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ON THE FEKETE-SZEGO PROBLEM FOR CONCAVE
UNIVALENT FUNCTIONS

B. BHOWMIK, S. PONNUSAMY, AND K.-J. WIRTHS

ABSTRACT. We consider the Fekete-Szego problem with real parameter A for the
class Co(a) of concave univalent functions.

1. INTRODUCTION

Let S denote the class of all univalent (analytic) functions

(1.1) f(2) :z+Zanz"

defined on the unit disk D = {z € C : |z| < 1}. Then the classical Fekete-Szego
inequality, presented by means of Loewner’s method, for the coefficients of f € S is
that

lag — Aa3| <1+ 2exp(=2)\/(1—=1X)) for A€ [0,1).

As A — 1—, we have the elementary inequality |as — a3 < 1. Moreover, the
coeflicient functional

A)\<f) = asz — )\CL%

on the normalized analytic functions f in the unit disk D plays an important role
in function theory. For example, the quantity az — a3 represents S;(0)/6, where Sy
denotes the Schwarzian derivative (f”/f') —(f"/f")?/2 of locally univalent functions
f in . In the literature, there exists a large number of results about inequalities
for A,(f) corresponding to various subclasses of S. The problem of maximizing the
absolute value of the functional A,(f) is called the Fekete-Szegd problem. In [§],
Koepf solved the Fekete-Szego problem for close-to-convex functions and the largest
real number A\ for which Ay(f) is maximized by the Koebe function z/(1 — 2)? is
A = 1/3, and later in [9] (see also [10]), this result was generalized for functions that
are close-to-convex of order 5. In [12], Pfluger employed the variational method to
give another treatment of the Fekete-Szegt inequality which includes a description
of the image domains under extremal functions. Later, Pfluger [13] used Jenkin’s
method to show that

(AN < T+2[exp(=2)0/(1 = )|, f €S,
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holds for complex A such that Re(1/(1 — X)) > 1. The inequality is sharp if and
only if X is in a certain pear shaped subregion of the disk given by

A=1—(u+itv)/(u* +0v?), 1<t <1,

where u = 1 — log(cos¢) and v =tan¢ — ¢ , 0 < ¢ < /2.
In this paper, we solve the Fekete-Szego problem for functions in the class C'o(«)
of concave univalent functions, with real parameter \.

2. PRELIMINARIES

A function f : D — C is said to belong to the family Co(«) if f satisfies the
following conditions:

(i) f is analytic in D with the standard normalization f(0) = f/(0) —1=0. In
addition it satisfies f(1) = oo.
(ii) f maps D conformally onto a set whose complement with respect to C is
convex.
(iii) the opening angle of f(ID) at oo is less than or equal to ma, « € (1,2].
This class has been extensively studied in the recent years and for a detailed dis-
cussion about concave functions, we refer to [II, 2, 6] and the references therein. We
note that for f € Co(a), a € (1,2], the closed set C\ f(D) is convex and unbounded.
Also, we observe that C'o(2) contains the classes Co(a), o € (1, 2].
We recall the analytic characterization for functions in Co(a),a € (1,2]: f €
Co(a) if and only if Re P(z) > 0 in D, where

}?@%:ai1[«%+nl+z_l f%@}'

21—z = 1)
In [4], we have used this characterization and proved the following theorem which
will be used to prove our result.

Theorem A. Let o € (1,2]. A function f € Co(«) if and only if there exists a
starlike function ¢ € 8* such that f(z) = Ay(2), where

vior= [ ()

We also recall a lemma due to Koepf [8, Lemma 3].

Lemma A. Let g(z) = 2+byz+b322 +--- € 8*. Then |b3 — \b3| < max {1,|3—4\|}
which is sharp for the Koebe function k if |\ —3/4] > 1/4 and for (k(z*))'/* = =3
if A= 3 <1/4.

Here &* denote the family of functions g € S that map D into domains that are
starlike with respect to the origin. Each g € S8* is characterized by the condition
Re(z¢g'(2)/g(z)) > 0 in D. Ma and Minda [I1] presented the Fekete-Szegd problem
for more general classes through subordination, which includes the classes of starlike
and convex functions, respectively. In a recent paper, the authors in [5] obtained
a new method of solving the Fekete-Szego problem for classes of close-to-convex
functions defined in terms of subordination.
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3. MAIN RESULT AND ITS PROOF

We recall from Theorem A that f € Co(«) if and only if there exists a function
H(z) =2+ 2, Pp2" € S* such that

a—1

&y 1= ()

where f has the form given by (ILT)). Comparing the coefficients of z and 2% on the
both sides of the series expansion of ([B.1), we obtain that

1 -1
ay = a; _a4 ¢, and
 (a+D(a+2) -1 a—1 a?—1 ,
as = 6 6 O2 6 ¢z + o1 ¢35,

respectively. A computation yields,

2 oz—l—l 2(a+2) a?—1 _g
a3 — A4, <3a+1 T \M3)

5. 1 {d)g < a+1)—83A(a—1))¢3}_
)
)

2(a—3
"3(a—1
20 +1) =3\ a—1) > 1

3 >
and the first term in the last expression is nonnegative. Hence, using Lemma A for
the last term in (B.2]), and noting that |¢s| < 2, we have from the equality (3.2]),

oo = (B2 (2
¢3_(2(a+1)—3)\(a— ))¢§

Case (1): Let A € < ] We observe that the assumption on A is seen

to be equivalent to

N

a—l

8

oy o)+ ()
+ag1 (2(a+1)—23)\(a—1)_3).

