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First-principles investigation of dynamical properties of molecular devices under a steplike pulse
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We report a computationally tractable approach to first principles investigation of time-dependent current of
molecular devices under a step-like pulse. For molecular devices, all the resonant states below Fermi level
contribute to the time-dependent current. Hence calculation beyond wideband limit must be carried out for a
quantitative analysis of transient dynamics of molecules devices. Based on the exact non-equilibrium Green’s
function (NEGF) formalism of calculating the transient current in Ref.6, we develop two approximate schemes
going beyond the wideband limit, they are all suitable for first principles calculation using the NEGF combined
with density functional theory. Benchmark test has been done by comparing with the exact solution of a single
level quantum dot system. Good agreement has been reached for two approximate schemes. As an application,
we calculate the transient current using the first approximated formula with opposite voltageVL(t) = −VR(t)
in two molecular structures: Al-C5-Al and Al-C60-Al. As illustrated in these examples, our formalism can be
easily implemented for real molecular devices. Importantly, our new formula has captured the essential physics
of dynamical properties of molecular devices and gives the correct steady state current att = 0 andt → ∞.

PACS numbers: 71.15.Mb, 72.30.+q, 85.35.-p 73.23.-b

INTRODUCTION

With the rapid progress in molecular electronics,[2] quan-
tum transport in molecular device has received increasing
attention. In particular, the dynamic response of molecu-
lar devices to external parameters[3–9], in which the exter-
nal time-dependent fields or internal parametric pump poten-
tials drive the electrons to tunnel through the molecular de-
vice, is one of the most important issues in molecular elec-
tronics. The simplest molecular device structure is the two-
probe lead-device-lead (LDL) configuration, where “device”
is the molecular device connected to the external probes by
the “leads”. In such a device, all the atomic details of the
device material can be treated using density functional the-
ory (DFT) and the non-equilibrium physics can be taken into
account using non-equilibrium Green’s function (NEGF). Up
to now, from an atom point of view, one of the most popu-
lar theoretical approaches used to study the quantum trans-
port properties of molecular device is Keldysh nonequilib-
rium Green’s functions coupled with density-functional the-
ory (NEGF-DFT).[10] Using this approach, the steady state
quantum transport properties in molecular devices have been
widely studied.

For time dependent response of molecular devices, there
have been many different theoretical approaches, such
as evolution of time-dependent Schrodinger equation,[11],
time development operator approach,[12] and the NEGF
technique.[13] These approaches are convenient to deal with
dynamic response of time-dependent external field that is si-
nusoidal (e.g., microwave radiation). Under such an external
field an electron can tunnel through the system by emitting
or absorbing photons, giving rise to the photon-assisted tun-
neling (PAT). Concerning the steady state ac response to har-
monic external field, the Floquet approach is convenient.[14]
For the transient transport, however, the pulse like ac sig-

nal is the optimal driven force since they can provide a less
ambiguous measure of time scales.[15] In this case, besides
PAT, one of the most interesting questions to ask is how fast
a device can turn on or turn off a current. With the de-
velopment of molecular electronics, providing a particular
viable switching device has become a key technical issue.
Concerning the transient dynamics, different approaches such
as path-integral techniques,[16] the solution of Wigner dis-
tribution function,[17] the time-dependent numerical renor-
malization group,[18] time-dependent DFT (TDDFT),[3, 19]
and Keldish Green’s funciton[4, 6, 20] have also been de-
veloped and applied to different systems. Up to now, most
of these approaches can only be implemented in simple sys-
tems such as quantum dots[6, 20] or one-dimension tight-
binding chains.[3] Numerical calculation of transient current
for molecular devices is very difficult at present stage due to
the huge computational cost. This is because if we calculate
the current as a function of timet, the amount of calculation
scales ast3 if the time-evolution method is used. This scaling
can be reduced to a linear scaling int if the wideband limit is
used.[21] As we have demonstrated,[22] the wideband limit is
not a good approximation for molecular devices. If one uses
the exact solution from NEGF,[6] one can calculate the tran-
sient current at a particular time. However, the calculation in-
volves a triple integration over energy which is extremely time
consuming. Clearly an approximate scheme that is suitable for
numerical calculation of transient properties for real molecu-
lar devices while still captured essential physics is needed.

It is the purpose of this paper to provide such a practical
scheme. To study transient dynamics, in this paper, we con-
sider a system that consists of a scattering region coupled to
two leads with the external time dependent pulse bias poten-
tial Vα(t) = θ(±t)Vα. For this case, the time-dependent cur-
rent for a step-like pulse has been derived exactly without us-
ing the wide-band limit by Maciejko et al[6]. Since the gen-
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eral expression for the current involves triple integrations, it
is extremely difficult to perform them in a real systems like
molecules devices. So, approximation has to be made. The
simplest approximation is the so called wide-band approxima-
tion where self-energiesΣr,a are assumed to be constants inde-
pendent of energy.[23] Unfortunately, this approximationcan
not give the correct result since in general there are several res-
onant levels that significantly contribute to the transientcur-
rent in molecules devices. To go beyond the wideband limit,
we propose an approximate scheme of calculating the tran-
sient current that is suitable for numerical calculation ofreal
molecules devices.[24] Our scheme is an approximation of the
exact solution of Maciejko et al[6]. It is very fast computa-
tionally and gives the correct limits att = 0 andt = ∞. Since
the exact solution of transient current is available for a single
level quantum dot system, we have compared our result with
the exact solution on the quantum dot system to test our ap-
proximate schemes. Good agreement is obtained. Therefore,
our approximated scheme maintains essential physics of tran-
sient dynamics. Using our scheme, we calculate the transient
current for the upward pulse (turn-on) and downward pulse
(turn-off) in two molecular structures: Al-C5-Al and Al-C60-
Al. We find that different from the single level quantum dot
system, upon switching on the current oscillates rapidly inthe
first a few or tens fs with several characteristic time scales.
Furthermore, due to the resonant states in molecular devices,
transient currents have a much longer decay timeτ, especially
for the molecule device having a complex electronic structure
such as Al-C60-Al.

The rest of paper is organized as follows: In Sec.II, starting
from the typical molecular device Hamiltonian which is ex-
pressed in an non-orthogonal basis, we shall derive a general
DC and AC current expressions for a non-orthogonal basis
set. It is found that for DC bias, the expressions of current
for orthogonal and non-orthogonal basis sets are the same.
For ac current, however, the expressions are different as will
be demonstrated in Sec.II. The reason that we study the dif-
ference between orthogonal and non-orthogonal basis sets is
the following. For the NEGF formalism, it is assumed that
the basis set is orthogonal. It turns out that for ac transport,
the current expression becomes extremely complicated if non-
orthogonal basis is used. For DFT calculation, however, most
people work in molecular orbitals that are non-orthogonal.
Our results show that we must orthogonalizing the nonorthog-
onal molecular Hamiltonian, so that the present approach in
Ref.6 can be used. In Sec.III, based on the exact solution of
Maciejko et al, we derive two approximate expressions for
transient current with different levels of approximation. They
are all suitable for numerical calculation for real molecular
devices. In addition, the initial current and its asymptotic long
time limit are shown to be correct. In Sec.IV, in order to appre-
ciate our approximate formulas, we compare our result with
the exact result obtained in Ref.6 for a single-level quantum
dot connected to external leads with a Lorentzian linewidth. In
Sec.V, we apply our formalism to several molecular devices.
Finally, a conclusion is presented in Sec.VI. Two appendices

are given at the end of the paper. In Appendix A, we give a
detailed derivation of orthogonalization relation for an non-
orthogonal basis. This relation is used to derive the effective
Green’s function which is the key to approximate exact cur-
rent expression of Maciejko et al. In Appendix B, we show
how to orthogonalize an nonorthogonal Hamiltonian so that
the general AC current for real molecules device can be de-
rived.

GENERAL AC CURRENT

Hamiltonian

The transport properties of a molecular device can be de-
scribed by the following general Hamiltonian:

H = Hc + HT +

∑

α=L,R

Hα (1)

where HL and HR describe the left and right macroscopic
reservoir, respectively;Hc is Hamiltonian of the central
molecular device;HT couples the reservoirs to the molecu-
lar device. For a particular basis set, the above Hamiltonian
can be written in the following matrix form:

Hα =

∑

µανα

c†µα
[

H0
µανα
+ eVα(t)δµανα

]

cνα

Hc =

∑

µcνc

d†µc

[

H0
µcνc
+ Uµcνc(t)

]

dνc

HT =

∑

να ,νc

c†ναT
0
νανc

dνc + h.c. (2)

where e is the electron charge,cνα (cν†α) and dνc (d†νc
) are

Fermionic annihilation (creation) operators at the stateν in
the lead-α and the stateν in central molecular device.να,
νc are the indices of the given basis set. The Hamiltonian of
lead-α are divided into two parts: the time independent part
H0
α and time dependent part due to external biasVα(t) on the

lead-α. Here we consider two kinds of step-like bias: up-
wards pulse (turn-on case)VU

α (t) and downwards pulse (turn-
off case)VD

α (t), where

VD
α (t) =

{

Vα, t < 0
0, t > 0

, VU
α (t) =

{

0, t < 0
Vα, t > 0

(3)

