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Abstract 

We present calculated, electronic and related properties of wurtzite cadmium sulfide 

(w-CdS). Our ab-initio, non-relativistic calculations employed a local density 

functional approximation (LDA) potential and the linear combination of atomic 

orbitals (LCAO). Following the Bagayoko, Zhao, and Williams (BZW) method, we 

solved self-consistently both the Kohn-Sham equation and the equation giving the 

ground state density in terms of the wave functions of the occupied states. Our 

calculated, direct band gap of 2.47 eV, at the point, is in excellent agreement with 

experiment. So are the calculated density of states and the electron effective mass. 

In particular, our results reproduce the peaks in the conduction band density of 

states, within the experimental uncertainties.  
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I. Introduction and Motivations 

 

Wurtzite cadmium sulfide (w-CdS) has long been recognized as an important 

optoelectronic, piezo-electronic, and semiconducting material [1]. In particular, thin 

films of CdS are of great interest due to their efficient utilization in the fabrication of 

solar cells.1 Photovoltaic effects have been demonstrated in the heterojunction Cu-

CdS at photon energies above and below the band gap, [2] where electron emission 

by Cu explains the effect for photon energies below the band gap. Lami and 

Hirlimann [3] obtained stimulated emission of green light (2.45 eV) from CdS at room 

temperature.  

 

Basic, electronic properties of CdS have been experimentally established using 

different measurement techniques [1,3-8]. Photoemission measurements of Kindig 

and Spicer [4] provided details on the density of states of w-CdS for both the valence 

and the conduction bands while those of Stoffel [6] addressed band widths and other 

properties. The reported valence band width of 4.5 2.0 eV [6] corroborated the 

finding of Stoffel and Margaritondo [7]. Kingston et al. [8] provided detailed edge 

emission bands for bulk w-CdS at very low temperatures. Shin et al. [9] reported a 

low temperature optical band gap of 2.55 eV for w-CdS. The transmission edge and 

photocurrent study of these authors employed high purity w-CdS single crystal 

platelets, grown by sublimation method.  Magnusson et al. [10] quoted a band gap of 

2.58 eV for lattice constants of 4.13 and 6.70 Å, for “a” and “c,” respectively. The 

angle resolved inverse photoelectron spectroscopy of these authors found 

conduction band critical points at 5.8 eV and 7.5 eV, at the M point. Reference 

manuals [11,12] provide additional experimental data on wurtzite CdS. Chiang and 
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Himpsel reported an electron effective mass of 0.21, at the conduction band 

minimum, in the direction perpendicular to the c axis.  

 

Absorption measurements by Oliva et al. [13] found room temperature optical band 

gaps of 2.42 eV for polycrystalline thin films of CdS grown by chemical bath 

deposition and close spaced sublimation. Using chemical bath deposition, Ortuno-

Lopez et al. [14] grew films of w-CdS in such a way that they could tune their band 

gaps. The decrease of the strain between the film and the glass substrate was found 

to decrease the band gap. The range of the values of the measured, optical band 

gaps of the resulting films was from 2.26 to 2.5 eV.  

 

In contrast to the experimental studies, the theoretical results appear to cover a wide 

range of values for the band gap and other quantities. The empirical pseudopotential 

calculation of Bergstresser and Cohen [15] was one of the first theoretical studies of 

the band structure of wurtzite CdS (w-CdS). One of the earlier local density 

functional calculations, by Chang et al. [16], led to a band gap of 1.77 eV for w-CdS. 

