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In this paper we consider a simplified two-dimensional scalar model for the for-

mation of mesoscopic domain patterns in martensitic shape-memory alloys at the

interface between a region occupied by the parent (austenite) phase and a region oc-

cupied by the product (martensite) phase, which can occur in two variants (twins).

The model, first proposed by Kohn and Müller [22], is defined by the following

functional:

E(u) = β||u(0, ·)||2H1/2([0,h]) +

∫ L

0
dx

∫ h

0
dy (|ux|2 + ε|uyy |)

where u : [0, L] × [0, h] → R is periodic in y and uy = ±1 almost everywhere.

Conti [12] proved that if β >∼ εL/h2 then the minimal specific energy scales like

∼ min{(εβ/L)1/2, (ε/L)2/3}, as (ε/L) → 0. In the regime (εβ/L)1/2 ≪ (ε/L)2/3, we

improve Conti’s results, by computing exactly the minimal energy and by proving

that minimizers are periodic one-dimensional sawtooth functions.

1. INTRODUCTION AND MAIN RESULTS

The formation of mesoscopic scale patterns in equilibrium systems is often due

to a competition between interactions favoring different microscopic structures;

e.g., a competition between a short range attractive interaction favoring a homo-

geneous ordered state and a long range repulsive interaction, which opposes such

ordering on the scale of the whole sample. Mathematically, this phenomenon

can be modeled by (non-convex) free-energy functionals, whose minimizers are

supposed to describe the low energy states of the system. The details of the

free-energy functional to be considered depend on the specific system one wants

to describe: applications range from micromagnetics [10, 14, 16, 24] to diblock

copolymers [2, 4, 8, 29], elasto-plasticity [5, 13], superconducting films [9, 15, 30]

and martensitic phase transitions [11, 12, 22, 23], just to mention a few.

In all these cases, combinations of variational estimates and numerical simu-

lations typically allow one to construct an approximate (and quite realistic) low
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temperature phase diagram, which often displays a wide range of ordering effects

including formation of striped states [21, 26, 32], droplet patterns [16, 27], trian-

gular lattices [1, 35], etc. However, a satisfactory theory of pattern formation in

more than one dimension is still missing and the number of physical models for

which periodicity can be rigorously proven is very small [3, 6, 7, 17–20, 25, 33, 34].

In this paper we prove periodicity of the minimizers of an anisotropic 2D free-

energy functional, motivated by the theory of martensitic phase transitions. Our

methods are based on a combination of reflection positivity estimates, in the spirit

of [17–20], and of Poincaré-type estimates. We hope that these techniques will

lead to more general examples of spontaneous pattern formation in anisotropic

systems with competing interactions.

2. DEFINITION OF THE MODEL AND MAIN RESULTS

We consider a simplified two-dimensional (2D) scalar model for the forma-

tion of mesoscopic domain patterns in martensitic shape-memory alloys at the

interface between a region occupied by the parent (austenite) phase and a region

occupied by the product (martensite) phase, which can occur in two variants

(twins). The model, first proposed by Kohn and Müller [22], is defined by the

following functional:

E(u) = β||u(0, ·)||2H1/2([0,h]) +
∫ L

0
dx

∫ h

0
dy (|ux|2 +

ε

2
|uyy|) (2.1)

where u : [0, L] × [0, h] → R is periodic in y and uy = ±1 almost everywhere;

therefore, the admissible functions are such that, for almost every x, the graph

of y → u(x, y) looks like a (possibly irregular) sawtooth pattern. Here β and ε

are nonnegative parameters. The square of the H1/2-norm in the r.h.s. of (2.1)

is defined as:

||u(0, ·)||2H1/2([0,h]) = 4π2
∑

k∈Z

|k||û0(k)|2 , (2.2)

where û0(k) = h−1
∫ h
0 dy u(0, y) e−2πiky/h. The equivalent x-space representation

of this norm is the following:

||u(0, ·)||2H1/2([0,h]) =
∫ h

0
dy

∫ +∞

−∞
dy′

|u(0, y)− ũ(0, y′)|2
|y − y′|2 , (2.3)

where ũ(0, y) : R → R is the periodic extension of u(0, y) over the whole real axis.

The problem consists in determining the minimizers of (2.1) for small values

of ε; existence of the minimizer was proved in [23]. As discussed in [22], the sig-

nificance of the various terms in (2.1) is the following. The rectangle [0, L]× [0, h]

is the “martensite” region. The regions where uy = −1 and uy = 1 correspond to
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two distinct variants, which are separated by sharp interfaces. The term
∫ |ux|2

is the “strain energy”; note that it vanishes only if the interfaces between the

two twin variants are precisely horizontal, i.e., if the two variants form a striped

(lamellar) pattern. The term (ε/2)
∫ |uyy| is the surface energy; since uy jumps

from−1 to +1, |uyy| is like a delta function concentrated on the interfaces between

the twins. It can be expressed more conventionally as

ε

2

∫ L

0
dx

∫ h

0
dy|uyy| = ε

∫ L

0
dxN(x) , (2.4)

where N(x0) = (1/2)
∫ h
0 dy|uyy| is the number of twin boundaries that cross the

line x = x0. More precisely, N(x) is defined as

N(x) =
1

2
sup

{ ∫ h

0
dy uy(x, y)ϕ

′(y) : ϕ ∈ C∞
per and |ϕ| ≤ 1

}
, (2.5)

where C∞
per is the set of periodic C∞ functions on [0, h]. Note that if

∫ ∫
u2x < ∞

then x 7→ u(x, ·) is a continuous map from [0, L] to L2([0, h]) and, therefore, N(x)

is lower semicontinuous, being a supremum of continuous functions. Note also

that E(u) < ∞ and the fact that uy ∈ L∞([0, L] × [0, h]) imply that u has a

(1/3)-Hölder continuous representative [28]; therefore, in the following, with no

loss of generality, we shall assume u to be continuous in [0, L]× [0, h].

The boundary x = 0 represents the interface between the martensite and the

austenite and the term proportional to the square of the H1/2-norm of u(0, y) is

the “elastic energy in the austenite”. In fact, the austenite should be imagined

to occupy the region (−∞, 0]× [0, h] and to be associated with the elastic energy

2πβ
∫ 0

−∞
dx

∫ h

0
|∇ψ|2 , (2.6)

where ψ is periodic in y, it decays to zero as x→ −∞ and satisfies the boundary

condition ψ(0, y) = u(0, y). Since the elastic energy of the austenite is quadratic,

one can perform the associated minimization explicitly. This yields

ψ(x, y) =
∑

k∈Z

û0(k)e
2πiky/he2π|k|x/h , (2.7)

whence

2πβ
∫ 0

−∞
dx

∫ h

0
|∇ψ|2 = 4π2β

∑

k∈Z

|k||û0(k)|2 . (2.8)

Depending on the values of the material parameters β, ε, the minimizers of (2.1)

are expected to display different qualitative features. In particular, in [22], on the

basis of rigorous upper bounds and heuristic lower bounds on the ground state

energy of (2.1), it was conjectured that, if (ε/L) ≪ 1, the minimizers should

display periodic striped (lamellar) order as long as

(εβ
L

)1/2 ≪
( ε
L

)2/3
(2.9)
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and asymptotically self-similar branched patterns as long as

( ε
L

)2/3 ≪
(εβ
L

)1/2
. (2.10)

Recently, Conti [12] substantiated this conjecture, by proving that if β >∼ εL/h2

then E0, the infimum of (2.1) over the admissible u’s, satisfies upper and lower

bounds of the following form:

min{cs
(εβ
L

)1/2
, cb

( ε
L

)2/3} ≤ E0

hL
≤ min{Cs

(εβ
L

)1/2
, Cb

( ε
L

)2/3} , (2.11)

for suitable constants cs, cb, Cs, Cb. The constants Cs and Cb in the r.h.s. are

obtained by choosing in the variational upper bound the optimal periodic striped

configurations and the optimal branched configuration, respectively.

In the present paper we improve the bounds (2.11), by proving that, if ε and

β are small and such that (2.9) is satisfied, i.e., if

0 ≤ β ≪
( ε
L

)1/3 ≪ h

L
, (2.12)

then the minimizers display periodic striped order. In particular, asympotically

in the regime (2.12), the constant cs in the l.h.s. of (2.11) can be chosen

arbitrarily close to Cs. Our main result is summarized in the following theorem.

Theorem 1. If εL2/h3 and βL1/3ε−1/3 are positive and small enough,

any minimizer u(x, y) of (2.1) is a one-dimensional periodic sawtooth function,

i.e.,

u(x, y) = A+ wM∗(y − y0) , (2.13)

with A and y0 two real constants, wM(y) :=
∫ y
0 dz sign(sin

πzM
h

) and

M∗ = argmin{E(wM) : M even integer} . (2.14)

Remark. An explicit computation shows that the number M∗ of corner points

of the periodic minimizer, as defined in (2.14), is M∗ ∼ (βh2/εL)1/2 ≫ 1 for

β ≫ εL/h2, while it is of order 1 for β <∼ εL/h2.