In the adiabatic approximation it is assumed that the sin-
gle particle energies acquire a rigid time-dependent shiftas
H0
α + IVα(t). The energy shift in the leads is assumed to be

uniform throughout. This assumption is reasonable since the
pulse rising time is slower than the usual metallic plasma os-
cillation time, which ensures that the external electric field is
effectively screened.[25]

Since Green’s functionGr(t, t′) is obtained by solving
Dyson equation from the known history, it is better to set
time dependent external biasVα(t > 0) = 0 so that the un-
certainty of future can be eliminated.[6] From Eq.(3), this
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is satisfied only in the downward case. In the following,
we will discuss how to eliminate this uncertainty for the up-
ward pulse. To use the Dyson equation, we will separate the
Hamiltonian into two pieces: the unperturbed Hamiltonian
that can be exactly resolved and the interacting term which
contributes to the self energy in Dyson equations. For the
downward pulse, we define the non-biased open system as
the unperturbed system. It is described by the Hamiltonian
H0
= H0

α + H0
c + H0

T . For the upward pulse, however, the sit-
uation is different, in which we will set the DC biased open
systemHV

= [H0
α +VαI ] + [H0

c +UV ] +HV
T as the unperturbed

Hamiltonian and set̃VU
α (t) = VU

α (t) − Vα as the new time de-
pendent part. HereHV

T denotes the coupling between scatter-
ing region and biased leads andUV is the induced coulomb
potential due to the external bias. Now, the time dependent
biasṼU satisfiesṼU(t > 0) = 0, and the uncertainty of the fu-
ture in the upward case is eliminated. Then, for the downward
case, we havẽVD

α (t) = VD
α (t) andHer

= H0 while for the up-
ward case we havẽVU

α (t) = VU
α (t) − Vα andHex

= HV . From
now on we will use superscript “ex” to denote the unperturbed
system that is exactly resolvable.

When the system is biased, the incoming electron will po-
larize the system. The induced Coulomb potential in the cen-
tral scattering region consists of two parts: DC and AC parts.
The DC part can be put into the exactly resolvable Hamil-
tonianHex. The induced time dependent coulomb potential
U(t) due to the external bias̃Vα(t) is included as part of the
non-equilibrium Hamiltonian. Because the electric field is
not screened in the small scattering region where the poten-
tial drop occurs, the coulomb potential landscapeU(t) in the
central region is not uniform, which is different from the semi-
infinite leads. Note that it is rather difficult to treat the time-
dependent coulomb potential and no close formed solution
exists if one does not assume wide band limit. In the small
bias limit, we can expand the time-dependent coulomb po-
tential to linear order in biasU(t) = e

∑

α uαṼα(t) so that the
analytic expression for current can be obtained. Hereuα is
the characteristic potential.[27] From the gauge invariance,
[26]

∑

α uα = I , anduα is determined from a poisson like
equation.[28] In this paper, we consider the symmetric cou-
pling so that for the external bias̃VL(t) = −ṼR(t) it is a good
approximation to assume that the time dependent coulomb po-
tentialU(t) is roughly zero in the the molecular device regime.

In the following, we will derive an exact solution of tran-
sient current using a non-orthogonal basis set.[29] To facili-
tate the derivation, we take a unitary transformationÔ(t) to
the Hamiltonian (2) with

Ô(t) = exp















ie
∑

να

∫ t

0
dτ

[

Ṽα(τ)c†ναcνα
]















whereṼα(τ) = θ(−τ)Vα for the downward pulse and̃Vα(τ) =
−θ(−τ)Vα for the upward pulse. Note that the timet in Ô(t)
can be negative or positive, and̂O(t) = 1 only whent > 0. The
new HamiltonianH = ÔHÔ†(t)+ i( ∂

∂t Ô(t))Ô†(t), in whichHα

andHT are different from original ones:

Hα =

∑

µανα

c̄†µαH
0
µανα

c̄να

HT =

∑

να,νc

c̄†ναTνανc(t)dνc + h.c. (4)

where

c̄να = cνα exp[ie
∑

µα

∫ t

0
dτ Ṽα(τ)c†µαcµα ],

Tνανc (t) = T0
νανc
Wα(t)

Wα(t) = exp[ie
∫ t

0
Ṽα(τ)dτ] (5)

For the original Hamiltonian with nonorthogonal basis, the
overlap between nonorthogonal basis is expressed as the ma-
trix form S0

µν = 〈µ|ν〉. After the unitary transform, annihilation

(creation) operatorscα (c†α) and consequently the orbital basis
µα in the leads are changed, then overlap matrices between the
leads and the scattering region become

Sνανc(t) = S0
νανc
Wα(t)

Sνcνα (t) = W
†
α(t)S0

νcνα
. (6)

In the following, we will use the transformed Hamiltonian
[Eq.(4,5), in which ¯cνα , dνc are used] to derive the time de-
pendent current expression.

The current

The current operator from a particular lead-α to the molec-
ular junction can be calculated from the evolution of the num-
ber operator of the electron in the semi-infinite lead-α. As-
suming there is no direct coupling between the left and right
leads, the current operator can be expressed as:[30]

Ĵα(t) = −e
∑

να

d
dt

N̂να (t)

= −e
∑

να

[

c̄†να (t)
d
dt

c̄να (t) +

(

d
dt

c̄†να (t)

)

c̄να(t)

]

= e
∑

να,νc

c̄†να(t)

(

iTνανc(t) + Sνανc(t)
d
dt

)

dνc(t) + H.c.(7)

where ‘H.c.’ denotes the Hermitian conjugate. The current is
obtained by taking average over the nonequilibrium quantum
state ‘< ... >’,

Jα(t) = e
∑

να ,νc













G<
νcνα

(t, t′)













Tνα ,νc(t
′) − Sνα ,νc(t

′)i
∂̀

∂t













−












Tνc ,να(t
′) − Sνc,να (t

′)i
∂́

∂t













G<
νανc

(t′, t)













t=t′
,(8)
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where “∂̀
∂t ” and “ ∂́

∂t ” denotes the left and right derivation re-
spectively, and

G<
νc,να

(t, t′) = i
〈

c̄†να(t
′)dνc(t)

〉

, G<
να,νc

(t′, t) = i
〈

d†νc
(t)c̄να(t

′)
〉

.

Using the Keldysh equation and the theorem of analytic
continuation, we have

G<
cα(t, t′) =

∫

dt1
[

Gr
cc(t, t1)Bcα(t1)g<αα(t1, t′)+

G<
cc(t, t1)Bcα(t1)ga

αα(t1, t
′)
]

(9)

where

Bcα(t1) = Tcα(t1) − Scα(t1)i
∂̀

∂t
(10)

For simplicity, we have dropped the subscriptµ, and keep only
the symbolc andα to indicate the central scattering region and
lead-α, respectively. In the above expression and in the fol-
lowing, the summation convention on repeated sub-indices is
assumed. Substituting Eq.(9) into Eq.(8), we have the general
expression for the current:

Jα(t) = −2eRe
∫

dt1 Tr
[

Gr
cc(t, t1)Bcα(t1)g<αα(t1, t′)Bαc(t′)−

G<
cc(t, t1)Bcα(t1)ga

αα(t1, t
′)Bαc(t

′)
]

t=t′ (11)

When the system reaches a stationary state,Vα(t) = Vα be-
comes time independent, from definition Eq.(5), (6) and (10),
we can find

Bcα(t1)XBαc(t) = e−ieVα(t1−t)B0
cαXB0

αc,

with B0
cα/αc = T0

cα/αc − i ∂̀
∂t S

0
cα/αc, where “0” denotes the zero

bias system.In addition, all the propagatorsG andg depend
only on the time differencet1 − t. Taking the Fourier trans-
formation, from Eq.(8) or Eq.(11), we can easily obtain DC
current expressed in the energy representation:

Jα =
∫

dǫ Jα(ǫ)

= Re 2e
∫

dǫ Tr
[

Gr(ǫ)Σ<α(ǫ) +G<(ǫ)Σa
α(ǫ)

]

(12)

whereG andΣ are the Green’s function and the self-energy.
They have the same matrix dimension as that of the Hamil-
tonianHc. The Green’s functionGr/a and self-energyΣr/a is
defined as

Gr/a(ǫ) =
[

ǫI − Hc − Σr/a(ǫ)
]−1

Σ
γ
α(ǫ) =

[

T0
cα − ǫαS0

cα

]

gγαα(ǫα)
[

T0
αc − ǫαS0

αc

]

(13)

whereǫα = ǫ − eVα, I is the unitary matrix with same dimen-
sion asHc, γ = r, a, <, and

gr/a
αα (ǫ) =

[

(

(ǫ ± i0+)S0
αα − H0

αα

)−1
]

να∈sur,µα∈sur

g<αα(ǫ) = f (ǫ)
[

ga
αα(ǫ) − gr

αα(ǫ)
]

(14)

is the surface Green’s function of the semi-infinite periodic
lead which can be calculated numerically using a transfer ma-
trix method.[31] Here,f (ǫ) is the Fermi distribution. Eq.(12)
shows that the dc current expressions are the same for both
orthogonal and non-orthogonal basis sets.

