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First-principles investigation of dynamical properties o molecular devices under a steplike pulse
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We report a computationally tractable approach to firstgpies investigation of time-dependent current of
molecular devices under a step-like pulse. For moleculgicds, all the resonant states below Fermi level
contribute to the time-dependent current. Hence calanraieyond wideband limit must be carried out for a
guantitative analysis of transient dynamics of molecukegas. Based on the exact non-equilibrium Green'’s
function (NEGF) formalism of calculating the transientreaunt in Ref.5, we develop two approximate schemes
going beyond the wideband limit, they are all suitable fastfprinciples calculation using the NEGF combined
with density functional theory. Benchmark test has beeredncomparing with the exact solution of a single
level quantum dot system. Good agreement has been reaaht@efapproximate schemes. As an application,
we calculate the transient current using the first approtéchdormula with opposite voltagé, (t) = —Vr(t)
in two molecular structures: Al-<Al and Al-Cg-Al. As illustrated in these examples, our formalism can be
easily implemented for real molecular devices. Importawtlir new formula has captured the essential physics
of dynamical properties of molecular devices and gives tneect steady state currenttat 0 andt — co.

PACS numbers: 71.15.Mb, 72.3@, 85.35.-p 73.23.-b

INTRODUCTION nal is the optimal driven force since they can provide a less
ambiguous measure of time sca@.[lS] In this case, besides

) . . PAT, one of the most interesting questions to ask is how fast
With the rapid progress in molecular eIectronBs,[Z] quan- 99

tum transport in molecular device has received increasina device can turn on or turnffoa current. With the de-
P gelopment of molecular electronics, providing a particula

attention. In particular, the dynamic response of molecu-

lar devi ¢ ¢ | tEI’:E[]S 91 in which th ¢ viable switching device has become a key technical issue.
ar devices 1o external parame —9], in which the ex erConcerningthe transient dynamicsffdient approaches such

r}al tlmg—dependent fields or internal parametric pump potenas path-integral techniquds,[16] the solution of Wignes- di
tials drive the electrons to tunnel through the molecular de

tribution function,[17] the time-dependent numerical aen

vice, is one of the most important issues in molecular elec'malization groupl[18] time-dependent DFT (TDDFiﬂ) 19]

; . . . e
tronk;csl. ng sw_nplTst(;n(I)_lchular df_ewcettstructl:wre 'S‘Lhe“,l_tw and Keldish Green's funcitdfr[ﬂ 6.120] have also been de-
probe lead-device-lead (LDL) configuration, where “device eloped and applied to fierent systems. Up to now, most

\

is the molecular device connected to the external probes bg - o
. ) ! f these approaches can only be implemented in simple sys-

the “leads”. In such a device, all the atomic details of the bp y P pie sy

. . . : ) tems such as quantum dois[6/ 20] or one-dimension tight-
device material can be treated using density functional th g o @ ] g

e . . . . . .
ory (DFT) and the non-equilibrium physics can be taken in,[Oblndlng cha|ns|:[]3] Numerical calculation of transient reunt

{USi ibrium G s function (NEGF). U for molecular devices is very filicult at present stage due to
account using non-equiiibrium fsreen's function ( ): Pthe huge computational cost. This is because if we calculate
to now, from an atom point of view, one of the most popu-

lar th tical h d to studv th wm t the current as a function of tinte the amount of calculation
ar theoretical approaches used 1o study the quantum rangz, ¢ 4¢3 f the time-evolution method is used. This scaling
port properties of molecular device is Keldysh nonequilib-

rium Green's functions coupled with density-functiona-th can be reduced to a linear scaling iiithe wideband limit is
' . L
ory (NEGF-DFT).I[lb] Using this approach, the steady Stateused] As we have demonstrated,[22] the wideband Isnit i

O . not a good approximation for molecular devices. If one uses
guantum transport properties in molecular devices hava beqhe exact solution from NEGE|[6] one can calculate the tran-
widely studied.

sient current at a particular time. However, the calcurlaiio

For time dependent response of molecular devices, therglves a triple integration over energy which is extrematyet
have been many fierent theoretical approaches, suchconsuming. Clearly an approximate scheme that s suitable f
as evolution of time-dependent Schrodinger equaEh,[ll]numerical calculation of transient properties for real @col
time development operator approa@,[lZ] and the NEGHar devices while still captured essential physics is ndede
techniquel[13] These approaches are convenient to deal wit
dynamic response of time-dependent external field that is si It is the purpose of this paper to provide such a practical
nusoidal (e.g., microwave radiation). Under such an erlern scheme. To study transient dynamics, in this paper, we con-
field an electron can tunnel through the system by emittingsider a system that consists of a scattering region coupled t
or absorbing photons, giving rise to the photon-assisted tu two leads with the external time dependent pulse bias poten-
neling (PAT). Concerning the steady state ac response {o hatial V,(t) = 68(xt)V,. For this case, the time-dependent cur-
monic external field, the Floquet approach is conven@]t.[l rent for a step-like pulse has been derived exactly witheut u
For the transient transport, however, the pulse like ac siging the wide-band limit by Maciejko et E|[6]. Since the gen-
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eral expression for the current involves triple integnasioit  are given at the end of the paper. In Appendix A, we give a
is extremely dificult to perform them in a real systems like detailed derivation of orthogonalization relation for amnn
molecules devices. So, approximation has to be made. Tharthogonal basis. This relation is used to derive theative
simplest approximation is the so called wide-band appraxim Green’s function which is the key to approximate exact cur-
tion where self-energies-2 are assumed to be constants inde-rent expression of Maciejko et al. In Appendix B, we show
pendent of energ@ZB] Unfortunately, this approximattan  how to orthogonalize an nonorthogonal Hamiltonian so that
not give the correctresult since in general there are sknesra  the general AC current for real molecules device can be de-
onant levels that significantly contribute to the transiemt  rived.

rent in molecules devices. To go beyond the wideband limit,

we propose an approximate scheme of calculating the tran-

sient current that is suitable for numerical calculatiomes| GENERAL AC CURRENT

molecules deviceﬂiM] Our scheme is an approximationsof th

exact solution of Maciejko et &i[6]. It is very fast computa- Hamiltonian

tionally and gives the correct limits &i= 0 andt = 0. Since

the exact solution of transient current is available fomayts The transport properties of a molecular device can be de-

level quantum dot system, we have compared our result witcribed by the following general Hamiltonian:

the exact solution on the quantum dot system to test our ap-

proximate schemes. Good agreement is obtained. Therefore, H=Hc+Hr + Z Ho (1)
our approximated scheme maintains essential physicsref tra a=LR

sient dynamics. Using our scheme, we calculate the trainsie(hhere H. and Hg
current for the upward pulse (turn-on) and downward puls
(turn-off) in two molecular structures: Al4Al and Al-Cgo-
Al. We find that diferent from the single level quantum dot
system, upon switching on the current oscillates rapidihen
first a few or tens fs with several characteristic time scales

describe the left and right macroscopic
Geservorr, respectively;H; is Hamiltonian of the central
molecular deviceHt couples the reservoirs to the molecu-
lar device. For a particular basis set, the above Hamiltonia
can be written in the following matrix form:

Furthermore, due to the resonant states in molecular dgvice H, = Z ol [HO + eV, (05, ]Cy,
transient currents have a much longer decay tinespecially = Hava el
for the molecule device having a complex electronic stmectu N
such as Al-Go-Al. He = Z d. [chVc + Uﬂch(t)] dy.
The rest of paper is organized as follows: In Sec.ll, stgrtin e
from the typical molecular device Hamiltonian which is ex- Hr = Z Cj;aTeavchc +h.c )
pressed in an non-orthogonal basis, we shall derive a genera VasVe

DC and AC current expressions for a non-orthogonal basis heree is the electron char (c,) andd, (d}) are

set. It is found that for DC bias, the expressions of currenil_y S L 9ey, (G Yo \Ve

for orthogonal and non-orthogonal basis sets are the sam ermionic annihilation (Cfea“"”) operators at the.state

For ac current, however, the expressions afiedint as will € lead _anq the state n centra_l molecular dewg:e.va_,

be demonstrat’ed in Sec, Il. The reason that we study the diffc are the indices of the given basis set. The Hamiltonian of
e : ead« are divided into two parts: the time independent part

ference between orthogonal and non-orthogonal ba5|3$ets|l|O and time dependent part due to external bia) on the

the following. For the NEGF formalism, it is assumed that, ¢ P P

. . leadw. Here we consider two kinds of step-like bias: up-
the basis set is orthogonal. It turns out that for ac trartspor
. . ; wards pulse (turn-on cas¥}’ (t) and downwards pulse (turn-
the current expression becomes extremely complicatedhif no '