In order to prove Theorem 1 we proceed in several steps. First, we show

that the optimal profile among the one-dimensional (1D) profiles is a sawtooth

periodic function. This is proved in Section 3 and in Appendix A, by using the

reflection positivity method of [17–20]. Next, we show that the minimizers of

the full 2D problem are 1D in a subregime of (2.12), i.e., for

0 ≤ β < (2π2h)−1/2ε1/2 . (2.15)
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The proof of this claim, which is discussed in Section 4, makes use both of the

lower bound on the energy of 1D configurations of Section 3 and of a Poincaré

inequality; the way in which these two bounds are combined is the key idea used

in the study of the full regime, too. The proof of Theorem 1 in the full regime

(2.12) requires a more sophisticated strategy: we first localize the problem in small

horizontal slices, of vertical size comparable with the optimal period 2h/M∗, and

then prove that in each slice ux ≡ 0, by using a combination of Poincaré-type

bounds with a priori estimates on the local energy, similar to the one discussed

in Section 4. This is discussed in Section 5.

3. PROOF OF THE MAIN RESULT: FIRST STEP

Let us assume that ux ≡ 0 in (2.1). In this case u(x, y) = u(0, y) ≡ u0(y) and

(2.1) reduces to

E(u) = β
∫ h

0
dy

∫ +∞

−∞
dy′

|u0(y)− ũ0(y
′)|2

|y − y′|2 + εLM0 , (3.1)

where M0 = N(x = 0) is the number of jumps of u′0(y). Now, rewrite |y − y′|−2

as
1

|y − y′|2 =
∫ ∞

0
dααe−α|y−y′| , (3.2)

so that

E(u) = β
∫ ∞

0
dαα

∫ h

0
dy

∫ +∞

−∞
dy′ |u0(y)− ũ0(y

′)|2e−α|y−y′| + εLM0 . (3.3)

Let us denote by 0 ≤ y0 < y1 < · · · < yM0−1 < h the locations of the cusps of

u0(y), and let us define u
(i)
0 , i = 0, . . . ,M0 − 1, to be the restrictions of u0 to the

intervals [yi, yi+1]. Given u
(i)
0 on [yi, yi+1], let us extend it to the whole real axis

by repeated reflections about yi and yi+1; we shall denote the extension by ũ
(i)
0 .

Using the chessboard estimate proved in [19] (see Appendix A for details) we find

that, for any α ∈ (0,+∞),

∫ h

0
dy

∫ +∞

−∞
dy′ |u0(y)− ũ0(y

′)|2e−α|y−y′| ≥ (3.4)

≥
M0−1∑

i=0

∫ yi+1

yi
dy

∫ +∞

−∞
dy′ |u(i)0 (y)− ũ

(i)
0 (y′)|2e−α|y−y′| ,

which readily implies

E(u) ≥ β
M0−1∑

i=0

∫ yi+1

yi
dy

∫ +∞

−∞
dy′

|u(i)0 (y)− ũ
(i)
0 (y′)|2

|y − y′|2 + εLM0 . (3.5)
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An explicit computation of the integral in (3.5) gives:

∫ yi+1

yi
dy

∫ +∞

−∞
dy′

|u(i)0 (y)− ũ
(i)
0 (y′)|2

|y − y′|2 =
14 ζ(3)

π2
(yi+1 − yi)

2 , (3.6)

where we used that
∑∞

k=1(2k − 1)−3 = (7/8)ζ(3). As a result:

E(u) ≥ 14 ζ(3)

π2
β

M0−1∑

i=0

(yi+1−yi)2+εLM0 =
βc0h

2

M0

+εLM0+βc0
M0−1∑

i=0

(
hi−

h

M0

)2
,

(3.7)

where c0 = 14 ζ(3)/π2 and hi = yi+1 − yi. Defining E1D(M) = βc0h
2/M + εLM

and combining (3.7) with the variational bound E(u) ≤ E1D(M
∗), where M∗ is

the even integer minimizing E1D(M), we find that if u is the minimizer of E(u)
under the constraint that ux ≡ 0,

E1D(M
∗) ≥ E(u) ≥ E1D(M0) + βc0

M0−1∑

i=0

(
hi −

h

M0

)2
, (3.8)

which implies: (i) min{E(u) : ux ≡ 0} = E1D(M
∗); (ii) M0 = M∗; (iii) hi =

h/M∗, ∀i. Note that even in the cases where E1D(M) is minimized by two

distinct values ofM , M∗
1 andM∗

2 , the only 1D minimizers are the simple periodic

functions of period 2h/M∗
1 or of period 2h/M∗

2 (i.e., no function alternating bumps

of size 2h/M∗
1 and 2h/M∗

2 can be a minimizer).

For the purpose of the forthcoming discussion, let us remark that if β ≫ εL/h2,

∣∣∣M∗ −
√
βc0h2

εL

∣∣∣ ≤ 2 (3.9)

and

min{E(u) : ux ≡ 0} = E1D(M
∗) = hL cs

√
βε

L
·
(
1 +O(

Lε

h2β
)
)
, (3.10)

with cs = 2
√
c0 the constant appearing in (2.11).

4. PROOF OF THE MAIN RESULT: SECOND STEP

The result of the previous section can be restated in the following way: if

vM is a periodic function on [0, h] with v′M = ±1 and M corners located at yi,

i = 1, . . . ,M , then

β||vM ||H1/2([0,h]) + εLM ≥ E1D(M) + βc0
M∑

i=1

(
hi −

h

M

)2
, (4.1)

where hi = yi+1 − yi. In this section we make use of (4.1) and, by combining it

with a Poincaré inequality, we prove that in the regime (2.15) all the minimizers

are one-dimensional (and, therefore, periodic, by the results of Section 3).
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Let M = minx∈[0,L]N(x) and let

x̄ = inf{x ∈ [0, L] : N(x) =M} . (4.2)

Moreover, let vM(y) ≡ u(x̄, y). By the lower semicontinuity of N(x) (see the lines

following (2.5)), N(x̄) =M . We rewrite

E(u) =
[
β||vM ||2H1/2([0,h]) + εLM

]
+ β(||u0||2H1/2([0,h]) − ||vM ||2H1/2([0,h])) +

+
∫ L

0
dx

∫ h

0
dy |ux|2 + ε

∫ L

0
dx(N(x)−M) ≥ (4.3)

≥
[
β||vM ||2H1/2([0,h]) + εLM

]
+ β(||u0||2H1/2([0,h]) − ||vM ||2H1/2([0,h])) +

+
∫ x̄

0
dx

∫ h

0
dy |ux|2 + ε

∫ x̄

0
dx(N(x)−M) ,

where the right hand side of the inequality differs from the left hand side just

by the upper limits of the two integrals in dx, which were set equal to x̄ (in

other words, in order to bound E(u) from below, we dropped the two positive

integrals
∫ L
x̄ dx

∫ h
0 dy |ux|2 and ε

∫ L
x̄ dx(N(x) − M)). Now, if x̄ = 0, then u is

one-dimensional, u(x, y) = u0(y) = vM(y), and we reduce to the discussion in the

previous section. Let us then suppose that x̄ > 0. In this case, the first term of

the fourth line of Eq.(4.3) can be bounded from below by

∫ x̄

0
dx

∫ h

0
dy |ux|2 ≥

1

x̄

∫ h

0
dy|vM(y)− u0(y)|2 . (4.4)

The second term of the third line of Eq.(4.3) can be rewritten in the form:

β(||u0||2H1/2([0,h]) − ||vM ||2H1/2([0,h])) = β||u0 − vM ||2H1/2([0,h]) +

+ 2β(vM , u0 − vM)H1/2([0,h]) , (4.5)

where, given two real h-periodic functions f and g,

(f, g)H1/2([0,h]) =
∫ h

0
dy

∫ +∞

−∞
dy′

(f(y)− f(y′))(g(y)− g(y′))

|y − y′|2 =

= 4π2
∑

k∈Z

|k|f̂ ∗(k)ĝ(k) . (4.6)

Using Cauchy-Schwarz inequality we find:

∣∣∣(f, g)H1/2([0,h])

∣∣∣ ≤ 4π2
∑

k∈Z

|k| |f̂(k)| |ĝ(k)| ≤ (4.7)

≤ 2π
[4π2

h

∑

k∈Z

|k|2 |f̂(k)|2
]1/2 ·

[
h
∑

k∈Z

|ĝ(k)|2
]1/2

=

= 2π||f ′||L2([0,h]) · ||g||L2([0,h]) .
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Using (4.5), (4.7) and the fact that |v′M | = 1 for a.e. y, we find that

β(||u0||2H1/2([0,h]) − ||vM ||2H1/2([0,h])) ≥ β||u0 − vM ||2H1/2([0,h]) −
− 4πβh1/2||u0 − vM ||L2([0,h]) . (4.8)

Combining (4.1), (4.3), (4.4) and (4.8), and neglecting the positive term β||u0 −
vM ||2

H1/2([0,h])
, we get

E(u) ≥ E1D(M) + βc0
M∑

i=1

(
hi −

h

M

)2 − 4πβh1/2||u0 − vM ||L2([0,h]) +

+ε
∫ x̄

0
dx(N(x)−M) +

1

x̄
||u0 − vM ||2L2([0,h]) . (4.9)

The term ε
∫ x̄
0 dx(N(x)−M) is bounded from below by 2εx̄ (simply because, by

construction, N(x)−M ≥ 2 for all x < x̄). Therefore, the last two terms in the

r.h.s. of (4.9) are bounded from below by

ε
∫ x̄

0
dx(N(x)−M) +

1

x̄
||u0 − vM ||2L2([0,h]) ≥ 2εx̄+

1

x̄
||u0 − vM ||2L2([0,h])

≥ 2
√
2ε||u0 − vM ||L2([0,h]) , (4.10)

which gives us a chance to balance the error term −4πβh1/2||u0 − vM ||L2([0,h]) in

(4.9), which is linear in ||u0− vM ||L2([0,h]), with the sum of the interfacial and the

elastic energies. In fact, by plugging (4.10) into (4.9), and neglecting a positive

term, for any minimizer u we get

E1D(M
∗) ≥ E(u) ≥ E1D(M) + βc0

M∑

i=1

(
hi −

h

M

)2
(4.11)

+2(
√
2ε− 2πβ

√
h)||u0 − vM ||L2([0,h]) ,

where M∗ is the even integer minimizing E1D(M). In the regime (2.15) where√
2ε−2πβ

√
h ≥ 0, Eq.(4.11) implies that u0 ≡ vM , that is, as observed above, the

minimizer is the optimal one-dimensional periodic striped state. This concludes

the proof of Theorem 1 in the regime (2.15).