When the time dependent fieldVα(t) is present, however,
the current expressed in energy representation will be very
complicated for nonorthogonal basis due to the termS(t′)i ∂

∂t
in Eq.(8), sinceB(t1)XB(t) can’t be expressed as a function of
time differencet1 − t. One thing is clear, the transient current
expressions are different for orthogonal and non-orthogonal
basis sets. Instead of deriving a complicated transient current
expression using a non-orthogonal basis set, we will elimi-
nateScα/αc(t′)i ∂∂t in Eq.(8) and work on an orthogonal basis
set. In Appendix , from the overlap matrixS, we derive the
orthogonal basis set and new HamiltonianH̃ expressed in this
orthogonal basis. With the new orthogonal Hamiltonian, the
overlap matrixScα/αc(t′) will be eliminated since the overlap
matrix of orthogonal basisSorth

= I . Then, replacing Hamilto-
nianH in Eq.(2) withH̃ and go through the derivation leading
to Eqs.(2-11) again, we arrive at a new AC current expression:

Jα(t) = 2eRe
∫

dt1Tr
{

Gr
cc(t, t1)

[

Tcα(t1)g<,ex
αα (t1 − t)Tαc(t)

]}

+2eRe
∫

dt1Tr
{

G<
cc(t, t1)

[

Tcα(t1)ga,ex
αα (t1 − t)Tαc(t)

]}

(15)

Defining the self-energy on the orthogonal basis

Σ
γ=r,a,<
α (t, t′) = Tcα(t)gγ,ex

αα (t − t′)Tαc(t′) (16)

wheregγ,ex
αα (t− t′) =

∫

dǫ
2π e−iǫ(t−t′)gγ,ex

αα (ǫ) is the surface Green’s
function of semi-infinite lead-α in the unperturbed state as de-
fined in the Sec.. For the downward pulse we have set the
unperturbed system as the open system at zero bias, in which

gγ,ex
αα (ǫ) =

[

ǫ − H0
α + i0+

]−1

α∈sur
. For the upward pulse, the un-

perturbed system meansVα biased open system, in which

gγ,eq
αα (ǫ) =

[

ǫ − eVα − H0
α + i0+

]−1

α∈sur
. From Eq.(15),(16), we

have the general current formula

Jα(t) = 2eRe
∫

dt1Tr
[

Gr(t, t1)Σ<α(t1, t) +G<(t, t1)Σa
α(t1, t)

]

(17)

At t < 0, AC external biasVα(t) or time dependent part in
HamiltonianṼα(t) is a constant and the system is in a steady
state. Consequently, the total current is known from DC trans-
port theory that is expressed in the form of Eq.(12) but with
the Green’s function and self-energy obtained from the or-
thogonal Hamiltonian defined above. Hence in the following
we shall derive only the Ac current whent > 0. First, we shall
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look at the self-energy. From Eq.(5) and (16),

Σ
γ
α(t, t′) = W†α(t)

[

T0
cαgγαα(t, t′)T 0

αc

]

Wα(t′)

= W
†
α(t)

[∫

dǫ
2π

eiǫ(t−t′)
Σ
γ,ex
α (ǫ)

]

Wα(t′)

= W
†
α(t)V†α(t)

[
∫

dǫ
2π

eiǫ(t−t′)
Σ
γ,0
α (ǫ)

]

Vα(t′)Wα(t′)

(18)

whereVα(t) = 1 for the downward pulse andVα(t) = eieVαt for
the upward pulse. HereΣγ,0α (ǫ) is the self-energy at zero bias,
Σ
γ,ex
α (ǫ) = T0

cαgγ,ex
αα (ǫ)T0

αc is the self-energy at the unperturbed
state defined above. In the downward caseΣγ,ex

α = Σ
γ,0
α ; In the

upward caseΣγ,ex
α = Σ

γ,V
α . SettingS0

αc = S0
cα = 0, Σγ,0α and

Σ
γ,V
α are defined in Eq.(13) with zero and nonzeroVα, respec-

tively. We haveΣr/a,V
α (ǫ) = Σr/a,0

α (ǫ − eVα). From Eq.(17) and
(18), we find

Jα(t) = 2eRe
∫

dǫ
2π

∫ t

−∞
dt1 eiǫ(t−t1)

[

Gr(t, t1)Σ̃<α(ǫ, t1, t) +G<(t, t1)Σ̃a
α(ǫ, t1, t)

]

(19)

where the first term is the current flowing into the molecular
device while the second one is the current flowing from the
molecular device, and

Σ̃
γ
α(ǫ, t1, t) = W†

α(t1)Σγ,0α (ǫ)Wα(t) (20)

whereWα(t) = Vα(t)Wα(t). HereΣγ,0αα is the self-energy of
lead-α at zero bias. The lesser Green’s function is given by

G<(t, t′) =
∫

dt1

∫

dt2 Gr(t, t1)

















∑

β

Σ
<
β (t1, t2)

















Ga(t2, t
′)

=

∑

β

∫

dǫ
2π

e−iǫ(t−t′)

[∫ t

−∞
dt1 eiǫ(t−t1)Wβ(t)Gr(t, t1)W†

β
(t1)

]

Σ
<,0
β

(ǫ)

[
∫ t′

−∞
dt2 e−iǫ(t′−t2)Wβ(t2)Ga(t′, t2)W†

β
(t)

]

(21)

Substitute Eq.(20) and (21) into Eq.(19) and introducing a
spectrum function

Aα(t, ǫ) =
∫ t

−∞
dt1 eiǫ(t−t1)Wα(t)Gr(t, t1)W†

α(t1) (22)

we have

Jin
α (t) = 2eRe

∫

dǫ
2π

Aα(t, ǫ)Σ<,0α (ǫ) (23)

Jout
α (t) = 2eRe

∫

dǫ
2π

∑

β

Aβ(t, ǫ)Σ
<,0
β

(ǫ)F̃βα(t, ǫ) (24)

where

F̃βα(t, ǫ) =
∫ t

−∞
dt′ e−iǫ(t−t′)

∫

dE
2π

eiE(t−t′ )

A†
β
(t′, ǫ)W†

α(t′)Σa,0
α (E)Wα(t) (25)

Very often, Σr/a(t − t′) is singular att = t′, such as
the quantum dot system with the wide-band limitΣr/a(0) =
∫

dE
2π Σ

r/a(E) = δ(0)(∓Γ/2), or the superconducting-quantum
dot-normal metal system, and so on. In these cases, we should
be careful with Eq.(25),

F̃βα(t, ǫ) = Fβα(t, ǫ) + F̄βα(t, ǫ)

=













∫ t−

−∞
+

1
2

∫ t+

t−













dt′ e−iǫ(t−t′)
∫

dE
2π

eiE(t−t′ )

A†
β
(t′, ǫ)W†

α(t′)Σa,0
α (E)Wα(t) (26)

The first integral
∫ t−

−∞ is the same as Eq.(25), the second inte-

gral 1
2

∫ t+

t−
now becomes̄Fβα(t, ǫ) = A†

β
(t, ǫ)∆a

α, where we have
defined

∆
r/a
α =

1
2

∫ t+

t−
dt′

[
∫

dE
2π
Σ

r/a,0
α (E)

]

=
1
2

∫ t+

t−
dt′ Σr/a,0

α (0) (27)

Then, Eq.(24) becomes

Jout
α (t) = 2eRe

∫

dǫ
2π

∑

β

Aβ(t, ǫ)Σ
<,0
β

(ǫ)Fβα(t, ǫ)

+ 2eRe
∫

dǫ
2π

∑

β

Aβ(t, ǫ)Σ
<,0
β

(ǫ)A†
β
(t, ǫ)∆a

α (28)

We note that Eq.(28) is the same as that derived in Ref.6.
Different from Ref.6, we have split the expression into two
terms. The first term corresponds to the non-wideband limit,
i.e., when the linewidth functionΓ goes to zero at large en-
ergy. The second term of Eq.(28) is related to the wideband
limit. Hence, for a quantum dot with a Lorentzian linewidth
function[6], only the first term is nonzero while for the system
in contact with a superconducting lead both terms are nonzero.

So far, we have discussed the acconduction currentJα(t)
under the time dependent bias derived from the evolution of
the number operator of the electron in the semi-infinite lead-α.
Now we wish to address the issue of charge accumulation in
the scattering region. In principle, this can be done by includ-
ing the self-consistent Coulomb potential due to ac bias.[28]
However, at finite voltages, there is no close form expression
for ac current if Coulomb potential is included. Alternatively,
one can treat Coulomb potential phenomenologically as fol-
lows. From the continuity equation,

∑

α Jα(t) + dQ(t)/dt = 0,
we see that the conduction current is not a conserved quan-
tity. In the presence of ac bias, the displacement currentJd

α

due to the charge pileupdQ/dt inside the scattering region
becomes important and must be considered. Since we have
neglected the Coulomb interaction in our calculation, we can
use the method of current partition[32, 33] to include the dis-
placement current. This can be done by partitioning the total
displacement current

∑

α Jd
α = dQ/dt into each leads giving

rise to a conserving total currentIα = Jα + Jd
α. For symmet-

ric systems like what we shall study below, it is reasonable to
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assume thatJd
L = Jd

R from which we findJd
α = −(JL + JR)/2.

Hence the total current is given byIL = (JL− JR)/2[25] which
satisfies the current conservationIL + IR = 0.

