
ar
X

iv
:1

01
1.

38
87

v1
  [

m
at

h.
C

V
] 

 1
7 

N
ov

 2
01

0

ON THE FEKETE-SZEGÖ PROBLEM FOR CONCAVE
UNIVALENT FUNCTIONS

B. BHOWMIK, S. PONNUSAMY, AND K.-J. WIRTHS

Abstract. We consider the Fekete-Szegö problem with real parameter λ for the
class Co(α) of concave univalent functions.

1. Introduction

Let S denote the class of all univalent (analytic) functions

(1.1) f(z) = z +

∞
∑

n=2

anz
n

defined on the unit disk D = {z ∈ C : |z| < 1}. Then the classical Fekete-Szegö
inequality, presented by means of Loewner’s method, for the coefficients of f ∈ S is
that

|a3 − λa22| ≤ 1 + 2 exp(−2λ/(1− λ)) for λ ∈ [0, 1).

As λ → 1−, we have the elementary inequality |a3 − a22| ≤ 1. Moreover, the
coefficient functional

Λλ(f) = a3 − λa22

on the normalized analytic functions f in the unit disk D plays an important role
in function theory. For example, the quantity a3 − a22 represents Sf(0)/6, where Sf

denotes the Schwarzian derivative (f ′′/f ′)′−(f ′′/f ′)2/2 of locally univalent functions
f in D. In the literature, there exists a large number of results about inequalities
for Λλ(f) corresponding to various subclasses of S. The problem of maximizing the
absolute value of the functional Λλ(f) is called the Fekete-Szegö problem. In [8],
Koepf solved the Fekete-Szegö problem for close-to-convex functions and the largest
real number λ for which Λλ(f) is maximized by the Koebe function z/(1 − z)2 is
λ = 1/3, and later in [9] (see also [10]), this result was generalized for functions that
are close-to-convex of order β. In [12], Pfluger employed the variational method to
give another treatment of the Fekete-Szegö inequality which includes a description
of the image domains under extremal functions. Later, Pfluger [13] used Jenkin’s
method to show that

|Λλ(f)| ≤ 1 + 2| exp(−2λ/(1− λ))|, f ∈ S,
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holds for complex λ such that Re (1/(1 − λ)) ≥ 1. The inequality is sharp if and
only if λ is in a certain pear shaped subregion of the disk given by

λ = 1− (u+ itv)/(u2 + v2), 1 ≤ t ≤ 1,

where u = 1− log(cosφ) and v = tanφ− φ , 0 < φ < π/2.
In this paper, we solve the Fekete-Szegö problem for functions in the class Co(α)

of concave univalent functions, with real parameter λ.

2. Preliminaries

A function f : D → C is said to belong to the family Co(α) if f satisfies the
following conditions:

(i) f is analytic in D with the standard normalization f(0) = f ′(0)− 1 = 0. In
addition it satisfies f(1) = ∞.

(ii) f maps D conformally onto a set whose complement with respect to C is
convex.

(iii) the opening angle of f(D) at ∞ is less than or equal to πα, α ∈ (1, 2].

This class has been extensively studied in the recent years and for a detailed dis-
cussion about concave functions, we refer to [1, 2, 6] and the references therein. We
note that for f ∈ Co(α), α ∈ (1, 2], the closed set C\f(D) is convex and unbounded.
Also, we observe that Co(2) contains the classes Co(α), α ∈ (1, 2].

We recall the analytic characterization for functions in Co(α), α ∈ (1, 2]: f ∈
Co(α) if and only if RePf(z) > 0 in D, where

Pf (z) =
2

α− 1

[

(α + 1)

2

1 + z

1− z
− 1− z

f ′′(z)

f ′(z)

]

.

In [4], we have used this characterization and proved the following theorem which
will be used to prove our result.

Theorem A. Let α ∈ (1, 2]. A function f ∈ Co(α) if and only if there exists a

starlike function φ ∈ S∗ such that f(z) = Λφ(z), where

Λφ(z) =

∫ z

0

1

(1− t)α+1

(

t

φ(t)

)(α−1)/2

dt.

We also recall a lemma due to Koepf [8, Lemma 3].

Lemma A. Let g(z) = z+b2z+b3z
2+ · · · ∈ S∗. Then |b3−λb22| ≤ max {1, |3−4λ|}

which is sharp for the Koebe function k if |λ− 3/4| ≥ 1/4 and for (k(z2))1/2 = z
1−z2

if |λ− 3
4
| ≤ 1/4.

