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We investigate the constraints on the superfluid fraction of an amorphous solid following from
an upper bound derived by Leggett. In order to accomplish this, we use as input density profiles
generated for amorphous solids in a variety of different manners including by investigating Gaus-
sian fluctuations around classical results. These rough estimates suggest that, at least at the level
of the upper bound, there is not much difference in terms of superfluidity between a glass and a
crystal characterized by the same Lindemann ratio. Moreover, we perform Path Integral Monte
Carlo simulations of distinguishable Helium 4 rapidly quenched from the liquid phase to very lower
temperature, at the density of the freezing transition. We find that the system crystallizes very
quickly, without any sign of intermediate glassiness. Overall our results suggest that the experi-
mental observations of large superfluid fractions in Helium 4 after a rapid quench correspond to
samples evolving far from equilibrium, instead of being in a stable glass phase. Other scenarios and
comparisons to other results on the super-glass phase are also discussed.

I. INTRODUCTION

Recent experiments on solid He4 by Kim and Chan [1–
3] raised, among many others, the important question of
whether disorder can help the formation of superfluidity
in solid samples. Ritner and Reppy [4, 5] showed that fast
quenches produce disordered samples with high fraction
of superfluid density, of the order of 20%. Following these
experimental studies, Boninsegni et al. [6] performed a
Path Integral Monte Carlo (PIMC) numerical simulation

of Helium 4 at relatively high density (ρ ∼ 0.03 Å−3),
where the system was very quickly quenched from the
equilibrium liquid phase at high T to a low temperature
T = 0.2 K, at which the HCP solid phase is stable. They
reported the observation of a phase which is structurally
similar to the liquid, and with a fraction of superfluid
density as high as 60%; this phase was observed to last
for a large number of Monte Carlo sweeps before the sys-
tem eventually freezes into the equilibrium ordered solid.
Boninsegni et al. labeled this the “superglass” phase.
The experimental protocols used to solidify Helium likely
produce very disordered solids, possibly glasses. In fact
the experiments in [7] showed evidences of very slow dy-
namics, the hallmark of glassy behavior. The natural and
still open question is why freezing in an amorphous den-
sity profile should enhance superfluidity compared to the
crystalline case, which instead is thought to show zero
or very small condensate fractions [8, 9]. Superfluidity is
related to exchange, which is a local process and depends
mostly on the local neighborhood of a particle. Thus, one
might expect, contrary to the findings discussed above,
that dense glasses should have a fraction of superfluid
density comparable to the one of crystals at the same
particle density. Indeed, a theoretical investigation of the
superglass phase in a simplified (and yet realistic) model
of interacting bosons found an extremely small conden-
sate fraction in the superglass phase [10]. Clearly, the
relation between disorder and superfluidity deserves fur-

ther investigation, in order to reach a better microscopic
understanding of superfluidity in amorphous solids and
to explain the numerical and experimental results.

The main difficulty in the numerical investigation of
this problem comes from the fact that the glass phase
(if any) is always expected to be metastable with respect
to the crystal phase, which is the true equilibrium phase
of solid Helium. In a classical system, it is reasonably
straightforward to get properties of a metastable phase
or a glass, because one can easily simulate the physical
dynamics of the system by solving Newton’s equations
of motion [11]. In contrast, the real-time dynamics of
quantum systems is not accessible numerically because
of the sign problem, and calculating properties involv-
ing glassy quantum system is problematic. Previous nu-
merical work of Boninsegni et al. [6] has looked at the
fraction of superfluid density of a quenched Helium 4 via
directly calculating it for a system whose PIMC dynam-
ics slowly equilibrates. More recently, a quantum version
of the Mode-Coupling Theory of dynamics in glasses has
been developed and compared with Path Integral Molec-
ular Dynamics (PIMD) simulations [12], obtaining ac-
curate informations on the glass transition in quantum
hard spheres. However, in this study exchange effects
were neglected and therefore superfluidity could not be
investigated. Therefore, for the moment path integral
simulations are not conclusive.

Here we approach the problem in a different way. In
one of the first works on supersolidity, Leggett showed
how one can derive an upper bound for the fraction of su-
perfluid density of a generic many-body system in which
translational invariance is broken, by means of a varia-
tional computation [13]. The output of Leggett’s compu-
tation is a formula that needs as only input the average
density profile of the solid. This formula has been ap-
plied to Helium crystals, and the aim of this work is to
use it to study the amorphous solid. At present, there is
not yet any reliable first principle computation or experi-
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mental measurements of the density profile of amorphous
Helium 4. We endeavor to generate robust estimates of
it using a number of different techniques, in particular by
investigating a model of zero-point Gaussian fluctuations
around classical configurations, and PIMC simulations
without exchange (which should be closer to the classical
dynamics). Checking whether these techniques all give
roughly similar orders for the bound is a way to assess
the robustness of our result. In the following, we will
denote the fraction of superfluid density by “superfluid
fraction” and we always refer to Leggett’s upper bound
to this quantity, unless otherwise specified.
The rest of this paper is organized as follows. In sec-

tion II, we discuss how to adapt Leggett’s bound to an
amorphous solid. In section IIIA, we compute the bound
for a profile made of Gaussian fluctuations around a clas-
sical configuration, and compare the results for an amor-
phous and an ordered solid, while in section III B we dis-
cuss previous numerical computations [6]. In section IV
we try to obtain more precise information by comparing
a classical simulation of a glass-forming system with a
PIMC numerical simulation of Helium. In section V, we
show that under some approximations one can obtain a
formula for the bound that can – at least in principle –
be computed from neutron or X-ray scattering data.