In the complementary regime

(2π2h)−1/2ε1/2 ≤ β ≪ L−1/3ε1/3 , (4.12)

a similar strategy implies an apriori bound on M , which will be useful in the

following. More precisely, by combining Eq.(4.9) with

1

x̄
||u0−vM ||2L2([0,h])−4πβ

√
h||u0−vM ||L2([0,h]) ≥ −4π2β2hx̄ ≥ −4π2β2hL , (4.13)

we find that for any minimizer u

E1D(M
∗) ≥ E(u) ≥ E1D(M) + βc0

M∑

i=1

(
hi −

h

M

)2 − 4π2β2hL . (4.14)
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Recalling that E1D(M) = βc0h
2/M+εLM and the fact that |M∗−

√
βc0h2/εL| ≤

2 (see (3.9)), from (4.14) we find that

|M −M∗|
M∗

≤ (const.) · (βε−1/3L1/3)3/4 ≪ 1 . (4.15)

5. PERIODICITY OF THE MINIMIZER: THE FULL SCALING

REGIME

We are now left with proving Theorem 1 in the scaling regime (4.12). In this

case the proof is much more elaborate: the rough idea is to apply the reasoning of

the previous section locally in y. We localize the functional in horizontal stripes

of width Hj , comparable with the optimal period 2h/M∗ ∼
√
εL/β. In each

strip, the combination
√
2ε−2πβ

√
h appearing in the right hand side of (4.11) is

replaced by
√
2ε− Cβ

√
Hj ≥

√
2ε− C ′β(εL/β)1/4, for suitable constants C,C ′;

now, the latter expression is > 0 as long as β ≪ L−1/3ε1/3, which will allow us to

conclude that in every strip the minimizing configuration is 1D.

In this section, we first discuss how to localize the functional in horizontal

strips, then we distinguish between “good” and “bad” localization intervals, and

finally describe the lower bound on the local energy for the different intervals.

For simplicity, from now on we set h = L = 1. Here and below C,C ′, . . . , and

c, c′, . . . , denote universal constants, which might change from line to line. We

assume that u(x, y) is a minimizer, that β ≥ cε1/2, and that ε and βε−1/3 are

sufficently small.

A. A localized bound

Our purpose in this subsection is to derive a local version of the error term

−4πβh1/2||u0 − vM ||L2([0,h]) in Eq.(4.9). Let u0(y) := u(0, y) and u1(y) := u(1, y).

Set F (u) =
∫ 1
0 dx

∫ 1
0 dy|ux|2+ε

∫ 1
0 (N(x)−M), denote by zi, i = 1, . . . ,M , the loca-

tions of the corners of u1 and by hi = zi+1− zi the distances between neighboring

corners. Note that the number of corners of u1 is equal to M = minx∈[0,1]N(x),

because u is a minimizer and, therefore, u(x, y) = u(x̄, y) for all x̄ ≤ x ≤ 1,

with x̄ defined as in (4.2); in fact, the choice u(x, y) = u(x̄, y) for all x̄ ≤ x ≤ 1

minimizes the two nonnegative contributions to the energy
∫ L
x̄ dx

∫ h
0 dy |ux|2 and

ε
∫ L
x̄ dx(N(x)−M), making them precisely zero, see Eq.(4.3).

Instead of vM , we now consider a general test function w(y), to be specified

below, periodic on [0, 1] and with a number of corners smaller or equal to M . We

denote by z̄i, i = 0, . . .M0 − 1, the locations of the corners of w (labelled in such

a way that 0 ≤ z̄0 < z̄1 < · · · < z̄M0−1 < 1), and by h̄i = z̄i+1 − z̄i the distances
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between subsequent corners. In the following, it will be useful to imagine that

w is associated to a sequence of exactly M corner points, even in the case that

M0 < M . These M corner points will be denoted by z̃i, i = 0, . . . ,M − 1 and

they will have the property that 0 ≤ z̃0 ≤ z̃1 < · · · < z̃M−1 ≤ 1. In the case

that M0 = M , the sequence of z̃i’s coincide with the sequence of z̄i’s; otherwise,

if M0 < M , the sequence of the z̃i’s will be formed by the original sequence of

z̄i’s plus a set of (M −M0)/2 pairs of coinciding points. We define h̃i = z̃i+1 − z̃i
and note that now, in general, some of the h̃i’s can be equal to 0.

Proceeding as in the previous section, for any minimizer u we get

E1D(M
∗) ≥ E(u) ≥

[
β||w||2H1/2 + εM

]
+ 2β(w, u0 − w)H1/2 + F (u) (5.1)

≥ E1D(M) + βc0
M∑

i=1

(h̃i −
1

M
)2 + 2β(w, u0 − w)H1/2 + F (u) .

The first observation is that with the help of the Hilbert transform we can write

(5.1) in a more local way. In fact,

(w, u0 − w)H1/2 = (Hw′, u0 − w)L2 , (5.2)

with H the Hilbert transform, acting on a periodic function f in the following

way:

(Hf)(y) = 2π
∑

k 6=0

−ik
|k| f̂(k)e

2πiky = 2π P.V.
∫ 1

0
dy′ cot π(y− y′) (f(y′)− f̄) , (5.3)

where P.V. denotes the Cauchy principal value and f̄ =
∫ 1
0 f(y)dy. Combining

(5.1) and (5.2) we get

E1D(M
∗) ≥ E(u) ≥ E1D(M) + βc0

M∑

i=1

(h̃i −
1

M
)2 + 2β(Hw′, u0 − w)L2 + F (u) .

(5.4)

We now want to bound 2β(Hw′, u0 − w)L2([0,h]) from below by a sum of terms

localized in small intervals Ik ⊂ [0, h], which will be the local version of the error

term−4πβh1/2||u0−vM ||L2([0,h]) in Eq.(4.9). First of all, note that, if {Ik}k=1,...,M/2

is a partition of the unit interval, 2β(Hw′, u0 − w)L2 can be decomposed as

2β(Hw′, u0 − w)L2([0,h]) = 2β
M/2∑

k=1

∫

Ik
dyHw′(y) (u0(y)− w(y)) . (5.5)

In the following we shall choose the partition {Ik} in a way depending on u1,

such that each strip [0, 1] × Ik will typically (i.e., for most k) contain two or

more interfaces of u (as proven by combining the definition of {Ik} with a priori

estimates on
∫ 1
0 dx

∫
Ik
dy u2x, see Lemma 1 below). Moreover, we shall choose w
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in a way depending on {Ik} and on u0, in such a way that every Ik contains at

most two corner points of w and
∫
Ik
dy(u0 − w) = 0. Once that {Ik} and w are

given, every term in the r.h.s. of (5.5) can be bounded as:

∣∣∣
∫

Ik
dyHw′ (u0 − w)

∣∣∣ =
∣∣∣
∫

Ik
dy(Hw′ −Hw′)(u0 − w)

∣∣∣

≤ ||Hw′ −Hw′||2L2(Ik)
||u0 − w||L2(Ik)

≤ H
1/2
k ||Hw′||2BMO(Ik)

||u0 − w||L2(Ik) , (5.6)

where Hk := |Ik|, Hw′ := |Ik|−1
∫
Ik
dyHw′ and the Bounded Mean Oscillation

(BMO) seminorm is defined as

||g||2BMO(I) = sup
(a,b)⊂I

1

|b− a|
∫ b

a
dy |g(y)− g(a,b)|2 , g(a,b) :=

1

|b− a|
∫ b

a
dy g(y) .

(5.7)

Now we exploit the fact that the singular kernel cotπ(y − y′) maps bounded

functions into BMO functions [31]. Thus, ||Hw′||BMO(Ik) ≤ C||w′||L∞(Ik) ≤ C,

uniformly in w′ as long as |w′| ≤ 1. Therefore, combining (5.5) with (5.6), we

find that there exists a universal constant c̄ such that

2β(Hw′, u0 − w)L2 ≥ −c̄β
M/2∑

k=1

H
1/2
k ||u0 − w||L2(Ik) , (5.8)

which is the desired local version of the error term −4πβh1/2||u0 − vM ||L2([0,h]) in

Eq.(4.9).

Plugging (5.8) back into (5.4) and using the fact that E1D(M
∗)−E1D(M) ≤ 0,

we find that for any periodic sawtooth function w with a number of corners ≤M ,

βc0
M∑

i=1

(h̃i −
1

M
)2 + F (u) ≤ c̄β

M/2∑

k=1

H
1/2
k ||u0 − w||L2(Ik) , (5.9)

which is the main conclusion of this subsection.

