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Lossy compression of discrete sources via

Viterbi algorithm
Shirin Jalali, Andrea Montanari and Tsachy Weissman

Abstract

We present a new lossy compressor for discrete-valued sources. For coding a sequencexn, the encoder starts

by assigning a certain cost to each possible reconstructionsequence. It then finds the one that minimizes this cost

and describes it losslessly to the decoder via a universal lossless compressor. The cost of each sequence is a linear

combination of its distance from the sequencex
n and a linear function of itskth order empirical distribution. The

structure of the cost function allows the encoder to employ the Viterbi algorithm to recover the minimizer of the

cost. We identify a choice of the coefficients comprising thelinear function of the empirical distribution used in

the cost function which ensures that the algorithm universally achieves the optimum rate-distortion performance

of any stationary ergodic source in the limit of largen, provided thatk diverges aso(log n). Iterative techniques

for approximating the coefficients, which alleviate the computational burden of finding the optimal coefficients, are

proposed and studied.

I. I NTRODUCTION

Consider the problem of universal lossy compression of stationary ergodic sources described as follows. Let

X = {Xi; ∀ i ∈ N
+} be a stochastic process and letX denote its alphabet which is assumed discrete and finite

throughout this paper. Consider a family of source codes{Cn}n≥1. Each codeCn in this family consists of an

encoderfn and a decodergn such that

fn : Xn → {0, 1}∗, (1)

and

gn : {0, 1}∗ → X̂n, (2)

whereX̂ denotes the reconstruction alphabet which also is assumed to be finite and in most cases is equal toX .

{0, 1}∗ denotes the set of all finite length binary sequences. The encoderfn maps each source blockXn to a binary

sequence of finite length, and the decodergn maps the coded bits back to the signal space asX̂n = gn(fn(X
n)). Let

ln(fn(X
n)) denote the length of the binary sequence assigned to sequenceXn by the encoderfn. The performance

of each code in this family is measured by the expected rate and the expected average distortion it induces. For a

given sourceX and coding schemeCn, the expected rateRn, and expected average distortionDn, of Cn in coding

the processX are defined as follows:

Rn = E[
1

n
ln(fn(X

n))], (3)
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and

Dn = E[dn(X
n, X̂n)] , E

[

1

n

n
∑

i=1

d(Xi, X̂i)

]

, (4)

whereX̂n = gn(fn(X
n)), andd : X × X̂ → R

+ is a per-letter distortion measure.

For a given process and any rateR ≥ 0, the minimum achievable distortion (cf. [1] for exact definition of

achievability) is characterized as [2], [3], [4]

D(R,X) = lim
n→∞

min
p(X̂n|Xn):I(Xn;X̂n)≤R

E[dn(X
n, X̂n)]. (5)

Similarly, for any distortionD > 0, defineR(D,X) to denote the minimum required rate for achieving distortion

D, i.e.,

R(D,X) = min
D(r,X)≤D

r.

Universal lossy compression codes are usually defined in theliterature in one of the following modes [5]:

I. Fixed-rate: A family of lossy compression codes{Cn} is called fixed-rate universal, if for every stationary

ergodic processX, Rn ≤ R, ∀n ≥ 1, and

lim sup
n

Dn = D(R,X).

II. Fixed-distortion: A family of lossy compression codes{Cn} is called fixed-distortion universal, if for every

stationary ergodic processX, Dn ≤ D, ∀n ≥ 1, and

lim sup
n

Rn = R(D,X).

III. Fixed-slope: A family of lossy compression codes{Cn} is called fixed-slope universal, if there existsα > 0,

such that for every stationary ergodic processX

lim sup
n

[Rn + αDn] = min
D≥0

[R(D,X) + αD].

Existence of universal lossy compression codes for all these paradigms has already been established in the

literature a long time ago [6], [7], [8], [9], [10], [11]. Theremaining challenging step is to design universal lossy

compression algorithms that are implementable and appealing from a practical viewpoint.

A. Related prior work

Unlike lossless compression, where there exists a number ofwell-known universal algorithms which are also

attractive from a practical perspective (cf. Lempel-Ziv algorithm [12] or arithmetic coding algorithm [13]), in lossy

compression, despite all the progress in recent years, no such algorithm is yet known. In this section, we briefly

review some of the related literature on universal lossy compression with the main emphasis on the progress towards

the design of practically appealing algorithms.

There have been different approaches towards designing universal lossy compression algorithms. Among them

the one with longest history is that of tuning the well-knownuniversal lossless compression algorithms to work
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for the lossy case as well. For instance, Cheung and Wei [14] extended the move-to-front transform to the case

where the reconstruction is not required to perfectly matchthe original sequence. One basic tool used in LZ-type

compression algorithms, is the idea of string-matching, and hence there have been many attempts to find optimal

approximate string-matching. Morita and Kobayashi [15] proposed a lossy version of LZW algorithm, and Steinberg

and Gutman [16] suggested a fixed-database lossy compression algorithms based on string-matching. Although the

extensions could all be implemented efficiently, they were later proved to be sub-optimal by Yang and Kieffer [17],

even for memoryless sources. Another related example, is the work by Luczak and Szpankowski which proposes

another suboptimal compression algorithm which again usesthe ideas of approximate pattern matching [18]. For

some other related work see [19] [20][21].

Another well-studied approach to lossy compression is Trellis coded quantization [22] and more generally vector

quantization (c.f. [23], [24] and the references therein).Codes of this type are usually designed for a given

distributions encountered in a specific application. For example, such codes are used in image compression (JPEG)

or video compression (MPEG). Nevertheless, there have beenattempts at extending such codes to more general

settings. For instance Kasner, Marcellin, and Hunt proposed universal Trellis coded quantization which is used in

the JPEG2000 standard [25].

There has been a lot of progress in recent years in designingnon-universal lossy compression algorithms of

discrete memoryless sources. Some examples of the recent work in this area are as follows. Wainwright and

Maneva [26] proposed a lossy compression algorithm based onmessage-passing ideas. The effectiveness of the

scheme was shown by simulations. Gupta and Verdú proposed an algorithm based on non-linear sparse-graph codes

[27]. Another algorithm with near linear complexity is suggested by Gupta, Verdú and Weissman in [28]. The

algorithm is based on a ‘divide and conquer’ strategy. It breaks the source sequence into sub-blocks and codes the

subsequences separately using a random codebook. Finally,the capacity-achieving polar codes proposed by Arikan

[29] for channel coding are shown to be optimal for lossy compression of binary-symmetric memoryless sources

in [30].

The idea of fixed-slope universal lossy compression was firstsuggested by Yang, Zhang and Berger in [5]. They

proposed a generic fixed-slope universal algorithm which leads to specific coding algorithms based on different

universal lossless compression algorithms. Although the constructed algorithms are all universal, they involve

computationally demanding minimizations, and hence are impractical. In [5], the authors considered lowering the

search complexity by choosing appropriate lossless codes which allow to replace the required exhaustive search by

a low-complexity sequential search scheme that approximates the solution of the required minimization. However,

these schemes only find an approximation of the optimal solution.

