ON THE FEKETE-SZEGÖ PROBLEM FOR CONCAVE UNIVALENT FUNCTIONS

B. BHOWMIK, S. PONNUSAMY, AND K.-J. WIRTHS

Abstract

We consider the Fekete-Szegö problem with real parameter λ for the class $C o(\alpha)$ of concave univalent functions.

1. Introduction

Let \mathcal{S} denote the class of all univalent (analytic) functions

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

defined on the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. Then the classical Fekete-Szegö inequality, presented by means of Loewner's method, for the coefficients of $f \in \mathcal{S}$ is that

$$
\left|a_{3}-\lambda a_{2}^{2}\right| \leq 1+2 \exp (-2 \lambda /(1-\lambda)) \quad \text { for } \lambda \in[0,1) .
$$

As $\lambda \rightarrow 1-$, we have the elementary inequality $\left|a_{3}-a_{2}^{2}\right| \leq 1$. Moreover, the coefficient functional

$$
\Lambda_{\lambda}(f)=a_{3}-\lambda a_{2}^{2}
$$

on the normalized analytic functions f in the unit disk \mathbb{D} plays an important role in function theory. For example, the quantity $a_{3}-a_{2}^{2}$ represents $S_{f}(0) / 6$, where S_{f} denotes the Schwarzian derivative $\left(f^{\prime \prime} / f^{\prime}\right)^{\prime}-\left(f^{\prime \prime} / f^{\prime}\right)^{2} / 2$ of locally univalent functions f in \mathbb{D}. In the literature, there exists a large number of results about inequalities for $\Lambda_{\lambda}(f)$ corresponding to various subclasses of \mathcal{S}. The problem of maximizing the absolute value of the functional $\Lambda_{\lambda}(f)$ is called the Fekete-Szegö problem. In [8], Koepf solved the Fekete-Szegö problem for close-to-convex functions and the largest real number λ for which $\Lambda_{\lambda}(f)$ is maximized by the Koebe function $z /(1-z)^{2}$ is $\lambda=1 / 3$, and later in [9] (see also [10]), this result was generalized for functions that are close-to-convex of order β. In [12], Pfluger employed the variational method to give another treatment of the Fekete-Szegö inequality which includes a description of the image domains under extremal functions. Later, Pfluger [13] used Jenkin's method to show that

$$
\left|\Lambda_{\lambda}(f)\right| \leq 1+2|\exp (-2 \lambda /(1-\lambda))|, f \in \mathcal{S}
$$

[^0]holds for complex λ such that $\operatorname{Re}(1 /(1-\lambda)) \geq 1$. The inequality is sharp if and only if λ is in a certain pear shaped subregion of the disk given by
$$
\lambda=1-(u+i t v) /\left(u^{2}+v^{2}\right), \quad 1 \leq t \leq 1
$$
where $u=1-\log (\cos \phi)$ and $v=\tan \phi-\phi, 0<\phi<\pi / 2$.
In this paper, we solve the Fekete-Szegö problem for functions in the class $\operatorname{Co}(\alpha)$ of concave univalent functions, with real parameter λ.

2. Preliminaries

A function $f: \mathbb{D} \rightarrow \mathbb{C}$ is said to belong to the family $C o(\alpha)$ if f satisfies the following conditions:
(i) f is analytic in \mathbb{D} with the standard normalization $f(0)=f^{\prime}(0)-1=0$. In addition it satisfies $f(1)=\infty$.
(ii) f maps \mathbb{D} conformally onto a set whose complement with respect to \mathbb{C} is convex.
(iii) the opening angle of $f(\mathbb{D})$ at ∞ is less than or equal to $\pi \alpha, \alpha \in(1,2]$.

This class has been extensively studied in the recent years and for a detailed discussion about concave functions, we refer to [1, 2, 6] and the references therein. We note that for $f \in C o(\alpha), \alpha \in(1,2]$, the closed set $\mathbb{C} \backslash f(\mathbb{D})$ is convex and unbounded. Also, we observe that $C o(2)$ contains the classes $C o(\alpha), \alpha \in(1,2]$.