These authors also reported the upper p valence band and the total valence band 

widths of 4.1 and 11.69 eV, respectively. A decade later, Schröer et al. [17,18] and 

Xu and Ching [19] reported extensive, calculated results for CdS. At calculated 

lattice constants of 4.03 and 6.54 Å, the LDA pseudopotential calculation of Schröer 

et al. [17] found a band gap of 1.31 eV.  These authors employed non-local, 

separable and norm-conserving pseudopotentials and explicitly treated the d 

electrons as valence electrons.  In their linear combination of Gaussian orbitals 

(LCGO) calculations, Xu and Ching [19] augmented their local density potential with 

an additional exchange obtained with Wigner interpolation. At experimental lattice 
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constants of 4.137 and 6.7144 Å, with a value of 0.375 for the parameter u, Xu and 

Ching reported a band gap of 2.02 eV. These authors obtained electron effective 

masses of 0.27, 0.21, and 0.25 in the  - K,  - A, and  - M directions, respectively. 

Xu and Ching [19] also found 4.43 and 12.25 eV for the upper p valence and the 

total valence band widths. They discussed other calculated properties, including the 

dielectric function.  

 

From the mid 1990s to present, several other theoretical reports [20-24] followed the 

above ones. Using pseudopotentials, Vogel et al. [21] found w-CdS band gaps of 

1.2, 2.4, and 2.5 eV with LDA, self-interaction corrected, and self-interaction 

corrected with relaxation calculations. The results of Sharma et al. [22] 

underestimated the band gap by 1.75 and 0.5 eV with LDA and exact exchange 

potentials, respectively. They overestimated it by 1.5 and 1 eV with full potential and 

exact exchange calculations without and with core-valence interactions, respectively. 

The generalized gradient approximation calculations of Huang et al. [23] obtained 

1.69 eV for the band gap of bulk w-CdS and 2.25 eV for CdS nanowires.  With a 

modified version of the Becke and Johnson exchange potential, Tran and Blaha [24] 

found a gap of 2.66 eV for w-CdS. Their LDA result was 0.86 eV.  

 

The density functional theory calculated band gaps for w-CdS cover a wide range 

from 0.75 (i.e., 2.5-1.75) and 0.86 eV to 2.66 eV.  The disagreement between these 

theoretical values and between them and experiment, particularly for the band gap, 

is a key motivation for this work. This motivation is reinforced by the fact that 

quasiparticle calculations have not totally resolved the inability of theory to obtain, 

unambiguously, measured electronic properties of w-CdS. 



 5 

 

Indeed, while the LDA calculations of Zakharov et al. [25] led to a gap of 1.36 eV, 

their quasiparticle calculations reported 2.79 eV, higher than the experimental value.  

Shishkin and Kresse [26] found 2.06, 2.26, and 2.55 eV from their G0W0, GW0, and 

GW calculations, respectively. These authors also reported a generalized gradient 

approximation (GGA) calculation result of 1.14 eV.   Fuchs et al. [27] obtained 2.55, 

2.65, and 2.80 eV from their G0W0, GW0, and GW calculations, respectively. These 

results suffice to see that quasiparticle calculations have not resolved the under- or 

overestimation of the band gap by theory.  

 

In light of the preceding overview, the aim of this work is to attempt to obtain the 

measured value of the band gap and of other electronic properties of w-CdS with ab-

initio, self-consistent LDA calculations. The confirmation [28-29] of our predictions of 

the band gaps and other properties for c-Si3N4 [30] and c-InN [31-32] is a basis for 

the above presumption.  Further, the mathematical rigor of the method [32-34] 

suffices to expect it to lead to much better results.    

 

II. Method 

 

Our calculations employed the Ceperley and Alder [35] local density functional 

potential as parametrized by Vosko, Wilk, and Nusair [36] and the linear combination 

of atomic orbitals. The radial parts of these orbitals are Gaussian functions. We 

utilized a program package developed and refined over decades [35,38]. Our 

calculations are non-relativistic and are performed at zero temperature. The 

distinctive feature of our approach resides in our implementation of the Bagayoko, 
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Zhao, and Williams (BZW) method consisting of concomitantly solving self-

consistently two coupled equations. One of these equations is the Schrödinger type 

equation of Kohn and Sham [39], referred to as the Kohn-Sham (KS) equation. The 

second equation, which can be thought of as a constraint on the KS equation, is the 

one giving the ground state charge density in terms of the wave functions of the 

occupied states.  