In a recent work [31], a new implementable algorithm for fixed-slope lossy compression of discrete sources was

proposed. Although the algorithm involves a minimization which resembles a specific realization of the generic cost

proposed in [5], it is somewhat different. The reason is thatthe cost used in [31] cannot be derived directly from

a lossless compression algorithm. The advantage of the new cost function is that it lends itself to rather naturally

Gibbs simulated annealing in that the computational effortinvolved in each iteration is modest. It was shown that
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using a universal lossless compressor to describe the reconstruction sequence found by the annealing process to the

decoder results in a scheme which is universal in the limit ofmany iterations and large block length. The drawback

of the proposed scheme is that although its computational complexity per iteration is independent of the block

lengthn and linear in a parameterkn = o(log n), there is no useful bound on the number of iterations required for

convergence.

In this paper, motivated by the algorithm proposed in [31], we propose another approach to fixed-slope lossy

compression of discrete sources. We start by making a linearapproximation of the cost used in [31]. The cost

assigned to each possible reconstruction sequence consists of a linear combination of two terms: a linear function

of its empirical distribution plus its distance to (distortion from) the source sequence. We show that there exists

proper coefficients such that minimizing the linearized cost function results in the same performance as would

minimizing the original cost. The advantage of the modified cost is that its minimizer can be found simply using

the Viterbi algorithm.

B. Organization of this paper

The organization of the paper is as follows. In Section II, the count matrix of a sequence and its empirical

conditional entropy is introduced and some of their properties are studied. Section III reviews the fixed-slope

universal lossy compression algorithm used in [31]. Section IV describes a new coding scheme for fixed-slope

lossy compression derived by replacing part of the cost usedin the mentioned exhaustive-search algorithm by a

linear function. We prove that using appropriate coefficients for the linear function, the performance of the two

algorithms remains the same. In Section V, a method for approximating these optimal coefficients is presented.

This method, along with the result of the previous section, gives rise to a fixed-slope universal lossy compression

algorithm that achieves the rate-distortion performance for any discrete stationary ergodic source. The advantage of

this modified cost is discussed in Section VI where we show that the minimizer of the new cost can be found using

the Viterbi algorithm. The method introduced for approximating the coefficients is computationally demanding, and

hence is impractical. Therefore, in Section VII, we discussa low-complexity iterative detour for approximating

the coefficients. Section VIII presents some simulations results and, finally, Section IX concludes the paper with a

discussion of some future directions.

II. CONDITIONAL EMPIRICAL ENTROPY AND ITS PROPERTIES

For any yn ∈ Yn, let the |Y| × |Y|k matrix m(yn) denote its(k + 1)th order empirical distribution1. For

b = (b1, . . . , bk) ∈ Yk, andβ ∈ Y, the element in theβth row and thebth column of the matrixm, mβ,b, is

defined as

mβ,b(y
n) ,

1

n− k

∣

∣

{

k + 1 ≤ i ≤ n : yi−1
i−k = b, yi = β]

}∣

∣ . (6)

1For any setA, |A| denotes its size.
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Based on the distribution induced bym(yn), define thekth order conditional empirical entropy ofyn, Hk(y
n),

as

Hk(y
n) , H(Zk+1|Z

k), (7)

whereZk+1 is assumed to be distributed according tom, i.e.,

P
(

Zk+1 = [b1, . . . , bk, β] = [b, β]
)

= mβ,b(y
n). (8)

For a vectorv = (v1, . . . , vℓ)
T with non-negative components, we letH(v) denote the entropy of the random

variable whose probability mass function (pmf) is proportional tov. Formally,

H(v) =











ℓ
∑

i=1

vi
‖v‖1

log ‖v‖1

vi
if v 6= (0, . . . , 0)T

0 if v = (0, . . . , 0)T ,

(9)

where0 log(0) = 0 by convention. With this notation, the conditional empirical entropyHk(y
n) defined in (7) is

readily seen to be expressible in terms ofm(yn) as

Hk(y
n) , H(m(yn)) ,

∑

b

H (m·,b)
∑

β∈Y

mβ,b, (10)

wherem·,b denotes the column ofm indexed byb.

Remark 1: Note thatHk(·) has a discrete domain, while the domain ofH(·) is continuous and consists of all

|Y| × |Y|k matrices with positive real entries adding up to one. In other words,

Hk : Yn → [0, 1], (11)

but

H : [0, 1]|Y| × [0, 1]|Y|k → [0, 1]. (12)

Conditional empirical entropy of sequences,Hk(·), plays key role in our results. Hence, in the following two

subsections, we focus on this function, and study some of itsproperties.

A. Concavity

We prove that like the standard entropy function, conditional empirical entropy is also a concave function. By

definition

H(m) =
∑

b∈Yk

(
∑

β∈Y

mβ,b)H(m·,b), (13)

whereH(·) is defined in (9). We need to show that for anyθ ∈ [0, 1], and matricesm(1) andm(2) with non-negative

components adding up to one,

θH(m(1)) + θ̄H(m(2)) ≤ H(θm(1) + θ̄m(2)), (14)
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whereθ̄ = 1− θ. From the concavity of entropy functionH, it follows that

θ(
∑

β∈Y

m
(1)
β,b)H(m

(1)
·,b) + θ̄(

∑

β∈Y

m
(2)
β,b)H(m

(2)
·,b)

= (θ(
∑

β∈Y

m
(1)
β,b) + θ̄(

∑

β∈Y

m
(2)
β,b))

∑

i∈{1,2}

θi(
∑

β∈Y m
(i)
β,b)

(θ(
∑

β∈Y m
(1)
β,b) + θ̄(

∑

β∈Y m
(2)
β,b))

H(m
(i)
·,b)

≤ (θ(
∑

β∈Y

m
(1)
β,b) + θ̄(

∑

β∈Y

m
(2)
β,b))H(θm

(1)
·,b + θ̄m

(2)
·,b), (15)

whereθ1 , 1− θ2 , θ. Summing up both sides of (15) over allb ∈ Yk yields the desired result.

B. Stationarity condition

Let p(yk+1) be a given pmf defined onYk+1. Under what condition(s) does there exist a a stationary process

with its (k + 1)th order distribution equal top?

Lemma 1: The necessary and sufficient condition for{p(yk+1)}yk+1∈Yk+1 to represent the(k + 1)th order

marginal distribution of a stationary process is
∑

β∈Y

p(β, yk) =
∑

β∈Y

p(yk, β), ∀ yk ∈ Yk. (16)

Proof:

i. Necessity: The necessity of (16) is just a direct result ofthe stationarity of the process. Ifp(yk+1) is to represent

the (k + 1)th order marginal distribution of a stationary processY = {Yi}, then it should be consistent with

the kth order marginal distribution. Hence, (16) should hold.

ii. Sufficiency: In order to prove the sufficiency, we assume that (16) holds, and build a stationary process with

(k + 1)th order marginal distribution equal top(yk+1). Let Y = {Yi}i be a Markov chain of orderk whose

transition probabilities are defined as

P(Yk+1 = yk+1|Y
k = yk) , q(yk+1|y

k) ,
p(yk+1)

p(yk)
, (17)

where

p(yk) ,
∑

β∈Y

p(β, yk) =
∑

β∈Y

p(yk, β).