D
orthogonal basis is used. For DFT calculation, however,tmosoff case), (1), where

people work in molecular orbitals that are non-orthogonal. 5 V.. t<0 U 0 t<0

Our results show that we must orthogonalizing the nonorthog V(1) = { o tso Ve®= { V.. t>0 3)
onal molecular Hamiltonian, so that the present approach in ’ “

Refl6 can be used. In Sec.lll, based on the exact solution dh the adiabatic approximation it is assumed that the sin-
Maciejko et al, we derive two approximate expressions forgle particle energies acquire a rigid time-dependent sisift
transient current with dierent levels of approximation. They H? + 1V, (). The energy shift in the leads is assumed to be
are all suitable for numerical calculation for real molecul uniform throughout. This assumption is reasonable sinee th
devices. In addition, the initial current and its asympmttding  pulse rising time is slower than the usual metallic plasma os
time limit are shown to be correct. In Sec.lV, in order to appr cillation time, which ensures that the external electritdfie
ciate our approximate formulas, we compare our result witteffectively screene@S]

the exact result obtained in Ref.6 for a single-level quantu  Since Green’s functiorG'(t,t") is obtained by solving
dot connected to external leads with a Lorentzian linewitith  Dyson equation from the known history, it is better to set
Sec.V, we apply our formalism to several molecular devicestime dependent external biads(t > 0) = 0 so that the un-
Finally, a conclusion is presented in Sec.VI. Two appergicecertainty of future can be eIiminatda.[6] From [E4.(3), this



is satisfied only in the downward case. In the following, and# are diferent from original ones:
we will discuss how to eliminate this uncertainty for the up-

ward pulse. To use the Dyson equation, we will separate the H, = EZHH;?HVHEVQ

Hamiltonian into two pieces: the unperturbed Hamiltonian HaVa

that can be exactly resolved and the mteractlr_]g term which Hy = Z & T,.,.(0)d,, + h.c. (4)
contributes to the self energy in Dyson equations. For the “

VasVe

downward pulse, we define the non-biased open system as
the unperturbed system. It is described by the Hamiltonianvhere
H® = HY + H2 + HY. For the upward pulse, however, the sit-

t

uation is diferent, in which we will set the DC biased open c =c expﬂer dr V(1) ¢, 1.
systemH" = [H9 + V,I]+[H2+U"] + HY as the unperturbed cr = Jo Ho T
Hamiltonian and se¥Y(t) = VY(t) - V, as the new time de- T _ 10

Va e H VaVe (t) - TV Vi %H(t)
pendent part. Herel; denotes the coupling between scatter- e
ing region and biased leads abd is the induced coulomb W, (1) = expﬂef V,(r)d7] (5)
potential due to the external bias. Now, the time dependent 0

biasVY satisfiesVY(t > 0) = 0, and the uncertainty of the fu- . I . .
! ST (t>0) . Yy " (lj:or the original Hamiltonian with nonorthogonal basis, the

case, we havi’2(t) = VP(t) andH® = HO while for the up- overlap between nonorthogonal basis is expressed as the ma-
ward’case we ﬁavéu (t)“: VU(t) - V, andH® = HY. From trix form Sﬁv = (u|v). After the unitary transform, annihilation

(07 (07 : . . .
now on we will use superscripeX’ to denote the unperturbed (Creation) operators, (c}) and consequently the orbital basis
system that is exactly resolvable. 1o inthe leads are changed, then overlap matrices between the

When the system is biased, the incoming electron will po_leads and the scattering region become

larize the system. The induced Coulomb potential in the cen- S, () = 0 W, (D)
tral scattering region consists of two parts: DC and AC parts VAT T ave T

The DC part can be put into the exactly resolvable Hamil- S, (1) = WD)S),, . (6)
tonianH®. The induced time dependent coulomb potential

U(t) due to the external bia€,(t) is included as part of the [N the following, we_will use the transformed Hamiltonian
non-equilibrium Hamiltonian. Because the electric field is[EQ-@3), in whichc,,, d,. are used] to derive the time de-
not screened in the small scattering region where the poterf€ndent current expression.

tial drop occurs, the coulomb potential landscélfg) in the

central region is not uniform, which isférent from the semi-

infinite leads. Note that it is ratherflcult to treat the time- The current

dependent coulomb potential and no close formed solution

exists if one does not assume wide band limit. In the small The current operator from a particular leade the molec-
bias limit, we can expand the time-dependent coulomb poular junction can be calculated from the evolution of the rum
tential to linear order in biabl(t) = ey, u,V,(t) so that the  ber operator of the electron in the semi-infinite leadAs-
analytic expression for current can be obtained. Hgrés  suming there is no direct coupling between the left and right
the characteristic potential.[27] From the gauge invarian leads, the current operator can be expressed as:[30]

[IE] >.U, = |, andu, is determined from a poisson like g

equatlon] In this paper, we consider the symmetric cou- Q) _eZ anﬂ (1)

Va

pling so that for the external bid4 (t) = —Vg(t) it is a good
d_ d _
_ = 2 O
e VE [cya(t) dtCV”’ ) + ( dtCV" (t)) cva(t)}

approximation to assume that the time dependent coulomb po-

tentialU(t) is roughly zero in the the molecular device regime.
In the following, we will derive an exact solution of tran-

sient current using a non-orthogonal basis t.[29] Tdifaci

tate the derivation, we take a unitary transformatft) to

the Hamiltonian[(R) with

ez ¢ (iTWC(t) + Svnvc(t)%) d (t) + H.c.(7)

VasVe

where ‘H.c.” denotes the Hermitian conjugate. The current i

- _ 1 - . obtained by taking average over the nonequilibrium quantum
oW = 9Xp{|er; dr [Vw(T)CL,ICva]} state < ... >,
~ ~ < / / AV é
whereV,(r) = 6(-1)V, for the downward pulse and,(r) = L(t) =e Z Gy, (L) T (t) = St )'a
—-6(-71)V, for the upward pulse. Note that the tirhé O(t) Yaove

can be negative or positive, afxt) = lonlywhert > 0. The . , g <
new HamiltoniarH = OHO' () +i(2 O(t))O' (t), in whichH,, Trera () = S )'a Gl . ®)

—t
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where “%” and % denotes the left and right derivation re- is the surface Green’s function of the semi-infinite percodi

spectively, and lead which can be calculated numerically using a transfer ma
trix method.] Heref (¢) is the Fermi distribution. Eq.(12)

Gy, (tL1) =i (€] (t)d (), G5 . (t.0)=i(d] (C,()).  shows that the dc current expressions are the same for both

Using the Keldysh equation and the theorem of analyticorthm‘:lon"JlI and non-orthogonal basis sets.

continuation, we have When the time dependent field,(t) is present, however,
the current expressed in energy representation will be very
G, (tt) = fdtl [GLo(t, t1)Bea(t1)gs, (1, ')+ complicated for nonorthogonal basis due to the téi(m)i%
in Eq.(8), sinceB(t1)XB(t) can’t be expressed as a function of

Gt 1)Bea(t)d, (t, )] (9)  time difference; — t. One thing is clear, the transient current
expressions are filerent for orthogonal and non-orthogonal
basis sets. Instead of deriving a complicated transieméentir

0 expression using a non-orthogonal basis set, we will elimi-
Beo(t) = Tealta) - Sm(tl)'& (10) nate Sco/oc(t)i2 in EqQ.[8) and work on an orthogonal basis

L . set. In Appendix , from the overlap matr& we derive the
For simplicity, we have dropped the subscyipand keep only orthogonal basis set and new Hamiltontdmexpressed in this

the symbot andea to indicate the central scattering region and orthogonal basis. With the new orthogonal Hamiltonian, the

lead«, respectively. In the above expression and in the fOI_'overIap MatrixSe, oc(t') will be eliminated since the overlap

lowing, the summation convention on repeated sub-indiges i ; -corth ; ;
- . matrix of orthogonal basiS®™" = |. Then, replacing Hamilto-
assumed. Substituting Eg.(9) into &4.(8), we have the g‘*}nernianH in Eq.(2) withH and go through the derivation leading

expression for the current: to Eqs [Z=11) again, we arrive at a new AC current expression

where

J.(t) = —2eRe f dty Tr
[GLo(t, t1)Baa (t1) g (t1, V) Bac(t) - Ja(t) = 2eRe f dty Tr {Gee(t tr) [Tea(t) G0 (t = ) Tac(®)])
Geelt t1)Bea(t1) G50 (11, )Bac(t) iy (11)

When the system reaches a stationary st4té) = V, be-
comes time independent, from definition Ed.(E), (6) 4nd.,(10)