Here S∗ denote the family of functions g ∈ S that map D into domains that are
starlike with respect to the origin. Each g ∈ S∗ is characterized by the condition
Re (zg′(z)/g(z)) > 0 in D. Ma and Minda [11] presented the Fekete-Szegö problem
for more general classes through subordination, which includes the classes of starlike
and convex functions, respectively. In a recent paper, the authors in [5] obtained
a new method of solving the Fekete-Szegö problem for classes of close-to-convex
functions defined in terms of subordination.
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3. Main Result and its Proof

We recall from Theorem A that f ∈ Co(α) if and only if there exists a function
φ(z) = z +

∑

∞

n=2 φnz
n ∈ S∗ such that

(3.1) f ′(z) =
1

(1− z)α+1

(

z

φ(z)

)
α−1

2

,

where f has the form given by (1.1). Comparing the coefficients of z and z2 on the
both sides of the series expansion of (3.1), we obtain that

a2 =
α + 1

2
− α− 1

4
φ2, and

a3 =
(α + 1)(α+ 2)

6
− α2 − 1

6
φ2 −

α− 1

6
φ3 +

α2 − 1

24
φ2
2,

respectively. A computation yields,

a3 − λa22 =
(α + 1)2

4

(

2(α + 2)

3(α + 1)
− λ

)

+
α2 − 1

4

(

λ− 2

3

)

φ2

−α− 1

6

[

φ3 −
(

2(α + 1)− 3λ(α− 1)

8

)

φ2
2

]

.(3.2)

Case (1): Let λ ∈
(

−∞,
2(α− 3)

3(α− 1)

]

. We observe that the assumption on λ is seen

to be equivalent to

2(α + 1)− 3λ(α− 1)

8
≥ 1

and the first term in the last expression is nonnegative. Hence, using Lemma A for
the last term in (3.2), and noting that |φ2| ≤ 2, we have from the equality (3.2),

|a3 − λa22| ≤ (α + 1)2

4

(

2(α+ 2)

3(α+ 1)
− λ

)

+
α2 − 1

4

(

2

3
− λ

)

|φ2|

+
α− 1

6

∣

∣

∣

∣

φ3 −
(

2(α+ 1)− 3λ(α− 1)

8

)

φ2
2

∣

∣

∣

∣

≤ (α + 1)2

4

(

2(α+ 2)

3(α+ 1)
− λ

)

+
α2 − 1

2

(

2

3
− λ

)

+
α− 1

6

(

2(α+ 1)− 3λ(α− 1)

2
− 3

)

.

Thus, simplifying the right hand expression gives

(3.3) |a3 − λa22| ≤
2α2 + 1

3
− λα2, if λ ∈

(

−∞,
2(α− 3)

3(α− 1)

]

.

Case (2): Let λ ≥ 2(α+ 2)

3(α+ 1)
so that the first term in (3.2) is nonpositive. The

condition on λ in particular gives λ > 2/3 and therefore, our assumption on λ
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implies that
2(α+ 1)− 3λ(α− 1)

8
<

1

2
.

Again, it follows from Lemma A that
∣

∣

∣

∣

φ3 −
(

2(α + 1)− 3λ(α− 1)

8

)

φ2
2

∣

∣

∣

∣

≤ 3− 2(α+ 1)− 3λ(α− 1)

2
.

In view of these observations and an use of the inequality |φ2| ≤ 2, the equality (3.2)
gives

|a3 − λa22| ≤ −(α + 1)2

4

(

2(α + 2)

3(α + 1)
− λ

)

− α2 − 1

2

(

2

3
− λ

)

+
α− 1

6

(

3− 2(α + 1)− 3λ(α− 1)

2

)

.

Thus, simplifying the right hand expression gives

(3.4) |a3 − λa22| ≤ λα2 − 2α2 + 1

3
, if λ ≥ 2(α+ 2)

3(α+ 1)
.

The inequalities in both cases are sharp for the functions

f(z) =
1

2α

[(

1 + z

1− z

)α

− 1

]

.

Case (3): To get the complete solution of the Fekete-Szegö problem, we need to
consider the case

(3.5) λ ∈
(

2(α− 3)

3(α− 1)
,
2(α + 2)

3(α + 1)

)

.

Now, we deal with this case by using the formulas (3.1) and (3.2) together with the
representation formula for φ ∈ S∗:

zφ′(z)

φ(z)
=

1 + zω(z)

1− zω(z)
,

where ω : D → D is a function analytic in D with the Taylor series

ω(z) =
∞
∑

n=0

cnz
n.