B. The choice of the comparison function w

In this subsection we first choose the partition {Ik} and the test function w

to be used in (5.9); next, we explain how to use the latter inequality in order to

prove Theorem 1.

Recall that zi, i = 1, . . . ,M are the corner points of u′1. We assume without loss

of generality that u′1 = +1 in (z2k, z2k+1), k = 1, . . . ,M/2, and we define ak =
z2k+z2k+1

2
and Ik = [ak, ak+1), k = 1, . . . ,M/2 (since we use periodic boundary

conditions, we shall use the convention that a0 = aM/2 and I0 = IM/2). Note

that, by construction: (i) u1 has exactly two jump points in every interval Ik;
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ak−1 ak ak+1 ak+2
z2k−1 z2k z2k+1 z2k+2 z2k+3 z2k+4

FIG. 1: The function u1 in the intervals Ik−1 = [ak−1, ak), Ik = [ak, ak+1) and Ik+1 =

[ak+1, ak+2).

(ii) the jump points are “well inside” the intervals Ik; (iii) u′1(ak) = +1; (iv)

Hk =
h2k

2
+ h2k+1 +

h2k+2

2
.

Regarding the choice of the test function, we choose w to be the sawtooth

function such that:

(i) w = u0 on ∂Ik ; (ii) w′ = +1 on ∂Ik ; (iii)
∫

Ik

(w − u0) = 0 , (5.10)

for all k = 1, . . . ,M/2. In every interval Ik, w is uniquely specified by the two

corner points z̃2k+1, z̃2k+2 chosen in such a way that: ak ≤ z̃2k+1 ≤ z̃2k+2 ≤ ak+1,

w′(y) = +1 for y ∈ (ak, z̃2k+1) ∪ (z̃2k+2, ak+1), w
′(y) = −1 for y ∈ (z̃2k+1, z̃2k+2)

and
∫
Ik
w =

∫
Ik
u0 (these two corner points are uniquely defined only if u′0 6≡ +1

on Ik; if u
′
0 ≡ +1 on Ik, then we set z̃2k+1 = z̃2k+2 =

ak+ak+1

2
).

ak ak+1
~z z~2k+1 2k+2

FIG. 2: The function u0 (full line) and the test function w (dashed line) in the interval

Ik = [ak, ak+1). The function w on Ik and, correspondingly, the locations of its corners

z̃2k+1 and z̃2k+2, are determined by the conditions that (i) w = u0 on ∂Ik, (ii) w
′ = +1

on ∂Ik, (iii)
∫
Ik
(w − u0) = 0.

Note that with the definitions above, w is a sawtooth function with M0 ≤ M

corner points, associated to which is a sequence z̃i, i = 1, . . . ,M , satisfying the
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properties described before (5.1) and
∫
Ik
(u0 −w) = 0; therefore, w satisfies (5.8).

Let

ILk :=
[z2k−1 + z2k

2
, ak

)
, IRk :=

[
ak+1,

z2k+3 + z2k+4

2

)
, I∗k := ILk ∪ Ik ∪ IRk .

(5.11)

Moreover, let I∗∗k := Ik−1 ∪ Ik ∪ Ik+1. With these definitions, we can rewrite the

left hand side of (5.8) as
∑M/2

k=1 F̃k, where

F̃k =
βc0
7

2k+4∑

j=2k−2

(h̃j −
1

M
)2 +

1

3

∫

I∗∗
k

dy
∫ 1

0
dx u2x +

ε

2

∫ 1

0
dx (N(x)|I∗

k
− 4) , (5.12)

and N(x)|I∗
k
is the number of corner points of u(x, ·) in I∗k . In the following we

shall denote by F̃
(0)
k the first term in the r.h.s. of (5.12), by F̃

(1)
k the second term

and by F̃
(2)
k the third term. Using these definitions, (5.9) can be rewritten as

M/2∑

k=1

(F̃k − c̄βH
1/2
k ||u0 − w||L2(Ik)) ≤ 0 . (5.13)

Our next goal is to derive a lower bound on the l.h.s. of (5.13) of the form

M/2∑

k=1

(F̃k − c̄βH
1/2
k ||u0−w||L2(Ik)) ≥

1

2

M/2∑

k=1

(F̃
(0)
k + F̃

(1)
k ) +

(
1− (βε−1/3)α

)M/2∑

k=1

F̃
(2)
k ,

(5.14)

for a suitable α > 0. Plugging (5.14) into (5.13) gives

βc0
2

M∑

i=1

(h̃i −
1

M
)2 +

1

2

∫ 1

0
dy

∫ 1

0
dx u2x + ε

(
1− (βε−1/3)α

) ∫ 1

0
dx (N(x)−M) ≤ 0 ,

(5.15)

which implies that ux ≡ 0 and N(x) ≡ M , and concludes the proof of Theorem

1.

The rest of the paper will be devoted to the proof of (5.14). In order to get

bounds from above on H
1/2
k ||u0 − w||L2(Ik), it will be convenient to distinguish

between “good” and “bad” intervals, and to proceed in different ways, depending

on the nature of the interval Ik.

C. Classification of the good and bad intervals

We shall say that

• Ik is “good” (of type 1) if maxk−1≤i≤k+1Hi ≤ 6/M , F̃
(1)
k ≤ η/M3, and

min2k−1≤j≤2k+3 hj ≥ κ/M , for suitable constants η, κ, to be conveniently

fixed below.
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Note that if u(x, y) is the periodic sawtooth function in (2.13), as we hope to

prove, then all the intervals Ik are good. Conversely, if Ik is good, then u(x, y)|y∈I∗
k

is in some sense close to the optimal 1D configuration. More precisely, if Ik is good,

then its length is of the same order as 2/M ; moreover, the corners of u1|I∗
k
are

well separated, on the same scale, and u1|I∗∗
k

is close to u0|I∗∗
k

in L2, on the natural

scale: in fact, by the Poincaré inequality, ||u0 − u1||2L2(I∗∗
k

) ≤ 3F̃
(1)
k ≤ 3η/M3.

The “bad” intervals will be further classified in three different types; we shall

say that:

• Ik is of type 2 if maxk−1≤i≤k+1Hi ≤ 6/M , F̃
(1)
k ≤ η/M3, and

min2k−1≤j≤2k+3 hj < κ/M ;

• Ik is of type 3 if maxk−1≤i≤k+1Hi ≤ 6/M and F̃
(1)
k > η/M3;

• Ik is of type 4 if maxk−1≤i≤k+1Hi > 6/M .

We denote by Iq, q = 1, . . . , 4, the set of intervals of type q; note that

∪qIq = ∪k{Ik}. In the following we describe how to obtain upper bounds on

c̄β
∑

k:Ik∈Iq H
1/2
k ||u0 − w||L2(Ik) of the form (5.14), separately for q = 1, 2, 3, 4.

Here and below we denote by c, c′, C, C ′, . . . , universal constants independent of

η, κ.

D. The lower bound: the good intervals

For intervals of type 1, the key estimates to be proven are the following.

Lemma 1 Let Ik be an interval of type 1. If ηκ−3 is small enough, then

N(x)
∣∣∣
Ik

≥ 2, N(x)
∣∣∣
IL
k

≥ 1 and N(x)
∣∣∣
IR
k

≥ 1, ∀x ∈ [0, 1].

Lemma 2 Let Ik be an interval of type 1. Let us define x̄k = infx∈[0,1]{x :

N(x)|I∗
k
≤ 4} and ū(y) ≡ u(x̄k, y). If κ and ηκ−3 are small enough, then there

exists a constant C independent of η, κ such that

||u0 − w||L2(Ik) ≤ Cκ−5/2||u0 − ū||L2(I∗∗
k

) . (5.16)

We first show that Lemma 1 and 2 imply the desired bound,

c̄βH
1/2
k ||u0 − w||L2(Ik) ≤ cκ−5/2(βε−1/3)3/4 F̃k . (5.17)

Note that (5.17) implies (5.14) for all α < 3/4 (because F̃
(2)
k ≥ 0 for intervals of

type 1). The strategy to prove (5.17) from Lemma 1 and 2 is the same followed

in Section 4 to prove (4.10): we use an interpolation between the interfacial

energy and the elastic energy to get a lower bound for F̃k, which is linear in

||u0 − w||L2(Ik). In fact, if x̄k = 0, then by definition ū = u0 and, by Lemma 2,
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u0 ≡ w on Ik, in which case (5.17) is obvious. If x̄k > 0, then, by Lemma 1,

F̃k ≥ 1
3

∫ x̄k
0 dx

∫
I∗∗
k
u2x +

ε
2

∫ x̄k
0 (N(x)|I∗

k
− 4). Using the Poincaré inequality and the

fact that, by definition of x̄k, N(x)|I∗
k
− 4 ≥ 1 if 0 ≤ x < x̄k, we find:

F̃k ≥
1

3x̄k
||u0 − ū||2L2(I∗∗

k
) +

ε

2
x̄k ≥

(2ε
3

)1/2||u0 − ū||L2(I∗∗
k

) ≥

≥ cε1/2κ5/2||u0 − w||L2(Ik) , (5.18)

where in the last inequality we used Lemma 2. Using (5.18) and the fact that for

type 1 intervals Hk ≤ 6/M ≤ cε1/2β−1/2 (see (3.9) and (4.15)), we find (5.17).

Let us now prove Lemma 1 and 2.