 

The essentials of the method follow. Beginning with a relatively small basis set 

capable of accounting for all the electrons in the system under study, one performs 

ab-initio, self-consistent calculations. Subsequently, one performs a second 

calculation with a larger basis set that includes that of Calculation I. The occupied 

energies levels of the two calculations are compared numerically and graphically. 

These occupied energies from Calculations I and II are generally different. A third 

calculation is carried out with a larger basis set that includes that of Calculation II. 

Again, the occupied energies from Calculation II and III are compared. This process 

continues until the occupied energies from a calculation, i.e., N, are found to be 

identical to those from Calculation (N+1), within our computational uncertainties of 5 

meV or less. At that point, the calculations are completed and the results from 

Calculation N represent the physical description of the system under study.  We 

have explained elsewhere [33,40] how to increase methodically the basis set from 

one calculation to the following. Calculation (N+1) and others with larger basis sets, 

provided linear dependency is avoided, reproduce the occupied energies from 

Calculation N. However, by virtue of the Rayleigh theorem, these calculations 

produce some unoccupied eigenvalues that are lower than those from Calculation N, 

due to a non-trivial basis set and variational effect [33,40].  It should be noted that 
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the iterations for the KS equation are embedded in those of the charge density 

equation. Also, the convergence of the iterations for the charge density equation 

consists of reaching the minimum values for the occupied energies in going from a 

calculation to the next one. When this occurs, as shown in the comparison of 

occupied energies from Calculations N and (N+1), the basis set of Calculation N is 

referred to as the optimal basis set which leads to the optimal density for the actual 

ground state of the system.  

  

The details needed to replicate our calculations follow. Wurtzite CdS possesses a 

hexagonal lattice in the space group C4
6v.  There are four atoms per unit cell, in the 

positions indicated between parentheses: Cd: (0, 0, 0), (1/3, 2/3, 1/2); S: (0, 0, u), 

(1/3, 2/3, 1/2 + u). Our self-consistent computations were performed at the 

experimental lattice constants of 4.136 Å and 6.713 Å, for “a” and “c,” respectively, 

with a “u” parameter of 0.37715. As in previous works, [40] we employed a mesh of 

24 k-points, with proper weights, in the irreducible Brillouin zone. Our criterion for 

self-consistency of the iterative solutions of the KS equation consisted of the 

convergence of the potential to a difference around 10-5 between two consecutive 

iterations. Approximately 60 iterations were needed to reach self-consistency. The 

computational error for the valence charge was about 0.00841 for 88 electrons, a 

little less than 10-5 per electron.   

 

Our computations started with those for the neutral Cd and S atoms. The wave  

functions from these calculations, for the occupied states, were utilized to perform a 

self-consistent calculation for w-CdS. Using the outputs of this trial calculation we 

estimated a charge transfer of approximately 2 electrons from Cd to S. We then 
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performed ab-initio, self-consistent calculations for Cd+2 and S-2. The wave functions 

resulting from these calculations were utilized to construct the trial basis sets for the 

solid state calculations which started with a small basis set, one that is just large 

enough to account for all the electrons in the system. In this first calculation, the 

description of the valence states required (3d4s4p4d5s) orbitals on Cd+2 and 

(2s2p3s3p) orbitals on S-2. Calculation II employed the above basis set plus 5p 

orbitals on cadmium. A comparison of the occupied energies from Calculations I and 

II showed that they were clearly different. So, as per the BZW method, we performed 

other calculations. Calculation III added the 6s orbital on cadmium while Calculation 

IV further augmented the basis set on cadmium with the 5d orbitals. Calculation V 

increased the basis set on sulfur with 4p orbitals. Calculation VI added the 4s orbital 

to those on sulfur. The comparison of the occupied energies from Calculation V and 

VI showed that they were equal, within the computational uncertainties, signifying 

that the minimum occupied energies were reached by Calculation V. As noted 

above, the attainment of their minima by the occupied energies is the criterion for the 

convergence of the size of the basis set for the description of the ground state.  