Now, given (16), it is easy to check thatp(yk+1) is the (k + 1)th order stationary distribution of the defined

Markov chain. Therefore,Y is a stationary process with the desired marginal distribution.

Throughout the paper, we refer to the condition stated in (16) as thestationarity condition.

Corollary 1: For any|Y| × |Y|k matrix m corresponding to the(k + 1)th order empirical distribution of some

yn ∈ Yn, there exists a stationary process whose marginal distribution coincides withm.

Proof: From Lemma 1, we only need to show that (16) holds, i.e.,
∑

β∈Y

mβ,b =
∑

β∈Y

mbk,[β,b1...,bk−1], ∀ b ∈ Yk, (18)

which obviously holds because both sides of (18) are equal to|{i : yi+k
i+1 = b}|/(n− k).
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III. E XHAUSTIVE SEARCH ALGORITHM

Consider the following lossy source coding algorithm. Given α > 0, for encoding sequencexn ∈ Xn, find

x̂n = argmin
yn∈X̂n

[Hk(y
n) + αdn(x

n, yn)], (19)

and describêxn using the Lempel-Ziv coding algorithm. As proved before [5], [31], the described algorithm is a

universal lossy compression algorithm. That is, for any stationary ergodic sourceX,

1

n
ℓLZ(X̂

n) + αdn(X
n, X̂n) → min[R(D,X) + αD], a.s., (20)

whereXn is generated by the sourceX, andX̂n denotes the minimizer of (19) for the inputXn. HereℓLZ denotes

the length of the codeword assigned tôXn by the Lempel-Ziv algorithm [12]. Clearly, given the size ofthe search

space, this is not an implementable algorithm. An approach for approximating the solution of (19) using Markov

chain Monte Carlo methods has been suggested in [31]. One problem with the MCMC-based algorithms is that no

useful bound is yet known on the required number of iterations. Moreover, the performance of the algorithm depends

on the cooling process chosen. There exist cooling schedules with guaranteed convergence, but they are very slow,

and usually not used in practice. On the other hand, if we use faster cooling processes, there is a risk of getting

stuck in a local minima and missing the optimum solution. Thegoal of this paper is to propose a new approach for

approximating the solution of (19). This new approach, as weshow later, suggests a new implementable algorithm

for lossy compression. The main idea here is using linear approximation of the conditional entropy function,H(m),

at some pointm0, and proving that ifm0 is chosen correctly, then while we have reduced the exhaustive search

algorithm to the Viterbi algorithm, we have not changed its performance.

IV. L INEARIZED COST FUNCTION

Consider the problems (P1) and (P2) described by (21) and (22) respectively, where (P1) corresponds to the

optimization required by the exhaustive search lossy compression scheme described in (19), and (P2) involves a

similar optimization problem. The difference between (P1)and (P2) is that the term corresponding to conditional

empirical entropy in (P1), which is a highly non-linear function of m, is replaced by a linear function ofm.

(P1) : min
yn

[H(m(yn)) + αdn(x
n, yn)] , (21)

and

(P2) : min
yn





∑

β

∑

b

λβ,bmβ,b(y
n) + αdn(x

n, yn)



 , (22)

where{λβ,b}β,b are a set of real-valued coefficients. In this section we are interested in answering the following

question:

Is it possible to choose the set of coefficients{λβ,b}β,b, β ∈ X̂ andb ∈ X̂ k, such that (P1) and (P2) have the

same set of minimizers, or at least the set of minimizers of (P2) is a subset of the minimizers of (P1)?

The reason we are interested in answering this question is that if the answer is affirmative, then instead of solving

(P1) one can solve (P2), which we describe in Section VI can bedone efficiently via the Viterbi algorithm.
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Let S1 and S2 denote the set of minimizers of (P1) and (P2) respectively. Consider somezn ∈ S1, and let

m
∗
n = m(zn), and let the coefficients used in (P2)

λβ,b =
∂

∂mβ,b
H(m)

∣

∣

∣

∣

m∗
n

= log(

∑

β′ m∗
β′,b

m∗
β,b

). (23)

Theorem 1: If the coefficients used in (P2) are chosen according to (23),then the minimum values of (P1) and

(P2) will be the same. Moreover,

S2 ⊂ S1

and contains all the sequenceswn ∈ S1 with m(wn) = m
∗
n.

Proof: Since, as proved earlier,H(m) is concave inm, for any empirical count matrixm, we have

H(m) ≤ H(m∗) +
∑

β,b

∂

∂mβ,b
H(m)

∣

∣

∣

∣

m∗
n

(mβ,b −m∗
β,b) (24)

= H(m∗) +
∑

β,b

λβ,b(mβ,b −m∗
β,b) (25)

, Ĥ(m). (26)

Adding a constant to the both sides of (26), we conclude that for anyyn ∈ X̂n,

H(m(yn)) + αdn(x
n, yn) ≤ Ĥ(m(yn)) + αdn(x

n, yn). (27)

Taking the minimum of both sides of (27) yields

min
yn

[H(m(yn)) + αdn(x
n, yn)] ≤ min

yn
[Ĥ(m(yn)) + αdn(x

n, yn)] (28)

≤ Ĥ(m(zn)) + αdn(x
n, zn) (29)

= H(m(zn)) + αdn(x
n, zn) (30)

= min
yn

[H(m(yn)) + αdn(x
n, yn)], (31)

becausezn ∈ S1. Therefore,

min
yn

[H(m(yn)) + αdn(x
n, yn)] = min

yn
[Ĥ(m(yn)) + αdn(x

n, yn)], (32)

i.e., (P1) and (P2) have the same minimum values.

For any sequencewn with m(wn) 6= m
∗
n, by strict concavity ofH(m),

Ĥ(m(wn)) + αdn(x
n, wn) > H(m(wn)) + αdn(x

n, wn), (33)

≥ min
yn

[Hk(y
n) + αdn(x

n, yn)]. (34)

Hence, the empirical count matrices of all the sequences inS2, i.e., all the minimizers of (P2) for the selected

coefficients, are equal tom∗
n.
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Let wn ∈ S2. We prove thatwn ∈ S1 as well. As we just proved,m(wn) = m(zn) = m
∗
n. Moreover, since

both zn andwn belong toS2,

min
yn

[Ĥ(m(yn)) + αdn(x
n, yn)] = Ĥ(m(wn)) + αdn(x

n, wn)

= Ĥ(m(zn)) + αdn(x
n, zn). (35)

Therefore,dn(xn, wn) = dn(x
n, zn), and consequently,

Hk(w
n) + αdn(w

n, xn) = Hk(z
n) + αdn(z

n, xn),

= min
yn

[Hk(y
n) + αdn(y

n, xn)], (36)

which proves thatwn ∈ S1, and concludes the proof.

Theorem 1 states that if the optimal typem∗
n is known, then the desired coefficients can be computed according

to (23), and solving (P2) instead of (P1) using the computed coefficients finds a minimizer of (P1). In Section VI,

we describe how (P2) can be solved efficiently using Viterbi algorithm for a given set of coefficients. The problem

of course is that the optimal typem∗
n required for computing the desired coefficients is not knownto the encoder

(since knowledge ofm∗
n seems to require solving (P1) which is the problem we are trying to avoid). In Section

V, we introduce another optimization problem whose solution is a good approximation ofm∗
n, and hence of the

desired coefficients{λβ,b} when substituting in (23).