+2eRe f dt; Tr{G(t, t1) [Tea(t) g2 (ts — ) Toc(®)]}  (15)

we can find Defining the self-energy on the orthogonal basis
Bea (t1)XBoc(t) = e'®V=u-9B2 XBO, )
. TN Y) = Ta®)dhe (t— ) Taclt) (16)
with Bga/ac = Tga/ac - i%sgy/wc, where “0” denotes the zero

bias system.In addition, all the propagat@sandg depend x _
! s N de —ie(t—t’ ,ex : )
only on the time dierencet; — t. Taking the Fourier trans- wheregl"(t-t) = [ & &gl (e) is the surface Green's

formation, from Eq[(B) or Eq11), we can easily obtain pc function of semi-infinite leadr in the unperturbed state as de-
current expressed in the energy representation: fined in the Sec.. For the downward pulse we have set the

unperturbed system as the open system at zero bias, in which
fde Tal©) %e(e) = [e—HI+ i0+];i - For the upward pulse, the un-
perturbed system mea'r\Z, biased open system, in which
. -1
Re 2e | de Tr[G'(e)Z;(e) + G=(e)X3(e)] (12) e = [6 —-eV, - HO + IOJ'LE Lo From Eql(I5)[(16), we
have the general current formuia
whereG andX are the Green’s function and the self-energy.
They have the same matrix dimension as that of the Hamil-
tonianH.. The Green’s functio'/2 and self-energf'/2 is Jo(t) = 2eRe | dtyTr[G(t, t1)Z; (t1, t) + G=(t, t1)Z2(ts, t)]
defined as (17)

Jo

G'1%(e) = [el — Ho—X73(e)] "

L) = [Tga - Ewsga] G (€”) [Tgc - 60520] (13) Att < 0, AC external bia®/,(t) or time dependent part in
wheree® = € — eV, | is the unitary matrix with same dimen- HamiltonianV, (t) is a constant and the system is in a steady
sionasHe, y = 1, 8, <, and state. Consequently, the total currentis known from DCsran

port theory that is expressed in the form of Egl(12) but with

g/3) = [((Ei i0s?, —HO )’1] the Green’s function and self-energy obtained from the or-
o e b esurpgesur thogonal Hamiltonian defined above. Hence in the following
gs.(6) = f(e) [, (e) —d.,(e)] (14)  we shall derive only the Ac current wheér 0. First, we shall
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look at the self-energy. From EQ]L(5) ahd](16), Very often, Z'/3(t — t') is singular att = t’, such as
o o the quantum dot system with the wide-band liBit3(0) =
(L) = W) [ngzym(t’ t,)Ta/C] W, (t) [ Z'/3(E) = 6(0)(+T'/2), or the superconducting-quantum
: de jet)yrex o dot-normal metal system, and so on. In these cases, we should
= W, (1) [ f o R ¥4 (6)} W,(t') be careful with EqL(25),
= W OB [ f = ée‘t‘”zx"@] By ()2, (1) Fau(t.€) = Fynlt.€) + Pt €
vl f] ity [(9E eav
— += dr’ e—le(t—t ) f = elE(t—t)
(18) [foo 2 t 2r
where®,(t) = 1 for the downward pulse arg, (t) = V-t for A;(t’, Wi (t)Z2O(E)W, (1) (26)

the upward pulse. Hemg’o(e) is the self-energy at zero bias,

2%(€) = T2, 0w ()T is the self-energy at the unperturbed The first integral["_ is the same as EG.{25), the second inte-
state defined above. In the downward c8& = 2% In the

(07

1t '~ _ AT a
upward cas&l® = Ez,v_ SettingS_ = . = 0, 23’0 and gral3 ft now becomespg,(t, €) = Aﬁ(t, €)A%, where we have

x7V are defined in EQ.{13) with zero and nonz¥fQ respec- defined
tively. We_haVez;/a,V(E) = x/2%¢ - eV,). From Eq[IV) and A 1 fﬁ y [f dE Zr/ao(E)}
(18), we find " al ;
0 = ZeRef = f e e (O (27)
(04 - 27T - l 2 t7 r

[G"(t t)E5 (e, tr, ) + G (L t)ER(e, 11, )] (19)  Then, EqIZH) becomes

where the first term is the current flowing into the molecular out/sy de <0
device while the second one is the current flowing from the (1) = 2eRe on ;Aﬁ(t’ €)X, ()Fpa(t.€)
molecular device, and

% € <0 € T €A
et = WODAOW  (20) - o[ 3 2, Al OZ; AR A5 (28)

where W, (t) = B,()2,(t). HereX!y is the self-energy of We note that EG(28) is the same as that derived in Ref.6.
lead« at zero bias. The lesser Green’s function is given by Different from Refl6, we have split the expression into two
terms. The first term corresponds to the non-wideband limit,
<t 4y — r < agt. 4 i.e., when the linewidth functiol’ goes to zero at large en-
Gt = fdtl fdtz Gt Zﬂlzﬁ (t. tZ)} G t) ergy. The second term of E.{28) is related to the wideband
de t ’ limit. Hence, for a quantum dot with a Lorentzian linewidth
_ ZIZ orielt-t) [f dty €D, HG' tl)(W;(tl)] function[6], only the first term is nonzero while for the st
B —o0 in contact with a superconducting lead both terms are nonzer
t o . So far, we have discussed the @nduction currentJ,(t)
23;’0(6) [f dt, e _IZ)Wﬁ(tz)Ga(t',tz)W/‘;(t)} (21)  under the time dependent bias derived from the evolution of
= the number operator of the electron in the semi-infinitedead
Substitute Eq{20) and(R1) into Eg19) and introducing aNow we wish to address the issue of charge accumulation in
spectrum function the scattering region. In principle, this can be done byudel
. ing the self-consistent Coulomb potential due to ac @.[2
Aot €) = f dty < (G (¢, WWit) (22 However, at finite voltages, there is no close form expressio
—o0 ' for ac current if Coulomb potential is included. Alternatiy,
one can treat Coulomb potential phenomenologically as fol-
lows. From the continuity equatiof;, J,(t) + dQ(t)/dt = 0,
Jn = 2eRef de Au(t, Z0(e) (23) e see that the conduction current is not a conserved quan-
¢ ¢ tity. In the presence of ac bias, the displacement curdgént
due to the charge pileugQ/dt inside the scattering region
becomes important and must be considered. Since we have
neglected the Coulomb interaction in our calculation, we ca
where use the method of current partition[32] 33] to include the di
t _ dE placement current. This can be done by partitioning thd tota
Fra(t,€) = f dt’ e*'f(t*t')f_ gEt-t) displacement currer,, J¢ = dQ/dt into each leads giving
-0 2 rise to a conserving total curreht = J, + Jg. For symmet-
A;(t', W (1)EZ(E)W,(t) (25)  ric systems like what we shall study below, it is reasonable t

we have

(1) = 2eRe f % ZB:AB('[, )L, %(e)Fpa(t €) (24)



assume thal? = J¢ from which we findJ¢ = —(J_ + Jr)/2.  sionses; = € + €V andeg, = € + €V5 — €V,
Hence the total current is given by = (J. — JR)/ZHE] which

isfi ' = dE ;.
satisfies the current conservatipn+ Ig = 0. AE(L €) = G"O(e) + fz dleEt
x G"(E) [Z(6s) - Z(e) + PoG™(&5)] (29)
TRANSIENT AC CURRENT FO(te) = f dEE Z*(€)G*O(e)2(E) + f dEE rile-E
s _ aVv 7 a0
Up to now, we have derived the general expression for time x {[Z'(e) - Z'(e) + ™ (es)Pp | G**(B)Qo (E)

dependent current, E0.(22I23[23,28) which can be used-for o
thogonal as well as nonorthogonal basis set. To calculate th
transient current we have to solve the retarded Green'’s func
tion G'(t,t’) and integrate it over time to finé(t, €) and AY(t, )
Fsa(t, €). For the pulse-like voltag¥,(t) = +6(-t), we can B
obtain the Green’ functioiG'(t,t’) by solving Dyson equa-

tion G" = G"® + G"®EG' from the known history in the

time domain. Depending on what is the chosen unperturbeptga(t, €)
system that can be solved exactly, the Dyson equation can be
written in a diferent but equivalent form. In the study of time- {[Z*(e) ~Z'(g) + Ga’o(e)PL] G*V(E)Qu(E)
dependent transport, it is better to treat the time-inddpet) - . .

open steady state system as the unperturbed system as de- gt [Z (G*(e) -2 (Eﬁ“)Gav(eﬁ)] Ego(E)}
scribed in Sec., and treat the time dependent Waft) and (32)
U(t) as a perturbation. As a result, thfestive self-energy
Z, which is due to the ac bias, would have two sources: th
perturbation in leadE!, and the induced Coulomb interaction
in molecular devic&J(t). Then,

+

|2 (63)G*V (e5) — Z'()G*%(€) | Z2°(E)}  (30)