Otherwise stated, this attainment marks the self-consistence of the “solution” of the 

charge density equation: out of the practically infinite number of possible trial basis 

sets, this attainment unambiguously determines the optimal basis set that describes 

the ground state charge density, following the embedded self-consistency of the 

solution of the KS equation. The results discussed below for w-CdS are those 

obtained from Calculation V, with the optimal basis set.  
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III. Results 

 

Our calculated, ab-initio, self-consistent bands for w-CdS are in Figure (1).  They 

resulted from Calculation V, as explained above. As per the following comparison 

with experiments, these bands reproduce most experimental results not only for the 

valence, but also the conduction bands. The valence band maximum at the gamma 

point is a doublet that is 0.012 eV above the singlet. The crystal field splitting 

between the two is reported by Chiang and Himpsel12 to be 0.015 eV, in basic 

agreement with our result. The calculated width of the group of upper valence p 

bands is 4.22 eV, much closer to the experimental value of 4.5   0.2 eV [6] than 

most of the previous LDA and some other theoretical results.   The reported, 

experimental width [6] of the low laying Cadmium 4d valence bands of 1.2   0.2 eV 

is basically the same as the calculated one of 1 eV, within the experimental 

uncertainties. While experiment places these 4d bands at 9.4   0.5 eV [4], our 

calculated minimum of these bands, at Gamma, is 8.33 eV. Stoffel6 found the lowest 

valence band energy of -12.5   0.2 eV. Our calculated minimum for these bands is -

12.11 eV, at the    point.  

 

Table I provides a detailed comparison between measured valence band 

eigenvalues [6] and results from our Calculation V. Out of 16 experimental values in 

the table, our results agree with 10, within the experimental uncertainties. For the 

remaining 6 for which the calculated values deviate from measured ones, they do so 

by at most 5%.  We predict two eigenvalues for which Stoffel [6] did not report a 

value. Magnusson et al. [10] identified critical energies in the conduction bands, at 
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the M point, of 5.8 eV and 7.5 eV. In Figure (1), we have respectively 5.81 eV and 

7.18 eV at the M point.  

 

Figures (2) and (3) show the calculated, total (DOS) and partial (pDOS) density of 

states.  Kindig et al. [4] reported a peak at -1.2   0.3 eV in the valence bands DOS. 

The corresponding, calculated peak is at -1.3 eV, in excellent agreement with 

experiment. We predict a second, narrow, peak at -3.75 eV for which we could not 

find an experimental value. The experimentally measured peaks in the conduction 

band DOS are at 4.4   0.5 eV, 6.7   0.3 eV, and 8.2  0.3 eV [4]. The 

corresponding calculated peaks are at 5 eV, 6.3-6.7 eV, and 8 eV, respectively, in 

excellent agreement with experiment within the experimental uncertainties. A broad 

structure in the calculated conduction band DOS, between 6.25 eV and 7 eV has a 

narrow peak around 6.3 eV and a broader one centered at 6.75 eV. 

 

The calculated electron effective masses in the Γ-A, Γ–K, and Γ-M directions are 

0.21, 0.29, and 0.29 m0, respectively. The apparent anisotropy in the effective mass 

is expected in a wurtzite structure. The effective mass is a measure of the curvature 

of the calculated bands. The agreement between calculated and measured effective 

masses indicates an accurate determination of the shape of the bands.  A reference 

manual [12] cited an experimental value of 0.21 for the electron effective mass in w-

CdS, along the c axis (i.e., Γ-A direction). We could not find other values of the 

electron effective mass in w-CdS.    
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IV. Discussions 

 

The above agreements between our LDA-BZW results and experimental ones 

indicate the accuracy of density functional theory description of w-CdS, provided that 

one looks for and obtains an optimal basis set that is verifiably complete for the 

description of the ground state, on the one hand, and that is not unduly large or 

overcomplete, on the other hand. Hence, these discussions focus on an attempt to 

explain the large discrepancies between many non-BZW DFT calculations and their 

disagreement with experiment.  