TRANSIENT AC CURRENT

Up to now, we have derived the general expression for time
dependent current, Eq.(22,23,25,28) which can be used for or-
thogonal as well as nonorthogonal basis set. To calculate the
transient current we have to solve the retarded Green’s func-
tion Gr(t, t′) and integrate it over time to findAβ(t, ǫ) and
F̃βα(t, ǫ). For the pulse-like voltagẽVα(t) = ±θ(−t), we can
obtain the Green’ functionGr(t, t′) by solving Dyson equa-
tion Gr

= Gr,eq
+ Gr,eq

ΞGr from the known history in the
time domain. Depending on what is the chosen unperturbed
system that can be solved exactly, the Dyson equation can be
written in a different but equivalent form. In the study of time-
dependent transport, it is better to treat the time-independent,
open steady state system as the unperturbed system as de-
scribed in Sec., and treat the time dependent partṼα(t) and
U(t) as a perturbation. As a result, the effective self-energy
Ξ, which is due to the ac bias, would have two sources: the
perturbation in leads̄Σr

α and the induced Coulomb interaction
in molecular deviceU(t). Then,

Gr(t, t′) = Gr,ex(t, t′) +
∫ 0

−∞
dt1 Gr,ex(t, t1)U(t1)Gr(t1, t′)

+

∫

dt1 dt2 Gr,ex(t, t1)















∑

α

Σ̄
r
α(t1, t2)















Gr(t2, t′)

whereU(t) is the response of the molecular device that is due
to the Coulomb interaction when the time-dependent voltage
is turned on. Here we have assumed an adiabatic response
since most of time the variance of the applied electric field
is much slower than the particles’ intrinsic lifetime inside the
scattering region. Then we haveU(t) = ±Uθ(−t) for down-
ward case and upward case withU = HV

c − H0
c .

∫

dt1 dt2 =

(
∫ 0

−∞
dt1

∫ t1

−∞
dt2 +

∫ t

0
dt1

∫ 0

−∞
dt2

)

Σ̄
r
α(t, t′) = Σr

α(t, t′) − Σr,ex
α (t − t′)

Σ
r,ex
α (t − t′) = V†α(t)Σr,0

α (t − t′)Vα(t′)

Exact expression of Aβ(t, ǫ) and Fβα(t, ǫ)

Following the derivations in Ref.6, we can get the exact
expression forAβ(t, ǫ) andFβα(t, ǫ) with the aid of the expres-

sionsǫβ = ǫ + eVβ andǫβα = ǫ + eVβ − eVα:

AD
β (t, ǫ) = Gr,0(ǫ) +

∫

dE
2π

ei(ǫ−E)t

× Gr,0(E)
[

Z(ǫβ) − Z(ǫ) + PDGr,V(ǫβ)
]

(29)

FD
βα(t, ǫ) =

∫

dE
2π

Z∗(ǫ)Ga,0(ǫ)Σa,0
α (E) +

∫

dE
2π

e−i(ǫ−E)t

×
{[

Z∗(ǫβ) − Z∗(ǫ) +Ga,V(ǫβ)P
†
D

]

Ga,0(E)QD(E)

+

[

Z∗(ǫβα)Ga,V(ǫβ) − Z∗(ǫ)Ga,0(ǫ)
]

Σ
a,0
α (E)

}

(30)

AU
β (t, ǫ) = Gr,V(ǫβ) +

∫

dE
2π

ei(ǫβ−E)t

× Gr,V(E)
[

Z(ǫ) − Z(ǫβ) + PUGr,0(ǫ)
]

(31)

FU
βα(t, ǫ) =

∫

dE
2π

Z∗(ǫβα)Ga,V(ǫβ)Σa,0
α (E) +

∫

dE
2π

e−i(ǫβ−E)t

×
{[

Z∗(ǫ) − Z∗(ǫβ) +Ga,0(ǫ)P†U
]

Ga,V(E)QU(E)

+ eieVαt
[

Z∗(ǫ)Ga,0(ǫ) − Z∗(ǫβα)Ga,V(ǫβ)
]

Σ
a,0
α (E)

}

(32)

where

PD = Z(ǫβ)U +
∑

δ

[

Z(ǫβ) − Z(ǫβδ)
] [

Σ
r,0
δ

(ǫβδ) − Σr,0
δ

(E)
]

PU = −Z(ǫ)U +
∑

δ

[Z(ǫ) − Z(ǫδ)]
[

Σ
r,0
δ

(ǫ) − Σr,0
δ

(E − Vδ)
]

QD(E) =
∫

dǫ′

2π

[

1− ei(ǫ′−E)t
]

Z(ǫ′)Σa,0
α (ǫ′)

QU(E) =
∫

dǫ′

2π

[

1− ei(ǫ′α−E)t
]

Z(ǫ′α)Σa,0
α (ǫ′) (33)

with

Z(ǫ) = [i(E − ǫ − i0+)]−1 (34)

In the absence of the ac bias, the quantityAα is the Fourier
transform of the retarded Green’s function while the quantity
Fβα is related to the Fourier transform of the advanced Green’s
function. They are all expressed in terms of the unperturbed
Green’s functionsGr/a,0/V and self energyΣ0/V which have
been widely studied in molecular device using the NEGF-
DFT formalism. Gr/a,0/V and self energyΣ0/V can be ex-
pressed as

Gr/a,0/V(ǫ) =
[

ǫI − H0/V
c − Σr/a,0/V (ǫ)

]−1

Σ
γ,0
α (ǫ) =

[

T0
cα − ǫS0

cα

]

gγαα(ǫ)
[

T0
αc − ǫS0

αc

]

Σ
γ,V
α (ǫ) =

[

T0
cα − ǫαS0

cα

]

gγαα(ǫα)
[

T0
αc − ǫαS0

αc

]

whereγ = r, a, <, ǫα = ǫ − eVα. Obviously,Σγ,Vα (ǫ) =
Σ
γ,0
α (ǫ − eVα). In the wideband limit, Eq.(29-32) will reduce

to the formula first derived by Jauho et al.[25] WithA and
F obtained we can, in principle, solve the AC current biased
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by downwards or upwards pulse exactly. In practice, how-
ever, its computational cost is expensive for a realistic molec-
ular device. For example, to calculateJout

α (t), we have to do
triple integrals over energy and repeat this procedure to collect
data for all time sequence. In the numerical calculation espe-
cially in ab-initio modeling, it is practically very difficult if
not impossible to calculate the transient current for the com-
plex structure in molecular devices. So approximation must
be made so that Eq.(29-32) can be simplified.

Approximate scheme of Aβ(t, ǫ) and Fβα(t, ǫ)

The approximate solution ofAβ(t, ǫ) andFβα(t, ǫ) in Eq.(29-
32) have to satisfy the following requirements. First, it has to
greatly reduce the calculational cost. Second, it has to keep es-
sential physics of transient dynamics. Third, it must have the
correct initial current att = 0 and approach the correct asymp-
totic limit at t → ∞. The first goal is realized by eliminating
double energy integral using a reasonable ansatz, with which
the dynamical properties of molecular device is maintained.

To find such an ansatz, we first assume thatΣa,0(E)
changes smoothly and slightly withE and is analytic in
the upper half plane, so that the typical integral like
∫

dǫdE ei(ǫ−E)t

−i(E−ǫ+i0+ )Σ
a,0(E) is roughly zero due to the different

phase ineı(ǫ−E)t . Then the last term ofFU/D and the second
term ofQU/D disappear. Considering the following identity,

∫

dE
2π

Σ
a
α(E)

−i(E − ǫ + i0+)

=













∫ 0−

−∞
+

1
2

∫ 0+

0−













dτ Σa
α(τ)

∫

dE
2π

eiEτ

−i(E − ǫ + i0+)

=

[∫ 0+

−∞
−1

2

∫ 0+

0−

]

dτ eiǫτ
Σ

a
α(τ) = Σa

α(ǫ) − ∆a
α

and definingΣa
α(E,∆) = Σa

α(E) − ∆a
α, the first term ofFU/D

andQU/D in Eqs.(33) can be simplified,FU/D now becomes

FD
βα ≃ Ga,0(ǫ)Σa,0

α (ǫ,∆) +
∫

dE
2π

e−i(ǫ−E)t

×
[

Z∗(ǫβ) − Z∗(ǫ) +Ga,V(ǫβ)P
†
D

]

Ga,0(E)Σa,0
α (E,∆) (35)

FU
βα ≃ Ga,V (ǫβ)Σa,0

α (ǫβα,∆) +
∫

dE
2π

e−i(ǫβ−E)t

×
[

Z∗(ǫ) − Z∗(ǫβ) +Ga,0(ǫ)P†U
]

Ga,V(E)Σa,0
α (E − eVα,∆)

(36)

We note that, in the wide-band limit, Eq.(35,36) is exact. With
our approximation we have eliminated one of the energy in-
tegrals inJout, andA andF now have similar structures since
F̃ ∼ A†Σa.