Gr,V(eﬁ)_'_deE ei(eﬁ—E)t
G™V(E)[2(6) - Z(gs) + PuG™(e)] (31)
f dZE Z"(650) G (e5) E20(E) + f dZE oi(g-E)t

X

X

+

gvhere

Po

Z(eg)U + > [Z(ep) - Zless) ] [Z5%(es) — Z5°(E))]
]

Pu

0 ~Z(U + Y [Z(e) - Z(ex)] [Z5°(e) - Zp°(E - Vo)
G'(t,t) = G ¥t t)+ f dt; G"(t, t))U(t1)G' (tr, t') 5

Qo(E) = f dzf |[1- €€ B 2(e)z2%e)

+

f dt; dt, G"(t, ty) [Z ¥ (t, tz)} G'(tp, t') o
€ i(e — ’ ’

g Q®- [ 5 [1-d¢Hzemde) @)
whereU(t) is the response of the molecular device that is dueWith
to the Coulomb interaction when the time-dependent voltage
is turned on. Here we have assumed an adiabatic response ; -1

Z(e) =[i(E-€-i0 34
since most of time the variance of the applied electric field (€ =M(E-e ) (34)

is much slower than the particles’ intrinsic lifetime insithe |4 the absence of the ac bias, the quandityis the Fourier
scattering region. Then we haut) = +U6(-t) for down-  transform of the retarded Green’s function while the qugnti
ward case and upward case with= HY — H. Fs. is related to the Fourier transform of the advanced Green's
function. They are all expressed in terms of the unperturbed
0 t t 0 Green’s functionsz'/2%V and self energye”V which have
fdtl dtz = (f_oo dty f_m dtz +j; dty f_m dtz) been widely studied in molecular device using the NEGF-
DFT formalism. G'/29V and self energye?V can be ex-
pressed as

(L Y) = (1) - ZE - t) GAOV () = [el = HOV - xr/20V (g
Lt - ) = BLOZ - 1)Bu(t)
£7%e) = [T9, - €0, | @) [T — €]
Zgyv(f) = [Tga - ] Joa(€”) [Tgc - 5”52(:]
Exact expression of A(t, €) and Fg,(t, €) wherey = r,a<, € = e - eV,. Obviously, EZ’V(E) _
2% - eV,). In the wideband limit, Eq{20-32) will reduce

Following the derivations in Ref.6, we can get the exactto the formula first derived by Jauho et @[25] Withand
expression foAs(t, €) andFg,(t, €) with the aid of the expres- F obtained we can, in principle, solve the AC current biased



by downwards or upwards pulse exactly. In practice, how-duce the &ective Green'’s function

ever, its computational cost is expensive for a realistiteico -1

ular device. For example, to calculai@'(t), we have to do éf/aO(E, €) = [ES— HS — Z ):[Y/aso(e)} (37)

triple integrals over energy and repeat this procedureltecto @

data for all time sequence. In the numerical calculatioreesp -1

cially in ab-initio modeling, it is practically very dicult if G2V(E, ) = [ES— HY - Zz{/ﬁ»v(e)} (38)

not impossible to calculate the transient current for tha-co @

plex structure in molecular devices. So approximation mustn general we have to consider the overlap maSixHow-

be made so that Ef.(29432) can be simplified. ever, we should keep in mind that in the deriving of the

time dependent current, we have to orthogonalize the basis

set, which would lead t& = I. Here G'/3(E,¢) can be

regarded as the Green’s functions at endeggnd constant

parametek for open system with thefiective Hamiltonian

_ _ _ HI® = He + X, (€). For a giverHet, Eqs [313B) are equiva-
The approximate solution @(t, €) andFg, (t, €) INEQ.[29-  lentto

[32) have to satisfy the following requirements. First, i ha PoNAr

greatly reduce the calculational cost. Second, it has tp &se (ES—He )G =1 (39)

sential physics of transient dynamics. Third, it must héee t On the other hand, Green’s function can be expanded in terms

correctinitial current at = 0 and approach the correct asymp- of the eigenfunctions of the corresponding Hamiltonian,
totic limit att — co. The first goal is realized by eliminating

double energy integral using a reasonable ansatz, withhwhic G'= Z P'Cn. (40)
the dynamical properties of molecular device is maintained n

To find such an ansatz, we first assume tmaP(E)  WhereHer¥" = En(e)¥n. Substituting Eql(40) into EG.(B),
changes smoothly and slightly witE and is analytic in and using the general orthogonality relatiar'S¥™ =
the upper half plane, so that the typical integral like Cmdnm [Se€ Appendix]and the eigenvalue equatits¥" =

[ dedE é(g—’Eﬁ)E""*O(E) is roughly zero due to the fierent  En(€)'¥", we have

Approximate scheme of A(t, €) and Fg,(t, €)

I (o
phase ing©Bt, Then the last term ofY/? and the second &'(E. o) = Z et 41)
term of QY/P disappear. Considering the following identity, ' T LI[E - En()]@NTSYT
dE ¥2(E) Obviously, this Green’s function can be calculated by figdin
_— the residues Rgs= ¥"®"7/®"'SP" at various pole€ =
2r —i(E - €+i0%) En(e)
_ " . n\€).
- [fo +}f0 ]dea(T)fd_E eF Then, we replaci(e)g”a(E) in Eqs.[29.3.36.36) by
o 2Jo ! 2r —i(E-€e+i0%) Z(€)G'3(E, €). AlthoughG'/3(E,e) is different from initial
or or : L arey varey L e
- 1 rea s <a A Green's functionG'"/3(E) = [E - Hc - Z/3(E)| °, this sub-
- [fm ) J;, ]dT eTRT) = Zo(e) - A stitution is reasonable since the major contrllbution ofithe

tegration in Eqsl{2P-32) comes from the pelin Z(¢) (see
and defining=2(E, A) = Z2(E) — A2, the first term ofFy,p Eq.[(33)). Similarly, considering the major contributioh o

andQu,p in Eqs.[3B) can be simplifiedy o now becomes  the pole ofZ(e), we replaceZ(e)*°(E) in Eqs [20.31.36.36)
by Z(€)£2%(€). SinceX(e) in G'(E, €) is independent of en-

dE .. ergy E, we can perform contour integration over enekgin
For = G*Z2%e.A) + fz CR Eqs.[29) and{31) by closing a contour on lower half plane and
i . av 1 ~a0 a0 perform the integration over eneryin Eqs.[30) and(32) by
x [Z () - Z'(e) + G (Eﬁ)PD] GH(B)E,(E.4) (35) closing a contour on upper half plane. Thus, energy integra-
dE .- tion overE can be analytically performed. It should be noted
U . cav a0 UE -i(g-Bt y VAY
Fpa G ()2 (e A) + f 21 © that the self energ'/2 is not independent of energy in con-
% [Z*(e) ~Z'(e) + G@O(G)PL] G*V(E)Z2(E - eV,, A) trast to the wide-band limit, this energy dependence i% on

but not onE. In this way, we can reduce the computational
cost and keep the essential physics of the dynamics as we will

) ) o ] ~ show later.
We note that, in the wide-band limit, EIG.{B85,36) is exactthi

our approximation we have eliminated one of the energy in-
tegrals inJ°, andA andF now have similar structures since Approximate expression of Ay(t, €) and Fg, (t, €)
F~Afxa,
With the approximation defined in EQ.{B5]36), the current Now, considering the initial current and the asymptotigjon
can be written in a compact form (see section C) if we intro-time limit, we can write the approximate expressiogft, ¢)

(36)
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andFg,(t, €) from Eqs[29.3.35.36): Then, Eqsl(45) and (#7) can be further approximated as
D/U D/U D/U dE ~
AP (e = A + AL (42) AR = f 5. €V 2@EVEq)] (G4

FR.(t &) = ADTE2(6g, A) + ADTE2%e,A)  (43) AU f E oo z0E9Es]  65)
= —_— € ’ , €
FU (t.€) = ANTER%e, A) + ALIE20(e5,, ) (44) meJ 2
This is the first level of approximation. It is easy to confirm
that when the self-energy is energy independent these two ap
dE .. ~ proximations lead to exactly the same expression of trahsie
D _ DR [ (Gt =) r,0 =D~V
Ap1= f on e [Z(Eﬁ)G (E, eﬁ)(l +E°G (eﬁIﬂS) current in the wide-band limit. In the next section we wilknu

dE ., ~ merically compare these two approximations with the exact
AR, =G"(e) - f 5 € Z(9G(E. )] (46)  solution.

with

dE . ~
AY = f 5= €9 Z(G(E, €) (I + Y G™%e))[47)
' 2n initial and asymptotic currents