 

This explanation mainly rests on direct implications of the Rayleigh theorem whose 

statement follows. Let an eigenvalue equation be solved with a basis set of N orbitals 

and (N+1) orbitals, where the N orbitals of the first calculation are augmented with an 

additional one for the second calculation. Let the eigenvalues of the two calculations 

be ordered from the lowest to the highest. Then, the Rayleigh theorem states that 

the eigenvalues from the two calculations satisfy the following inequality: Ei
(N+1)   Ei

N  

for all i N.  Hence, upon an increase of the basis set, a given eigenvalue decreases 

or remains the same, the latter case corresponding to the situation where it has 

reached its minimum value, within computational uncertainties.  This theorem, 

coupled with the fact that density functional theory utilizes only the wave functions of 

the occupied states in the search for a self-consistent solution of the Kohn-Sham 

equation, leads to the situation where, upon the convergence of the size of the basis 

set vis à vis the description of the ground state, some unoccupied energies continue 

to be lowered with increasing sizes of the basis set. As Zhao et al. [33] have shown, 

this lowering is not due to a physical interaction – given that the charge density, the 
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potential, and the Hamiltonian do not change once the occupied energies reach their 

minimum values.  It is this “extra” lowering of unoccupied energies that has been 

identified as a basis set and variational effect [33]. 

 

Table II shows the orbitals utilized in ten different calculations we carried out. As we 

have done for wurtzite ZnO [40], several of these calculations are partly intended to 

illustrate the fact that a single trial basis set calculation does not generally lead to a 

correct DFT description of non-metallic materials. Calculations VII and IX did not 

lower the occupied energies as compared to Calculation V. Specifically, the occupied 

bands from Calculation VII are slightly higher by about 30 meV than those of 

Calculations V and XI that are identical, as shown in Figure (4). Calculations VII and 

IX did not drastically change the lowest  laying, unoccupied energies as compared to 

the Calculation V, In contrast, Calculations VIII and X did. Hence, for most practical 

purposes, Calculations VII and IX provide acceptable DFT descriptions of w-CdS. 

Indeed, the above difference of 30 meV is negligible in comparison to the above 

discrepancies between the band gaps from several non-BZW calculations and 

experimental findings. The band gaps resulting from VII and IX are respectively 2.52 

eV and 2.48 eV. The closeness of the results from Calculations V, VII and IX 

indicates a robustness of the BZW method leading to providing a DFT description of 

w-CdS.  

 

The main difference between Calculations VII and IX, on the one hand, and 

Calculations VIII and X, on the other, seems not to be the numeric sizes of the basis 

sets, but rather the inclusion of the sulfur 4s orbital in the basis sets for VIII and X. 

For most two or more atom systems, this behavior could understandably be ascribed 



 13 

to drastic deviations of the electronic cloud from spherical symmetry.  These 

deviations are expected to be pronounced in solids. As stated elsewhere [33,40], the 

absence of a gap leads to the concomitantly convergence of the occupied and of the 

low laying unoccupied energies, explaining the early success of DFT and earlier Xα 

potentials  in describing metals – provided one utilizes a large enough basis set to 

ensure its completeness for the description of the ground state.  