Inserting the resulting formulas

φ2 = 2c0 and φ3 = c1 + 3c0
2

into (3.2) yields

a3 − λa22 =
(α + 1)2

4

(

2(α+ 2)

3(α+ 1)
− λ

)

+
α2 − 1

2

(

λ− 2

3

)

c0

−α − 1

6

[

c1 +
4− 2α + 3λ(α− 1)

2
c0

2

]

=: A+Bc0 + Cc20 +Dc1,
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where






































A =
(α + 1)(α+ 2)

6
− λ

(α + 1)2

4
,

B = (α2 − 1)

(

λ

2
− 1

3

)

,

C = −(α− 1) (4− 2α+ 3λ(α− 1))

12
,

D = −α − 1

6
.

It is well-known that |c0| ≤ 1 and |c1| ≤ 1− |c0|2. Using this we obtain,

|a3 − λa22| = |A+Bc0 + Cc20 +Dc1|(3.6)

≤ |A+Bc0 + Cc20|+ |D||c1|
≤ |A+Bc0 + Cc20|+ |D|(1− |c0|2).

Let c0 = reiθ. First we search for the maximum of |A+Bc0 +Cc0
2| where we fix

r and vary θ. To this end, we consider the expression

|A+Bc0 + Cc0
2|2

= |A+Breiθ + Cr2e2iθ|2

= (A− Cr2)2 +B2r2 + (2ABr + 2BCr3) cos θ + 4ACr2(cos θ)2

=: f(r, θ).

Afterwards, we have to find the biggest value of the maximum function, if r varies
in the interval (0,1].

We need to deal with several subcases of (3.5).

Case A: Let λ ∈
(

2(α−3)
3(α−1)

, 2(α−2)
3(α−1)

)

. We observe that C > 0, B < 0, and A+Cr2 > 0

for r ∈ [0, 1]. Hence the corresponding quadratic function

h(x) = (A− Cr2)2 +B2r2 + 2Br(A+ Cr2)x+ 4ACr2x2, x ∈ [−1, 1],

attains its maximum value for any r ∈ (0, 1] at x = −1. Therefore, our task is to
find the maximum value of

g(r) = A−Br + Cr2 +
α− 1

6
(1− r2).

The inequalities g′(0) = −B and

g′(1) = −B + 2C − α− 1

3
=

α− 1

6
(−6λ+ 4(α− 1)) > 0

for λ < 2(α−1)
3α

imply

g(r) ≤ g(1) = A−B + C =
2α2 + 1

3
− λα2.

Case B: If λ = 2(α−2)
3(α−1)

, then C = 0 and h is a linear function that has its maximum

value at x = −1. The considerations of Case A apply and again we get the maximum
value g(1) as above.
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Case C: Let λ ∈
(

2(α−2)
3(α−1)

, 2(α−1)
3α

)

. Firstly, we prove that in this interval the

quadratic function h is monotonic decreasing for x ∈ [−1, 1]. Since the function
h : R → R has its maximum at

x(r) =
−B(A + Cr2)

4ACr
=

−B

4

(

1

Cr
+

r

A

)

,

it is sufficient to show that x(r) is monotonic increasing and x(1) < −1. The first
assertion is trivial and the second one is equivalent to

j(λ) = α2(3λ− 2)2 − 4 + 3λ > 0

for the parameters λ in question. This inequality is easily proved. Hence, we get
the same upper bound as in Cases A and B. In conclusion, Cases A, B and C give,

(3.7) |a3 − λa22| ≤
2α2 + 1

3
− λα2, if λ ∈

(

2(α− 3)

3(α− 1)
,
2(α− 1)

3α

)

.

Case D: Let λ ∈
[

2(α−1)
3α

, 2
3

)

and we may factorize j(λ) as

j(λ) = 9α2(λ− λ1)(λ− λ2),

where

(3.8) λ1 =
4α2 − 1−

√
8α2 + 1

6α2
and λ2 =

4α2 − 1 +
√
8α2 + 1

6α2
.

We observe that λ2 > λ1. For λ ∈
[

2(α−1)
3α

, λ1

)

, the function h has its maximum

value at x = −1 and the function g has its maximum value at

rm =
−B

−2C + α−1
3

∈ (0, 1].

Hence, the maximum of the Fekete-Szegö functional is

g(rm) =
α(10− 9λ)− (3λ− 2)

9(2− λ) + 3α(3λ− 2)
.