AS = G(a) - [ 5 do B 2e)EV(E.q)]| @8)
We now show that the currents calculated from
where Eqs.(2H.28.42-28) and from EqsX23[284%-4W.46.48F)4,5
satisfy the correct current limit at initial= 0 and asymptotic
P = U+ Z [Z5°(6s5) - 25%e5) | limit t — co times. Note that the initial current and asymp-
5 totic currents can be calculated from a standard DC trahspor
_ V(e _y_ yr0 nonequilibrium Green’s function analysis. It is expectiedtt
Ut 26: [26 (&) = %, (Eﬁ)] the asymptotic current for the downward puldg(t — oo)
and initial current for the upward puls¥’(t = 0) are zero
since there is no bias in the system. Now we discuss the
limiting cases for two versions of approximations devetbpe
= -U+ Z [23’0(5) - Z(rs'v(f)] (49  in secgon IC. i P
g Whent = 0, €8t = 1, we can perform integration over
This is the second level of approximation. As we will seerlate €nergyE in Eqs.[43:4B) by closing a contour at upper half
that it is better than the first level approximation desatibe- ~ plane, where only a single residual exists at an energy fdole o
low. Now we can make further approximation (the first level).Z- Att = 0, G29V(E, €) = G"/2%V(¢), therefore EqL.{45.47)
To do this, we note that the Green’s functiG can be ob- and Egs[(3#.35) are equivalent. Now we focus on the current

[
|

0]
|

U= U+ Z [Z0°(e) - Z5°(e — eVy)|
5

tained using the Dyson equation, obtained from Eqd.(23.#8 U2 A4IAG[4854,55). Aftergrae-
ing overe, the two terms in Eq$.(46.48) cancels to each other,
Gt = GIe 4 GhexEGht (50)  then from EQIEBAE5)A, " (t = 0) becomes
where G is the Green’s function of system denoted by AR(t=0) = G"V(e. ) = G"(e) (56)

H = H® + H’, G"* s the unperturbed Green’s function U ~r0 10
corresponding té1®* that can be exactly solve&, is the ef- Agt=0) = C(e.6) =C"(e) (57)

fective self energy describing’. If we setH®™ andH'® as  ForFp,, we can perform integration over energypy closing

zero biased open system avigl biased open system respec- a contour at lower half plane. Similarly, there also existlyo
tively, we have a single residual on energy pole of Z* in the lower half
plane, and

o | FRt=0) = G*(q. )3 (650 4) = G*()E" (5. )
Similarly, if we treatH® andH™ asV, biased open system (58)
and zero biased open system, respectively, we obtain anothe

Dyson equation Fpa(t=0) = G*V(c, X2%e, A) = G*()23%e, 4)  (59)
Substituting EqL{36-39) into EE.(23]28), and considering

,0 Vv
27%e) = 21(e)

G = G"V(e) = G"e) + G™%(e)EPG™V(e)  (51)

G = G"%e) = G™(e) + G"V()2YG(e)  (52)

Similar to the derivation of the second level of approxiroati
we can also replac&®(e) by G¥(E, ¢) in Eq.(51[52) which

leads to G="(e) = G"V(e)

G*(e)

2.5
B

G™V(E.e) =~ G"E, o) || + EPG"(¢)| Z5%e) = f(e) [25°%(e) - Z;°(9)]
G"(E.e) = G™V(E, o) [| + VG %e)| (53) 5V () = fe—eVp) [Z5V(e) - 25V (9)] (60)
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wheref(¢) is Fermi distribution function, we have initial cur- the Green'’s function&(e) and self energ¥(e) thus become
rentatt =0 scalars instead of matrices. If we choose linewidth fumctio
de [(w) = 27p, (W)t ? to be Lorentzian with the linewidth am-
JP = 2eRe f > GV(OZ:V(e) + G*V(e)x2V(e)(61)  plitudel?y,

2
JY = 2eRe f % G"()Z:%e) + G=%e)z2%e) (62) [o(w) = wZWTvvzrg

Eqs.[61) and{82) are the same as the formal DC current extenG’(e) andX?(e) can be expressed as
pression in the case of nonzero bias and zero bias, respec- 1
ti\_/ely. Jf‘j (t = 0) in Eq.[62) is exactly zero since the Fermi G'/20(e) = [E_ eg _ er/a,o(e)}
distribution inX; andG* are equal forr = L anda = R. ~

Whent — oo, by virtue of the Riemann-Lebesgue -1
lemma/[34] the Fourier integral ovee vanishes, i.e., G'/2V(e) = {6 ~e-UV- er/av(e)]
[ e4GrY... equal to zero at — oo since there always "

exist poles in lower half plane. With this in mind, we have
G<‘O/V(6) _ G<‘O/V(6) [Z 2<,0/V(6)} G<‘O/V(E)

ALt — ,€) = G"%e) (63)
FO.(t = c0,6) = G()T2%e, A) (64) $1/a0(¢) = f %"Fw(w) fe—w=i0")
Aj(t— c0,6) = G"Y(g) (65)

dw .
Ga’v(eﬁ)zgo(fﬁm A) — GaV(eﬁ)ESV(Eﬁ, A) Z[l/a’v(f) = fz Fa(w)/(e - eVO, —w =+ |O+)
(66) 3%(e) = () [Z3°%(e) - =)

F[L;a(t — 09, €)

From Eq6H-6b) and EG.(E3128), we have the asymptotic cur- 25V(e) = fe - eVa) [Ef’;v(f) - EL’V(E)]

rent Using the theorem of residual, we can analytically perform

integral inAz andFg, for either exact formula or two approx-
imate formulas. In the calculation, we det I' + 'S as the
de < energy unit, and sét® = I'% = 0.5.
3 = ZeRefZ GV(9Z5V(e) + GV(€£3V(e) We first consider the transient current induced by opposite
(68) voltageV| (t) = —Vg(t). In this case, the equilibrium coulomb
potential in quantum dat®V = 0, and the time dependent

It is easy to see, EqE.(67) aiid](68) are the formal DC currerR€rturbation coming from coulomb responsg) is assumed
expression in the case of zero bias and nonzero bias, respdg-be zero. Itis areasonable assumption since the coulomb po
tively, andJP(t — o) in Eq.(E7) is exactly zero. tential in scattering region is canceled by the oppositeaga

' in left and right lead. In Fig.1, we plot two approximatedira

sient currents and exact transient current in downwarddlpan
COMPARISON WITH THE EXACT RESULT IN QUANTUM (a), (b), (c)] and upward [panel (d), (e), ()] case vs time fo
DOT SYSTEM different bandwidttw. We find that for all bandwidthV, the
approximated current and exact current have the same dynam-
Now we consider a system composed of a single-leveica| behaviors. Fig.2 gives direct comparison where we merg
quantum dot connected to external leads with a Lorentziapanels (a), (b) and (c) in Fig.1 as panel (a) in Fig.2, and merg
linewidth. This system can be solved exactly to give a tranpanels (d), (e) and (f) in Fig.1 as panel (b) in Fig.2. We can se
sient current for pulse-like bids[6]. We can obtain transie that for the downward pulse [panel (a)], transient currest u
current using three methods: (i) the exact current expdessdng three formulas are almost indistinguishable. This nsean
by EqsiZB.2B[20-32), (ii) the first level of approximation that in the opposite voltage, our approximation, the first ap
from Eqs[(28.28.4P-44 46 Ji8]64155) and (iii) the secendll  proximation [Eqs((46.48.%4.55)] and the second approxima
of approximation from Eq$.(A3.I842148). We will comparetion [Egs.[4H-4B)] are all very good for studying transidpt
the current obtained from these three methods. The system i@mics. For the upward pulse, although the approximations
described by the following simple Hamiltonian are not as good as in downward case, the currents calculated
from approximate scheme are still in good agreement with the
H= Z €, (t)cliacka +eg()d'd + Z(tkaclld +hc) (69) exactsolution especially for the second approximatiomdge
ke ke we may conclude that the two approximations are all reason-
able in the opposite voltagé (t) = —Vg(t). They can be used
wheree(t) = €§ + U(t) ande,(t) = € + Vo(t). Because to study transient dynamics in the real molecular device to
the scattering region has only one state with energy I@el speed up the calculation.

J0 = 2eRe f d_zfr G"e)Z:%e) + G2%>e)£2%e) (67)



FIG. 1: (Color online) Time dependent currelit) corresponding
to an opposite downward pulse or upward pulse in three vessio
the exact solution and two approximations. Th&eatent black lines
are for diferent bandwidttW. The red line is foW = o, i.e., the
wide-band limit. The current is in the unit ef’, and the time is in
the unit of 2r/T". eV, = —-eVgr = 5.