We recall the analytic characterization for functions in $\operatorname{Co}(\alpha), \alpha \in(1,2]: f \in$ $\operatorname{Co}(\alpha)$ if and only if $\operatorname{Re} P_{f}(z)>0$ in \mathbb{D}, where

$$
P_{f}(z)=\frac{2}{\alpha-1}\left[\frac{(\alpha+1)}{2} \frac{1+z}{1-z}-1-z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right]
$$

In [4], we have used this characterization and proved the following theorem which will be used to prove our result.

Theorem A. Let $\alpha \in(1,2]$. A function $f \in C o(\alpha)$ if and only if there exists a starlike function $\phi \in \mathcal{S}^{*}$ such that $f(z)=\Lambda_{\phi}(z)$, where

$$
\Lambda_{\phi}(z)=\int_{0}^{z} \frac{1}{(1-t)^{\alpha+1}}\left(\frac{t}{\phi(t)}\right)^{(\alpha-1) / 2} d t
$$

We also recall a lemma due to Koepf [8, Lemma 3].
Lemma A. Let $g(z)=z+b_{2} z+b_{3} z^{2}+\cdots \in \mathcal{S}^{*}$. Then $\left|b_{3}-\lambda b_{2}^{2}\right| \leq \max \{1,|3-4 \lambda|\}$ which is sharp for the Koebe function k if $|\lambda-3 / 4| \geq 1 / 4$ and for $\left(k\left(z^{2}\right)\right)^{1 / 2}=\frac{z}{1-z^{2}}$ if $\left|\lambda-\frac{3}{4}\right| \leq 1 / 4$.

Here \mathcal{S}^{*} denote the family of functions $g \in \mathcal{S}$ that map \mathbb{D} into domains that are starlike with respect to the origin. Each $g \in \mathcal{S}^{*}$ is characterized by the condition $\operatorname{Re}\left(z g^{\prime}(z) / g(z)\right)>0$ in \mathbb{D}. Ma and Minda [11] presented the Fekete-Szegö problem for more general classes through subordination, which includes the classes of starlike and convex functions, respectively. In a recent paper, the authors in 5] obtained a new method of solving the Fekete-Szegö problem for classes of close-to-convex functions defined in terms of subordination.

3. Main Result and its Proof

We recall from Theorem A that $f \in C o(\alpha)$ if and only if there exists a function $\phi(z)=z+\sum_{n=2}^{\infty} \phi_{n} z^{n} \in \mathcal{S}^{*}$ such that

$$
\begin{equation*}
f^{\prime}(z)=\frac{1}{(1-z)^{\alpha+1}}\left(\frac{z}{\phi(z)}\right)^{\frac{\alpha-1}{2}} \tag{3.1}
\end{equation*}
$$

where f has the form given by (1.1). Comparing the coefficients of z and z^{2} on the both sides of the series expansion of (3.1), we obtain that

$$
\begin{aligned}
& a_{2}=\frac{\alpha+1}{2}-\frac{\alpha-1}{4} \phi_{2}, \quad \text { and } \\
& a_{3}=\frac{(\alpha+1)(\alpha+2)}{6}-\frac{\alpha^{2}-1}{6} \phi_{2}-\frac{\alpha-1}{6} \phi_{3}+\frac{\alpha^{2}-1}{24} \phi_{2}^{2},
\end{aligned}
$$

respectively. A computation yields,

$$
\begin{align*}
a_{3}-\lambda a_{2}^{2}= & \frac{(\alpha+1)^{2}}{4}\left(\frac{2(\alpha+2)}{3(\alpha+1)}-\lambda\right)+\frac{\alpha^{2}-1}{4}\left(\lambda-\frac{2}{3}\right) \phi_{2} \\
& -\frac{\alpha-1}{6}\left[\phi_{3}-\left(\frac{2(\alpha+1)-3 \lambda(\alpha-1)}{8}\right) \phi_{2}^{2}\right] . \tag{3.2}
\end{align*}
$$