With the approximation defined in Eq.(35,36), the current
can be written in a compact form (see section C) if we intro-

duce the effective Green’s function

G̃r/a,0(E, ǫ) =















ES− H0
c −

∑

α

Σ
r/a,0
α (ǫ)















−1

(37)

G̃r/a,V(E, ǫ) =















ES− HV
c −

∑

α

Σ
r/a,V
α (ǫ)















−1

(38)

In general we have to consider the overlap matrixS. How-
ever, we should keep in mind that in the deriving of the
time dependent current, we have to orthogonalize the basis
set, which would lead toS = I . Here G̃r/a(E, ǫ) can be
regarded as the Green’s functions at energyE and constant
parameterǫ for open system with the effective Hamiltonian
Hr/a

e f f = Hc + Σ
r
α(ǫ). For a givenHe f f , Eqs.(37,38) are equiva-

lent to

(ES− Hr
e f f )G̃

r
= I (39)

On the other hand, Green’s function can be expanded in terms
of the eigenfunctions of the corresponding Hamiltonian,

G̃r
=

∑

n

Ψ
nCn. (40)

whereHe f fΨ
n
= En(ǫ)Ψn. Substituting Eq.(40) into Eq.(39),

and using the general orthogonality relationΦn,†SΨm
=

Cmδnm [see Appendix ] and the eigenvalue equationHe f fΨ
n
=

En(ǫ)Ψn, we have

G̃r(E, ǫ) =
∑

n

Ψ
n
Φ

n,†

[E − En(ǫ)]Φn,†SΨn
(41)

Obviously, this Green’s function can be calculated by finding
the residues Resn = Ψ

n
Φ

n,†/Φn,†SΨn at various polesE =
En(ǫ).

Then, we replaceZ(ǫ)Gr/a(E) in Eqs.(29,31,35,36) by
Z(ǫ)G̃r/a(E, ǫ). Although G̃r/a(E, ǫ) is different from initial

Green’s functionGr/a(E) =
[

E − Hc − Σr/a(E)
]−1

, this sub-
stitution is reasonable since the major contribution of thein-
tegration in Eqs.(29-32) comes from the poleǫ in Z(ǫ) (see
Eq.(34)). Similarly, considering the major contribution of
the pole ofZ(ǫ), we replaceZ(ǫ)Σa,0(E) in Eqs.(29,31,35,36)
by Z(ǫ)Σa,0(ǫ). SinceΣ(ǫ) in G̃r(E, ǫ) is independent of en-
ergyE, we can perform contour integration over energyE in
Eqs.(29) and (31) by closing a contour on lower half plane and
perform the integration over energyE in Eqs.(30) and (32) by
closing a contour on upper half plane. Thus, energy integra-
tion overE can be analytically performed. It should be noted
that the self energyΣr/a is not independent of energy in con-
trast to the wide-band limit, this energy dependence is onǫ

but not onE. In this way, we can reduce the computational
cost and keep the essential physics of the dynamics as we will
show later.

Approximate expression of Aβ(t, ǫ) and Fβα(t, ǫ)

Now, considering the initial current and the asymptotic long
time limit, we can write the approximate expression ofAβ(t, ǫ)
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andFβα(t, ǫ) from Eqs.(29,31,35,36):

AD/U
β

(t, ǫ) = AD/U
β,1 + AD/U

β,2 (42)

FD
βα(t, ǫ) = AD,†

β,1Σ
a,0
α (ǫβα,∆) + AD,†

β,2Σ
a,0
α (ǫ,∆) (43)

FU
βα(t, ǫ) = AU,†

β,1Σ
a,0
α (ǫ,∆) + AU,†

β,2Σ
a,0
α (ǫβα,∆) (44)

with

AD
β,1 =

∫

dE
2π

ei(ǫ−E)t
[

Z(ǫβ)G̃r,0(E, ǫβ)
(

I + ΞDGr,V(ǫβ)
)]

(45)

AD
β,2 = Gr,0(ǫ) −

∫

dE
2π

ei(ǫ−E)t
[

Z(ǫ)G̃r,0(E, ǫ)
]

(46)

AU
β,1 =

∫

dE
2π

ei(ǫβ−E)t
[

Z(ǫ)G̃r,V(E, ǫ)
(

I + ΞUGr,0(ǫ)
)]

(47)

AU
β,2 = Gr,V(ǫβ) −

∫

dE
2π

ei(ǫβ−E)t
[

Z(ǫβ)G̃r,V(E, ǫβ)
]

(48)

where

Ξ
D
= U +

∑

δ

[

Σ
r,0
δ

(ǫβδ) − Σr,0
δ

(ǫβ)
]

= U +
∑

δ

[

Σ
r,V
δ

(ǫβ) − Σr,0
δ

(ǫβ)
]

Ξ
U
= −U +

∑

δ

[

Σ
r,0
δ

(ǫ) − Σr,0
δ

(ǫ − eVδ)
]

= −U +
∑

δ

[

Σ
r,0
δ

(ǫ) − Σr,V
δ

(ǫ)
]

(49)

This is the second level of approximation. As we will see later
that it is better than the first level approximation described be-
low. Now we can make further approximation (the first level).
To do this, we note that the Green’s functionGr can be ob-
tained using the Dyson equation,

Gr,tot
= Gr,ex

+Gr,ex
ΞGr,tot (50)

where Gr,tot is the Green’s function of system denoted by
H tot

= Hex
+ H′, Gr,ex is the unperturbed Green’s function

corresponding toHex that can be exactly solved,Ξ is the ef-
fective self energy describingH′. If we setHex andH tot as
zero biased open system andVα biased open system respec-
tively, we have

Gr,tot
= Gr,V(ǫ) = Gr,0(ǫ) +Gr,0(ǫ)ΞDGr,V(ǫ) (51)

Similarly, if we treatHex andH tot asVα biased open system
and zero biased open system, respectively, we obtain another
Dyson equation

Gr,tot
= Gr,0(ǫ) = Gr,V(ǫ) +Gr,V(ǫ)ΞUGr,0(ǫ) (52)

Similar to the derivation of the second level of approximation,
we can also replaceGex(ǫ) by G̃ex(E, ǫ) in Eq.(51,52) which
leads to

G̃r,V(E, ǫ) ≃ G̃r,0(E, ǫ)
[

I + ΞDGr,V(ǫ)
]

G̃r,0(E, ǫ) ≃ G̃r,V(E, ǫ)
[

I + ΞUGr,0(ǫ)
]

(53)

Then, Eqs.(45) and (47) can be further approximated as

AD
β,1 =

∫

dE
2π

ei(ǫ−E)t
[

Z(ǫβ)G̃r,V(E, ǫβ)
]

(54)

AU
β,1 =

∫

dE
2π

ei(ǫβ−E)t
[

Z(ǫ)G̃r,0(E, ǫ)
]

(55)

This is the first level of approximation. It is easy to confirm
that when the self-energy is energy independent these two ap-
proximations lead to exactly the same expression of transient
current in the wide-band limit. In the next section we will nu-
merically compare these two approximations with the exact
solution.

initial and asymptotic currents

We now show that the currents calculated from
Eqs.(23,28,42-48) and from Eqs.(23,28,42-44,46,48,54,55)
satisfy the correct current limit at initialt = 0 and asymptotic
limit t → ∞ times. Note that the initial current and asymp-
totic currents can be calculated from a standard DC transport
nonequilibrium Green’s function analysis. It is expected that
the asymptotic current for the downward pulseJD

α (t → ∞)
and initial current for the upward pulseJU

α (t = 0) are zero
since there is no bias in the system. Now we discuss the
limiting cases for two versions of approximations developed
in section IIIC.

Whent = 0, ei(ǫ−E)t
= 1, we can perform integration over

energyE in Eqs.(45-48) by closing a contour at upper half
plane, where only a single residual exists at an energy pole of
Z. At t = 0, G̃r/a,0/V(E, ǫ) = Gr/a,0/V(ǫ), therefore Eqs.(45,47)
and Eqs.(54,55) are equivalent. Now we focus on the current
obtained from Eqs.(23,28,42-44,46,48,54,55). After integrat-
ing overǫ, the two terms in Eqs.(46,48) cancels to each other,
then from Eq.(54, 55),AD/U

β
(t = 0) becomes

AD
β (t = 0) = G̃r,V(ǫβ, ǫβ) = Gr,V(ǫβ) (56)

AU
β (t = 0) = G̃r,0(ǫ, ǫ) = Gr,0(ǫ) (57)

ForFβα, we can perform integration over energyE by closing
a contour at lower half plane. Similarly, there also exists only
a single residual on energy poleEZ of Z∗ in the lower half
plane, and

FD
βα(t = 0) = G̃a,V (ǫβ, ǫβ)Σa,0

α (ǫβα,∆) = Ga,V (ǫβ)Σa,V
α (ǫβ,∆)

(58)

FU
βα(t = 0) = G̃a,V (ǫ, ǫ)Σa,0

α (ǫ,∆) = Ga,0(ǫ)Σa,0
α (ǫ,∆) (59)

Substituting Eq.(56-59) into Eq.(23,28), and considering

Σ
γ,0
β

(ǫ) = Σγ,V
β

(ǫβ)

G<,0/V(ǫ) = Gr,0/V(ǫ)

















∑

β

Σ
<,0/V
β

(ǫ)

















Ga,0/V(ǫ)

Σ
<,0
β

(ǫ) = f (ǫ)
[

Σ
a,0
β

(ǫ) − Σr,0
β

(ǫ)
]

Σ
<,V
β

(ǫ) = f (ǫ − eVβ)
[

Σ
a,V
β

(ǫ) − Σr,V
β

(ǫ)
]

(60)
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where f (ǫ) is Fermi distribution function, we have initial cur-
rent att = 0

JD
α = 2eRe

∫

dǫ
2π

Gr,V(ǫ)Σ<,Vα (ǫ) +G<,V(ǫ)Σa,V
α (ǫ)(61)

JU
α = 2eRe

∫

dǫ
2π

Gr,0(ǫ)Σ<,0α (ǫ) +G<,0(ǫ)Σa,0
α (ǫ) (62)

Eqs.(61) and (62) are the same as the formal DC current ex-
pression in the case of nonzero bias and zero bias, respec-
tively. JU

α (t = 0) in Eq.(62) is exactly zero since the Fermi
distribution inΣ<α andG< are equal forα = L andα = R.