FIG. 2: (Color online) Merged version of Fig.1 fav = 1, 2, 5 and
20. Panel (a) corresponding to the downward pulse curremeso
from panel (a), (b) and (c) in Fig.1, panel (b) correspondmgip-
ward pulse current comes from panel (d), (e) and (f). Alorgitlack
arrow, the bandwidth aré&/ = 1, 2, 5 and 20, respectively.
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Next, we focus on the asymmetric voltage, i¥,(t) #
VRg(t). In this case, the equilibrium coulomb potential in quan-
tum dotU%V, and the time dependent perturbation coming
from coulomb responsé(t) can’t be canceled by the voltage
in left and right lead. In principle, perturbati@i(t) should be
calculated by solving time dependent Schrddinger eqoaitio
will be very difficult and computational demanding therefore
can’'t be implemented in real molecular device. As an alter-
native scheme, we have deft) = [eV_()[? + eV, (HI]/T.

For the single level quantum dot system, this is exact becaus
the central scattering region now is expressed in a scalar in
stead of matrices, which leads to the same transient current
for the opposite voltag¥| (t) = —Vg(t) and asymmetric volt-
ageV| (t) = V(t), Vr(t) = 0 or V. (t) = 0, VR(t) = =V(t) in the
exact solution.

For the first approximation the poles in time dependent term
(B are diferent from that in the second level approxima-
tion, i.e., the poles 06" in Eq[4% andG"" in Eq[4T are re-
placed by the poles d&"Y in Eq[54 andG™? in Eq[55, re-
spectively. Because of this, the time evolution processate
as accurate in the first approximation, especially for thgda
V,. So, for the asymmetric voltage, the second approxima-
tion is better. In Fig.3 and Fig.4, we compare the transient
current obtained from the second approximation [panel){b-d
for opposite or asymmetric voltage with the exact transient
current [panel (a)] in response to the downward pulse and up-
ward pulse, respectively. We find that all transient cusent
from the second approximation in Fig.3 and Fig.4 [panel (b)]
are very close to the exact result [panel (a)]. Moreover, in
Fig.3 and Fig.4, the approximate transient current in pésjel
(c), (d) have almost the same behavior. It is safe to say that
our approximations have kept essential physics of dyndmica
transport properties.

SEVERAL EXAMPLES FOR REAL MOLECULAR
DEVICES

In this section, we implement our approximate formula in
two representative molecular devices including a shotiaar
chain coupled to aluminum leads an@g molecule coupled
to aluminum leads. These systems were chosen because they
are typical in first-principles calculation and their pieat
importance to nano-electronics. In Fig.5(a) and Fig.5{®),
show the structure of Al-EAl and Al-Cgo-Al, respectively,
where Al leads are along (100) direction, one unit cell of Al
lead consists of 9 Al atoms and total 40 atoms were included
in the simulation box. For the Al-C5-Al device, the nearest
distance between Al leads and the carbon chain is 3.781 a.u.
and the distance of C-C bond is 2.5 a.u.(180529A). In
Al-C60-Al device, the distance between the Al atom and the
nearest C atom equal to 3.625 a.u..

To calculate the dynamic response of molecular devices,
we have used the first-principles quantum transport package
MATDCAL.[EEM Considering the complicated coulomb re-
sponse in scattering region, we 8&t(t) = —Vg(t). In this
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FIG. 5: (Color online) Panel (a): Structure of Al-C5-Al. Rd(b):
structure of Al-Go-Al.

(4) with orthogonalized central scattering Hamiltonighand

\% r/a0 r/aVv . _
FIG. 3: (Color online) Panel (a): exact time dependent curi¢t) HCI ?nddself en;rgiwd U%ndz” cl)btalnﬁdfiéom tw(c; pote'n
corresponding to downward pulse fd¥ = V. — Vg = 5. Panel tial landscape an » One solves thefkective Green's

(b-d) are corresponding to the second approximate transigrent ~ function G20V using Eqs[(37.38) by calculating its poles
corresponding to downward pulse for opposite voltsge= —Vg =  and residuals from Eq.(#1). Step (1)-(4) are time independe
2.5, asymmetric voltag®, = 5, Vg = O andV,. = 0, Vr = -5,  processes and easy to perform. (5) calculate time dependent
respectively._ The cﬂlferent blaqk _Iines are for fierent bandwidths quantltlesAE/U andAD/U from Eqs[(GH#55) and EqE.(f6148).
W. The red line is wide-band limit foW = co. Then A, and Fy, can be calculated from EJs{AZ144). (6)
integrate overe and obtain the final AC current®/V(t) =
[32°(0) - 3™ (1)]/2 from Eqs[[2B.28).
First we study the Al-G-Al structure. In Fig.6, we plot
the transient curreni(t) corresponding to the upward pulse
[panel (a) and (b)] and the downward pulse [panel (c) and (d)]
for different external voltageds = -V, = 0.00la.u. [panel
(a) and (c)] and/r = -V, = 0.01a.u. [panel (b) and (d)] in Al-
Cs-Al structure. Following observations are in order: (1) as
we have discussed in Sec., for all bias voltagethe transient
currents indeed reach the correct limit¢ at 0 andt — oo.
For the upward pulse)(t = 0) = 0 andJ(t —» o) = Jgc
while for the downward pulse we havit = 0) = Jy and
J({t — o) = 0. (2) for both upward pulse (turn-on voltage)
and downward pulse (turnfiovoltage), once the bias volt-
age is switched, currents oscillate rapidly in the first a éew
tens fs and then gradually approach to the steady-statesjalu
FIG. 4: (Color online) Same to Fig.3, transient currentesponding  1-€-» Jac for turn-on voltage and zero for turnffvoltage. The
to upward pulse vs time are plotted. larger the voltag¥,,, the more rapid the current oscillates. (3)
concerning the long time behavior, the time dependentntirre
oscillates with a frequency proportionall‘t(),l.[@] This is be-
case, the first approximation is simple but as good as theause the time dependent tegff®" in Eqs.[46.48.54.35) are
second one. So, in the following, the first approximate for-V, dependent. For the upward pulgée 5t o &V, which
mula [Eqs[(2B.28.42-44 #6 i8]64],55)] is used. In prilegip directly leads to the oscillating frequency proportiormah,|.
the calculation involves the following steps: (1) calcalte  For the downward pulse, althougl®" is V, independent,
device Hamiltonian including central scattering Hamileon  in the energy integral of, the poleE, of G'(E, €) are de-
and lead Hamiltonian using NEGF-DFT package to get twatermined by the self energy’;¥. Sincex;’ depends otV,,
potential landscaped?® at zero bias and)V atV, bias, re- this leads tdv, dependent oscillating frequency. In addition,
spectively. They are originally expressed in a nonorthogowe notice that although the properties of dc conductance of
nal fireball basis. (2) orthogonalize the nonorthogonal deshort carbon chains areftiérent for the chains with odd and
vice Hamiltonian using the approam[%] introduced in Ap-even number atonE[b?] due to the completeljedtent elec-
pendix, so that they are finally expressed in an orthogonal baronic structure near Fermi level, the ac signals are simila
sis. (3) with the orthogonal lead Hamiltoni&ty, one calcu-  (see Ref.22 where Al-EAl structure was analyzed). This in-
lates zero biased self energj§/>° andV, biased self energy dicates that in AC transport, all states with energy frem
x//2V from Eqs[I%.14) using the transfer matrix mettlod. [31]to the Fermi energy are contributing, which is verffelient
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FIG. 6: (Color online) Time dependent currelft) corresponding to  FIG. 7: (Color online) Time dependent currelft) corresponding to
the upward pulse [panel (a) and (b)] and the downward pulsedlp the upward pulse [panel (a) and (b)] and the downward pulsedp
(c) and (d)] for diferent external voltages, in Al-Cs-Al device. The  (c) and (d)] in Al-Go-Al device for diferentV,. In panel (a) and (c),
inset of panel (a) shows the long time behavior of the timgedelent Vg = -V, = 0.001a.u.. In panel (b) and (d)Ygr = -V, = 0.0la.u..
current. The red (gray in print) dashed lines in panels etgiasymp- ~ Same to Fig.6, the red (gray in print) dashed lines in pamelgate
totic currentJ(t — oo0) which the DC current biased by g labeled  asymptotic currend(t — o0). The long time AC current or detailed
in corresponding panels for the upward pulse, and arriver@ for ~ short time AC current are shown in inset of panels.

the downward case.

from dc case where only the states near Fermi level congribut™\t @ Particular resonant state, the incoming electron caglidw
to transport processes. for a long time, which contributes to a much more slowly de-

Next, we study the second sample: the Ak®\ structure. caying current than other non-resonant states. In Fig.8&p)

In Fig.7, the transient curred(t) of the structure correspond- and (d), we ampl_|fy_the first, se<_:ond and forth labeled quasi-
esonant transmission, respectively, where the peakghwid

ing to an upward pulse [panel (a) and (b)] and a downwar 5 o . _
pulse [panel (c) and (d)] for fierent external voltageds = ({“peak ~ 107~a.u. are indicated, corresponding to a decay time