Case (1): Let $\lambda \in\left(-\infty, \frac{2(\alpha-3)}{3(\alpha-1)}\right]$. We observe that the assumption on λ is seen to be equivalent to

$$
\frac{2(\alpha+1)-3 \lambda(\alpha-1)}{8} \geq 1
$$

and the first term in the last expression is nonnegative. Hence, using Lemma A for the last term in (3.2), and noting that $\left|\phi_{2}\right| \leq 2$, we have from the equality (3.2),

$$
\begin{aligned}
\left|a_{3}-\lambda a_{2}^{2}\right| \leq & \frac{(\alpha+1)^{2}}{4}\left(\frac{2(\alpha+2)}{3(\alpha+1)}-\lambda\right)+\frac{\alpha^{2}-1}{4}\left(\frac{2}{3}-\lambda\right)\left|\phi_{2}\right| \\
& +\frac{\alpha-1}{6}\left|\phi_{3}-\left(\frac{2(\alpha+1)-3 \lambda(\alpha-1)}{8}\right) \phi_{2}^{2}\right| \\
\leq & \frac{(\alpha+1)^{2}}{4}\left(\frac{2(\alpha+2)}{3(\alpha+1)}-\lambda\right)+\frac{\alpha^{2}-1}{2}\left(\frac{2}{3}-\lambda\right) \\
& +\frac{\alpha-1}{6}\left(\frac{2(\alpha+1)-3 \lambda(\alpha-1)}{2}-3\right) .
\end{aligned}
$$

Thus, simplifying the right hand expression gives

$$
\begin{equation*}
\left|a_{3}-\lambda a_{2}^{2}\right| \leq \frac{2 \alpha^{2}+1}{3}-\lambda \alpha^{2}, \quad \text { if } \lambda \in\left(-\infty, \frac{2(\alpha-3)}{3(\alpha-1)}\right] \tag{3.3}
\end{equation*}
$$

Case (2): Let $\lambda \geq \frac{2(\alpha+2)}{3(\alpha+1)}$ so that the first term in (3.2) is nonpositive. The condition on λ in particular gives $\lambda>2 / 3$ and therefore, our assumption on λ
implies that

$$
\frac{2(\alpha+1)-3 \lambda(\alpha-1)}{8}<\frac{1}{2} .
$$

Again, it follows from Lemma A that

$$
\left|\phi_{3}-\left(\frac{2(\alpha+1)-3 \lambda(\alpha-1)}{8}\right) \phi_{2}^{2}\right| \leq 3-\frac{2(\alpha+1)-3 \lambda(\alpha-1)}{2} .
$$

In view of these observations and an use of the inequality $\left|\phi_{2}\right| \leq 2$, the equality (3.2) gives

$$
\begin{aligned}
\left|a_{3}-\lambda a_{2}^{2}\right| \leq & -\frac{(\alpha+1)^{2}}{4}\left(\frac{2(\alpha+2)}{3(\alpha+1)}-\lambda\right)-\frac{\alpha^{2}-1}{2}\left(\frac{2}{3}-\lambda\right) \\
& +\frac{\alpha-1}{6}\left(3-\frac{2(\alpha+1)-3 \lambda(\alpha-1)}{2}\right)
\end{aligned}
$$

Thus, simplifying the right hand expression gives

$$
\begin{equation*}
\left|a_{3}-\lambda a_{2}^{2}\right| \leq \lambda \alpha^{2}-\frac{2 \alpha^{2}+1}{3}, \quad \text { if } \lambda \geq \frac{2(\alpha+2)}{3(\alpha+1)} \tag{3.4}
\end{equation*}
$$

The inequalities in both cases are sharp for the functions

$$
f(z)=\frac{1}{2 \alpha}\left[\left(\frac{1+z}{1-z}\right)^{\alpha}-1\right] .
$$

Case (3): To get the complete solution of the Fekete-Szegö problem, we need to consider the case

$$
\begin{equation*}
\lambda \in\left(\frac{2(\alpha-3)}{3(\alpha-1)}, \frac{2(\alpha+2)}{3(\alpha+1)}\right) \tag{3.5}
\end{equation*}
$$

Now, we deal with this case by using the formulas (3.1) and (3.2) together with the representation formula for $\phi \in \mathcal{S}^{*}$:

$$
\frac{z \phi^{\prime}(z)}{\phi(z)}=\frac{1+z \omega(z)}{1-z \omega(z)}
$$

where $\omega: \mathbb{D} \rightarrow \overline{\mathbb{D}}$ is a function analytic in \mathbb{D} with the Taylor series