V. COMPUTING THE COEFFICIENTS

As mentioned in the previous section, there exists a set of coefficients for which (P1) and (P2) have the same

value. However, computing the desired coefficients requires the knowledge ofm∗
n which is not available without

solving (P1). In order to alleviate this issue, in this section we introduce another optimization problem that gives

an asymptotically tight approximation ofm∗
n, and therefore a reasonable approximation of the set of coefficients.

For a given sequencexn and a given orderk, letM(k) = M(k)(xn) be the set of all jointly stationary probability

distributions on(Xk, X̂k) (in the sense of Lemma 1) such that their marginal distributions with respect toX

coincides with thekth order empirical distribution induced byxn defined as follows

p̂
(k)
[xn](a

k) ,
|{k + 1 ≤ i ≤ n : (xi−k, . . . , xi−1) = ak}|

n− k
,

=
1

n− k

n
∑

i=k+1

1xi−1
i−k

=ak , (37)

whereak ∈ X k. More specifically a distributionp(k) in M(k) should satisfy the following two constraints:

1) Stationarity condition: as described in Section II-B, for any ak−1 ∈ X k−1 andbk−1 ∈ X̂ k−1,
∑

ak∈X ,bk∈X̂

p(k)(ak, bk) =
∑

ak∈X ,bk∈X̂

p(k)(aka
k−1, bkb

k−1). (38)

2) Consistency: for eachak ∈ X k,
∑

bk∈X̂ k

p(k)(ak, bk) = p̂
(k)
[xn](a

k). (39)
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For givenxn, k andℓ > k, consider the following optimization problem

min H(X̂k+1|X̂
k) + αE d(X1, X̂1)

s.t. (Xℓ, X̂ℓ) ∼ p(ℓ)

p(ℓ) ∈ M(ℓ). (40)

Remark 2: Note that the rate-distortion function of a stationary ergodic processX has the following representation

[32]:

R(D,X) = inf{H̄(X̂) : (X, X̂) jointly stationry and ergodic, and E d(X0, X̂0) ≤ D},

= inf
k≥1

inf{H(X̂k+1|X̂
k) : (X, X̂) jointly stationary and ergodic, and E d(X0, X̂0) ≤ D}, (41)

whereH̄(X̂) denotes the entropy rate of the stationary ergodic processX̂, i.e.,

H̄(X̂) , lim
n→∞

H(X̂n+1|X̂
n). (42)

This representation gives the motivating intuition behindthe optimization described in (40). It shows that (40)

is basically performing the search required by (41).

Using the properties of the setM(ℓ), and the definition of conditional empirical entropy, (40) can be written

more explicitly as

min H(m) + α
∑

a∈X ,b∈X̂

d(a, b)q(a, b)

s.t. 0 ≤ p(ℓ)(aℓ, bℓ) ≤ 1, ∀ αℓ ∈ X ℓ, bℓ ∈ X̂ ℓ,

∑

aℓ,bℓ

p(ℓ)(aℓ, bℓ) = 1, ∀ aℓ ∈ X ℓ, bℓ ∈ X̂ ℓ,

∑

aℓ∈X ,bℓ∈X̂

p(ℓ)(aℓ, bℓ) =
∑

aℓ∈X ,bℓ∈X̂

p(ℓ)(aℓa
ℓ−1, bkb

ℓ−1),

∀ aℓ−1 ∈ X ℓ−1, bℓ−1 ∈ X̂ ℓ−1,

∑

bℓ∈X̂ ℓ

p(ℓ)(aℓ, bℓ) = p̂
(ℓ)
[xn](a

ℓ) ∀ aℓ ∈ X ℓ,

q(a, b) =
∑

aℓ−1∈X ℓ−1,bℓ−1∈X̂ ℓ−1

p(ℓ)(aaℓ−1, bbℓ−1)

mβ,b =
∑

aℓ∈X ℓ,bℓ−k∈X̂ ℓ−k

p(ℓ)(aℓ,bβbℓ−k), ∀ β,b. (43)

Note that the optimization in (43) is done over the joint distributionsp(ℓ) of (Xℓ, X̂ℓ). Let P̂∗
n denote the set of

minimizers of (43), and̂S∗
n be their(k+1)th order marginalized versions with respect tôX. Let {λ̂β,b}β,b be the

coefficients evaluated at somêm∗
n ∈ Ŝ∗

n using (23). LetX be a stationary ergodic source, andR(X, D) denote its

rate distortion function. Finally, let̂Xn be the reconstruction sequence obtained by solving (P2) (recall (22)) at the

evaluated coefficients.

November 17, 2010 DRAFT



11

Theorem 2: If k = kn = o(log n), ℓ = ℓn = o(n1/4) andk = o(ℓ) such thatkn, ℓn → ∞, asn → ∞, then for

any stationary ergodic source

Hk(X̂
n) + αdn(X

n, X̂n)
n→∞
−→ min

D≥0
[R(X, D) + αD] , a.s. (44)

The proof of Theorem 2 is presented in Appendix A.

Remark 3: Theorem 2 implies the fixed-slope universality of the schemewhich does the lossless compression

of the reconstruction by first describing its count matrix (costing a number of bits which is negligible for large n)

and then doing the conditional entropy coding.

Remark 4: Note that all the constraints in (43) are linear, and the costis a concave function. Hence, overall, we

have a concave minimization problem (of dimension|X |ℓ|X̂ |ℓ + |X̂ |k+1 + |X ||X̂ |). aaa

VI. V ITERBI CODER

In this section, we show how, for a given set of coefficients,{λb,β}, (P2) can be solved efficiently via the Viterbi

algorithm [33], [34].

Note that the linearized cost used in (P2) can also be writtenas

∑

b∈X̂ k

β∈X̂

[λβ,bmβ,b(y
n) + αdn(x

n, yn)] =
1

n

n
∑

i=1

[

λyi,y
i−1
i−k

+ αd(xi, yi)
]

. (45)

The advantage of this alternative representation is that, as we will describe, instead of using simulated annealing,

we can find the sequence that exactly minimizes (45) via the Viterbi algorithm, which is a dynamic programming

optimization method for finding the path of minimum weight ina Trellis diagram efficiently. Fori = k+1, . . . , n,

let

si , yii−k (46)

to be the state at timei, and defineS to be the set of all|X̂ |k+1 possible states. From this definition, the state at

time i, si, is determined by the state at timei− 1, si−1, andyi. In other words,si = g(si−1, yi), for some

g : S × X̂ → S.