Thus, simplifying the right hand expression gives

202 + 1 2(a—3
(3.3) las — Aa3| < a 3+ —Xa?, if A€ <—oo, L)} :
o

2(a+2)
3a+1)

condition on A in particular gives A > 2/3 and therefore, our assumption on A

Case (2): Let A > so that the first term in (B.2)) is nonpositive. The
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implies that
2(a+1) —=3\a—-1) _ 1
8 2
Again, it follows from Lemma A that
2a+1) =3Na—-1)\ , 20 +1) —=3A\(a—1)
05 - - % . .

In view of these observations and an use of the inequality |¢s| < 2, the equality (3:2))

<3-

gives
+1)? (2(a+2) a?—1 (2
a2 < -l ) - 2
lag = Adg| - < 1 (3(a+1) 2 \3
a—1 2(a+1) = 3A(a—1)
25 (3- : .
Thus, simplifying the right hand expression gives
202 + 1 2 2
(3.4) las — Aa2| < Aa? — = LTS Ha+2)
3 3(a+1)

The inequalities in both cases are sharp for the functions

-2 -]

Case (3): To get the complete solution of the Fekete-Szegd problem, we need to
consider the case

2(a—3) 2(a+2)
(3.5) A€ <3<a—1)’ 3<a+1))'

Now, we deal with this case by using the formulas (8.1]) and ([B.2]) together with the
representation formula for ¢ € §*:

24 (2) _ 1+ 2w(z)
o(2) 1—z2w(2)’

where w : D — D is a function analytic in D with the Taylor series

w(z) = 2"
n=0
Inserting the resulting formulas
¢2 =2co and ¢3 = 1 + 3¢”

into (B.2)) yields
+1)% (2(a+2) a?—1 2
a2 = Ll )\ A-
37 Al 1 (3(a+1) L 0
oz—l[ 4—2a+3Na—1) 2}
1 Co
6 2
= A+ Bey+ Cc + Dey,
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where
( 4 (a+1)(a+2) _)\(a+1)2’
A1
B = (@®-1)(2-=
o - (a=1)4=2a+3Xa—-1))
. 12 ’
D = —
\ 6
It is well-known that |co| < 1 and |¢;| < 1 — |co|?. Using this we obtain,
(3.6) las — Aa3| = |A+ Bey+ Cci + Dey|
< |A+ Bey+ Ccf| + | D|ey]
< |A+ Beo + Ccgl +[D|(1 = |eof).

Let co = re. First we search for the maximum of |A + Bey + Cco?| where we fix
r and vary 6. To this end, we consider the expression
|A + Bcy + Cep?|?
= |A+ Bre? 4 Cr2e*?|?
= (A—Cr*?+ B*? + (2ABr + 2BCr?*) cos 0 + 4ACT*(cos 6)*
= f(r,0).
Afterwards, we have to find the biggest value of the maximum function, if r varies

in the interval (0,1].
We need to deal with several subcases of (B.5]).

Case A: Let \ € (ggg:i’;, ;Egjg) We observe that C' > 0, B < 0, and A+Cr? > 0

for r € [0, 1]. Hence the corresponding quadratic function
h(z) = (A — COr®)? + B*? +2Br(A + Or¥)x + 4ACT?*2*, z € [—1,1],

attains its maximum value for any r € (0,1] at x = —1. Therefore, our task is to
find the maximum value of

g(r)=A—Br+Cr* + QT_l(l —r?).

The inequalities ¢’(0) = —B and

1 a-1
g@):—B+QC—a3 :a6 (—6A+4(a —1)) > 0

for \ < % imply

202 + 1
o+ — a2,

g(r)<g(l)=A—B+C =

Case B: If A = ggz:fg, then C' = 0 and h is a linear function that has its maximum
value at © = —1. The considerations of Case A apply and again we get the maximum

value ¢g(1) as above.
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Case C: Let A € (;EZ:?;, 2(3;1)). Firstly, we prove that in this interval the

quadratic function h is monotonic decreasing for € [—1,1]. Since the function
h : R — R has its maximum at

—B(A+Cr*) -B < 1 r)’

—— +
Cr A
it is sufficient to show that z(r) is monotonic increasing and (1) < —1. The first
assertion is trivial and the second one is equivalent to

J(A) = a*(3A —2)* =4+ 31> 0

for the parameters A in question. This inequality is easily proved. Hence, we get
the same upper bound as in Cases A and B. In conclusion, Cases A, B and C give,