II. LEGGETT’S BOUND

Leggett showed in his pioneering work on supersolidity
that the wavefunction of the ground state of a system of
bosonic particles inside a rotating cylindrical container
can be obtained by finding the ground state for the non-
rotating system but with new boundary conditions [13].
Using cylindrical polar coordinates and assuming that
the thickness of the cylinder is much smaller than the
radius R, the new boundary conditions correspond to
imposing that the wave function gets an extra phase fac-
tor exp(−2πimR2ω/~) when the angle θi of any particle
i is shifted by 2π. Here m is the particle mass and ω
the radial velocity. From the ω dependence of the en-
ergy of the ground state, Emin(ω), obtained with these
new boundary conditions one can compute the superfluid
density ρs by:

ρs
ρ

= lim
ω→0

1

I0

∂2Emin(ω)

∂ω2

where ρ is the particle density and I0 = NmR2 the
classical moment of inertia. From this expression it is
clear that upper bounds on the superfluid density can be
obtained by using variational wavefunctions that in the
ω → 0 limit tend to the wavefunction for a non-rotating
container. Leggett used a variational wavefunction of
the form Ψ(~r1, · · · , ~rN ) = Ψ0(~r1, · · · , ~rN ) exp[i

∑
i ϕ(~ri)],

where Ψ0 is the ground state wavefunction for the non-
rotating case and φ =

∑
i ϕ(~ri) a sum of phases satisfying

the condition ϕ(θ) = ϕ(θ+2π)−2πmR2ω/~ [13, 14]. The

bound can be improved by including two-body correla-
tions [15]. Defining

ρ(~r) =

∫
d~r1 · · · d~rN |Ψ0(~r1, · · · , ~rN )|2

∑

i

δ(~r − ~ri), (1)

which is the density profile in the ground state, one finds
that the variational estimation of Emin(ω) reads:

Emin(ω) = E0 +
~
2

2m

∫
d~r[∇ϕ(~r)]2ρ(~r), (2)

where E0 is the ground state energy in the non-rotating
case.
Because of the assumption that the thickness of the

cylinder is much smaller than the radius, one can simplify
the problem even further by “unrolling” the annulus and
consider the system inside a parallelepiped of length L =
2πR in the x direction. In this geometry the phase ϕ has
to satisfy the boundary condition ϕ(0, y, z) = ϕ(L, y, z)−
v0L where v0 = mRω/~. The minimization of (2) with
respect to ϕ leads to the equation for ϕ(~r):

~∇ · [ρ(~r)∇ϕ(~r)] = 0 (3)

and results in an upper bound on the superfluid density:

ρs =
1

V v20

∫

V

d~rρ(~r) |∇ϕ(~r)|2 . (4)

Note that if ϕv0(~r) is a solution of (3) with bound-
ary conditions ϕ(0, y, z) = ϕ(L, y, z) − v0L, then ϕv′

0
=

(v′0/v0)ϕv0 is a solution with boundary conditions cor-
responding to v′0. Hence, Eq. (4) does not depend on
v0 and we can choose v0 = 1 without loss of generality.
Furthermore, while in the geometry described above the
wavefunction should satisfy hard wall conditions at the
boundary of the box in the y and z directions, we will
simplify the problem by considering periodic boundary
conditions in the y and z directions [16].
In order to find a solution of Eq. (3) satisfying the

correct boundary condition is useful to rewrite ϕ as

ϕ(~r) = ~v0 · ~r + δϕ(~r), (5)

where δϕ(~r) is defined inside the volume V and satisfies
periodic boundary conditions, and ~v0 is a unit vector.
In the original problem ~v0 = x̂, but since we reformu-
lated the problem in a periodic cubic box, the direction
of ~v0 can be varied without affecting the result, in the
limit V → ∞. Since δϕ(~r) is periodic, we can write the
equations in Fourier space (see Appendix A for details):

~q · ~v0ρ~q =
∑

~p6=~0

(~q · ~p)ρ~q−~p iδϕ~p , (6)

and from the solution for iδϕ~q one can obtain the Leggett
bound [14], that reads in Fourier space:

ρs
ρ

= 1− 1

ρv20

∑

~q 6=~0

(~v0 · ~q)iδϕ~qρ−~q . (7)
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Given the density profile, the linear equation (6) for iδϕ~q

can be solved by truncating the sum over momenta at
a given cutoff, |~q| < qmax, so that the problem reduces
to solving a finite set of linear equations, which can be
done by matrix inversion. We accomplish this via a LU
decomposition [17].
An important remark is that the truncation preserves

the variational nature of the computation. Indeed, it
can be seen as setting δϕ~q = 0 for |~q| ≥ qmax, which
amounts to a particular choice of the variational function
δϕ(~r) and hence still gives an upper bound on the true
superfluid fraction.
Another important remark is that the bound derived

above applies only, strictly speaking, to the true ground
state of the system. In the following however, we are in-
terested in applying it to the glass state, which is at best
a long-lived metastable state, the crystal being always
the true ground state. Still, it is clear from the deriva-
tion that if the life time τ of the state is very long, such
that for any experimentally accessible frequency one has
ωτ ≫ 1, then the system does not have time to escape
from the metastable state during the experiment and the
bound should apply without modification.