This representation leads to a Trellis diagram corresponding to the evolution of the states{si}ni=k+1 in which each

state has|X̂ | states leading to it and|X̂ | states branching from it. To the edgee = (s′, s) connecting statess′ and

s = bk+1 at stagei, we assign the weightwi(e) defined as

wi(e) := λbk+1,bk + αd(xi, bk+1). (47)

In this representation, there is a 1-to-1 correspondence between sequencesyn ∈ X̂n, and sequences of states

{si}
n
i=k+1, and minimizing (45) is equivalent to finding the path of minimum weight in the corresponding Trellis

diagram, i.e., the path{si}ni=k+1 that minimizes
∑n

i=k+1 wi(ei), whereei = (si−1, si). Solving this minimization
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can readily be done by the Viterbi algorithm which can be described as follows. For each states, let L(s) be the

|X̂ | states leading to it, and for anyi > 1, define

Ci(s) := min
s′∈L(s)

[wi((s
′, s)) + Ci−1(s

′)]. (48)

For i = 1 and s = bk+1, let C1(s) := λbk+1,bk + αdk+1(x
k+1, bk+1). Using this procedure, each states at each

time j has a path of lengthj − k − 1 which is the minimum path among all the possible paths between the states

from time i = k + 1 to i = j such thatsj = s. After computing{Ci(s)} for all s ∈ S and all i ∈ {k + 1, . . . , n},

at time i = n, let

s∗ = argmin
s∈S

Cn(s). (49)

It is not hard to see that the path leading tos∗ is the path of minimum weight among all possible paths.

Note that the computational complexity of this procedure islinear inn but exponential ink because the number

of states increases exponentially withk. Therefore, given the coefficients{λb,β}, solving (P2) is straightforward

using the Viterbi algorithm. The problem is finding an approximation of the optimal coefficients. The procedure

outlined in Section IV for finding the coefficients involves solving a concave minimization problem of dimension

that becomes intractable even for moderate values ofn. To bypass this process, an alternative heuristic method

is proposed in the next section. The effectiveness of this approach is discussed in the next section through some

simulations.

VII. A PPROXIMATING THE OPTIMAL COEFFICIENTS

As we discussed in Section IV, having known the optimal coefficients, solving (P2) which can be done using

the Viterbi algorithm is equivalent to solving (P1) which has exponential complexity inn. However, the problem

is finding such desired coefficients. In Section V, it was proposed that for finding a good approximation of these

coefficients, one method is to solve (43) and findm̂
∗. Then an approximation of the coefficients{λβ,b} can be

made via (23) by evaluating the partial derivatives ofH(m) at m̂∗. But solving (43) requires solving a concave

minimization problem of dimension which is demanding for even moderate values ofn. Therefore, in this section,

we consider a detour with moderate computational complexity.

First, assume that the desired distortion is small, or equivalently α is large. In that case, the distance between

the original sequencexn and its quantized version̂xn should be small. Therefore, their types, i.e., their(k + 1)th

order empirical distributions, are close. Hence, the coefficients computed based onm(xn) provide a reasonable

approximation of the coefficients derived fromm∗. This implies that if our desired distortion is small, one possibility

is to compute the type of the input sequence, and evaluate thecoefficients atm(xn).

In the case where the desired distortion is not very small, wecan use an iterative approach as follows. Start with

m(xn). Compute the coefficients from (23) atm(xn). Employ Viterbi algorithm to solve (P2) at the computed

coefficients. Letx̂n denote the output sequence. Computem(x̂n), and recalculate the coefficients using (23) at

m(x̂n). Again, use Viterbi algorithm to solve (P2) at the updated coefficients. Iterate.
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For a conditional empirical distribution matrixm, define its coefficient matrix asΛ(m), whereλβ,b is defined

as (23). For two matricesA andB of the same dimensions, define the scalar product ofA andB as

A⊙B ,
∑

i,j

Ai,jBi,j .

Now succinctly, the iterative approach can be described as follows. Fort = 0, let yn,(0) = xn. For t = 1, 2, . . .

Λ(t) = Λ(m(yn,(t−1))),

yn,(t) = argmin
zn∈X̂n

[Λ(t) ⊙m(zn) + αd(xn, zn)].

Stop as soon asyn,(t) = yn,(t−1).

For a given sequencexn, and slopeα, assign to each sequenceyn ∈ X̂n the energy

E(yn) = Hk(y
n) + αd(xn, yn). (50)

As mentioned before, the goal is to find the sequence with minimum energy. Theorem 3 below gives some

justification on how the described approach serves this purpose. It shows that, through the iterations, the energy

level of the output is decreasing at each step. Moreover, since the number of energy levels is finite, it proves that

the algorithm converges in a finite number of iterations.

Theorem 3: For the described iterative algorithm, at eacht ≥ 1,

E(yn,(t+1)) ≤ E(yn,(t)). (51)

Proof: For the ease of notations, letx̂n = yn,(t), m̂ = m(x̂n), and Λ̂ = Λ(m̂). Similarly, let x̃n = yn,(t+1),

m̃ = m(x̃n), andΛ̃ = Λ(m̃). From the concavity ofH(m) in m,

H(m̃) ≤ H(m̂) + Λ̂⊙ (m̃ − m̂), (52)

whereA⊙B with A andB two matrices of the same dimensions is equal to
∑

i,j

ai,jbi,j . On the other hand

Λ̂⊙ m̂ =
∑

β,b

λ̂β,bm̂β,b

=
∑

β,b

m̂β,b log







∑

β′∈X

m̂β′,b

m̂β,b






(53)

= H(m̂). (54)

Therefore, combining (52) and (53) yields

H(m̃) ≤ Λ̂ ⊙ m̃. (55)

Adding a constant term to the both sides of (56), we get

E(x̃n) = H(m̃) + αd(xn, x̃n) ≤ Λ̂⊙ m̃+ αd(xn, x̃n). (56)
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But, sincex̃n is assumed to be a minimizer of (P2) for the computed coefficients,

Λ̂⊙ m̃+ αd(xn, x̃n) ≤ Λ̂⊙ m̂+ αd(xn, x̂n)

= H(m̂) + αd(xn, x̂n)

= E(x̂n) (57)

Therefore, combining (56) and (57) yields the desired result, i.e.,

E(x̃n) ≤ E(x̂n). (58)

Remark 5: In the described iterative algorithm, for any slopeα, we assumed that the algorithm starts atyn,(0) =

xn. However, as mentioned earlier, only for large values ofα, m(xn) provides a reasonable approximation of the

desired typem∗
n. Hence, in order to address this issue, we can slightly modify the algorithm as follows. The idea

is that instead of starting atyn,(0) = xn for all values ofα, we can gradually decrease the slope to our desired

value, and use the final output of each step as the initial point for the next step. More explicitly, for any givenα0,

start from some large slope,αmax, (corresponding to very low distortion). Run the previous iterative algorithm and

find x̂n(αmax). Pick some integerNα, and define

∆α ,
αmax − α0

Nα
.