_V, = 0.001a.u. [panel (a) and (c)] an¥g = -V, = 0.01au. * 2400f s from the expressiompest = 1. In Fig.8(e)-

o , ding to ffierente where the resonant peaks in
[panel (b) and (d)] are plotted. Similar to the Ak@| struc- (9) correspon . .
ture, correct initial curreng(t = 0) and asymptotic current Fig.8(b)-(d) are located, we plot long time behavior of entr

J(t — o) are also obtained in Al-§g-Al structure. In addi- elementJ (e). Her_eJL(e) i.s the time ‘?‘epef‘de”t current for
tion, there are also rapidly oscillations at short timesraifhe each energy, the integration over which gives the final cur-
switch although the oscillation is not as rapid as that inAhe rentJ,(t). We can see .that for e:?\ch resonant state the current
Cs-Al structure. Furthermore, similar to Al{€Al structure, Ju(e) keeps oscillating in a long time comparable to the decay

in gradually reaching the steady-state values, the cuognt t!me T 2400f_s Furthermore the mter_’nsny of the osqlla-

cillates with a frequency proportional i@, | but its decay rate tion AJ ~ 0.2uAis not very small comparing to the DC signal

is much slower than that in Al-4Al structure. It indicates Jac = 5.1uA.

that there are much more quasi-resonant state that cotetribu  After integration over energy, these slowly decaying cur-

to the transient currentin Al<g-Al structure which is reason- rents J.(e) due to the resonant states may cancel to each

able considering the complex electronic structure of tsala  Other partially due to the fierence in their phases. However,

Ceo. In the following, we will analyze in detail how the cur- We should keep in mind that it is these resonant peaks that

rent decays for the Al-g-Al structure. may give rise to convergence problem. Hence in the calcula-
Physically, decay time of current corresponds to the widtHion, we should first scan the equilibrium and non-equitibri

of the quasi-bound state. In molecular devices, because ttEansmission cdécient (100,000 energy points for example)

linewidth functionT'(¢) are complex and energy dependent!O resolve sharp resonant peaks in the whole energy range

matrix, we can't extract characteristic time scale diresm ~ from minimum energy to Fermi energy. Then, for each sharp

1/T. As such, the transmission diieient T(e) is needed to ~ 'esonant peak, enough (100 for example) energy pointsghoul

understand the resonant state and corresponding chasactei?® chosen to converge the integration of the curde) over

tic time scale. In Fig.8(a), we plot transmission fiméent € i.e., [ deJ(e). For the non-resonant state, i.e., the smoothly

T(e€) in the energy range from the energy band bottom to th&hanged region iff (¢), the current(e) are integrated using

Fermi energy for Al-Go-Al structure at zero bias. Here, the €SS energy points.

sharp peaks [some of them, see red crossed signed peaks inAs we have discussed that the resonant states are important

Fig.8(a)] correspond to resonant states with large lifeim for the transient current and they must be carefully treated
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especially in the downward pulse case. For the nonsymmetric
voltageV| (t) = V(t), Vr(t) = 0 or V. (t) = 0, VR(t) = —V(),
the second approximation is better. This shows that our ap-
proximate formulas captured the essential physics of Hre tr
sient current. In addition, it gives the correct initial camt
att = 0 and correct asymptotic current at—> co. Since
we have reduced the calculation from triple integral to Eng
integral over the energy, the approximated approach reduce
the computational cost drastically and it can be easily @npl
mented in first principles calculation for molecular degice
To demonstrate this, we calculated the transient current us
ing the first approximated scheme with an opposite voltage
VL(t) = =Vg(t) for two molecular structures: Al4Al and
Al-Cgo-Al. Different from the quantum dot system, because
of the complex electronic structure in molecular devices)t
FIG. 8: (Color online) Panel (a): transmission fiagentT () inthe  sient currents oscillate rapidly in the first a few or tensgs a
energy range from the energy band bottom to the Fermi endéngy. the bias voltage is switched, then gradually approach to the
the whole energy range, there are some resonant statesgmring  steady-state values. Furthermore, due to the resonaatistat

to the very sharp transmission dheientT (¢), as we have indicated - molecular devices, transient currents have a very longydeca
(see red cross) and labeled (by 1, 2, 3 and 4) in panel (a), sbme time r
them contribute to the current at long time. We amplify thetfir '
second and forth labeled resonant transmission in pane{qband

(d), respectively. In panel (e)-(g), we plot the long timééeor of
currentJ, (¢) at a fixede for the first, second and forth resonant states.

The external voltag¥, = 0.001a.u..

orthogonality relation for the nonorthogonal basis

For a system described By, the time independent eigen-
value equation is written as:

in calculation. However, in the calculation of th&eztive
Green’s functiorG'/2%V | a small imaginary part that is usu- Hin) = Eqln) (70)
ally added to the real energy — € + in to help resolving
the retarded or advanced self-energies. This in turn inced
pseudo resonant states. In order to eliminate the pseudo re
nant state in fective Green’s functio®'/2%V [Eqs.[31.3B)],

the eigenvectorf) form an orthogonal complete basis set.
JHowever, in many systems such as a molecular device con-
nected to external leads, the basis set constructed by eigen

one has to calculate the self-energy by setting 0 and re- vec_:tors is not c_onveni(_ant._We usually expand the eigen vecto
solve the retarded or advanced self-energies with the afteof I in Other basigu), which is non-orthogonal complete set (or
group velocityv, = (6E(k)/6k).[@] nearly complete).
) = > juun) (71)
CONCLUSION g
the eigenvalue equation now becomes
By orthogonalizing the Hamiltonian expressed in the

nonorthogonal basis and considering the singularity df sel Z Hlu){uin)y = Eq Z )l
energyx'/3(t,t’) att = t’, we have generalized the solution [ # s

developed in Réfl6] of the transient current driven either b Z(V|H|ﬂ><ﬂ|n> = E, Z<y|ﬂ><ﬂ|n>

a downward step voltage pulse or by a upward step pulse. 7 I

This generalized result can be applied to both the quantum H. oy — E P 72
dot model and real molecular device. Based on the exact solu- Zy: s " Zﬂ: Sut (72)

tion given in Ref.b, we derived two approximate formulag tha

are suitable for numerical calculation of the transientenr  whereS,, = (v|u). In the matrix form, we havéd¥" =

for molecular devices. We have tested our approximate forE,S¥". If we use the self-energy to replace th@eet of
mula in a quantum dot system where exact numerical solutioleads the fective Hamiltonian for the open system becomes
exists. For the quantum dot system, we chose a Lorentziad = Ho+X'. Since the fective Hamiltonian is not Hermitian,
linewidth (beyond wideband limit) and compared the time-we can define the adjoint operatdi = H = Ho+ X2 and cor-
dependent current calculated using both exact formula and o responding eigen-equation becom&sp,) = E;:Si¢n). Then
approximate formula. We found that for the opposite voltage . .

VL(t) = —Vg(t), the results obtained from the exact formalism OTHY" = E,@™SY", (73)
and two approximate scheme agree very well with each other Y H®™ = EL¥MSToM (74)



Taking hermitian conjugate of ER.{74),
O"THY" = E, 0 SP" (75)
From [73) and[(7Z5), we have
®"'SY™ = Crdnm (76)
For the normalized wave functign,) and|¢n),

O'SY = | (77)

It is the usual orthogonality relation for eigenvectors ex-
pressed in a nonorthogonal basis set. For an hermitian Hami

tonianH = HT, |y) = |¢n), we have

yisy =1,

Orthogonalize Hamiltonian expressed in nonorthogonal bas

In this appendix, we will show how to construct a new or-
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functionSV = Vdiag(y, ..., 4n) with the eigenvalues;, ..., An
and eigenvectorg = [v, ..., Vy]. SinceSis real and symmet-
ric, the eigenvectors are real and orthogonal, and it thidsho
thatvV’Vv = VW7 =1. Then

S = Vdiag(ly, ..., An)V'

Vdiag(y/11, .... VAn)VVdiag(y/11, ..., VAV’

It follows that
S? = Vdiag(vAg, ..., V)V (80)
FromS St = | and Eq[(8D), we have

S 2vdiag(y A1, ... V)V =1

; 1 1
S 2Vdiag(/14, ..., VAn)ViVdiag—, ..., Al
a( n) <91(\M_l ﬂn)
1 1 ..
= S =Vdiag—, .., —)V' (81)
V/ll V/ln

In general, the dimension of matr&is infinity, we can't

thogonal basis from the atomic real-space nonorthogonal baalculate its eigenvalug and eigenvectoy; by diagonaliz-

sis. We will transform the original Hamiltoniad which is
expressed in the nonorthogonal basis into Hamiltoiagx-

ing S. However, in the tight-binding representation, the state
w andy hardly overlap when their separation is large enough

pressed in the new orthogonal basis. Of course, inste&d of in real space, i.e$,, ~ 0 for most of df-diagonal elements.

the overlap matrix in the new basis will be
Denoting nonorthogonal bagjs) and orthogonal basis),
they are related by unitary transform operaior

oy = > 1y = D 1,
j j
Uy = (il (78)

where we have used the completeness of orthogonal [jasis
Using the orthogonalityi|j) = 6;j

Dol = ) U Sy Ul =

jng yng

where we have used the completeness of nonorthogonal bas

In the matrix formZ/SU’ = |. We can formally define
u=-st u=[st|.