20% +1 2(a—3) 2(a—1)
. — )| < — X2, if A .
(3.7) las az| < 3 o, i € (3(04—1)’ 3

= T A

Case D: Let A € [2(3;1), %) and we may factorize j(\) as

JA) = 90420\ — A1) (A= A2),

where
402 — 1 —+/8a% +1 402 — 1+ /8a2 +1
(3.8) PO CH D and N TP VeTH D
6 6
We observe that Ay > A;. For A\ € [2(3;1),)\1>, the function A has its maximum
value at x = —1 and the function g has its maximum value at
__B . (0, 1]
Tm = — 9 .
—20 + 4

Hence, the maximum of the Fekete-Szego functional is
a(10 —9X\) — (BA —2
Jry 010 =90 = (A —2)

9(2 —A) +3a(3X —2)

For A\ € [)\1, %), the number
B

2C (1+ 1— Aj‘;)

is the unique solution of x(r) = —1 in the interval (0,1]. It is easily seen that
Tm < To for A < % Further,

To = S (07 1]

B2 a—1

k(r) = /h(z(r)) + 1AC + 5

is monotonic decreasing for r > ro. Hence, the maximum value of |az — Aa3| is g(7,,)
in this part of the interval in question, too. The extremal function maps D onto a
wedge shaped region with an opening angle at infinity less than ma and one finite
vertex as in Example 3.12 in [3].

a—1

(1—7%)=(A—-Cr*)y/1— (1—7?)
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Case E: For \ = %, we have B =0and C' = —%. Hence the maximum is attained
for cosf = 0 and any r € (0,1]. In all these cases, we get

(0%
|ag — Aaj| = 3

as the sharp upper bound. The extremal functions map D onto a region with an
opening angle at infinity equal to ma and two finite vertices as in Example 3.13 in

In conclusion, Cases D and E give,
10—-9N) — (3N —2) | 20a—1) 2
. — | < o f A e
(3:9) 95 = Mol < G T BaBA—2) | e( 3a 3

Case F: Let A € (2,X5]. Since B > 0, the function z(r) is monotonic decreasing
now. The number

B
—2C (1 +4/1— 50)

is the unique solution of the equation z(r) = 1 lying in (0,1]. For r < 7y, we have
h(z) < h(1). We consider the function

T = 6(0,1]

—1
l('r’):A+B7’+C7’2+—a6 (1—1r%

and determine the maximum of this function to be attained at
B

T = ——————.
—2C + o

It is easily proved that r, > 7. Since k(r) is monotonic increasing, we get the
maximum value of the Fekete-Szeg6 functional in this case as

- BT 12(1 — A)
k(l)—(A—C) 1_4AC—a<1_)\)\/(4_?’)‘)2_&2(3)‘_2)2’

which is attained for cq = €%, where

—B(A+C)
1AC

In this case, the extremal function f is defined by the solution of the following
complex differential equation

cos bty =

(1 _ zei@o)a—l

f/(Z) = (1 _ z)a+1

In conclusion, in this case, we have,

(3.10) |a3—)\a§|§a(l—A)\/(4_3)\§§(_1;2?§>\_2)2, i\ (2/3, M),
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Case G: Let A € (AQ, 2o

) Since x(1) < —1 for these A, the number

B

—2C (1 —y/1- Aj;)

satisfies z(ry) = —1 and 75 € (0,1). For r < ry, we can make similar considerations
as in the preceding case, i.e. for r < r; the function [(r) takes the maximum value,
and for r € (ry, 5], the function k(r) plays this role. For r > 7y, the point x(r)
does not lie in the interval [—1,1]. Hence, the maximum in question is attained for
r=—-1orxz=1 Wesee that A+ C <0 and —A — Cr? > 0 for the values of A

ro =

that we are considering now, the maximum of ([3.6) is attained for z = —1, i.e. for
co = —r. Hence, for r € (r, 1] the maximum function is
a—1
n(r)=—A+ Br — (1—12).
Since
(){ J—
—C > and B >0,

we get n(r) < n(1l) in the interval in question and hence

202 + 1
las — A2 < n(l) = —A+ B —C = \a? — O‘;
(a+2)
whenever \ € ()\2, 3t

Equations (3.3), (3.4), (3.1), (3.9), (310) and Case G give
Theorem. Fora € (1,2], let f € Co(a) have the expansion (I1). Then, we have

( 207 +1 —Xa?  for )€ (—oo, 72((1 — 1)}
a(10 — 9>\)3 (3X — 2) 2o — 1) 3a2
02— N 13ar—2) 7 3a =7=3

as — A\ap ‘ <
12(1 = \) 2
1—A — <A<
a( >\/(4 ) —al(3a_2)p [rzsAsh
20% + 1
2
\ Ao — 3
where Ay is given by [BF). To emphasize the fact that the bound is a continuous

function of X for any o we mention two different expressions for the same bound for
some values of A. The inequalities are sharp.

for X € [Ag,0),

The Fekete-Szego inequalities for functions in the class Co(a) for complex values
of A remain an open problem.

Acknowledgement: The authors thank the referee for careful reading of the
paper.
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