When t → ∞, by virtue of the Riemann-Lebesgue
lemma,[34] the Fourier integral overǫ vanishes, i.e.,
∫

dǫ
2π e−iǫtGr

Σ
r... equal to zero att → ∞ since there always

exist poles in lower half plane. With this in mind, we have

AD
β (t→ ∞, ǫ) = Gr,0(ǫ) (63)

FD
βα(t→ ∞, ǫ) = Ga,0(ǫ)Σa,0

α (ǫ,∆) (64)

AU
β (t→ ∞, ǫ) = Gr,V(ǫβ) (65)

FU
βα(t→ ∞, ǫ) = Ga,V(ǫβ)Σ

a,0
α (ǫβα,∆) = Ga,V (ǫβ)Σ

a,V
α (ǫβ,∆)

(66)

From Eq.(63-66) and Eq.(23,28), we have the asymptotic cur-
rent

JD
α = 2eRe

∫

dǫ
2π

Gr,0(ǫ)Σ<,0α (ǫ) +G<,0(ǫ)Σa,0
α (ǫ) (67)

JU
α = 2eRe

∫

dǫ
2π

Gr,V(ǫ)Σ<,Vα (ǫ) +G<,V(ǫ)Σa,V
α (ǫ)

(68)

It is easy to see, Eqs.(67) and (68) are the formal DC current
expression in the case of zero bias and nonzero bias, respec-
tively, andJD

α (t→ ∞) in Eq.(67) is exactly zero.

COMPARISON WITH THE EXACT RESULT IN QUANTUM
DOT SYSTEM

Now we consider a system composed of a single-level
quantum dot connected to external leads with a Lorentzian
linewidth. This system can be solved exactly to give a tran-
sient current for pulse-like bias[6]. We can obtain transient
current using three methods: (i) the exact current expressed
by Eqs.(23,28, 29-32), (ii) the first level of approximation
from Eqs.(23,28,42-44,46,48,54,55) and (iii) the second level
of approximation from Eqs.(23,28,42-48). We will compare
the current obtained from these three methods. The system is
described by the following simple Hamiltonian

H =
∑

kα

ǫkα (t)c
†
kα

ckα + ǫd(t)d†d +
∑

kα

(tkαc†kαd + h.c.) (69)

whereǫd(t) = ǫ0
d + U(t) and ǫkα (t) = ǫ0

kα
+ Vα(t). Because

the scattering region has only one state with energy levelǫ0
d ,

the Green’s functionsG(ǫ) and self energyΣ(ǫ) thus become
scalars instead of matrices. If we choose linewidth function
Γα(ω) ≡ 2πρα(ω)|tkα |2 to be Lorentzian with the linewidth am-
plitudeΓ0

α,

Γα(ω) =
W2

ω2 +W2
Γ

0
α

thenGγ(ǫ) andΣγ(ǫ) can be expressed as

Gr/a,0(ǫ) =















ǫ − ǫ0
d −

∑

α

Σ
r/a,0(ǫ)















−1

Gr/a,V (ǫ) =















ǫ − ǫ0
d − UV −

∑

α

Σ
r/a,V(ǫ)















−1

G<,0/V (ǫ) = G<,0/V (ǫ)















∑

α

Σ
<,0/V (ǫ)















G<,0/V(ǫ)

Σ
r/a,0
α (ǫ) =

∫

dω
2π
Γα(ω)/(ǫ − ω ± i0+)

Σ
r/a,V
α (ǫ) =

∫

dω
2π
Γα(ω)/(ǫ − eVα − ω ± i0+)

Σ
<,0
α (ǫ) = f (ǫ)

[

Σ
a,0
α (ǫ) − Σr,0

α (ǫ)
]

Σ
<,V
α (ǫ) = f (ǫ − eVα)

[

Σ
a,V
α (ǫ) − Σr,V

α (ǫ)
]

Using the theorem of residual, we can analytically perform
integral inAβ andFβα for either exact formula or two approx-
imate formulas. In the calculation, we setΓ = Γ0

L + Γ
0
R as the

energy unit, and setΓ0
L = Γ

0
R = 0.5.

We first consider the transient current induced by opposite
voltageVL(t) = −VR(t). In this case, the equilibrium coulomb
potential in quantum dotU0,V

= 0, and the time dependent
perturbation coming from coulomb responseU(t) is assumed
to be zero. It is a reasonable assumption since the coulomb po-
tential in scattering region is canceled by the opposite voltage
in left and right lead. In Fig.1, we plot two approximated tran-
sient currents and exact transient current in downward [panel
(a), (b), (c)] and upward [panel (d), (e), (f)] case vs time for
different bandwidthW. We find that for all bandwidthW, the
approximated current and exact current have the same dynam-
ical behaviors. Fig.2 gives direct comparison where we merge
panels (a), (b) and (c) in Fig.1 as panel (a) in Fig.2, and merge
panels (d), (e) and (f) in Fig.1 as panel (b) in Fig.2. We can see
that for the downward pulse [panel (a)], transient current us-
ing three formulas are almost indistinguishable. This means
that in the opposite voltage, our approximation, the first ap-
proximation [Eqs.(46,48,54,55)] and the second approxima-
tion [Eqs.(45-48)] are all very good for studying transientdy-
namics. For the upward pulse, although the approximations
are not as good as in downward case, the currents calculated
from approximate scheme are still in good agreement with the
exact solution especially for the second approximation. Hence
we may conclude that the two approximations are all reason-
able in the opposite voltageVL(t) = −VR(t). They can be used
to study transient dynamics in the real molecular device to
speed up the calculation.
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FIG. 1: (Color online) Time dependent currentJ(t) corresponding
to an opposite downward pulse or upward pulse in three versions:
the exact solution and two approximations. The different black lines
are for different bandwidthW. The red line is forW = ∞, i.e., the
wide-band limit. The current is in the unit ofeΓ, and the time is in
the unit of 2π/Γ. eVL = −eVR = 5.

FIG. 2: (Color online) Merged version of Fig.1 forW = 1, 2, 5 and
20. Panel (a) corresponding to the downward pulse current comes
from panel (a), (b) and (c) in Fig.1, panel (b) correspondingto up-
ward pulse current comes from panel (d), (e) and (f). Along the black
arrow, the bandwidth areW = 1, 2, 5 and 20, respectively.

Next, we focus on the asymmetric voltage, i.e.,VL(t) ,
VR(t). In this case, the equilibrium coulomb potential in quan-
tum dot U0/V , and the time dependent perturbation coming
from coulomb responseU(t) can’t be canceled by the voltage
in left and right lead. In principle, perturbationU(t) should be
calculated by solving time dependent Schrödinger equation, it
will be very difficult and computational demanding therefore
can’t be implemented in real molecular device. As an alter-
native scheme, we have setU(t) = [eVL(t)Γ0

L + eVL(t)Γ0
L]/Γ.

For the single level quantum dot system, this is exact because
the central scattering region now is expressed in a scalar in-
stead of matrices, which leads to the same transient current
for the opposite voltageVL(t) = −VR(t) and asymmetric volt-
ageVL(t) = V(t), VR(t) = 0 or VL(t) = 0, VR(t) = −V(t) in the
exact solution.

For the first approximation the poles in time dependent term
ei(ǫ−E)t are different from that in the second level approxima-
tion, i.e., the poles of̃Gr,0 in Eq.45 andG̃r,V in Eq.47 are re-
placed by the poles of̃Gr,V in Eq.54 andG̃r,0 in Eq.55, re-
spectively. Because of this, the time evolution process arenot
as accurate in the first approximation, especially for the large
Vα. So, for the asymmetric voltage, the second approxima-
tion is better. In Fig.3 and Fig.4, we compare the transient
current obtained from the second approximation [panel (b-d)]
for opposite or asymmetric voltage with the exact transient
current [panel (a)] in response to the downward pulse and up-
ward pulse, respectively. We find that all transient currents
from the second approximation in Fig.3 and Fig.4 [panel (b)]
are very close to the exact result [panel (a)]. Moreover, in
Fig.3 and Fig.4, the approximate transient current in panel(b),
(c), (d) have almost the same behavior. It is safe to say that
our approximations have kept essential physics of dynamical
transport properties.