Again run the iterative algorithm, but this time atα = αmax −∆α. Now, instead of starting fromyn,(0) = xn,

initialize yn,(0) = x̂n(αmax). Repeat this processNα times. I.e, At therth step,r = 1, . . . , Nα, run the algorithm

at α = αmax − r∆α, and initializeyn,(0) = x̂n(αmax − (r − 1)∆α). At the final stepα = α0, and we have a

reasonable quantized version ofxn for initialization.aaa

To gain further insight on(P2), for the coefficients matrixΛ = {λβ,b}β,b, define

φ(Λ) = min
yn∈X̂n





∑

β,b

λβ,bmβ,b(y
n) + αdn(x

n, yn)





= min
yn∈X̂n

[Λ⊙m(yn) + αdn(x
n, yn)] . (59)

Sinceφ(Λ) is the minimum of multiple affine functions ofΛ, it is a concave function. To each sequenceyn ∈ X̂n,

assign a coefficient matrixΛ = [λβ,b] as

λβ,b =
∂H(m)

∂mβ,b

∣

∣

∣

∣

m(yn)

. (60)

Let Ld be the set of all such coefficient matrices. Similarly to eachpossible conditional distribution matrixm

on X̂ k+1 which satisfies the stationarity condition defined in Section II-B, assign a coefficients matrixΛ defined

according to (60). LetLc be the set of coefficient matrices calculated at(k+ 1)th orderstationary distributions on

X̂ k+1. Note that whileLd is a discrete set (consisting of no more than|Y|n elements),Lc is continuous.
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For a sequencexn, let

x̂n = argmin
yn∈X̂n

E(yn),

and

Λ∗ , Λ(x̂n).

Note thatΛ∗ is the optimal coefficients matrix required for replacing (P1) with (P2).

Lemma 2:

Λ∗ = argmin
Λ∈Ld

φ(Λ). (61)

Proof: As shown before,

f(Λ̂) = E(x̂n). (62)

On the other hand, if̃xn is the minimizer of
∑

β,b

λβ,bmβ,b(y
n) + αdn(x

n, yn) for someΛ ∈ Ld, then, as shown

in the proof of Theorem 3,

H(m̃) ≤ Λ ⊙ m̃. (63)

Therefore, addingd(xn, x̃n) to both sides of (63) yields

E(x̃n) ≤ φ(Λ). (64)

But, by assumption,

E(x̂n) ≤ E(x̃n). (65)

Combining (62), (64) and (65) yields the desired result.

Remark 6: Note that

min
Λ∈Lc

min
yn





∑

β,b

λβ,bmβ,b(y
n) + αdn(x

n, yn)





= min
yn



min
Λ∈Lc





∑

β,b

λβ,bmβ,b(y
n)



 + αdn(x
n, yn)



 . (66)

But H(m(yn)) ≤
∑

β,b

λβ,bmβ,b(y
n), for anyΛ ∈ Lc, and the lower bound is achieved atΛ(yn). Therefore,

min
Λ∈Lc

min
yn





∑

β,b

λβ,bmβ,b(y
n) + αdn(x

n, yn)



 = min
yn

(Hk(y
n) + αd(xn, yn)). (67)

Hence, we can replaceLd by Lc in (61), and still get the same result. This transform converts the discrete

optimization stated in (61), which can be solved by exhaustive search, to an optimization over a continuous function

of relativley low dimentions.
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Fig. 1. Average performance of the iterative Viterbi-basedlossy coder applied to an i.i.d.Bern(0.5) source. (n = 104 , k = 8, α =

(3, 2.9, . . . , 0.1), andL = 50)

VIII. S IMULATION RESULTS

As the first example, consider an i.i.d.Bern(p) source withp = 0.5. Fig. 1 shows the performance of the iterative

algorithm described in Section VII slightly modified, as suggested in Remark 5. The simulations parameters are

as follows:n = 104, k = 8, andα = (3, 2.9, . . . , 0.1). Each point corresponds to the average performance over

L = 50 independent source realizations. As mentioned in Section VII, the iterative algorithm continues until there

is no decrease in the cost. Fig. 2 shows the average, minimum and maximum number of required iterations before

convergence versusα. Again, the number of trials areL = 50. It can be observed that the number of iterations in

this case is always below60, which, given the size of the search space, i.e,2n, shows fast convergence.

The next example involves a binary symmetric Markov source (BSMS) with transition probabilityq = 0.2. Fig. 3

compares the average performance of the Viterbi encoder against upper and lower bounds onR(D) [35]. The reason

for only comparing the performance of the algorithm againstbounds onR(D) in this case is that the rate-distortion

function of a Markov source is not known, except for a low-distortion region. For low distortions, the Shannon

lower bound is tight [36]. More explicitly, forD ≤ Dc ≈ 0.0159,

R(D) = Hb(q)−Hb(D),
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Fig. 2. From top to bottom: average, minimum and maximum number of iterations before convergence. (i.i.d.Bern(0.5) source,n = 104,

k = 8, α = (3, 2.9, . . . , 0.1), andL = 50)

whereHb(ǫ) , H(ǫ, 1− ǫ). For D > Dc, R(D) > Hb(q)−Hb(D).

A comparison with the memoryless case (Fig. 1) seems to suggest that the problem is less with how quickly (in

n) we are converging to the exhaustive search performance scheme of (19) than with how quickly the convergence

in (44) is taking place, which is source dependent and not at our control.

Fig. 4 shows the average number of iterations before convergence versusα. It can be observed that the average

is always below15. To give some examples on how the energy is decreasing, Fig. 5and Fig. 6 show the energy

decay through iterations forα = 1.6 andα = 1 respectively.

Remark 7: Similar to [31], here in the figures we are usingHk(x̂
n) as the rate, while in fact it is not a true

length function. The reason is that as explained in [31], by Ziv inequality [37], if k = o(log(n)), then for any

ǫ > 0, there exitsNǫ ∈ N such that for anyn > Nǫ and any sequence= (y1, y2, . . .),
[

1

n
ℓLZ(y

n)−Hk(y
n)

]

≤ ǫ. (68)

IX. CONCLUSIONS

In this paper, a new approach to for fixed-slope lossy compression of discrete sources is proposed. The core

ingredient is the use of the Viterbi algorithm, which is a dynamic programing algorithm. It enables the encoder to

find the reconstruction sequence with minimum cost. The encoder first assigns some weights to different contexts

of length k, i.e, subsequences of lengthk + 1, that appear within the reconstruction sequence. Then, theoverall

cost assigned to each possible reconstruction sequence is the sum of the weights of different contexts multiplied by
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α = 3 : −0.1 : 0.1 andL = 50)

their number of appearances in the sequence, plus some constant times the distance between the original sequence

and the candidate reconstruction sequence. From this definition, it turns out that the state of the Viterbi algorithm

at time t is the lastk symbols observed plus the current symbol in the sequence, i.e, (yt−k, . . . , yt). Therefore,

the Trellis has overall|X̂ |k+1 different states, corresponding to|X̂ |k+1 different possible contexts of lengthk.

Hence for coding a sequence of lengthn, the computational complexity of the Viterbi algorithm will be of the

order ofO(n2k+1). We prove that there exists a set of optimal coefficients for which the described algorithm will

achieve the rate-distortion performance for any stationary ergodic process. The problem is finding those weights.

We provide an optimization problem whose solution can be used to find an asymptotically tight approximation of

the optimal coefficients resulting in an overall scheme which is universal with respect to the class of stationary

ergodic sources. However, solving this optimization problem is computationally demanding, and in fact infeasible

in practice for even moderate blocklengths. In order to overcome this problem, we propose an iterative approach

for approximating the optimal coefficients. This approach is partially justified by a guarantee of convergance to at

least a local minimum.