III. SUPERFLUID FRACTION OF

AMORPHOUS SOLIDS

A. Hard sphere systems

In order to understand whether disorder in the density
profile can lead to an increase of the superfluid density,
we shall compare the result of the bound for an amor-
phous glassy profile and the corresponding crystal. The
only input for our study are the density profiles of the
amorphous and crystal state. Unfortunately, the former
is not available for He4 in realistic conditions. As a con-
sequence, we decided for a first study to focus on a more
simple and academic case that can still provide insights
on the role of disorder. We consider the amorphous and
crystalline density profiles that one obtains for classical
hard spheres. Although this certainly is not a realis-
tic model of density profiles for He4, it allows us to ad-
dress the role of disorder on ρs. Furthermore, a mapping
from quantum systems at zero temperature and classi-
cal Brownian systems allows one to find quantum many
particle models whose ground state wave-function can be
mapped exactly on (the square of) the probability distri-
bution of classical hard spheres systems [10]. Thus, the
results of this section apply directly to those models.
Classical hard spheres are known to be characterized

by a high density crystal FCC phase. However, if com-
pressed fast enough, or due to a small polydispersity, the
hard spheres freeze in an amorphous glassy state. A typ-
ical density profile of a very quickly compressed glassy
state can be obtained by the Lubachevski-Stillinger com-
pression algorithm [18] (we used the implementation of
[19]), which is know to be very efficient in producing
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FIG. 1: Leggett upper bound for ρs/ρ, for a Gaussian profile

of width A1/2 around an amorphous jammed configuration
and in a FCC lattice, as a function of the adimensional pa-
rameter ℓ = ρ1/3A1/2 (the Lindemann ratio).

amorphous jammed configurations. The output of the
algorithm are the positions R = {R1, · · · , RN} of the
particles in a random close packed state (at infinite pres-
sure). The algorithm is deterministic, but different final
configurations are obtained by starting the compression
from random initial configurations of points. The com-
pression runs were performed at very fast rates (we fixed
the parameter γ = 0.1, see [19, 20] for details) in order
to avoid crystallization.
Furthermore, we will assume that the density profile of

a typical glassy configuration at finite pressure is the sum
of Gaussians centered around the amorphous sites, which
are the output of the previous algorithm. For classical
systems, this assumption has been tested numerically for
FCC crystals [21], and has been often used in density
functional computations of both ordered [22] and amor-
phous structures [20, 23], giving accurate results. For
quantum systems, the Gaussian model has been shown
to be accurate enough, at least for the purpose of com-
puting the Leggett’s upper bound [24–26].
For a given configuration R, the density profile we use

is defined as

ρ(~r|R) =
∑

i

γA(|~r− ~Ri|) =
∫

V

d~s γA(|~r−~s|)
∑

i

δ(~s− ~Ri) ,

(8)
where γA(~x) = exp(−|~x|2/(2A))/(2πA)3/2 is a normal-

ized Gaussian of width A, and |~r− ~Ri| is the distance on
the periodic box, i.e. it is the distance between ~r and its

closest image of ~Ri. The corresponding Fourier transform
reads (neglecting terms of order exp(−L2/A)):

ρ~q(R) = e−Aq2/2 1

V

∑

i

ei~q·
~Ri . (9)
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HCP, Leggett’s bound (Ref.[26]) Glass, Leggett’s bound (this work) Glass, QMC (Ref. [6])

ρ (Å−3) ℓ ρs/ρ ρs/ρ ρs/ρ

0.029 0.167 0.22 0.282 0.6

0.0353 0.143 0.06 0.127 0.07

TABLE I: Leggett’s bound for He4 in the HCP crystal state [26] and glassy state. Quantum Monte Carlo results for the glass
are also reported [6].

In solving Eqs. (6) and (7) we considered amorphous
configurations of N = 20 and N = 100 particles. All
the calculations were done with the cut-off set at qmax =
20π/L. We checked that the result does not depend on
the specific amorphous configuration used by considering
different amorphous configurations Rα, α = 1, · · · ,N ;
this is expected since the superfluid density is a macro-
scopic quantity. The reported results are therefore av-
eraged over 10 independent configurations. More details
on the numerics can be found in Appendix A.
The results are plotted in Figure 1. One can notice

that, apart from the smallest values of the dimension-
less parameter, the two curves corresponding to 20 and
100 particle configurations perfectly agree. The discrep-
ancy in the region of small ℓ = ρ1/3A1/2 is due to the
approximation brought by the introduction of a cut-off,
and vanishes in the limit qmax ≫ 1/

√
A.

In order to understand to what extent the disorder in-
fluences the value of the superfluid density, we compare
the superfluid fraction found in the amorphous system
to the values obtained through the same calculations in
the case of a crystal [14, 24–26]. Figure 1 reports the re-
sults for the average superfluid fraction of the amorphous
solid just described and those corresponding to the FCC
lattice (which is the thermodynamically stable one for

hard spheres) for the ~Ri, according to the same Gaus-
sian model (in the latter case our results are consistent
with previous ones [14, 24–26]). The difference between
the two is very small, suggesting two conclusions.

1. Disorder does not influence much the superfluid
behavior of the system for comparable values of
ρ1/3A1/2, at least at the level of this variational
calculation.

2. The dependence of ρs on the density profile is
mainly through the Lindemann ratio ℓ = ρ1/3A1/2.
This conjecture allows us to obtain an estimate of
the Leggett upper bound for ρs in more realistic
cases as we will do in the next section.