Proof of Lemma 1. Let us start by showing that N(x)|Ik ≥ 2. Let us assume

by contradiction that there exists x∗ such that N(x∗)|Ik < 2. Let v(y) ≡ u(x∗, y)

and let us consider the intervals Jk,1 = (z2k+1 − κ
4M
, z2k+1 +

κ
4M

) and Jk,2 =

(z2k+2− κ
4M
, z2k+2+

κ
4M

). Note that by the definition of type 1 intervals, Jk,1 and

Jk,2 are disjoint and both contained in Ik. Since v(y) has less than two corner

points in Ik, then v(y) has no corner points in at least one of the two intervals

Jk,1 and Jk,2, say in Jk,1. Now, 3F̃
(1)
k ≥ ∫ 1

x∗ dx
∫
Ik
dy u2x ≥ ||u1 − v||2L2(Jk,1)

. Using

that v has no corners in Jk,1, one finds that 3F̃
(1)
k ≥ ||u1 − v||2L2(Jk,1)

≥ cκ3/M3,

a contradiction if ηκ−3 is sufficiently small. The proof that N(x)|IL,R
k

≥ 1 is

completely analogous. This proves Lemma 1. Moreover, it proves that u(x, ·) has
at least one corner in each of the intervals Jk−1,2, Jk,1, Jk,2, Jk+1,1, ∀x ∈ [0, 1].

Proof of Lemma 2. By the definition of x̄k and by the result of Lemma 1,

ū(y) = u(x̄k, y) has exactly 1 corner point in ILk (located in Jk−1,2), exactly 1

corner point in IRk (located in Jk+1,1) and exactly 2 corner points in Ik (one

located in Jk,1 and one in Jk,2). We shall denote by z∗j , j = 0, 1, 2, 3, these corner

points (with z∗0 < z∗1 < z∗2 < z∗3). Moreover, ū′(y) = +1 if y ∈ (z∗0 , z
∗
1) ∪ (z∗2 , z

∗
3)

and ū′(y) = −1 if y ∈ (z∗1 , z
∗
2). By the definition of Jk,1 and Jk,2, we have that

z∗2 − z∗1 ≥ κ/(2M) and min{ak − z∗0 , z
∗
1 − ak, ak+1 − z∗2 , z

∗
3 − ak+1} ≥ κ/(4M).

Let δ :=M3/2||u0− ū||L2(I∗∗
k

). If δ > δ0, with δ0 = c̄0κ
5/2, then (5.16) is proved;

in fact, in this case, since u0 = w on ∂Ik and |(u0 − w)′| ≤ 2, ||u0 − w||L2(Ik) ≤
c′H

3/2
k ≤ c′′M−3/2 ≤ (c′′/δ0)||u0− ū||L2(I∗∗

k
) = c′′′κ−5/2||u0− ū||L2(I∗∗

k
), which is the

desired estimate.

Let then δ ≤ δ0 and let us note that ||w − ū||L∞(∂Ik) = ||u0 − ū||L∞(∂Ik) ≤
4κ−1/2δM−1. Indeed, if, by contradiction, u0(ak) − ū(ak) > 4κ−1/2δM−1, then

u0(x)− ū(x) = u0(ak)− ū(ak)+
∫ x
ak
(u′0−1)(y)dy ≥ u0(ak)− ū(ak) > 4κ−1/2δM−1,

for all x ∈ (z∗0 , ak) (here we used that ū′ = 1 in (z∗0 , z
∗
1) and |u′0| ≤ 1); similarly, if

ū(ak)−u0(ak) > 4κ−1/2δM−1, then ū(x)−u0(x) ≥ ū(ak)−u0(ak) > 4κ−1/2δM−1,

for all x ∈ (ak, z
∗
1); in both cases, using the fact that min{ak − z∗0 , z

∗
1 − ak} ≥
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κ/(4M), we would find δM−3/2 ≡ ||u0 − ū||L2(I∗∗
k

) > 2δM−3/2, a contradic-

tion. Now, let g = w − ū and let g∗ = g(y∗), with y∗ ∈ Ik, such that

|g(y∗)| = ||g||L∞(Ik). We want to prove that if κ is sufficiently small, then

|g∗| ≤ κ−5/2δM−1; if this is the case, then ||u0−w||L2(Ik) ≤ δM−3/2 + ||g||L2(Ik) ≤
δM−3/2+

√
6M−1/2κ−5/2δM−1 = (1+

√
6κ−5/2)||u0−ū||L2(I∗∗

k
), which is the desired

bound.

Let us then assume by contradiction that |g∗| > κ−5/2δM−1. Note that by

construction g has the following properties:

1. ||g||L∞(∂Ik) ≤ 4κ−1/2δM−1;

2. there exist y1, y2, y3, y4 such that: (i) ak ≤ y1 ≤ y2 ≤ y3 ≤ y4 ≤ ak+1; (ii)

g′(y) = 0 for y ∈ (ak, y1) ∪ (y2, y3) ∪ (y4, ak+1), g
′(y) = m for y ∈ (y1, y2)

and g′(y) = −m for y ∈ (y3, y4), with |m| = 2;

3. if we define ∆1 = y2−y1, ∆2 = y3−y2 and ∆3 = y4−y3, then ∆1+∆2+∆3 ≥
z∗2 − z∗1 ≥ κ/(2M).

y1 y2 y3

y4

g*

z

yak+1ka

FIG. 3: The function z = g(y) in the interval Ik = [ak, ak+1). The two horizontal dashed

lines are z = ±4κ−1/2δM−1. Since ||g||L∞(∂Ik) ≤ 4κ−1/2δM−1, the two horizontal

portions of the graph of g in the intervals (ak, y1) and (y4, ak+1) stay inside the strip

−4κ−1/2δM−1 ≤ z ≤ 4κ−1/2δM−1.

Let us assume without loss of generality that m = +2, so that g∗ = maxIk g >

κ−5/2δM−1 and (g∗ − 4κ−1/2δM−1)/2 ≤ ∆i ≤ (g∗ + 4κ−1/2δM−1)/2, both for

i = 1 and i = 3. Now, if ∆2 ≤ κ/(4M), then ∆1 +∆3 ≥ κ/(4M) and ∆2
1 +∆2

3 ≥
κ2/(32M2). On the other hand, using that

∫
Ik
(u0 − ū) =

∫
Ik
g, we find:

δM−3/2 = ||u0 − ū||L2(I∗∗
k

) ≥ H
−1/2
k

∣∣∣
∫

Ik

(u0 − ū)
∣∣∣ = H

−1/2
k

∣∣∣
∫

Ik

g
∣∣∣ ≥ M1/2

√
6

∣∣∣
∫

Ik

g
∣∣∣ .

(5.19)
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Now, denoting by ỹ1 and ỹ4 the two points ỹ1 = y2 − g∗−4κ−1/2δM−1

2
and ỹ4 =

y3 +
g∗−4κ−1/2δM−1

2
such that g(ỹ1) = g(ỹ4) = +4κ−1/2δM−1 (see Fig.3), we can

bound | ∫Ik g| from below as | ∫Ik g| ≥
∫ y2
ỹ1 [g

∗−2(y2−y)]dy+
∫ ỹ4
y3
[g∗−2(y−y3)]dy−

4κ−1/2δM−1[(ỹ1 − ak) + (ak+1 − ỹ4)], which implies

δM−3/2 ≥ M1/2

√
6

[(g∗)2 − 16κ−1δ2M−2

2
− C ′κ−1/2δM−2

]
≥

≥ M1/2

√
6

[g∗ − 4κ−1/2δM−1

g∗ + 4κ−1/2δM−1
(∆2

1 +∆2
3)− C ′κ−1/2δM−2

]
>

> c′M1/2
[ κ2

M2
− C ′′κ−1/2δM−2

]
, (5.20)

where in the last inequality we used g∗ > κ−5/2δM−1 and the fact that κ is

sufficiently small. Eq.(5.20) implies

c̄0κ
5/2 = δ0 ≥ δ > c′′κ5/2 ,

a contradiction if c̄0 is chosen small enough. Finally, if ∆2 > κ/(4M), then

δM−3/2 ≥ M1/2

√
6

∣∣∣
∫

Ik
g
∣∣∣ ≥ M1/2

√
6

[
∆2g

∗ − C ′κ−1/2δM−2
]

> c′κ−3/2δM−3/2 − C ′′κ−1/2δM−3/2 , (5.21)

which leads to a contradiction if κ is sufficiently small. This concludes the proof

of Lemma 2.

E. The lower bound: the bad intervals

For intervals of type 2, 3 and 4, the key estimate that we shall use is the

following.

Lemma 3 Let Ik be an interval of any type. There exists a constant C inde-

pendent of η, κ such that

||u0 − w||L2(Ik) ≤ CHk||u0 − u1||1/3L2(Ik)
. (5.22)

Proof of Lemma 3. First of all, note that (5.22) is invariant under the rescaling

Ik → Ĩ
(ℓ)
k = [ℓak, ℓak+1) combined with u(y) → ũ(ℓ)(y) = ℓu(y/ℓ); therefore, we

can freely assume that Hk = 1 and we denote by I = [0, 1) the corresponding

rescaled (unit) interval. Let y∗ be such that |(u1 − u0)(y
∗)| = ||u1 − u0||L∞(I);

using that |(u1−u0)′| ≤ 2, we find that ||u1−u0||L∞(I) ≤ |(u1−u0)(y)|+2|y−y∗|,
∀y ∈ I. Without loss of generality, we can assume that y∗ is in the left half of I,

in which case, for any 0 ≤ δ ≤ 1/2,

||u1 − u0||L∞(I) ≤
∫ y∗+δ

y∗

dy

δ
|(u1 − u0)(y)|+ δ ≤ δ−1/2||u1 − u0||L2(I) + δ . (5.23)



18

Now, if ||u1−u0||L2(I) ≥ 2−3/2, then (5.22) is trivial: in fact ||u0−w||L2(I) ≤ 1/
√
3,

simply because |(u0 − w)(y)| ≤ 2min{y, 1− y}, and, therefore, ||u0 − w||L2(I) ≤√
2/3 ||u1 − u0||1/3L2(I), which is the desired estimate.