For λ ∈
[

λ1,
2
3

)

, the number

r0 =
B

2C

(

1 +
√

1− B2

4AC

) ∈ (0, 1]

is the unique solution of x(r) = −1 in the interval (0, 1]. It is easily seen that
rm < r0 for λ < 2

3
. Further,

k(r) =
√

h(x(r)) +
α− 1

6
(1− r2) = (A− Cr2)

√

1− B2

4AC
+

α− 1

6
(1− r2)

is monotonic decreasing for r ≥ r0. Hence, the maximum value of |a3−λa22| is g(rm)
in this part of the interval in question, too. The extremal function maps D onto a
wedge shaped region with an opening angle at infinity less than πα and one finite
vertex as in Example 3.12 in [3].
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Case E: For λ = 2
3
, we have B = 0 and C = −α−1

6
. Hence the maximum is attained

for cos θ = 0 and any r ∈ (0, 1]. In all these cases, we get

|a3 − λa22| =
α

3

as the sharp upper bound. The extremal functions map D onto a region with an
opening angle at infinity equal to πα and two finite vertices as in Example 3.13 in
[3].

In conclusion, Cases D and E give,

(3.9) |a3 − λa22| ≤
α(10− 9λ)− (3λ− 2)

9(2− λ) + 3α(3λ− 2)
, if λ ∈

(

2(α− 1)

3α
,
2

3

]

.

Case F: Let λ ∈ (2
3
, λ2]. Since B > 0, the function x(r) is monotonic decreasing

now. The number

r1 =
B

−2C

(

1 +
√

1− B2

4AC

) ∈ (0, 1]

is the unique solution of the equation x(r) = 1 lying in (0,1]. For r < r1, we have
h(x) ≤ h(1). We consider the function

l(r) = A+Br + Cr2 +
α− 1

6
(1− r2)

and determine the maximum of this function to be attained at

rn =
B

−2C + α−1
3

.

It is easily proved that rn > r1. Since k(r) is monotonic increasing, we get the
maximum value of the Fekete-Szegö functional in this case as

k(1) = (A− C)

√

1− B2

4AC
= α(1− λ)

√

12(1− λ)

(4− 3λ)2 − α2(3λ− 2)2
,

which is attained for c0 = eiθ0 , where

cos θ0 =
−B(A + C)

4AC
.

In this case, the extremal function f is defined by the solution of the following
complex differential equation

f ′(z) =
(1− zeiθ0)α−1

(1− z)α+1
.

In conclusion, in this case, we have,

(3.10) |a3 − λa22| ≤ α(1− λ)

√

12(1− λ)

(4− 3λ)2 − α2(3λ− 2)2
, if λ ∈ (2/3, λ2].
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Case G: Let λ ∈
(

λ2,
2(α+2)
3(α+1)

)

. Since x(1) < −1 for these λ, the number

r2 =
B

−2C

(

1−
√

1− B2

4AC

)

satisfies x(r2) = −1 and r2 ∈ (0, 1). For r ≤ r2, we can make similar considerations
as in the preceding case, i.e. for r ≤ r1 the function l(r) takes the maximum value,
and for r ∈ (r1, r2], the function k(r) plays this role. For r > r2, the point x(r)
does not lie in the interval [−1, 1]. Hence, the maximum in question is attained for
x = −1 or x = 1. We see that A + C < 0 and −A − Cr2 > 0 for the values of λ
that we are considering now, the maximum of (3.6) is attained for x = −1, i.e. for
c0 = −r. Hence, for r ∈ (r2, 1] the maximum function is

n(r) = −A +Br − Cr2 +
α− 1

6
(1− r2).

Since

−C >
α− 1

6
and B > 0,

we get n(r) ≤ n(1) in the interval in question and hence

|a3 − λa22| ≤ n(1) = −A+B − C = λα2 − 2α2 + 1

3

whenever λ ∈
(

λ2,
2(α+2)
3(α+1)

)

.

Equations (3.3), (3.4), (3.7), (3.9), (3.10) and Case G give

Theorem. For α ∈ (1, 2], let f ∈ Co(α) have the expansion (1.1). Then, we have

∣

∣a3 − λa2
2
∣

∣ ≤















































2α2 + 1

3
− λα2 for λ ∈

(

−∞,
2(α− 1)

3α

]

α(10− 9λ)− (3λ− 2)

9(2− λ) + 3α(3λ− 2)
for

2(α− 1)

3α
≤ λ ≤ 2

3

α(1− λ)

√

12(1− λ)

(4− 3λ)2 − α2(3λ− 2)2
for

2

3
≤ λ ≤ λ2

λα2 − 2α2 + 1

3
for λ ∈ [λ2,∞) ,

where λ2 is given by (3.8). To emphasize the fact that the bound is a continuous

function of λ for any α we mention two different expressions for the same bound for

some values of λ. The inequalities are sharp.

The Fekete-Szegö inequalities for functions in the class Co(α) for complex values
of λ remain an open problem.

Acknowledgement: The authors thank the referee for careful reading of the
paper.
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8. W. Koepf: On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math.

Soc. 101(1987), 89–95.
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