 

V. Conclusion 

 

Our ab-initio, self-consistent LDA-BZW calculations led to electronic and related 

properties that mostly agree with experiment. Specifically, the calculated band gap of 

2.47 eV is in accord with experiment. Our calculations reproduced measured peaks 

in the conduction band density of state.  These agreements point to the accuracy of 

the density functional description of w-CdS, provided one utilizes a basis set that is 

complete for the description of the ground state and that is not overcomplete. The 

need for the BZW method in self-consistent calculations of electronic properties 

follows from the Rayleigh theorem, particularly for materials where an energy or 

band gap exists between occupied and empty states.  With the method, the 

prospects seem great for DFT to inform and to guide the design and fabrication of 

semiconductor based devices. Further, theory could aid in the search for novel 

materials with desired properties, including binary to quaternary systems.    
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Table I.  Selected, calculated valence band eigenvalues [E(k) in eV] of w-CdS as 

compared to the experimental data of Stoffel.6 Ten (10) calculated values agree with 

experiment, within the experimental uncertainties ( 2.0  eV). The six (6) values that 

fall outside the range of the experimental uncertainties do so at the percentage 

levels indicated between parentheses: 3  (1.7%), the lowest L1,3 (2.3%), the lowest 

M3 (5%) and M1 (3.3%), A1,3 (1.9%), and the two H3 (2.3%), and H3 (4%). 

 

Sym-
metry 
Label 

Meas-
ured  
E(k) 

Calcul-
ated 
E(k)  

Sym-
metry 
Label 

Meas-
ured 
E(k) 

Calculated  
E(k) 

Sym-
metry 
Points 

Meas-
ured 
E(k) 

Calcul-
ated 
E(k) 

6  0.0 0.0 M4 -0.7 -0.73 A5,6 -0.5 -0.38 

1  ? -0.012 M3 -1.1 -1.27 A1,3 -2.6 -2.35 

5  -0.8 -0.74 M2 -1.7 -1.85 H3 -1.3 -1.07 

3  -4.5 -4.22 M1 ? -2.59 H1,2 -2.5 -2.43 

L2,4 -1.4 -1.27 M3 -3.0 -3.35 H3 -4.2 -3.83 

L1,3 -1.5 -1.33 M1 -4.3 -3.96    

L1,3 -4.3 -4.0       
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Table II.  Successively larger, trial basis sets, as per the BZW method, for the 

description of the valence states of wurtzite cadmium sulfide (w-CdS). The optimal 

basis set is that from Calculation V.  

Calculation 
Number 

Atomic  
Functions on Cd 

Atomic 
Functions on S 

Total Number of 
orbitals   

Band 
Gap 
(eV) 

I 3d4s4p4d5s 2s2p3s3p 46 3.1478 

II 3d4s4p4d5s5p 2s2p3s3p 52 3.3740 

III 3d4s4p4d5s5p6s 2s2p3s3p 54 2.7062 

IV 3d4s4p4d5s5p6s5d 2s2p3s3p 64 2.6080 

V 3d4s4p4d5s5p6s5d 2s2p3s3p4p 70 2.4727 

VI 3d4s4p4d5s5p6s5d 2s2p3s3p4p4s 72 1.8039 

 

VII 3d4s4p4d5s5p6s5d 2s2p3s3p3d 74 2.5195 

VIII 3d4s4p4d5s5p6s5d 2s2p3s3p3d4s 76 1.8542 

IX 3d4s4p4d5s5p6s5d 2s2p3s3p3d4p 80 2.4771 

X 3d4s4p4d5s5p6s5d 2s2p3s3p3d4p4s 82 1.8104 
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Figure 1.  Electronic energy bands of w-CdS as obtained from Calculation V with the 

optimal basis set.  
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Figure 2.  The total density of states (DOS) for w-CdS as obtained from the bands in Figure 

1. 
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Figure 3.  The partial densities of states of states (pDOS) for w-CdS as obtained from the 

bands in Figure 1. 

 
 



 22 

 
 

Figure 4.  Electronic energy bands of w-CdS from Calculations V (full lines) and IX (dashed 

lines). The true DFT results, given the total convergence of the occupied states, are those of 

Calculation V. 
 

 