Let us then suppose that ||u1 − u0||L2(I) < 2−3/2. In this case, choosing δ =

||u1 − u0||2/3L2(I) in (5.23), we find that τ := ||u1 − u0||L∞(I) ≤ 2||u1 − u0||2/3L2(I) < 1.

Let us now define, in analogy with the proof of (5.20)-(5.21), g = w − u1, and

let g∗ = g(y∗), with y∗ ∈ [0, 1] such that |g(y∗)| = ||g||L∞(I). Note that by

construction g has the following properties: there exist y1, y2, y3, y4 such that

0 ≤ y1 ≤ y2 ≤ y3 ≤ y4 ≤ 1 and g′(y) = 0 for y ∈ (0, y1) ∪ (y2, y3) ∪ (y4, 1),

g′(y) = m for y ∈ (y1, y2) and g
′(y) = −m for y ∈ (y3, y4), with |m| = 2. We also

define ∆1 = y2 − y1, ∆2 = y3 − y2 and ∆3 = y4 − y3. Let us distinguish two more

subcases.

1. |g∗| < 9τ . In this case, ||u0−w||L2(I) ≤ ||u0−w||L∞(I) ≤ 10||u1−u0||L∞(I) ≤
20||u1 − u0||2/3L2(I) ≤ 21/2 · 10||u1 − u0||1/3L2(I), which is the desired bound.

2. |g∗| ≥ 9τ . In this case, proceeding as in the proof of (5.20)-(5.21), we find:

τ ≥ |
∫

I
(u1 − u0)| = |

∫

I
(u1 − w)| ≥ 1

2
(∆2

1 +∆2
3) + |g∗|∆2 − τ

≥ 1

4
(∆1 +∆3)

2 + |g∗|∆2 − τ . (5.24)

If ∆1 +∆3 ≥ 3
√
τ or ∆2 ≥ 1/4, then (5.24) implies that 2τ ≥ 9τ/4, which

is a contradiction. Therefore, ∆1 + ∆3 < 3
√
τ and ∆2 < 1/4; using that

(8/9)|g∗| ≤ |g∗|−τ ≤ ∆1+∆3, we get |g∗| ≤ (27/8)
√
τ . In conclusion, ||u0−

w||L2(I) ≤ ||u0 − w||L∞(I) ≤ τ + (27/8)
√
τ < (35/8)

√
τ ≤ (35

√
2/8)||u1 −

u0||1/3L2(I), which is the desired estimate.

Let us now show how to use Lemma 3 in order to get a bound from above on
∑

k:Ik∈Iq (F̃k − c̄βH
1/2
k ||u0 − w||L2(Ik)), separately for q = 2, 3, 4.

1. Intervals of type 2

In this case, the key remark is that, if κ and ηκ−3 are small enough, then

necessarily

min
2k−1≤j≤2k+3

h̃j ≤
1

2M
. (5.25)

Let us prove this fact. If min{Hk−1, Hk, Hk+1} < 1/(2M) the claim is obvious, so

let us assume that min{Hk−1, Hk, Hk+1} ≥ 1/(2M). Let us first consider the case

that h2k∗+1 := min{h2k−1, h2k+1, h2k+3} < κ/M . In this case, using that h2k∗+1 =

Hk∗/2− [u1(ak∗+1)− u1(ak∗)]/2 and h̃2k∗+1 = Hk∗/2− [u0(ak∗+1)− u0(ak∗)]/2, we

find that |h2k∗+1 − h̃2k∗+1| ≤ 2||u1 − u0||L∞(Ik∗). On the other hand, if y∗ is such
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that |(u1 − u0)(y
∗)| = ||u1 − u0||L∞(Ik∗), using that |(u1 − u0)

′| ≤ 2, we have that

||u1−u0||L∞(Ik∗) ≤ |(u1−u0)(y)|+2|y− y∗|, ∀y ∈ Ik∗ . Proceeding as in the proof

of (5.23), we find that for any δ ≤ Hk∗/2,

||u1 − u0||L∞(Ik∗) ≤ δ−1/2||u1 − u0||L2(Ik∗) + δ . (5.26)

Choosing δ = ||u1 − u0||2/3L2(Ik∗)
, which, by Poincaré inequality, is smaller than

[3F̃
(1)
k∗ ]1/3 ≤ (3η)1/3M−1 (which is in turn smaller than Hk∗/2 for η small enough),

we find:

|h2k∗+1 − h̃2k∗+1| ≤ 2||u1 − u0||L∞(Ik∗) ≤ 4||u1 − u0||2/3L2(Ik∗ )
≤ 4(3η)1/3M−1 ⇒

⇒ h̃2k∗+1 ≤
κ+ 4(3η)1/3

M
≤ 1

2M
, (5.27)

where in the last inequality we assumed that κ and η are small enough.

By definition of type 2 intervals, we are left with the case that

min{h2k, h2k+2} < κ/M . Without loss of generality, we can assume that

h2k < κ/M and min{h2k−1, h2k+1, h2k+3} ≥ κ/M ; by contradiction, we as-

sume that h̃2k ≥ 1/(2M), so that max{z̃2k+1 − ak, ak − z̃2k} ≥ 1/(4M), say

z̃2k+1 − ak ≥ 1/(4M).

By (5.26), τ := ||u1− u0||L∞(I∗∗
k

) ≤ δ−1/2||u1− u0||L2(I∗∗
k

) + δ, so that, choosing

δ = ||u1 − u0||2/3L2(I∗∗
k

), we get ||u1 − u0||L∞(I∗∗
k

) ≤ 2δ ≤ 2(3η)1/3M−1, by Poincarè

(see the lines following (5.26)). Proceeding in a way analogous to the proof of

(5.20)-(5.21), we define g = w − u1, so that:

2(3η)1/3

M
≥ τ ≥ H−1

k

∣∣∣
∫

Ik

(u0 − u1)
∣∣∣ ≥ M

6
|
∫

Ik

g| . (5.28)

Recall the assumptions on hi and h̃2k: h2k < κ/M , min{h2k−1, h2k+1, h2k+3} ≥
κ/M , and z̃2k+1 − ak ≥ 1/(4M). Therefore, g has the following properties: there

exist y1, y2, y3, y4 such that ak ≤ y1 ≤ y2 ≤ y3 ≤ y4 ≤ ak+1 and g′(y) = 0 for

y ∈ (0, y1) ∪ (y2, y3) ∪ (y4, 1), g
′(y) = m for y ∈ (y1, y2) and g′(y) = −m for

y ∈ (y3, y4), with |m| = 2; moreover, if ∆1 := y2 − y1 and ∆2 = y3 − y2, then

∆1 ≥ κ/M and ∆1+∆2 ≥ (1−2κ)/(4M). If κ and ηκ−3 are sufficiently small, by

proceeding as in the proof of (5.20) and (5.21), we can bound (5.28) from below

by
2(3η)1/3

M
≥ τ ≥ cM(∆2

1 +∆1∆2 − c′τ) ≥ c′′κ

M
, (5.29)

which is a contradiction. If h2k < κ/M , min{h2k−1, h2k+1, h2k+3} ≥ κ/M , and

ak − z̃2k ≥ 1/(4M), one can proceed in a completely analogous way, by replacing

Ik by Ik−1 in (5.28). This concludes the proof of (5.25).
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Once that (5.25) is proved, we find that

βc0
7

2k+4∑

j=2k−2

(h̃j −
1

M
)2 ≥ cβ

M2
(5.30)

and, as a consequence, defining F̃
(01)
k := F̃

(0)
k + F̃

(1)
k ,

F̃2 :=
∑

k:Ik∈I2

F̃
(01)
k ≥ cβ

M2
N2 ⇒ N2 ≤ c−1β−1M2F̃2 , (5.31)

where N2 = |I2| is the number of intervals of type 2. Now, by Lemma 3 and the

fact that ||u0 − u1||2L2(Ik)
≤ ∫ 1

0 dx
∫
Ik
dy u2x ≤ 3F̃

(01)
k , we have that

c̄β
∑

k:Ik∈I2

H
1/2
k ||u0 − w||L2(Ik) ≤ c′β

∑

k:Ik∈I2

H
3/2
k ||u0 − u1||1/3L2(Ik)

≤

≤ c′′β
∑

k:Ik∈I2

M−3/2[F̃
(01)
k ]1/6 . (5.32)

Using Minkowski’s inequality, we find:

∑

k:Ik∈I2

[F̃
(01)
k ]1/6 ≤

[ ∑

k:Ik∈I2

F̃
(01)
k

]1/6[ ∑

k:Ik∈I2

1
]5/6 ≤ c′F̃

1/6
2

[
M2β−1F̃2

]5/6
. (5.33)

Combining (5.32) and (5.33), we find that

c̄β
∑

k:Ik∈I2

H
1/2
k ||u0 − w||L2(Ik) ≤ c′′β1/6M1/6F̃2 ≤ c′′′(βε−1/3)1/4F̃2 , (5.34)

where in the last inequality we used that M ≤ c(β/ε)1/2, see Eq.(3.9). By using

(5.34), defining σ := βε−1/3 and for any α > 0, we get

∑

k:Ik∈I2

(F̃k − c̄βH
1/2
k ||u0 − w||L2(Ik)) ≥ 1

2

∑

k:Ik∈I2

F̃
(01)
k + (1− σα)

∑

k:Ik∈I2

F̃
(2)
k +

+
∑

k:Ik∈I2

[
(
1

2
− c′′′σ1/4)F̃

(01)
k + σαF̃

(2)
k

]
.