$$
\omega(z)=\sum_{n=0}^{\infty} c_{n} z^{n}
$$

Inserting the resulting formulas

$$
\phi_{2}=2 c_{0} \text { and } \phi_{3}=c_{1}+3 c_{0}^{2}
$$

into (3.2) yields

$$
\begin{aligned}
a_{3}-\lambda a_{2}^{2}= & \frac{(\alpha+1)^{2}}{4}\left(\frac{2(\alpha+2)}{3(\alpha+1)}-\lambda\right)+\frac{\alpha^{2}-1}{2}\left(\lambda-\frac{2}{3}\right) c_{0} \\
& -\frac{\alpha-1}{6}\left[c_{1}+\frac{4-2 \alpha+3 \lambda(\alpha-1)}{2} c_{0}^{2}\right] \\
= & A+B c_{0}+C c_{0}^{2}+D c_{1},
\end{aligned}
$$

where

$$
\left\{\begin{aligned}
A & =\frac{(\alpha+1)(\alpha+2)}{6}-\lambda \frac{(\alpha+1)^{2}}{4} \\
B & =\left(\alpha^{2}-1\right)\left(\frac{\lambda}{2}-\frac{1}{3}\right) \\
C & =-\frac{(\alpha-1)(4-2 \alpha+3 \lambda(\alpha-1))}{12} \\
D & =-\frac{\alpha-1}{6}
\end{aligned}\right.
$$

It is well-known that $\left|c_{0}\right| \leq 1$ and $\left|c_{1}\right| \leq 1-\left|c_{0}\right|^{2}$. Using this we obtain,

$$
\begin{align*}
\left|a_{3}-\lambda a_{2}^{2}\right| & =\left|A+B c_{0}+C c_{0}^{2}+D c_{1}\right| \tag{3.6}\\
& \leq\left|A+B c_{0}+C c_{0}^{2}\right|+\left|D \| c_{1}\right| \\
& \leq\left|A+B c_{0}+C c_{0}^{2}\right|+|D|\left(1-\left|c_{0}\right|^{2}\right)
\end{align*}
$$

Let $c_{0}=r e^{i \theta}$. First we search for the maximum of $\left|A+B c_{0}+C c_{0}{ }^{2}\right|$ where we fix r and vary θ. To this end, we consider the expression

$$
\begin{aligned}
\mid A+B c_{0} & +\left.C c_{0}^{2}\right|^{2} \\
& =\left|A+B r e^{i \theta}+C r^{2} e^{2 i \theta}\right|^{2} \\
& =\left(A-C r^{2}\right)^{2}+B^{2} r^{2}+\left(2 A B r+2 B C r^{3}\right) \cos \theta+4 A C r^{2}(\cos \theta)^{2} \\
& =: f(r, \theta)
\end{aligned}
$$

Afterwards, we have to find the biggest value of the maximum function, if r varies in the interval $(0,1]$.

We need to deal with several subcases of (3.5).
Case A: Let $\lambda \in\left(\frac{2(\alpha-3)}{3(\alpha-1)}, \frac{2(\alpha-2)}{3(\alpha-1)}\right)$. We observe that $C>0, B<0$, and $A+C r^{2}>0$ for $r \in[0,1]$. Hence the corresponding quadratic function

$$
h(x)=\left(A-C r^{2}\right)^{2}+B^{2} r^{2}+2 B r\left(A+C r^{2}\right) x+4 A C r^{2} x^{2}, x \in[-1,1],
$$

attains its maximum value for any $r \in(0,1]$ at $x=-1$. Therefore, our task is to find the maximum value of

$$
g(r)=A-B r+C r^{2}+\frac{\alpha-1}{6}\left(1-r^{2}\right) .
$$

The inequalities $g^{\prime}(0)=-B$ and

$$
g^{\prime}(1)=-B+2 C-\frac{\alpha-1}{3}=\frac{\alpha-1}{6}(-6 \lambda+4(\alpha-1))>0
$$

for $\lambda<\frac{2(\alpha-1)}{3 \alpha}$ imply

$$
g(r) \leq g(1)=A-B+C=\frac{2 \alpha^{2}+1}{3}-\lambda \alpha^{2}
$$

Case B: If $\lambda=\frac{2(\alpha-2)}{3(\alpha-1)}$, then $C=0$ and h is a linear function that has its maximum value at $x=-1$. The considerations of Case A apply and again we get the maximum value $g(1)$ as above.