To conclude this section, we observe that the above re-
sults allow to obtain a quantitative upper bound for the
superfluid fraction of a system whose wavefunction is ex-
actly the Jastrow wavefunction corresponding to classical
hard spheres. The quantum glassy phase of this system
has been discussed in [10]. In both the crystal and glassy
phases, the values of A1/2 for classical hard spheres do
not exceed 0.1 (in units of the sphere diameter) [20–22],
and the same is true for ℓ, since the density is very close

to 1 (in the same units) in both solid phases. Using the
results of Fig. 1, we obtain an upper bound ρs/ρ <∼ 0.1%,
which is consistent with the extremely small values of the
condensate fraction found in [10].

B. Superfluid fraction of amorphous solid Helium 4

In this section, we attempt an application of our results
to the more interesting case of disordered solid He4, based
on the observation above, that an estimate of the Linde-
mann ratio ℓ = ρ1/3A1/2, together with the results of
Fig. 1, should provide a reasonable estimate of Leggett’s
bound.
At the end of Ref.[26] it is stated that, by fitting

the Path Integral Monte Carlo density profile of HCP
solid He4, one obtains a value

√
A = 0.1274 d at ρ =

0.0353 Å−3 and
√
A = 0.1486 d at ρ = 0.029 Å−3.

Here d is the nearest-neighbor distance for the HCP
lattice. The number density of the HCP lattice satis-
fies the relation ρd3 =

√
2, hence d = 21/6/ρ1/3 and

ℓ =
√
Aρ1/3 = 21/6

√
A/d. In the same reference it is also

stated that the upper bound computed by using the fitted
Gaussian density profile coincides with the one obtained
by using the true PIMC density profile, and corresponds
respectively to ρs/ρ = 0.06 and 0.22. These values are
reported in table I.
We now make the following assumptions:

1. At least for the purpose of computing Leggett’s up-
per bound, the true density profile can be fitted to
a Gaussian profile. This is true for the crystal [26]
and we assume that it remains true for an amor-
phous solid.

2. The parameter ℓ for the amorphous solid is smaller
than that of the crystal at the same density. This
can be understood by observing that crystalline
configurations are better packed than amorphous
configurations, therefore leaving more room (“free
volume”) for fluctuations. It is true for Jastrow
wavefunctions [10] (i.e. classical system) and we
do not find any reason why quantum fluctuations
should dramatically affect this property.

Based on these assumptions, the true Leggett’s bound
for the amorphous system should be smaller than the
same bound for the crystal at the same density. This can
be estimated using the values of ℓ reported in [26] and
reading the corresponding superfluid fraction from Fig. 1
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or using the results obtained in [26] for the HCP crystal.
These values are reported in table I and are similar.

We compare the upper bound obtained in this way with
the values of ρs obtained numerically by Boninsegni et
al. via PIMC [6]. Interestingly, we find that the bound is
very close to the PIMC numerical result, and in particu-
lar at the smallest density the bound is violated by the
PIMC result. This can be due either to the very rough
approximations involved in our computation, or to the
fact that the glass is not a really long-lived metastable
state at this very low density. The latter possibility, i.e.
that the system is rapidly evolving out of equilibrium,
would invalidate the derivation of Leggett’s bound but
it would also raise problematic questions regarding the
measurement of ρs using the Ceperley formula, which is
strictly valid if thermodynamic equilibrium is achieved
and in the limit of small frequency.

IV. DOES A STABLE GLASS STATE EXISTS

FOR HELIUM 4?

In order to study the stability of the glass phase in He-
lium 4, we performed Path Integral Monte Carlo simula-
tions, that we discuss in this section. Before discussing
the more complex quantum simulation, we present some
classical simulations in order to deal with a well con-
trolled situation, where the presence of a glass transition
has been firmly established.

1. What should we expect from a glass-forming system? A
classical simulation

We performed standard Molecular Dynamics (MD)
simulations of the Kob-Andersen binary mixture [11],
which is known to be a good glass former and does not
show any sign of crystallization even after very long MD
runs at low temperature. The latter is a mixture of two
types of particles (A and B), interacting through different
Lennard-Jones potentials, with the parameters specified
in [11]. In the rest of this section we use reduced Lennard-
Jones units, namely we use σAA and εAA as units of
length and energy, and m as unit of mass. Consequently,√
mσ2

AA/εAA is the unit of time (the latter convention
is slightly different from the one of [11]). Note that to
compare with Helium one should keep in mind that for
that system σ ∼ 2.56 Å and ε ∼ 10.2 K.