Now, for σ small, each term in square brackets is positive, simply because F̃
(01)
k ≥

cε and F̃
(2)
k ≥ −4ε, so that (5.14) with the sums restricted to intervals of type 2

follows.

2. Intervals of type 3

In this case we just use the fact that ||u0 − w||2L2(Ik)
≤ ∫

Ik
dy(2y)2 = (4/3)H3

k ,

simply because u0 = w on the boundary of Ik and |(u0 − w)′| ≤ 2. Therefore, if

σ = βε−1/3

c̄βH
1/2
k ||u0 − w||L2(Ik) ≤ cβH2

k ≤ c′βM−2 ≤ c′′σ3/2F̃
(01)
k , (5.35)
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where in the last inequality we used that c(β/ε)1/2 ≤M ≤ c′(β/ε)1/2, by Eq.(3.9)-

(4.15), and M−3 ≤ η−1F̃
(01)
k , by the definition of type 3 interval. Using (5.35),

we get

∑

k:Ik∈I3

(F̃k − c̄βH
1/2
k ||u0 − w||L2(Ik)) ≥ 1

2

∑

k:Ik∈I3

F̃
(01)
k + (1− σα)

∑

k:Ik∈I3

F̃
(2)
k +

+
∑

k:Ik∈I3

[
(
1

2
− c′′σ3/2)F̃

(01)
k + σαF̃

(2)
k

]
.

Now, for σ small, each term in square brackets is positive, simply because F̃
(01)
k ≥

cηεσ−3/2 and F̃
(2)
k ≥ −4ε, so that (5.14) with the sums restricted to intervals of

type 3 follows.

3. Intervals of type 4

In this case, ifHk∗ := max{Hk−1, Hk, Hk+1}, we have that max2k−2≤j≤2k+4 h̃j ≥
Hk∗/3 > 2/M . Therefore,

βc0
7

2k+4∑

j=2k−2

(h̃j −
1

M
)2 ≥ cβH2

k∗ ≥
c′β

M2
(5.36)

and, as a consequence,

F̃4 :=
∑

k:Ik∈I4

F̃
(01)
k ≥ cβ

∑

k:Ik∈I4

H2
k∗ ≥

c′β

M2
N4 ⇒ N4 ≤ Cβ−1F̃4M

2 , (5.37)

with N4 = |I4| the number of intervals of type 4. On the other hand, by Lemma

3, we have that

c̄β
∑

k:Ik∈I4

H
1/2
k ||u0 − w||L2(Ik) ≤ cβ

∑

k:Ik∈I4

H
3/2
k ||u0 − u1||1/3L2(Ik)

. (5.38)

By Poincaré inequality, ||u0 − u1||2L2(Ik)
≤ ∫ 1

0 dx
∫
Ik
dy u2x ≤ 3F̃

(01)
k , so that

c̄β
∑

k:Ik∈I4

H
1/2
k ||u0 − w||L2(Ik) ≤ cβ

∑

k:Ik∈I4

H
3/2
k [F̃

(01)
k ]1/6 ≤ (5.39)

≤ cβ
[ ∑

k:Ik∈I4

H
9/5
k

]5/6[ ∑

k:Ik∈I4

F̃
(01)
k

]1/6
,

where the last inequality is Minkowski’s. Another application of Minkowski’s

inequality shows that

[ ∑

k:Ik∈I4

H
9/5
k

]5/6 ≤
[ ∑

k:Ik∈I4

H2
k

]3/4[ ∑

k:Ik∈I4

1
]1/12 ≤

≤ c
[ F̃4

β

]3/4N 1/12
4 ≤ c′

[ F̃4

β

]3/4[ F̃4M
2

β

]1/12
, (5.40)
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where in the last two inequalities we used (5.37). Substituting in (5.39) we find

c̄β
∑

k:Ik∈I4

H
1/2
k ||u0 − w||L2(Ik) ≤ c(βM)1/6F̃4 ≤ c′σ1/4F̃4 , (5.41)

with σ = βε−1/3. Eq.(5.41) implies

∑

k:Ik∈I4

(F̃k − c̄βH
1/2
k ||u0 − w||L2(Ik)) ≥ 1

2

∑

k:Ik∈I4

F̃
(01)
k + (1− σα)

∑

k:Ik∈I4

F̃
(2)
k +

+
∑

k:Ik∈I4

[
(
1

2
− c′σ1/4)F̃

(01)
k + σαF̃

(2)
k

]
.

Now, for σ small, each term in square brackets is positive, simply because

F̃
(01)
k ≥ cε and F̃

(2)
k ≥ −4ε, so that (5.14) with the sums restricted to intervals

of type 4 follows.

Combining the estimates for all different types of intervals, which are all valid

for κ and ηκ−3 sufficiently small, we finally get (5.14), which implies Theorem 1,

as discussed after (5.14).
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Appendix A

In this appendix we prove (3.4). Without loss of generality, we can assume

that u0(y) has a corner point in y = 0. Now, for any fixed α ∈ (0,+∞) we

rewrite:
∫ h

0
dy

∫ +∞

−∞
dy′ |u0(y)− ũ0(y

′)|2e−α|y−y′| =
4

α

∫ h

0
dy|u0(y)|2 −

−2 lim
N→∞

1

N

∫ Nh

0
dy

∫ Nh

0
dy′ũ0(y)ũ0(y

′)e−α|y−y′| . (A.1)

The latter integral is in a form suitable for applying the “Chessboard estimate

with Dirichlet boundary conditions” proved in [19], see (3.12) of [19]. However,
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in this case we want to use “ferromagnetic” reflections, rather than the “antifer-

romagnetic” reflections used in [19]: in other words, we want to keep reflecting u0

around the locations of its corner points yi, i = 0, 1, . . . ,M0−1, without changing

sign to the reflected function. The result, analogue to (3.12) in [19], is:

1

N

∫ Nh

0
dy

∫ Nh

0
dy′ũ0(y)ũ0(y

′)e−α|y−y′| ≤

≤
M0−1∑

i=0

∫ yi+1

yi
dy

∫ +∞

−∞
dy′u

(i)
0 (y)ũ

(i)
0 (y′)e−α|y−y′| , (A.2)

with u
(i)
0 the restriction of u0 to the interval [yi, yi+1], and ũ

(i)
0 its periodic

extension to the whole real line. Eq.(A.2), combined with (A.1), gives (3.4).

For completeness, we provide here a proof of (A.2) along the lines of [19] (and

using a notation as close as possible to the one of [19]). We need to introduce

some definitions.

Definition 1. Given a finite interval [a, b] on the real line, let Eα
a,b :

L2([a, b]) → R be the functional defined as

Eα
a,b(w) := −

∫ b

a
dy

∫ b

a
dy′w(y)w(y′)e−α|y−y′| . (A.3)

Definition 2. Let m,n ∈ Z
+ ∪ {+∞} be such that m + n ≥ 1. Let F =

{f−m+1, . . . , f0, f1, . . . , fn} be a sequence of functions fi ∈ L2([0, Ti]) and Ti > 0,

with −m < i ≤ n. Let z−m = −∑0
j=−m+1 Tj and zi = z−m +

∑i
j=−m+1 Tj, for

all −m < i ≤ n (if m = 0 it is understood that z0 = 0). Then we define

ϕ[F ] ∈ L2
loc([z−m, zn]) to be the function obtained by juxtaposing the functions fi

on the real line, in such a way that, if zi−1 ≤ y ≤ zi, then ϕ[F ](y) = fi(y− zi−1),

for all i = −m+ 1, . . . , n.

Definition 3. (i) Given T > 0 and f ∈ L2([0, T ]), we define θf ∈ L2([0, T ])

to be the reflection of f , namely θf(y) = f(T − y), for all y ∈ [0, T ].

(ii) If f ∈ L2([0, T ]), we define ϕ[f ] = ϕ[F∞(f)] ∈ L2
loc(R), where

F∞(f) = {. . . , f0, f1, . . .} is the infinite sequence with fn = θn−1f .

(iii) Given a sequence F = {f−m+1, . . . , fn} as in Def.2, we define

F− = {f−m+1, . . . , f0} and F+ = {f1, . . . , fn} (if m = 0 or n = 0, it is

understood that F− or, respectively, F+ is empty) and we write F = (F−,F+).

(iv) The reflections of F− and F+ are defined to be: θF− = {θf0, . . . , θf−m+1}
and θF+ = {θfn, . . . , θf1}.