Case C: Let $\lambda \in\left(\frac{2(\alpha-2)}{3(\alpha-1)}, \frac{2(\alpha-1)}{3 \alpha}\right)$. Firstly, we prove that in this interval the quadratic function h is monotonic decreasing for $x \in[-1,1]$. Since the function $h: \mathbb{R} \rightarrow \mathbb{R}$ has its maximum at

$$
x(r)=\frac{-B\left(A+C r^{2}\right)}{4 A C r}=\frac{-B}{4}\left(\frac{1}{C r}+\frac{r}{A}\right),
$$

it is sufficient to show that $x(r)$ is monotonic increasing and $x(1)<-1$. The first assertion is trivial and the second one is equivalent to

$$
j(\lambda)=\alpha^{2}(3 \lambda-2)^{2}-4+3 \lambda>0
$$

for the parameters λ in question. This inequality is easily proved. Hence, we get the same upper bound as in Cases A and B. In conclusion, Cases A, B and C give,

$$
\begin{equation*}
\left|a_{3}-\lambda a_{2}^{2}\right| \leq \frac{2 \alpha^{2}+1}{3}-\lambda \alpha^{2}, \quad \text { if } \lambda \in\left(\frac{2(\alpha-3)}{3(\alpha-1)}, \frac{2(\alpha-1)}{3 \alpha}\right) . \tag{3.7}
\end{equation*}
$$

Case D: Let $\lambda \in\left[\frac{2(\alpha-1)}{3 \alpha}, \frac{2}{3}\right)$ and we may factorize $j(\lambda)$ as

$$
j(\lambda)=9 \alpha^{2}\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)
$$

where

$$
\begin{equation*}
\lambda_{1}=\frac{4 \alpha^{2}-1-\sqrt{8 \alpha^{2}+1}}{6 \alpha^{2}} \text { and } \lambda_{2}=\frac{4 \alpha^{2}-1+\sqrt{8 \alpha^{2}+1}}{6 \alpha^{2}} . \tag{3.8}
\end{equation*}
$$

We observe that $\lambda_{2}>\lambda_{1}$. For $\lambda \in\left[\frac{2(\alpha-1)}{3 \alpha}, \lambda_{1}\right)$, the function h has its maximum value at $x=-1$ and the function g has its maximum value at

$$
r_{m}=\frac{-B}{-2 C+\frac{\alpha-1}{3}} \in(0,1] .
$$

Hence, the maximum of the Fekete-Szegö functional is

$$
g\left(r_{m}\right)=\frac{\alpha(10-9 \lambda)-(3 \lambda-2)}{9(2-\lambda)+3 \alpha(3 \lambda-2)} .
$$

For $\lambda \in\left[\lambda_{1}, \frac{2}{3}\right)$, the number

$$
r_{0}=\frac{B}{2 C\left(1+\sqrt{1-\frac{B^{2}}{4 A C}}\right)} \in(0,1]
$$

is the unique solution of $x(r)=-1$ in the interval $(0,1]$. It is easily seen that $r_{m}<r_{0}$ for $\lambda<\frac{2}{3}$. Further,

$$
k(r)=\sqrt{h(x(r))}+\frac{\alpha-1}{6}\left(1-r^{2}\right)=\left(A-C r^{2}\right) \sqrt{1-\frac{B^{2}}{4 A C}}+\frac{\alpha-1}{6}\left(1-r^{2}\right)
$$

is monotonic decreasing for $r \geq r_{0}$. Hence, the maximum value of $\left|a_{3}-\lambda a_{2}^{2}\right|$ is $g\left(r_{m}\right)$ in this part of the interval in question, too. The extremal function maps \mathbb{D} onto a wedge shaped region with an opening angle at infinity less than $\pi \alpha$ and one finite vertex as in Example 3.12 in [3].

Case E: For $\lambda=\frac{2}{3}$, we have $B=0$ and $C=-\frac{\alpha-1}{6}$. Hence the maximum is attained for $\cos \theta=0$ and any $r \in(0,1]$. In all these cases, we get

$$
\left|a_{3}-\lambda a_{2}^{2}\right|=\frac{\alpha}{3}
$$

as the sharp upper bound. The extremal functions map \mathbb{D} onto a region with an opening angle at infinity equal to $\pi \alpha$ and two finite vertices as in Example 3.13 in [3].