We quenched a dense (ρ = 1.2) system of N = 216
particles from very high temperature (T = 2) to very
low temperature (T = 0.05) deep in the glass phase (the
glass transition temperature being around T = 0.435
at this density [11]). We run the simulation for a to-
tal time τ = 15000 and we printed configurations every
∆t = 5 which is of the order of the decorrelation time in
the glass (estimated from the decay of the self scattering

0 5000 10000 15000t
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S
q
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(0,0,8)
(2,1,-6)

0 5000 10000 15000t
-0.2

-0.1

0

0.1

0.2

(0,0,8)

Re ρ
q
(t)

Im ρ
q
(t)

0 5 10 15q
0

5

10

15

20

S(q)

FIG. 2: Evolution of the density profile after a quench from
high to low temperature for a classical glass forming sys-
tem, using Molecular Dynamics. (Top) Instantaneous value
of S~q(t) for three representative values of ~q (the corresponding
(nx, ny , nz) are indicated in the caption). (Middle) Instanta-
neous values of ρ~q(t) for a representative value of ~q. (Bottom)
The time average of S~q(t) over the whole simulation, as a func-
tion of q (in reduced LJ units). Scatter points are values for
a given ~q, the full black line is the angular average over all
vectors with the same modulus.
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functions). From each configuration we deduced

ρ~q(t) =
1

V

∑

j

ei~q·~rj(t) , (10)

where ~rj(t) is the position of particle j at time t, and the
corresponding instantaneous value of the static structure
factor S~q(t) = V |ρ~q(t)|2/ρ.
In Fig. 2 we plotted ρ~q(t) and the structure factor S~q(t)

as a function of MD time after the quench. The vectors
~q = 2π/L(nx, ny, nz) and the corresponding integers are
given in the caption. We see that after a short tran-
sient, the density profiles fluctuate around a non-zero
value which is quite stable, except for some rare “crack”
events where the density changes abruptly. These are
probably due to groups of particles that switch back and
forth between two different locally stable configurations.
This system is indeed extremely dense and at very low
T , therefore its dynamics is basically that of harmonic
vibrations around local minima of the potential (except
for the rare cracks). The largest instantaneous value of
S~q(t) corresponds to the (2, 1,−6) curve in Fig. 2 for all
t > 1000; therefore, all values are smaller than 20 at all
times, showing that there are no Bragg peaks. This is
what we expect to see in a glass. In this case, we can
easily deduce the average values of ρ~q for a given glassy
configurations by taking the average of ρ~q(t) over a time
interval where there are no crack events. From these,
we could compute the Leggett bound as previously dis-
cussed.

2. Absence of a stable glass phase from a Path Integral
Monte Carlo simulation

Motivated by results of [6] we tried to compute the
superfluid fraction based directly on Path Integral Monte
Carlo data. Unfortunately, PIMC does not give access to
the real time dynamics of the system, but following [6]
we studied the Monte Carlo dynamics, in the hope that
this is a reasonable proxy for the real time dynamics.
The representation of quantum systems in PIMC in-

volves certain important extensions beyond the classical
representation of point particles. To begin with, particles
are represented by paths (or polymers) in space. These
paths manifest the zero point motion inherent in the
quantum mechanical system. For distinguishable parti-
cles, this is the only difference. For particles with statis-
tics (bosons), these paths then can permute onto each
other forming larger paths or cycles.
We initially focus on studying a quenched quantum

system of Helium particles but require that they act like
distinguishable particles. There are a number of poten-
tial advantages of this approach. To begin with, one
may hope that distinguishable particles are more likely
to retain the relationship between real dynamics and
the Monte Carlo dynamics. Secondly, the simulation of
distinguishable particles is faster and more easily paral-
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FIG. 3: Evolution of the density profile after a quench from
high to low temperature for a quantum Helium 4 system,
using Path Integral Monte Carlo. Time here represents the
number of Monte Carlo sweeps. The panels are the same as
in Fig. 2, except that the average of S~q(t) in the lower panel
has been taken for t > 75000, and the angular average is not
reported because of the strong anisotropy of the result. All
quantities are plotted using Å as units of length.
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lelized over many processors allowing for longer simula-
tions.
We used the Aziz potential as a model for Helium [27],

and in this section we always use Angstroms as units of
length and Kelvins as units of temperature. The pair
product action is used as the approximation for the high
temperature density matrix and an imaginary time step
of δτ = 0.025 K is used. We equilibrated a system of
N = 216 particles in the liquid phase at a density of
0.029 Å−1 and a temperature of T = 2 K. The system
is then instantaneously quenched to T = 0.166 K. This
is accomplished by taking a snapshot of the paths from
T = 2 K and then, for each time slice of the old path,
placing 12 time slices for the new lower temperature path;
this is similar to what was done by Boninsegni et al. [6].
We then run the PIMC from this quenched configura-
tion. These paths are obviously highly artificial because
the distances between many adjacent time slices are zero.
Over a very short period at the beginning of the quenched
run, though, this artificial aspect of the path quickly re-
laxes leaving the paths in a configuration that mirrors
the higher temperature formation.
In the following we refer to t as the PIMC “time” (num-

ber of PIMC sweeps1), while τ is the imaginary time. At
each “time” t, the PIMC code returns a configuration
~rτj (t), the latter being the imaginary time trajectory of
particle j as function of the imaginary time τ . We can
define the instantaneous density as

ρ~q(t) =
1

βV

∑

j

∫ β

0

dτ ei~q·~r
τ
j (t) , (11)

and the instantaneous structure factor

S~q(t) =
1

βN

∑

j,k

∫ β

0

dτ ei~q·[~r
τ
j (t)−~rτk(t)] . (12)

Note that in the quantum case, at variance with the clas-
sical case, these two quantities are not directly related.
At each PIMC sweep we recorded the values of the above
quantities, which we then averaged over 50 PIMC sweeps
in order to eliminate part of the fluctuations.
The results for a representative run of the above proce-

dure are reported in Fig. 3. Unfortunately, the dynamics
of this system looks quite different from the formation of
a glass from a quenched liquid. First of all, the structure
factor becomes quite large for some values of ~q, therefore
suggesting the presence of large crystallites in the sam-
ple. Indeed, the largest value of the structure factor cor-
responds to the (5, 0, 4) curve in Fig. 3 at large times and
to the (5, 4, 2) curve in Fig. 3 at short times. We see that
while at short times the values of S~q(t) are smaller than

1 We define a sweep as attempting a displace move on (an ex-
pected) 10% of the particles and attempting bisection moves on
(not necessarily unique) 0.4N/(T δτ) time slices.