SEVERAL EXAMPLES FOR REAL MOLECULAR
DEVICES

In this section, we implement our approximate formula in
two representative molecular devices including a short carbon
chain coupled to aluminum leads and aC60 molecule coupled
to aluminum leads. These systems were chosen because they
are typical in first-principles calculation and their practical
importance to nano-electronics. In Fig.5(a) and Fig.5(b),we
show the structure of Al-C5-Al and Al-C60-Al, respectively,
where Al leads are along (100) direction, one unit cell of Al
lead consists of 9 Al atoms and total 40 atoms were included
in the simulation box. For the Al-C5-Al device, the nearest
distance between Al leads and the carbon chain is 3.781 a.u.
and the distance of C-C bond is 2.5 a.u.(1 a.u.=0.529Å). In
Al-C60-Al device, the distance between the Al atom and the
nearest C atom equal to 3.625 a.u..

To calculate the dynamic response of molecular devices,
we have used the first-principles quantum transport package
MATDCAL.[35] Considering the complicated coulomb re-
sponse in scattering region, we setVL(t) = −VR(t). In this
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FIG. 3: (Color online) Panel (a): exact time dependent current J(t)
corresponding to downward pulse fordV = VL − VR = 5. Panel
(b-d) are corresponding to the second approximate transient current
corresponding to downward pulse for opposite voltageVL = −VR =

2.5, asymmetric voltageVL = 5, VR = 0 andVL = 0, VR = −5,
respectively. The different black lines are for different bandwidths
W. The red line is wide-band limit forW = ∞.

FIG. 4: (Color online) Same to Fig.3, transient current corresponding
to upward pulse vs time are plotted.

case, the first approximation is simple but as good as the
second one. So, in the following, the first approximate for-
mula [Eqs.(23,28,42-44,46,48,54,55)] is used. In principle,
the calculation involves the following steps: (1) calculate the
device Hamiltonian including central scattering Hamiltonian
and lead Hamiltonian using NEGF-DFT package to get two
potential landscapesU0 at zero bias andUV at Vα bias, re-
spectively. They are originally expressed in a nonorthogo-
nal fireball basis. (2) orthogonalize the nonorthogonal de-
vice Hamiltonian using the approach[36] introduced in Ap-
pendix so that they are finally expressed in an orthogonal ba-
sis. (3) with the orthogonal lead HamiltonianHα, one calcu-
lates zero biased self energyΣr/a,0

α andVα biased self energy
Σ

r/a,V
α from Eqs.(13,14) using the transfer matrix method.[31]

FIG. 5: (Color online) Panel (a): Structure of Al-C5-Al. Panel(b):
structure of Al-C60-Al.

(4) with orthogonalized central scattering HamiltonianH0
c and

HV
c and self energyΣr/a,0

α andΣr/a,V
α obtained from two poten-

tial landscapesU0 andUV , one solves the effective Green’s
function Gr/a,0/V using Eqs.(37,38) by calculating its poles
and residuals from Eq.(41). Step (1)-(4) are time independent
processes and easy to perform. (5) calculate time dependent
quantitiesAD/U

β,1 andAD/U
β,2 from Eqs.(54,55) and Eqs.(46,48).

Then Aβ and Fβα can be calculated from Eqs.(42-44). (6)
integrate overǫ and obtain the final AC currentJD/U(t) =
[JD/U

L (t) − JD/U
R (t)]/2 from Eqs.(23,28).

First we study the Al-C5-Al structure. In Fig.6, we plot
the transient currentJ(t) corresponding to the upward pulse
[panel (a) and (b)] and the downward pulse [panel (c) and (d)]
for different external voltagesVR = −VL = 0.001a.u. [panel
(a) and (c)] andVR = −VL = 0.01a.u. [panel (b) and (d)] in Al-
C5-Al structure. Following observations are in order: (1) as
we have discussed in Sec., for all bias voltagesVα the transient
currents indeed reach the correct limits att = 0 andt → ∞.
For the upward pulse,J(t = 0) = 0 and J(t → ∞) = Jdc

while for the downward pulse we haveJ(t = 0) = Jdc and
J(t → ∞) = 0. (2) for both upward pulse (turn-on voltage)
and downward pulse (turn-off voltage), once the bias volt-
age is switched, currents oscillate rapidly in the first a fewor
tens fs and then gradually approach to the steady-state values,
i.e., Jdc for turn-on voltage and zero for turn-off voltage. The
larger the voltageVα, the more rapid the current oscillates. (3)
concerning the long time behavior, the time dependent current
oscillates with a frequency proportional to|Vα|.[22] This is be-
cause the time dependent termei(ǫ−E)t in Eqs.(46,48,54,55) are
Vα dependent. For the upward pulse,ei(ǫα−E)t ∝ eiVαt, which
directly leads to the oscillating frequency proportional to |Vα|.
For the downward pulse, althoughei(ǫ−E)t is Vα independent,
in the energy integral onE, the poleEn of G̃r(E, ǫ) are de-
termined by the self energyΣr,V

α . SinceΣr,V
α depends onVα,

this leads toVα dependent oscillating frequency. In addition,
we notice that although the properties of dc conductance of
short carbon chains are different for the chains with odd and
even number atoms[37] due to the completely different elec-
tronic structure near Fermi level, the ac signals are similar
(see Ref.22 where Al-C4-Al structure was analyzed). This in-
dicates that in AC transport, all states with energy from−∞
to the Fermi energy are contributing, which is very different
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FIG. 6: (Color online) Time dependent currentJ(t) corresponding to
the upward pulse [panel (a) and (b)] and the downward pulse [panel
(c) and (d)] for different external voltagesVα in Al-C5-Al device. The
inset of panel (a) shows the long time behavior of the time-dependent
current. The red (gray in print) dashed lines in panels indicate asymp-
totic currentJ(t → ∞) which the DC current biased byVL/R labeled
in corresponding panels for the upward pulse, and arrive at zero for
the downward case.

from dc case where only the states near Fermi level contribute
to transport processes.

Next, we study the second sample: the Al-C60-Al structure.
In Fig.7, the transient currentJ(t) of the structure correspond-
ing to an upward pulse [panel (a) and (b)] and a downward
pulse [panel (c) and (d)] for different external voltagesVR =

−VL = 0.001a.u. [panel (a) and (c)] andVR = −VL = 0.01a.u.
[panel (b) and (d)] are plotted. Similar to the Al-C5-Al struc-
ture, correct initial currentJ(t = 0) and asymptotic current
J(t → ∞) are also obtained in Al-C60-Al structure. In addi-
tion, there are also rapidly oscillations at short times after the
switch although the oscillation is not as rapid as that in theAl-
C5-Al structure. Furthermore, similar to Al-C5-Al structure,
in gradually reaching the steady-state values, the currentos-
cillates with a frequency proportional to|Vα| but its decay rate
is much slower than that in Al-C5-Al structure. It indicates
that there are much more quasi-resonant state that contribute
to the transient current in Al-C60-Al structure which is reason-
able considering the complex electronic structure of isolated
C60. In the following, we will analyze in detail how the cur-
rent decays for the Al-C60-Al structure.

Physically, decay time of current corresponds to the width
of the quasi-bound state. In molecular devices, because the
linewidth functionΓ(ǫ) are complex and energy dependent
matrix, we can’t extract characteristic time scale directly from
1/Γ. As such, the transmission coefficientT (ǫ) is needed to
understand the resonant state and corresponding characteris-
tic time scale. In Fig.8(a), we plot transmission coefficient
T (ǫ) in the energy range from the energy band bottom to the
Fermi energy for Al-C60-Al structure at zero bias. Here, the
sharp peaks [some of them, see red crossed signed peaks in
Fig.8(a)] correspond to resonant states with large lifetimes.

FIG. 7: (Color online) Time dependent currentJ(t) corresponding to
the upward pulse [panel (a) and (b)] and the downward pulse [panel
(c) and (d)] in Al-C60-Al device for differentVα. In panel (a) and (c),
VR = −VL = 0.001a.u.. In panel (b) and (d),VR = −VL = 0.01a.u..
Same to Fig.6, the red (gray in print) dashed lines in panels indicate
asymptotic currentJ(t → ∞). The long time AC current or detailed
short time AC current are shown in inset of panels.

At a particular resonant state, the incoming electron can dwell
for a long time, which contributes to a much more slowly de-
caying current than other non-resonant states. In Fig.8(b), (c)
and (d), we amplify the first, second and forth labeled quasi-
resonant transmission, respectively, where the peaks’ width
Γpeak ∼ 10−5a.u. are indicated, corresponding to a decay time
τ ∼ 2400f s from the expressionΓpeakt = 1. In Fig.8(e)-
(g), corresponding to differentǫ where the resonant peaks in
Fig.8(b)-(d) are located, we plot long time behavior of current
elementJL(ǫ). Here JL(ǫ) is the time dependent current for
each energyǫ, the integration over which gives the final cur-
rent Jα(t). We can see that for each resonant state the current
JL(ǫ) keeps oscillating in a long time comparable to the decay
time τ ∼ 2400f s. Furthermore the intensity of the oscilla-
tion∆J ∼ 0.2µA is not very small comparing to the DC signal
Jdc = 5.1µA.