In conclusion, Cases D and E give,

$$
\begin{equation*}
\left|a_{3}-\lambda a_{2}^{2}\right| \leq \frac{\alpha(10-9 \lambda)-(3 \lambda-2)}{9(2-\lambda)+3 \alpha(3 \lambda-2)}, \quad \text { if } \lambda \in\left(\frac{2(\alpha-1)}{3 \alpha}, \frac{2}{3}\right] . \tag{3.9}
\end{equation*}
$$

Case F: Let $\lambda \in\left(\frac{2}{3}, \lambda_{2}\right]$. Since $B>0$, the function $x(r)$ is monotonic decreasing now. The number

$$
r_{1}=\frac{B}{-2 C\left(1+\sqrt{1-\frac{B^{2}}{4 A C}}\right)} \in(0,1]
$$

is the unique solution of the equation $x(r)=1$ lying in $(0,1]$. For $r<r_{1}$, we have $h(x) \leq h(1)$. We consider the function

$$
l(r)=A+B r+C r^{2}+\frac{\alpha-1}{6}\left(1-r^{2}\right)
$$

and determine the maximum of this function to be attained at

$$
r_{n}=\frac{B}{-2 C+\frac{\alpha-1}{3}} .
$$

It is easily proved that $r_{n}>r_{1}$. Since $k(r)$ is monotonic increasing, we get the maximum value of the Fekete-Szegö functional in this case as

$$
k(1)=(A-C) \sqrt{1-\frac{B^{2}}{4 A C}}=\alpha(1-\lambda) \sqrt{\frac{12(1-\lambda)}{(4-3 \lambda)^{2}-\alpha^{2}(3 \lambda-2)^{2}}}
$$

which is attained for $c_{0}=e^{i \theta_{0}}$, where

$$
\cos \theta_{0}=\frac{-B(A+C)}{4 A C} .
$$

In this case, the extremal function f is defined by the solution of the following complex differential equation

$$
f^{\prime}(z)=\frac{\left(1-z e^{i \theta_{0}}\right)^{\alpha-1}}{(1-z)^{\alpha+1}}
$$

In conclusion, in this case, we have,

$$
\begin{equation*}
\left|a_{3}-\lambda a_{2}^{2}\right| \leq \alpha(1-\lambda) \sqrt{\frac{12(1-\lambda)}{(4-3 \lambda)^{2}-\alpha^{2}(3 \lambda-2)^{2}}}, \quad \text { if } \lambda \in\left(2 / 3, \lambda_{2}\right] \tag{3.10}
\end{equation*}
$$

Case G: Let $\lambda \in\left(\lambda_{2}, \frac{2(\alpha+2)}{3(\alpha+1)}\right)$. Since $x(1)<-1$ for these λ, the number

$$
r_{2}=\frac{B}{-2 C\left(1-\sqrt{1-\frac{B^{2}}{4 A C}}\right)}
$$

satisfies $x\left(r_{2}\right)=-1$ and $r_{2} \in(0,1)$. For $r \leq r_{2}$, we can make similar considerations as in the preceding case, i.e. for $r \leq r_{1}$ the function $l(r)$ takes the maximum value, and for $r \in\left(r_{1}, r_{2}\right]$, the function $k(r)$ plays this role. For $r>r_{2}$, the point $x(r)$ does not lie in the interval $[-1,1]$. Hence, the maximum in question is attained for $x=-1$ or $x=1$. We see that $A+C<0$ and $-A-C r^{2}>0$ for the values of λ that we are considering now, the maximum of (3.6) is attained for $x=-1$, i.e. for $c_{0}=-r$. Hence, for $r \in\left(r_{2}, 1\right]$ the maximum function is

$$
n(r)=-A+B r-C r^{2}+\frac{\alpha-1}{6}\left(1-r^{2}\right)
$$

Since

$$
-C>\frac{\alpha-1}{6} \text { and } B>0
$$

we get $n(r) \leq n(1)$ in the interval in question and hence

$$
\left|a_{3}-\lambda a_{2}^{2}\right| \leq n(1)=-A+B-C=\lambda \alpha^{2}-\frac{2 \alpha^{2}+1}{3}
$$