In the described iterative approach, the algorithm starts at a large slope (corresponding to a small distortion) and
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Fig. 4. Average number of iterations before convergence.(BSMS with q = 0.2, n = 25× 103 , k = 8, α = 3 : −0.1 : 0.1 andL = 50)

gradually decreases the slope until it hits the desired value. At each slope, the algorithm runs the Viterbi algorithm

iteratively until it converges. An interesting possible next step is to explore whether there exisits a sequence of slopes

converging to the desired value in a small number of steps (e.g. of o(n)) for which we can guarantee convergence

of the algorithm to the global minimum at the end of the porcess. Existance of such sequence of slopes implies a

universal lossy compression algorithm with moderate computatioal complexity.

November 17, 2010 DRAFT



20

5 10 15 20 25 30 35 40
0.5

0.505

0.51

0.515

0.52

0.525

0.53
α = 1.6

t

H
k
(y

n
,(

t
)
)
+

α
d
(x

n
,
y

n
,(

t
)
)

Fig. 5. Energy decay through the iterations forα = 1.6. (BSMS with q = 0.2, n = 25× 103 andk = 8)

APPENDIX A: PROOF OFTHEOREM 2

Proof: By rearranging the terms, the cost that is to be minimized in (P1) can alternatively be represented as

follows

Hk(y
n) + αdn(x

n, yn) = Hk(m(yn)) + α
1

n

n−k
∑

i=1

d(xi, yi),

= Hk(m(yn)) + α
1

n

n
∑

i=k+1

d(xi, yi)
∑

a∈X ,b∈X̂

1xi=a,yi=b,

= Hk(m(yn)) + α
1

n

n
∑

i=k+1

∑

a∈X ,b∈X̂

d(a, b)1xi=a,yi=b,

= Hk(m(yn)) + α
∑

a∈X ,b∈X̂

d(a, b)
1

n

n
∑

i=k+1

1xi=a,yi=b,

= Hk(m(yn)) + α
∑

a∈X ,b∈X̂

d(a, b)p̂
(1)
[xn,yn](a, b),

= H
p̂
(k+1)

[yn ]

(Yk+1|Y
k) + αE

p̂
(1)

[xn,yn]
(·,·)

d(X1, Y1). (A-1)
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This new representation reveals the close connection between (P1) and (40). Although the costs we are trying

to minimize in the two problems are equal, there is a fundamental difference between them: (P1) is a discrete

optimization problem, while the optimization space in (40)is continuous.

Let E∗
n andP∗

n be the sets of minimizers of (P1), and joint empirical distributions of orderℓ, p̂(ℓ)[xn,yn](·, ·), induced

by them respectively. Also letS∗
n be the set of marginalized distributions of orderk + 1 in P∗

n with respect toY .

Finally, let C∗
n and Ĉ∗

n be the minimum values achieved by (P1) and (43) respectively.

In order to make the proof more tractable, we break it down into several steps as follows.

1) Let yn ∈ E∗
n, andp̂(ℓ)[xn,yn](·, ·) be the induced joint empirical distribution. It is easy to check thatp̂(ℓ)[xn,yn](·, ·)

satisfies all the constraints mentioned in (43). The only condition that might need some thought is the

stationarity constraint, which also holds because

∑

aℓ∈X ,bℓ∈X̂

p̂
(ℓ)
[xn,yn](a

ℓ, bℓ) =
1

n− ℓ

∣

∣

{

i : xi−1
i−ℓ+1 = aℓ−1, yi−1

i−ℓ+1 = bℓ−1
}∣

∣ ,

=
∑

aℓ∈X ,bℓ∈X̂

p̂
(ℓ)
[xn,yn](aℓa

ℓ−1, bkb
ℓ−1). (A-2)
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Therefore, sincêC∗
n is the minimum of (43), we have

Ĉ∗
n ≤ Hk(m(yn)) + αE

p̂
(1)

[xn,yn ]
(·,·)

(Xk+1, Yk+1)

= Hk(m(yn)) + αdn(x
n, yn)

= C∗
n. (A-3)

2) Let p∗(ℓ) ∈ P̂∗
n. Based on this joint probability distribution andxn, we construct a reconstruction sequence

X̃n as follows: dividexn into r = ⌈n
ℓ ⌉ consecutive blocks:

xℓ, x2ℓ
ℓ+1, . . . , x

(r−1)ℓ
(r−2)ℓ+1, x

n
(r−1)ℓ+1,

where except for possibly the last block, the other blocks have lengthℓ. The new sequence is constructed as

follows

X̃ℓ, X̃2ℓ
ℓ+1, . . . , X̃

(r−1)ℓ
(r−2)ℓ+1, X̃

n
(r−1)ℓ+1,

where fori = 1, . . . , r−1, X̃ iℓ
(i−1)ℓ+1 is a sample from the conditional distributionp∗(ℓ)(X̂ℓ|Xℓ = xiℓ

(i−1)ℓ+1),

andX̃n
(r−1)ℓ+1 ∼ p∗(ℓ)(X̂n

(r−1)ℓ+1|X
n
(r−1)ℓ+1 = xn

(r−1)ℓ+1).

3) Assume thatx = {xi}
∞
i=1 is a given individual sequence. For eachn, let p∗(k+1) be the(k + 1)th order

marginalized version of the solution of (43) on̂X (k+1). Moreover, letX̃n be the constructed as described in

the previous item, and̂p(k+1)

[X̃n]
be the(k + 1)th order empirical distribution induced bỹXn. We now prove

that

‖p∗(k+1) − p̂
(k+1)

[X̃n]
‖1 → 0, a.s., (A-4)

where the randomization in (A-4) is only in the generation ofX̃n.

Remark 8: Sincep∗(ℓ) satisfiesstationarity condition, its (k + 1)th order marginalized distribution,p∗(k+1),

is well-defined and can be computed with respect to any of the(k + 1) consecutive positions in1, . . . , ℓ. In

other words forak+1 ∈ X̂ k+1,

p∗(k+1)(ak+1) =
∑

bℓ−k−1∈X̂n

p∗(k+1)(bjak+1bℓ−k−1
j+1 ), (A-5)

for any j ∈ {0, . . . , ℓ− k − 1}, and the result does not depend on the choice ofj.

