rd. In this space,

we have the projective hyperplane ĥP extending hP and the complement of

ĥP is a d-dimensional affine space. We denote by X ′ the set in this affine
space corresponding to X, and by a′ and b′ the points corresponding to a

and b, respectively.
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By construction, hyperplanes in the original space R
d which do not sep-

arate a and b correspond to those in the new affine space which separate a′

and b′. This induces a bijection between Ha∼b(X) and Ha′|b′(X
′). Thus we

derive

φd(k) = |Ha|b(X)|+ |Ha∼b(X)|

= |Ha|b(X)|+ |Ha′|b′(X
′)|.

In particular, |Ha|b(X)| = τd(k) if and only if |Ha′|b′(X
′)| = ηd(k). �

Corollary 3.6. For d ≥ 1 and k ≥ 2, we have

ηd(k) =
d∑

i=0

(
k − 2

i

)
.

We have calculated ηd(k), which is the maximum of all η(X) for k-point
setsX whose points are in general position in R

d. Regardless of the condition
that the points are in general position, the fact remains that ηd(k) gives the
maximum cardinality.

Proposition 3.7. Let X be a set of k (≥ 2) points in R
d. The maximum

cardinality of minimal transversals for the full subdivisions of H(X) is at

most ηd(k).

Proof. By perturbation of the points in X, we can construct a set X ′ of
points in general position so that H(X) is “embedded” in H(X ′) through
the bijection φ : X → X ′ induced by the perturbation. Here we say that
H(X) is embedded in H(X ′) through φ if, for each member P of H(X), the
partition {φ(U) |U ∈ P} mapped by φ belongs to H(X ′) and this mapping
is injective. Thus we derive η(X) ≤ η(X ′) ≤ ηd(k). �

4. Main Theorem

The following lemma slightly strengthens Kirchberger’s theorem [5].

Lemma 4.1. Let X be a finite subset of Rd such that each point in X is

painted with one of two colors. Let p be a point in X. If every subset of X

having p whose size is at most d+ 2 can be separated along the colors, then

X can be separated along the colors.

Proof. Without loss of generality, we assume that X consists of red points
and blue points, and that p is the origin in R

d painted with red. For each
point a = (a1, . . . , ad) ∈ X \ {p}, we define the following halfspace Ha: if it
is red,

Ha =

{
(λ1, . . . , λd) ∈ R

d |
d∑

1

λiai < 1

}
;

otherwise,

Ha =

{
(λ1, . . . , λd) ∈ R

d |
d∑

1

λiai > 1

}
.
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Let h be arbitrary hyperplane avoiding both of a and p, which is denoted

by
∑d

i=1 λixi = 1. Then we observe that h separates a and p if and only if∑d
i=1 λiai > 1. Thus a subset S of X having p can be separated along the

colors if and only if
⋂

a∈S\{p}Ha 6= ∅.
Suppose that every subset of X having p whose size is at most d+ 2 can

be separated along the colors. From the observation above, it follows that
every d+ 1 or fewer members of {Ha}a∈X\{p} have a common point. From
Helly’s theorem (see [3]), we derive that all the members of {Ha}a∈X\{p}

have a common point. Therefore there is a hyperplane separating X along
the colors. �

We are now ready to prove our main theorem.

Theorem 4.2. Let X be a finite subset of Rd, and suppose that each point

in X is painted with one of k colors. If every (d + 1) · ηd(k) + k or fewer

points in X can be partitioned by hyperplanes along the colors, then all the

points in X can be partitioned by hyperplanes along the colors.

Proof. From each color, let us choose a point in X painted with the color,
and let us denote by Y the set of the points chosen. For each member P

of H(Y ), let us construct a partition P̂ of X in such a way that, for each

component U of P , the component Û of P̂ consists of points each of which
has a common color to some point in U . Clearly this extension is unique.

To prove the contraposition, assume that X can not be partitioned by
hyperplanes along the colors. Let us define:

T =
{
P ∈ H(Y ) | P̂ 6∈ H(X)

}
.

We show that T is a transversal for the full subdivisions ofH(Y ). Otherwise,
there is a full subdivision F of H(Y ) which is disjoint to T . We observe

that F̂ :=
{
P̂ |P ∈ F

}
consists of partitions of X which can be realized

by hyperplanes. By construction, such hyperplanes realizing members of F̂
partition X along the colors. This contradicts to our assumption.

If T is not a minimal transversal, we redefine T as a minimal one contained
in T . For each member P of T , let us choose a subset SP of X having a
common point to Y such that SP consists of at most d+2 points and it can

not be separated along P̂ . By Lemma 4.1, there is such a set. Then the set
Y ∪ (

⋃
P∈T SP ), which consists of at most (d+1) · ηd(k) + k points, can not

be partitioned by hyperplanes along the colors. �

5. Conclusion

We introduced the notion of partitions of colored points and proved a
colorful Kirchgerber theorem with respect to this notion. It is remained as
a future work to improve the number (d+ 1) · ηd(k) + k in the statement of
the main theorem.
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