whenever $\lambda \in\left(\lambda_{2}, \frac{2(\alpha+2)}{3(\alpha+1)}\right)$.
Equations (3.3), (3.4), (3.7), (3.9), (3.10) and Case G give
Theorem. For $\alpha \in(1,2]$, let $f \in C o(\alpha)$ have the expansion (1.1). Then, we have

$$
\left|a_{3}-\lambda a_{2}{ }^{2}\right| \leq\left\{\begin{aligned}
\frac{2 \alpha^{2}+1}{3}-\lambda \alpha^{2} & \text { for } \lambda \in\left(-\infty, \frac{2(\alpha-1)}{3 \alpha}\right] \\
\frac{\alpha(10-9 \lambda)-(3 \lambda-2)}{9(2-\lambda)+3 \alpha(3 \lambda-2)} & \text { for } \frac{2(\alpha-1)}{3 \alpha} \leq \lambda \leq \frac{2}{3} \\
\alpha(1-\lambda) \sqrt{\frac{12(1-\lambda)}{(4-3 \lambda)^{2}-\alpha^{2}(3 \lambda-2)^{2}}} & \text { for } \frac{2}{3} \leq \lambda \leq \lambda_{2} \\
\lambda \alpha^{2}-\frac{2 \alpha^{2}+1}{3} & \text { for } \lambda \in\left[\lambda_{2}, \infty\right),
\end{aligned}\right.
$$

where λ_{2} is given by (3.8). To emphasize the fact that the bound is a continuous function of λ for any α we mention two different expressions for the same bound for some values of λ. The inequalities are sharp.

The Fekete-Szegö inequalities for functions in the class $C o(\alpha)$ for complex values of λ remain an open problem.

Acknowledgement: The authors thank the referee for careful reading of the paper.

References

1. F.G. Avkhadiev, Ch. Pommerenke and K.-J. Wirths: Sharp inequalities for the coefficient of concave schlicht functions, Comment. Math. Helv. 81 (2006), 801-807.
2. F.G. Avkhadiev and K.-J. Wirths: Concave schlicht functions with bounded opening angle at infinity, Lobachevskii J. Math. 17(2005), 3-10.
3. B. Bhowmik, S. Ponnusamy and K.-J. Wirths: Unbounded convex polygons, Blaschke products and concave schlicht functions, Indian J. Math. 50 (2008), 339-349.
4. B. Bhowmik, S. Ponnusamy and K.-J. Wirths: Characterization and the pre-Schwarzian norm estimate for concave univalent functions, Monatshefte für Mathematik, online first DOI 10.1007/s00605-009-0146-7 (2009).
5. J. H. Choi, Y. C. Kim and T. Sugawa: A general approach to the Fekete-Szegö problem, J. Math. Soc. Japan 59(2007), no. 3, 707-727.
6. L. Cruz and Ch. Pommerenke: On concave univalent functions, Complex Var. Elliptic Equ. 52(2007), 153-159.
7. M. Fekete and G. Szegö: Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc. 8(1933), 85-89.
8. W. Koepf: On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc. 101(1987), 89-95.
9. W. Koepf: On the Fekete-Szegö problem for close-to-convex functions II, Arch. Math. 49(1987), 420-433.
10. R.R. London: Fekete-Szegö inequalities for close-to convex functions, Proc. Amer. Math. Soc. 117(1993), 947-950.
11. W. Ma and D. Minda: A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Z. Li, F. Ren, L. Lang, and S. Zhang, eds.), 1992, 157-169; International Press Inc., Cambridge, MA, 1994.
12. A. Pfluger: The Fekete-Szegö inequality by a variational method, Ann. Acad. Sci. Fenn. Ser. A I Math. 10(1985), 447-454.
13. A. Pfluger: The Fekete-Szegö inequality for complex parameters, Complex Variables Theory Appl. 7(1986), no. 1-3, 149-160.
B. Bhowmik, Department of Mathematics, Indian Institute of Science, Bangalore560012, India.

E-mail address: bappaditya.bhowmik@gmail.com
S. Ponnusamy, Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India.

E-mail address: samy@iitm.ac.in
K.-J. Wirths, Institut für Analysis, TU Braunschweig, 38106 Braunschweig, GerMANY

E-mail address: kjwirths@tu-bs.de

[^0]: Date: version: Nov 17, 2010; File: FEK - Ar.tex.
 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Concave, univalent and starlike functions.