In order to show that the difference betweenp̂
(k+1)

[X̃n]
(ak+1) andp∗(k+1)(ak+1) is going to zero almost surely, we

decomposêp(k+1)

[X̃n]
(ak+1) into the average ofℓ−k terms each of which is converging top∗(k+1)(ak+1). Then

using the union bound we get the desired result which is the convergence of̂p(k+1)

[X̃n]
(ak+1) to p∗(k+1)(ak+1).
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For ak+1 ∈ X̂ k+1,
∣

∣

∣p̂
(k+1)

[X̃n]
(ak+1)− p∗(k+1)(ak+1)

∣

∣

∣

=

∣

∣

∣

∣

∣

1

n− k − 1

n
∑

i=k+1

1X̃i
i−k

=ak+1 − p∗(k+1)(ak+1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

n− k − 1

ℓ−k−1
∑

j=0

r−1
∑

i=1

1X̃iℓ−j

iℓ−j−k
=ak+1 + δℓ − p∗(k+1)(ak+1)

∣

∣

∣

∣

∣

∣

,

=

∣

∣

∣

∣

∣

∣

r

n− k − 1

ℓ−k−1
∑

j=0

[

1

r

r−1
∑

i=1

1X̃iℓ−j

iℓ−j−k
=ak+1

]

+ δℓ − p∗(k+1)(ak+1)

∣

∣

∣

∣

∣

∣

,

=

∣

∣

∣

∣

∣

∣

1

ℓ− k − 1

ℓ−k−1
∑

j=0

[

1

r

r−1
∑

i=1

1X̃iℓ−j

iℓ−j−k
=ak+1

]

+ δ′n,ℓ − p∗(k+1)(ak+1)

∣

∣

∣

∣

∣

∣

, (A-6)

whereδℓ accounts for the edge effects between the blocks, andδ′n,ℓ is defined such thatδ′n,ℓ − δℓ takes care

of the effect of replacing r
n−k−1 with 1

ℓ−k−1 . Therefore,0 ≤ δℓ ≤ 4k
ℓ , δℓ → 0 as ℓ → ∞, and finally

|δ′n,ℓ − δℓ| = o(k/ℓ).

The interesting point about the new representation is that it decomposes a sequence of correlated random

variables,{1X̃i
i−k

=ak+1}ni=k+1, into ℓ− k sub-sequences where each of them is an independent process.For

achieving this some counts that lie between two blocks are ignored, i.e., if1X̃i
i−k

=ak+1 is such that it depends

on more than one block of the form̃X iℓ
(i−1)ℓ+1, we ignore it. The effect of such ignored counts will be no

more thanδr which goes to zero ask, ℓ → ∞ because the Theorem requiresk = o(ℓ). More specifically in

(A-6), {1X̃iℓ−j

iℓ−j−k
=ak+1}

r
i=1 is a sequence of independent random variables for eachj ∈ {0, . . . , ℓ− k − 1}.

For n large enough,|δ′n,ℓ| < ǫ/2. Therefore, by Hoeffding inequality [38], and the union bound,

P
(∣

∣

∣
p̂
(k+1)

[X̃n]
(ak+1)− p∗(k+1)(ak+1)

∣

∣

∣
> ǫ
)

,

≤ P





∣

∣

∣

∣

∣

∣

1

ℓ− k − 1

ℓ−k−1
∑

j=0

[

1

r

r−1
∑

i=1

1X̃iℓ−j

iℓ−j−k
=ak+1 − p∗(k+1)(ak+1)

]

∣

∣

∣

∣

∣

∣

>
ǫ

2



 ,

≤ P





1

ℓ− k − 1

ℓ−k−1
∑

j=0

∣

∣

∣

∣

∣

1

r

r−1
∑

i=1

1X̃iℓ−j

iℓ−j−k
=ak+1 − p∗(k+1)(ak+1)

∣

∣

∣

∣

∣

>
ǫ

2



 ,

≤

ℓ−k−1
∑

j=0

P

(∣

∣

∣

∣

∣

1

r

r−1
∑

i=1

1X̃iℓ−j

iℓ−j−k
=ak+1 − p∗(k+1)(ak+1)

∣

∣

∣

∣

∣

>
ǫ

2

)

,

≤ 2(ℓ− k)e−rǫ2/2. (A-7)
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Now again by applying the union bound,

P
(

‖p̂
(k+1)

[X̃n]
− p∗(k+1)‖1 > ǫ

)

≤
∑

ak+1∈X̂ k+1

P

(

∣

∣

∣p̂
(k+1)

[X̃n]
(ak+1)− p∗(k+1)(ak+1)

∣

∣

∣ >
ǫ

|X̂ |k+1

)

,

≤ |X̂ |k+12(ℓ− k)e
− nǫ2

2ℓ|X̂|2(k+1) . (A-8)

Our choices ofk = kn = o(log n), ℓ = ℓn = o(n1/4), k = o(ℓ), andkn, ℓn → ∞, asn → ∞ now guarantee

that the right hand side of (A-8) is summable onn which together with Borel-Cantelli Lemma yields the

desired result of (A-4).

4) Using similar steps as above we can prove that

‖q∗ − q̂
(1)

[xn,X̃n]
‖ → 0, a.s. (A-9)

Again we first prove that|q∗(a, b)− q̂
(1)

[xn,X̃n]
(a, b)| → 0 for eacha ∈ X andb ∈ X̂ . For doing this we again

need to decompose

{1xi=a,X̃i=b}
n
i=1

into ℓ sub-sequences each of which is a sequence of independent random variables, and then apply Hoeffding

inequality plus the union bound. Finally we apply the union bound again in addition to the Borel-Cantelli

Lemma to get our desired result.

5) Combing the results of the last two parts, and the fact thatHk(m) andEq d(X,Y ) are bounded continuous

functions ofm andq(·, ·) respectively, we conclude that

Hk(X̃
n) + αdn(x

n, X̃n) = H
p̂
(k+1)

[X̃n]

(Yk+1|Y
k) + αE

q̂
(1)

[xn,X̃n]

d(X1, Y1)

= Hp∗(k+1)(Yk+1|Y
k) + αEq∗ d(X1, Y1) + ǫn

= Ĉ∗
n + ǫn, (A-10)

whereǫn → 0 with probability 1.

6) SinceC∗
n is the minimum of (P1), we have

C∗
n ≤ Hk(X̃

n) + αdn(x
n, X̃n),

= Ĉ∗
n + ǫn. (A-11)

On the other hand, as shown in (A-3),Ĉ∗
n ≤ C∗

n. Therefore,

|C∗
n − Ĉ∗

n| → 0 (A-12)

asn → ∞.

7) For a given set of coefficientsλ = {λβ,b}β,b computed at somem according to (23), define

f(λ) = min
yn∈X̂n





∑

β,b

λβ,bmβ,b(y
n) + αdn(x

n, yn)



 . (A-13)
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It is easy to check thatf is continuous, and bounded by1 + α. Therefore, sinceλ is in turns a continuous

function ofm, and as proved in (A-4),

‖p∗(k+1) − p̂
(k+1)

[X̃n]
‖1 → 0,

we conclude that,

|f(λ∗)− f(λ̂)| → 0, (A-14)

whereλ∗ and λ̂ are the coefficients computed atp∗(k+1) and p̂(k+1)

[X̃n]
respectively.

8) Let X̄n be the output of (P2) when the coefficients are computed atm(X̃n). Then, from Theorem 3,

Hk(X̄
n) + αdn(x

n, X̄n) ≤ Hk(X̃
n) + αdn(x

n, X̃n)

= Ĉ∗
n + ǫn. (A-15)

Since,ǫn → 0, this shows that haven computed the coefficients atm(X̃n), we would get a universal lossy

compressor. But instead, we want to compute the coefficientsat m∗. From (A-14), the difference between

the performances of these two algorithms goes to zero. Therefore, we finally get our desired result which is
[

Hk(X̂
n) + αdn(X

n, X̂n)
]

n→∞
−→ min

D≥0
[R(X, D) + αD] , a.s. (A-16)
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