10, at larger times they grow up to 50, which clearly indi-
cates the presence of large crystallites in the sample (note
in addition that these values have been averaged over 50
PIMC sweeps and also over imaginary time). Moreover,
the ρ~q(t) (reported for a representative value of ~q in the
middle panel of Fig. 3) are not fluctuating around some
stable value; they display a sluggish evolution that does
not allow us to identify a region of times where the system
is close to some metastable density profile that does not
evolve in time. What we can learn from this is that the
quenching from a (exchange-free) liquid to a (exchange-
free) low temperature liquid froze to a (possibly very
broken) crystal relatively quickly without showing any
intermediate signs of glassiness. Note however that this
behavior was not observed in all runs: some runs did not
display signs of crystallization for times up to ∼ 200000
PIMC sweeps. Still the dynamics was sluggish enough
to prevent the identification of a stable glass phase. We
also tried turning off some moves (the displace moves) in
order to slow down the relaxation to the crystal, but the
system still seems to freeze just as quickly.
In conclusions, we were not able to find a long-lived

metastable glassy state in our quantum simulations. This
is probably due to the fact that monodisperse systems al-
ways crystallize quite fast. This is well known in the clas-
sical case and seems to also hold true when quantum zero
point motion is introduced (at least in this specific ex-
ample). This leaves the discrepancy between our findings
and those of [6] to be explained. One possibility is that
exchange, that we neglected, may be critically important
for exhibiting the glassy behavior of Helium 4: it could
be that the path integral at the low temperatures we are
focusing on is dominated by exchange paths, whereas the
paths that make the glass unstable are mainly without
exchange; indeed we find them with our PIMC. In this
case, the instability of the glass would be a much rarer
process once one takes into account exchange paths. In
particular, since crystals have a very low or zero super-
fluid fraction, we know that their corresponding path in-
tegral is dominated by paths without exchange. In conse-
quence, eliminating the exchange could also make crystal
nucleation easier since it makes it a less rare process.
An additional possibility is that the glassy behavior is

sensitive to the specific details of the simulation (type of
Monte Carlo moves, length of the paths, etc.). We leave a
more detailed investigation of this point for future study.

V. TOWARDS A METHOD FOR

EXPERIMENTALLY ASSESSING THE LEGGETT

BOUND

As we discussed previously, the problem in applying
our analysis to realistic system is that the amorphous
density profile of He4 cannot be easily measured experi-
mentally. Below, we endeavor to connect the bound on
ρs to the so-called non-ergodic factor g̃q, which in princi-
ple could be measured in experiments, e.g. by neutrons
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or X-ray scattering. It is defined as

ρ2

N
g̃q =

1

N
∑

α

ρα~q ρ
α
−~q = ρ~qρ−~q , (13)

where the overbar denotes the statistical average over
the amorphous states sampled statistically by the sys-
tem. These are indexed by α = 1, · · · ,N , and under the
Gaussian approximation each profile ρα~q is obtained from

Eq. (9) by plugging the reference positions correspond-
ing to each different amorphous configuration Rα. The
statistical average is performed with the weights α that
correspond to the frequency with which they appear in
an experiment, or equivalently their Boltzmann weight.
First, let us focus on ρs, which is the average of the

superfluid density ραs corresponding to each amorphous
state. Since the superfluid density is a macroscopic quan-
tity we expect (and we have checked numerically, see Ap-
pendix A) a self-averaging behavior, i.e. the fluctuations
of ραs are negligible. However, as usual for disordered
systems, the computations are easier for ρs. Multiplying
Eq. (6) by ρα−~q and averaging over α we obtain

(~q · ~v0)
ρ2

N
g̃q =

∑

~p6=~0

(~q · ~p)F (~q, ~p) , (14)

where we define, for ~p, ~q 6= 0 (that are the only cases
involved in the equation above)

F (~q, ~p) =
1

N
∑

α

ρα~q−~p iδϕ
α
~pρ

α
−~q = ρ~q−~p iδϕ~pρ−~q . (15)

Clearly iϕ~q is strongly correlated to ρ~q, being the solution
of (6). In order to simplify the problem we assume that
these variable are Gaussian distributed. Using Wick’s
theorem, one has

F (~q, ~p) = ρ~q−~p iδϕ~p ρ−~q + ρ~q−~p iδϕ~pρ−~q

+ ρ~q−~piδϕ~p ρ−~q + ρ~q−~pρ−~q iδϕ~p .
(16)

Note that, due to translation invariance of the averages

over α, one has ρ~q = ρδ~q,~0 and ρ~qρ−~p = ρ2

N g̃qδ~q,~p. Hence,

for ~p, ~q 6= 0, we get

F (~q, ~p) = ρ~q−~p iδϕ~pρ−~q = ρδ~q,~p iδϕ~qρ−~q ≡ ρδ~q,~p F (~q) .
(17)

Substituting the last expression in (14), we obtain

F (~q) =
ρ(~q · ~v0)g̃q

Nq2
. (18)

Averaging (7) over α, we get

ρs
ρ

= 1− 1

ρv20

∑

~q 6=~0

(~v0 · ~q)F (~q) = 1− 1

N

∑

~q 6=~0

(~v0 · ~q)2
v20q

2
g̃q .