Given the definitions above, the analogue of the “Chessboard estimate with

Dirichlet boundary conditions” of [19] adapted to the present context is the fol-

lowing.
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Lemma A.1 [Chessboard estimate with Dirichlet boundary condi-

tions] Given a finite sequence of functions F = {f1, . . . , fn}, n ≥ 1, as in Defi-

nition 2, with fi ∈ L2([0, T1]), we have:

Eα
0,zn(ϕ[F ]) ≥

n∑

i=1

Tie∞(fi) , (A.4)

with

e∞(fi) := lim
n→∞

Eα
0,nTi

(ϕ[fi])

nTi
. (A.5)

(Note that the limit in the r.h.s. of (A.5) exists, because ϕ[fi] is periodic and the

potential e−α|y| appearing in the definition of Eα
0,nTi

is summable).

Lemma A.1 is the desired estimate. It immediately implies (A.2). In fact,

let: (i) n = NM0; (ii) 0 = y0 < y1 < · · · < yn = Nh be the locations of the

corner points of ũ0 in [0, Nh]; (iii) Ti = yi − yi−1; (iv) fi(y) = u
(i)
0 (y − yi−1),

i = 1, . . . , n. With these definitions, ϕ[{f1, . . . , fn}] = ũ0 on [0, Nh] and

e∞(fi) = T−1
i

∫ yi+1

yi
dy

∫+∞
−∞ dy′u

(i)
0 (y)ũ

(i)
0 (y′)e−α|y−y′|; in particular, (A.4) reduces

to (A.2).

We are then left with proving Lemma A.1. A basic ingredient in the proof of

Lemma A.1 is the following “reflection positivity estimate” (which is the analogue

of Lemma 1 of [19]).

Lemma A.2 Given a finite sequence of functions F =

{f−m+1, . . . , f0, f1, . . . , fn} = (F−,F+), as in Def.2 and 3, we have:

Eα
z−m,zn(ϕ[F ]) ≥ 1

2
Eα
−zn,zn(ϕ[F1]) +

1

2
Eα
z−m,−z−m

(ϕ[F2]) , (A.6)

where F1 = (θF+,F+) = {θfn, . . . , θf1, f1, . . . , fn} and F2 = (F−, θF−) =

{f−m+1, . . . , f0, θf0, . . . , θf−m+1}.

Proof of Lemma A.2. We rewrite

Eα
z−m,zn(ϕ[F ]) = −

∫ 0

z−m

dy
∫ 0

z−m

dy′ϕ[F ](y)ϕ[F ](y′)e−α|y−y′|

−
∫ zn

0
dy

∫ zn

0
dy′ϕ[F ](y)ϕ[F ](y′)e−α|y−y′|

−2
∫ 0

z−m

dy
∫ zn

0
dy′ϕ[F ](y)ϕ[F ](y′)e−α(y′−y) . (A.7)

Now, notice that last term on the r.h.s. of (A.7) can be rewritten and estimated

as:
∫ 0

z−m

dy
∫ zn

0
dy′ϕ[F ](y)ϕ[F ](y′)e−α(y′−y)
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=
∫ −z−m

0
dyϕ[(F−, θF−)](y)e

−αy
∫ zn

0
dy′ϕ[(θF+,F+)](y

′)e−αy′ (A.8)

≤ 1

2

[ ∫ −z−m

0
dyϕ[(F−, θF−)](y)e

−αy
]2

+
1

2

[ ∫ zn

0
dy′ϕ[(θF+,F+)](y

′)e−αy′
]2
,

which is equivalent to

∫ 0

z−m

dy
∫ zn

0
dy′ϕ[F ](y)ϕ[F ](y′)e−α(y′−y) ≤

≤ 1

2

∫ 0

z−m

dy
∫ −z−m

0
dy′ϕ[F1](y)ϕ[F1](y

′)e−α(y′−y) (A.9)

+
1

2

∫ 0

−zn
dy

∫ zn

0
dy′ϕ[F2](y)ϕ[F2](y

′)e−α(y′−y) ,

with F1 = (F−, θF−) and F2 = (θF+,F+). Now, (A.6) follows by plugging (A.9)

into (A.7) and by using that

−
∫ 0

z−m

dy
∫ 0

z−m

dy′ϕ[F ](y)ϕ[F ](y′)e−α|y−y′| (A.10)

−1

2

∫ 0

z−m

dy
∫ −z−m

0
dy′ϕ[F1](y)ϕ[F1](y

′)e−α(y′−y) =
1

2
Eα
z−m,−z−m

(ϕ[F1]) ,

and

−
∫ zn

0
dy

∫ zn

0
dy′ϕ[F ](y)ϕ[F ](y′)e−α|y−y′| (A.11)

−1

2

∫ 0

−zn
dy

∫ zn

0
dy′ϕ[F2](y)ϕ[F2](y

′)e−α(y′−y) =
1

2
Eα
−zn,zn(ϕ[F2]) .

At this point, in order to prove Lemma A.2, one needs to inductively iterate

the key estimate (A.6), as explained in the following.

Proof of Lemma A.1. We proceed by induction.

(i) If n = 1, we first rewrite

Eα
0,2z1

(ϕ[{f1, θf1}]) = 2Eα
0,z1

(f1)− 2
∫ z1

0
dy

∫ 2z1

z1
dy′f1(y) θf1(y

′ − z1)e
−α(y′−y) ,

(A.12)

and we notice that, by definition of θf1, the second term in the r.h.s. of (A.12)

can be rewritten and estimated as
∫ z1

0
dy

∫ 2z1

z1
dy′f1(y)f1(2z1 − y′)e−α(y′−y) =

[ ∫ z1

0
dyf1(y)e

−α(z1−y)
]2 ≥ 0 (A.13)

By combining (A.12) and (A.13) we get

Eα
0,z1(f1) ≥

1

2
Eα
0,2z1(ϕ[{f1, θf1}]) . (A.14)
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Iterating the same argument, we find:

Eα
0,z1

(f1) ≥
Eα
0,2mz1

(ϕ[f⊗2m

1 ])

2m
, (A.15)

where, by definition,

f⊗2m

1 = {
2m times︷ ︸︸ ︷

f1, θf1, . . . , f1, θf1 } . (A.16)

Taking the limit m→ ∞ in (A.15) we get the desired estimate:

Eα
0,z1(f1) ≥ T1e∞(f1) . (A.17)

(ii) Let us now assume by induction that the bound is valid for all 1 ≤ n ≤ k−1,

k ≥ 2, and let us prove it for n = k. There are two cases.

(a) k = 2p for some p ≥ 1. If we reflect once, by Lemma A.2 we have:

Eα
0,z2p(ϕ[{f1, . . . , f2p}]) ≥

≥ 1

2
Eα
0,2(z2p−zp)(ϕ[{θf2p, . . . , θfp+2, (θfp+1)

⊗2, fp+2, . . . f2p}]) +

+
1

2
Eα
0,2zp(ϕ[{f1, . . . , fp−1, f

⊗2
p , θfp−1, . . . , θf1}]) (A.18)

If we now regard (θfp+1)
⊗2 and f⊗2

p as two new functions in L2([0, 2Tp+1]) and in

L2([0, 2Tp]), respectively, the two terms in the r.h.s. of (A.18) can be regarded

as two terms with n = 2p− 1 and, by the induction assumption, they satisfy the

bounds:

Eα
0,2(z2p−zp)(ϕ[{θf2p, . . . , θfp+2, (θfp+1)

⊗2, fp+2, . . . f2p}]) ≥ 2
2p∑

i=p+1

Tie∞(fi) ,

Eα
0,2zp(ϕ[{f1, . . . , fp−1, f

⊗2
p , θfp−1, . . . , θf1}]) ≥ 2

p∑

i=1

Tie∞(fi) , (A.19)

where we used that e∞((θfp+1)
⊗2) = e∞(fp+1) and e∞(f⊗2

p ) = e∞(fp). Therefore,

the desired bound is proved.

(b) k = 2p+ 1 for some p ≥ 1. If we reflect once, by Lemma A.2 we have:

Eα
0,z2p+1

(ϕ[{f1, . . . , f2p+1}]) ≥ (A.20)

≥ 1

2
Eα
0,2(z2p+1−zp+1)

(ϕ[{θf2p+1, . . . , θfp+3, (θfp+2)
⊗2, fp+3, . . . , f2p+1}]) +

+
1

2
Eα
0,2zp+1

(ϕ[{f1, . . . , fp, f⊗2
p+1, θfp, . . . , θf1}])

The first term in the r.h.s. corresponds to n = 2p − 1 so by the induction

hypothesis it is bounded below by
∑2p+1

i=p+2 Tie∞(fi). As regards the second term,



27

using Lemma A.2 again, we can bound it from below by

1

4
Eα
0,2zp(ϕ[{f1, . . . , fp, θfp, . . . , θf1}]) +

+
1

4
Eα
0,2zp+4zp+1

(ϕ[{f1, . . . , fp, (fp+1)
⊗4, θfp, . . . , θf1}]) (A.21)

By the induction hypothesis, the first term is bounded below by

(1/2)
∑p

i=1 Tie∞(fi), and the second can be bounded by Lemma A.2 again. Iter-

ating we find:

Eα(ϕ[{f1, . . . , f2p+1}]) ≥ (A.22)

≥
2p+1∑

i=p+2

Tie∞(fi) +
( ∑

n≥1

2−n
)
·

p∑

i=1

Tie∞(fi)
)
+

+ lim
n→∞

2−nEα
0,2zp+2mzp+1

(ϕ[{f1, . . . , fp, (fp+1)
⊗2m , θfp, . . . , θf1}]) .

Note that the last term is equal to Tp+1e∞(fp+1), so (A.22) is the desired bound.

This concludes the proof of (A.11).
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