After integration over energy, these slowly decaying cur-
rents JL(ǫ) due to the resonant states may cancel to each
other partially due to the difference in their phases. However,
we should keep in mind that it is these resonant peaks that
may give rise to convergence problem. Hence in the calcula-
tion, we should first scan the equilibrium and non-equilibrium
transmission coefficient (100,000 energy points for example)
to resolve sharp resonant peaks in the whole energy range
from minimum energy to Fermi energy. Then, for each sharp
resonant peak, enough (100 for example) energy points should
be chosen to converge the integration of the currentJL(ǫ) over
ǫ, i.e.,

∫

dǫJ(ǫ). For the non-resonant state, i.e., the smoothly
changed region inT (ǫ), the currentJ(ǫ) are integrated using
less energy points.

As we have discussed that the resonant states are important
for the transient current and they must be carefully treated
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FIG. 8: (Color online) Panel (a): transmission coefficientT (ǫ) in the
energy range from the energy band bottom to the Fermi energy.In
the whole energy range, there are some resonant states corresponding
to the very sharp transmission coefficientT (ǫ), as we have indicated
(see red cross) and labeled (by 1, 2, 3 and 4) in panel (a), someof
them contribute to the current at long time. We amplify the first,
second and forth labeled resonant transmission in panel (b), (c) and
(d), respectively. In panel (e)-(g), we plot the long time behavior of
currentJL(ǫ) at a fixedǫ for the first, second and forth resonant states.
The external voltageVα = 0.001a.u..

in calculation. However, in the calculation of the effective
Green’s functionG̃r/a,0/V, a small imaginary part that is usu-
ally added to the real energyǫ → ǫ + iη to help resolving
the retarded or advanced self-energies. This in turn introduces
pseudo resonant states. In order to eliminate the pseudo reso-
nant state in effective Green’s functioñGr/a,0/V [Eqs.(37,38)],
one has to calculate the self-energy by settingη = 0 and re-
solve the retarded or advanced self-energies with the aid ofthe
group velocityvk = (∂E(k)/∂k).[38]

CONCLUSION

By orthogonalizing the Hamiltonian expressed in the
nonorthogonal basis and considering the singularity of self-
energyΣr/a(t, t′) at t = t′, we have generalized the solution [
developed in Ref.6] of the transient current driven either by
a downward step voltage pulse or by a upward step pulse.
This generalized result can be applied to both the quantum
dot model and real molecular device. Based on the exact solu-
tion given in Ref.6, we derived two approximate formulas that
are suitable for numerical calculation of the transient current
for molecular devices. We have tested our approximate for-
mula in a quantum dot system where exact numerical solution
exists. For the quantum dot system, we chose a Lorentzian
linewidth (beyond wideband limit) and compared the time-
dependent current calculated using both exact formula and our
approximate formula. We found that for the opposite voltage
VL(t) = −VR(t), the results obtained from the exact formalism
and two approximate scheme agree very well with each other

especially in the downward pulse case. For the nonsymmetric
voltageVL(t) = V(t), VR(t) = 0 or VL(t) = 0, VR(t) = −V(t),
the second approximation is better. This shows that our ap-
proximate formulas captured the essential physics of the tran-
sient current. In addition, it gives the correct initial current
at t = 0 and correct asymptotic current att → ∞. Since
we have reduced the calculation from triple integral to single
integral over the energy, the approximated approach reduces
the computational cost drastically and it can be easily imple-
mented in first principles calculation for molecular devices.
To demonstrate this, we calculated the transient current us-
ing the first approximated scheme with an opposite voltage
VL(t) = −VR(t) for two molecular structures: Al-C5-Al and
Al-C60-Al. Different from the quantum dot system, because
of the complex electronic structure in molecular devices, tran-
sient currents oscillate rapidly in the first a few or tens fs as
the bias voltage is switched, then gradually approach to the
steady-state values. Furthermore, due to the resonant state in
molecular devices, transient currents have a very long decay
timeτ.

orthogonality relation for the nonorthogonal basis

For a system described byH, the time independent eigen-
value equation is written as:

H|n〉 = En|n〉 (70)

the eigenvectors|n〉 form an orthogonal complete basis set.
However, in many systems such as a molecular device con-
nected to external leads, the basis set constructed by eigen
vectors is not convenient. We usually expand the eigen vector
|n〉 in other basis|µ〉, which is non-orthogonal complete set (or
nearly complete).

|n〉 ≃
∑

µ

|µ〉〈µ|n〉 (71)

the eigenvalue equation now becomes
∑

µ

H|µ〉〈µ|n〉 = En

∑

µ

|µ〉〈µ|n〉
∑

µ

〈ν|H|µ〉〈µ|n〉 = En

∑

µ

〈ν|µ〉〈µ|n〉
∑

µ

HνµΨ
n
µ = En

∑

µ

SνµΨn
µ (72)

whereSνµ = 〈ν|µ〉. In the matrix form, we haveHΨn
=

EnSΨn. If we use the self-energy to replace the effect of
leads the effective Hamiltonian for the open system becomes
H = H0+Σ

r. Since the effective Hamiltonian is not Hermitian,
we can define the adjoint operatorH† = H = H0+Σ

a and cor-
responding eigen-equation becomesH†|φn〉 = E∗nS|φn〉. Then

Φ
m,†HΨn

= EnΦ
m,†SΨn, (73)

Ψ
n,†H†Φm

= E∗mΨ
n,†S†Φm (74)
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Taking hermitian conjugate of Eq.(74),

Φ
m,†HΨn

= EmΦ
m,†SΨn (75)

From (73) and (75), we have

Φ
n,†SΨm

= Cmδnm (76)

For the normalized wave function|ψn〉 and|φn〉,

Φ
†SΨ = I (77)

It is the usual orthogonality relation for eigenvectors ex-
pressed in a nonorthogonal basis set. For an hermitian Hamil-
tonianH = H†, |ψn〉 = |φn〉, we have

Ψ
†SΨ = I .

Orthogonalize Hamiltonian expressed in nonorthogonal basis

In this appendix, we will show how to construct a new or-
thogonal basis from the atomic real-space nonorthogonal ba-
sis. We will transform the original HamiltonianH which is
expressed in the nonorthogonal basis into HamiltonianH̃ ex-
pressed in the new orthogonal basis. Of course, instead ofS,
the overlap matrix in the new basis will beI .

Denoting nonorthogonal basis|µ〉 and orthogonal basis| j〉,
they are related by unitary transform operatorU

|µ〉 =
∑

j

| j〉〈 j|µ〉 =
∑

j

| j〉U jµ

U jµ = 〈 j|µ〉 (78)

where we have used the completeness of orthogonal basis| j〉.
Using the orthogonality〈i| j〉 = δi j

∑

µν

〈i|µ〉〈µ|ν〉〈ν| j〉 =
∑

µν

UiµSµνU†ν j = δi j

where we have used the completeness of nonorthogonal basis.
In the matrix form,USU† = I . We can formally define

U = S−
1
2 , U† =

[

S−
1
2

]†
.

Then new HamiltonianH̃ expressed in basis|i〉 can be ex-
pressed as:

H̃ i j = 〈i|H| j〉
=

∑

µν

〈i|µ〉〈µ|H|ν〉〈ν| j〉

=

∑

µν

UiµHµνU†ν j (79)

In the matrix form,H̃ = S−
1
2 H

[

S−
1
2

]†
.

We now discuss how to find the matrixS−
1
2 . Without loss

generality, we assume the real overlap matrixSsatisfies eigen

functionSV = Vdiag(λ1, ..., λn) with the eigenvaluesλ1, ..., λn

and eigenvectorsV = [v1, ..., vn]. SinceS is real and symmet-
ric, the eigenvectors are real and orthogonal, and it thus holds
thatV†V = VV † = I . Then

S = Vdiag(λ1, ..., λn)V†

= Vdiag(
√

λ1, ...,
√

λn)V†Vdiag(
√

λ1, ...,
√

λn)V†

It follows that

S
1
2 = Vdiag(

√

λ1, ...,
√

λn)V† (80)

FromS−
1
2 S

1
2 = I and Eq.(80), we have

S−
1
2 Vdiag(

√

λ1, ...,
√

λn)V† = I

S−
1
2 Vdiag(

√

λ1, ...,
√

λn)V†Vdiag(
1
√
λ1
, ...,

1
√
λn

)V†

= S−
1
2 = Vdiag(

1
√
λ1
, ...,

1
√
λn

)V† (81)

In general, the dimension of matrixS is infinity, we can’t
calculate its eigenvalueλi and eigenvectorvi by diagonaliz-
ing S. However, in the tight-binding representation, the state
µ andν hardly overlap when their separation is large enough
in real space, i.e.,Sµν ≈ 0 for most of off-diagonal elements.
Considering the periodic properties in semi-infinite leads, we
can select a block matrix which is large enough to include all
the overlap between leads and central molecular regions. For
the non-orthogonal basis including several unit cell of atomic
leads as a buffer layer into the central scattering region is
enough to get a good screening for dc transport calculation.In
transforming the Hamiltonian to the orthogonal basis needed
for ac transport calculation, however, it turns out that we have
to include at least 10 unit cells of atomic leads into the central
scattering region. Partly because the overlap of orthogonal ba-
sis has longer range than that of non-orthogonal basis. With
this large simulation box (finite dimension), we can calculate
the overlap matrixS

1
2 therefore transformH into H̃. The ac-

curacy of transformed HamiltoniañH should be examined by
comparing dc conductance obtained from the original Hamil-
tonianH and the transformed HamiltoniañH.
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