(19)

0.1 0.2 0.3 0.4
ρ1/3

A
1/2

0

0.2

0.4

0.6

0.8

1

ρ
s
/ρ

N=20 exact
N=100 exact
N=20 approx
N=100 approx

FIG. 4: Result for ρs/ρ as a function of ℓ = ρ1/3A1/2, where
~Ri are the center of the spheres in an amorphous jammed
configuration of N spheres with periodic boundary conditions.
We report the exact computation according to Eq. (6) and the
approximate result Eq. (20).

In the thermodynamic limit, the sum can be replaced by
an integral, and performing the angular integration we
obtain:

ρs
ρ

= 1− 2

3

∫ ∞

0

dq q2

(2π)2ρ
g̃q . (20)

The same result can be obtained by means of a large A
expansion of the system of equations, which however is
poorly convergent and cannot be used in a systematic
way, see Appendix B.
As before we need to introduce a cut-off in the sum on

~q in (9) and calculate numerically the non-ergodic factor
g̃q by averaging the density over the same configurations
Rα considered above. We set the cutoff according to the
spherical constraint |~q| ≤ qmax . We increased qmax until
qmax = 20π/L, when the convergence in g̃q was reached.
For the purpose of computing the non-ergodic factor and
then the approximate bound, as given in Eq. (19), we
averaged over 100 different configurations. In this case,
in fact, one does not face the computational problem of
inverting the linear system (6) and thus a larger statistics
can easily be taken. The results of the computations are
shown in Figure 4. We plotted the superfluid fraction
obtained through the exact procedure (7) and the ap-
proximated one (20), both for the configurations with 20
and 100 particles. The agreement between the approx-
imated curve and the exact one is good for large value
of ℓ while they start to differ when the localization pa-
rameter decreases, for values of the bound around 0.7.
Unfortunately for the interesting values of ℓ the approxi-
mated calculation gives wrong results. However, we find
it useful, since it allows to estimate the typical scale of
ℓ at which the bound starts decreasing fast from 1 to 0
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and we hope that it will be possible to improve it in the
future, in order to be able to apply it to realistic cases.

VI. CONCLUSIONS

The aim of this paper was to study Leggett’s upper
bound for amorphous quantum solids. We showed that
for quantum systems described by a hard sphere Jastrow
wavefunction, the superfluid fraction must be smaller
that 0.1%, which is consistent with a previous investi-
gation that found extremely small condensate fractions
for this system [10]. Moreover, the hard sphere result
suggests that crystal and glass phase characterized by
the same Lindemann ratio should have similar Leggett’s
upper bounds for the superfluid fraction.

On this basis, we attempted to apply our results to
glassy He4 [6]. We found that the upper bound for ρs is
in general very close to the numerical results of Ref. [6],

and at density ρ = 0.029 Å−3 it is below. One possi-
ble origin of this discrepancy could be that at such low
density the life time of the metastable glassy state is
too short, and the system is intrinsically out of equilib-
rium; in that situation Leggett’s bound is inapplicable,
since it assumes that the reference wave-function corre-
sponds to a truly metastable state. Indeed we generically
found from Path Integral Monte Carlo calculations that
(at least if exchange is neglected) the system crystallizes
very fast after the quench, which is consistent with a very
short lifetime of the metastable glass.

Overall, our findings suggest two possible scenarios
(not necessarly antithetic). (1) An amorphous stable
glass has a superfluid fraction, not only a Leggett’s upper
bound, very similar to a defect-free crystal with the same
Lindemann ratio. Since we know from experiments and
simulations that this superfluid fraction is very small,
or possibly zero, we are bound to conclude that the
glassy supersolid phase found in experiments do not cor-
respond to a truly stable glass: the system is instead
rapidly evolving out of equilibrium and, somehow, this
enhances superfluidity. (2) Exchange promotes glassiness
and whereas a stable glass phase cannot exist, because it
has a very short life-time, a superglass can. This could
be partially tested by comparing the stability of the glass
phase in imaginary time simulations with and without
exchange.

Finally, based on the experience on classical systems,
we remark that it is likely that in more complex systems
(such as binary mixtures) crystallization will be avoided
and a long-lived quantum glass phase will be stable even
without exchange [12, 28]. In this case, it should be
very easy to measure the density profile and compute
the Leggett bound using the procedure detailed above.
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Appendix A: Details on the numerical procedure

We define the Fourier transforms in the cubic box of
side L and volume V = L3 as follows:

ρ~q =
1

V

∫

V

d~rρ(~r)ei~q·~r , ρ(~r) =
∑

~q

ρ~qe
−i~q·~r , (A1)

where ~q = 2π
L (nx, ny, nz), and each of the integers ni ∈ Z,

and similarly

δϕ~q =
1

V

∫

V

d~rδϕ(~r)ei~q·~r . (A2)

Note that δϕ~0 is an irrelevant constant phase in the vari-
ational wavefunction so we set it to zero. Finally,

~v~q =

{
~v0 ~q = ~0 ,

−i~qϕ~q ~q 6= ~0 .
(A3)

which leads immediately to Eq. (6).
We performed the calculations for different values of

the Lindemann parameter ℓ = ρ1/3A1/2, increasing the
number of vectors ~q according to the spherical constraint
|~q| ≤ qmax, until a reasonable convergence in the value
of the bound (7) was achieved, at least for large val-
ues of A. From Eq. (9) one sees that for large |~q| the
corresponding component ρ~q is suppressed through the

factor e−Aq2/2. Thus, one needs to truncate the sum
over ~q at qmax ∼ 1/

√
A, as higher terms will not con-

tribute. Unfortunately, for small A, this cut-off is too
heavy in terms of computational time and we should use
a lower one. Still, considering small configurations and
sufficiently large values of A, which nevertheless span the
physical region of interest, we could reach a good conver-
gence or keep the error under control. Note additionally
that by increasing the number of vectors ~q in (9), the
value found for the superfluid fraction monotonically de-
creases, as expected because of the variational property
already discussed. This permits to preserve the nature of
upper bound for Eq. (7), despite the cut-off approxima-
tion. Overall, we found that the better compromise was
to set qmax = 20π/L.
In order to check the independence of the bound on

the flow direction, we also compared the results obtained
with the velocity v0 along the (1, 0, 0) direction to those
along (1, 1, 1) and we observed a negligible difference
which is expected to vanish in the thermodynamic limit,
because amorphous solids are statistically homogeneous
on large scales.
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FIG. 5: Result for ρs/ρ as a function of the localization pa-

rameter ρ1/3A1/2, where ~Ri are N random points in [0, L]3

with periodic boundary conditions.

We have also checked that the bound for the superfluid
density almost does not fluctuate by considering different
amorphous configurations Rα, α = 1, · · · ,N , as it is ex-
pected since the superfluid density is a macroscopic quan-
tity. We computed the corresponding superfluid fraction
ραs and the average ρs =

∑
α ραs /N for 10 different config-

urations. The variance of ρs is very small. In this paper
we presented results averaged over 10 realizations of Rα,
a larger statistics do not lead to appreciable differences.
Finally, as a check of our codes, we repeated all the

calculations on configurations of 20 particles occupying
uncorrelated uniformly random positions in the box, i.e.

where ~Ri are uniform and independent random vari-
ables in [0, L]3. In this case it is easy to show that
g̃q = exp(−Aq2). Hence Eq. (20) becomes

ρs
ρ

= 1− 2

3(2π)2ρ

∫ ∞

0

dq q2 e−Aq2 = 1− 1

24π3/2 ρA3/2
.

(A4)

In this case the values of the bound were more sensitive
to the particular realization, so we took averages over 30
configurations. For every value of the localization pa-
rameter, the superfluid fractions that we found were on
average smaller, as reported in Figure 5.

Appendix B: Large A expansion

For large A, we expect that the density becomes uni-
form. Hence, ρ~0 → ρ, and ρ~q → 0 for ~q 6= ~0. We can use
this to expand iδϕ~q systematically in powers of ρ~q. We
rewrite Eq. (6) as

~q · ~v0ρ~q = q2ρiδϕ~q +
∑

~p6=~0,~q

(~q · ~p)ρ~q−~p iδϕ~p . (B1)

We write δϕ~q = δϕ
(1)
~q + δϕ

(2)
~q + · · · where the different

terms are of order (ρ~q)
k. At first order

iδϕ
(1)
~q =

~q · ~v0
q2ρ

ρ~q , (B2)

at second order

iδϕ
(2)
~q = − 1

q2ρ

∑

~p6=~0,~q

(~q · ~p)ρ~q−~p iδϕ
(1)
~p

= −
∑

~p 6=~0,~q

(~q · ~p)(~p · ~v0)
p2q2ρ2

ρ~q−~pρ~p ,

(B3)

at third order

iϕ
(3)
~q = − 1

~q2ρ

∑

~p 6=~0,~q

(~q · ~p)ρ~q−~piϕ
(2)
~p

=
∑

~p6=~0,~q

∑

~p′ 6=~0,~p

(~q · ~p)(~p · ~p′)(~p′ · ~v0)
q2p2p′2ρ3

ρ~q−~pρ~p−~p′ρ~p′

(B4)

from which we can guess the order k:

iϕ
(k)
~q = (−1)k−1

∑

~p1 6=~0,~q; ~p2 6=~0,~p1; ··· ~pk−1 6=~0,~pk−2

(~q · ~p1)(~p1 · ~p2) · · · (~pk−1 · ~v0)
q2p21 · · · p2k−1ρ

k
ρ~q−~p1

ρ~p1−~p2
· · · ρ~pk−2−~pk−1

ρ~pk−1
(B5)

and so on. Plugging this in Eq. (7) we get

ρs
ρ

=1−
∑

~q 6=~0

(~v0 · ~q)2
ρ2v20q

2
ρ~qρ−~q +

∑

~q 6=~0

∑

~p6=~0,~q

(~v0 · ~q)(~q · ~p)(~p · ~v0)
q2p2v20ρ

3
ρ~q−~pρ~pρ−~q

−
∑

~q 6=~0

∑

~p6=~0,~q

∑

~p′ 6=~0,~p

(~v0 · ~q)(~q · ~p)(~p · ~p′)(~p′ · ~v0)
q2p2p′2v20ρ

4
ρ~q−~pρ~p−~p′ρ~p′ρ−~q + · · · .

(B6)

While this expansion seems a simple strategy of solution of Eq. (6), it is very poorly convergent and in practice it is
not very helpful.
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