Then new HamiltoniarH expressed in basig can be ex-
pressed as:

Hij = (ilHIj)

D il HYO))

yng

D Uy H U, (79)

yng

In the matrix formA = S 2H [5‘%]-‘..
We now discuss how to find the matiéz. Without loss
generality, we assume the real overlap ma&satisfies eigen

Considering the periodic properties in semi-infinite lgads

can select a block matrix which is large enough to include all
the overlap between leads and central molecular regions. Fo
the non-orthogonal basis including several unit cell ofrato
leads as a Mier layer into the central scattering region is
enough to get a good screening for dc transport calculalion.
transforming the Hamiltonian to the orthogonal basis ndede
for ac transport calculation, however, it turns out that \&eeh

to include at least 10 unit cells of atomic leads into the i@nt
scattering region. Partly because the overlap of orthodimra

sis has longer range than that of non-orthogonal basis. With
this large simulation box (finite dimension), we can caltaila
the overlap matrxS: therefore transfornil into H. The ac-
guracy of transformed Hamiltonidt should be examined by
comparing dc conductance obtained from the original Hamil-
tonianH and the transformed Hamiltoni&h

ACKNOWLEDGMENTS

This work was supported by a RGC grant (HKU 705409P)
from the government of HKSAR.

[*¥] Electronic address: jianwang@hkusua.hku.hk

[2] Molecular Electronicseditd by G. Cuniberti, G. Fagas, and K.
Ricchter (Springer, Berlin, 2005).

[3] S. Kurth, G. Stefanucci, C.-O. Almbladh, A. Rubio, andke.
U. Gross, Phys. Rev. B2, 035308 (2005);

[4] Y. Zhu, J. Maciejko, T. Ji, H. Guo, and J. Wang, Phys. Rev. B
71, 075317 (2005).



[5] X. Qian, J. Li, X. Lin, and S. Yip , Phys. Rev. B3, 035408
(2006).

[6] J. Maciejko, J. Wang, and H. Guo, Phys. Rev78& 085324
(2006).

15

(2007).

[21] By solving the time dependent density matrix using theae
tion of motion method, Zheng et @l[8] have calculated the-tra
sient current using the wideband limit.

[7] N. Sai, N. Bushong, R. Hatcher, and M. Di Ventra, Phys..Rev [22] B. Wang, Y. Xing, L. Zhang, and J. Wang, Phys. Rev8B

B 75, 115410 (2007).

121103 (2010).

[8] X. Zheng, F. Wang, C.Y. Yam, Y. Mo, and G.H. Chen, Phys. [23] N. S. Wingreen, A.-P. Jauho and Y. Meir, Phys. Re¥&88487

Rev. B75, 195127 (2007).

(1993).

[9] G. Stefanucci, S. Kurth, A. Rubio, and E. K. U. Gross, Phys [24] A short account of this method can be found in Réf.22.

Rev. B77, 075339 (2008).

[10] J. Taylor, H. Guo and J. Wang, Phys. Re\68245407 (2001);
ibid, 63121104 (2001).

[11] A. D. Stone, M. Ya. Azbel, and P. A. Lee, Phys. Rev.3,
1707 (1985);

[12] P. Johansson, Phys. Rev.4H, 9892 (1990); T. Kwapifski, R.
Taranko, and E. Taranko, Phys. Rev6B 035315 (2002); T.
Kwapifnski, Phys. Rev. B9, 153303 (2004).

[13] Q.-F. Sun and T.-H. Lin, J. Phys.: Condens. Mafei3043

[25] A.-P.Jauho, N. S. Wingreen and Y. Meir, Phys. Res5528
(1994).

[26] M. H. Pedersen and M. Buttiker, Phys. RevaB, 12993-13006
(1998); B. G. Wang, J. Wang, and H. Guo, Phys. Rev. L&%.,
398-402 (1999).

[27] M. Buttiker, J. Phys. Condens. Matt&ro361 (1993).

[28] Y. D. Wei and J. Wang, Phys. Rev. B9, 195315 (2009).

[29] The exact solution of transient current on the orth@ddrasis
set has been derived in Réf.6.

(1997); idib.9, 4875 (1997); Q.-F. Sun, B.-G. Wang, J. Wang, [30] J. K. Viljas, J. C. Cuevas, F. Pauly, and M. Hafner, RiBsv.

and T.-H. Lin, Phys. Rev. B1, 4754 (2000); J. Q. You, C.-H.
Lam, and H. Z. Zheng, Phys. Rev. @, 1978 (2000); Z.-G.
Zhu, G. Su, Q.-R. Zheng, and B. Jin, Phys. Re®6&224413
(2003).

[14] S.Kohler, J. Lehmann, P. Hnggi, Phys. Ré@6 379 (2005); L.
E. F. Foa Torres, G. Cuniberti, C. R. Physidiz 297 (2009).

[15] M. Plihal£ D. C. Langreth and P. Nordlander, Phys. Re61B
R13341 (2000);

[16] L. Y. Chen and C. S. Ting, Phys. Rev4B, 8533 (1990).

[17] W. R. Frensley, Phys. Rev. 85, 1570 (1987).

[18] F. B. Anders and A. Schiller, Phys. Rev. Le&5 196801
(2005).

[19] G. Stefanucci and C.-O. Almbladh, Europhys. L&7, 14
(2004); G. Stefanucci and C.-O. Almbladh, Phys. Re\6®B

195318 (2004); N. Bushong, N. Sai, and M. Di Ventra, Nano

Lett. 5, 2569 (2005).
[20] A. Schiller and S. Hershfield, Phys. Rev6B, R16271 (2000);
Y.X. Xing, Q.F. Sun, and J. Wang, Phys. Rev.7B, 125308

B, 72, 245415 (2005).

[31] D. H. Lee and J. D. Joannopoulos, Phys. Rev2® 4997
(1981);ibid, 23, 4988 (1981).

[32] M. Buttiker, A. Pretre, and H. Thomas, Phys. Rev. L&,
4114 (1993).

[33] B. G. Wang, J. Wang, and H. Guo, Phys. Rev. L88. 398
(1999).

[34] A. Erdélyi, Asymptotic ExpansionéDover, New York, 1956).

[35] M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, and t0kS
bro, Phys. Rev. B5, 165401 (2002).

[36] Master thesis by T. Markusse@uantum transport calculations
using wave function propagation and the Kubo formula

[37] B. Wang, Y. Xing, Y. Wei, L. Wan, and J. Wang, Carbetg,

2786 (2005); B. Wang, Y. Xing, L. Wan, Y. Wei, and J. Wang,

Phys. Rev. B71, 233406 (2005).
[38] S. Sanvito, C. J. Lambert, J. H.fl'rson, and A. M. Bratkovsky,
Phys. Rev. B59, 11936 (1999).



Current

Current

03 04

upward, exact solution

Current

Time



first approx.

-—-==-second approx.

--- exact solution

0.10 0.15 0.20

0.05

0.00-

0.00

jJuasing

0.3 0.4 0.5

0.2

0.1

0.0

Time



Current

Current

0.20 exact solution, dV=5 g 59 VL=2.5, VR=-2.5
0.15 —w=1
--------- =2
°°°°°°°°°°°° 0.10 . cevseneenee W=5
Sy, SR W=20
- 0.05 Uaaa,,
0.00




Current

Current




@ DXLXDA AXDAX
XD/ DX

XDAX




=
Ol

< 10}
= 40}
= | 500 1000 1500
c 5 20! _
2 V_=-V =0.0la.u.
O _ - .
L | qu_3'4_uA | (a) ol .dc | | (b)
0 100 200 300 500 40 80 120
= 8] (c) (d)
g Ol 0
8_4. V_=-V =0.00la.u. | _og| VRi—VL:O.Ola.u. _
_g! J, =3.4uA ! J, =3L.1uA
0 100 200 300 O 40 80 120
Time(fs) Time(fs)



=
N

Current (LA)

Current (LA)
o S

|
00)

00)

AN

o

5.1
4.5

1000 2000

30

|
AN

| (a)] -30
500 1000
80
401
0.5
o/\AA/\/ww«/ww ol
-0.5
1000 2000, 3000 ;4.
500 1000
Time(fs)

0 10 20 30

0 100 200 300

100
50 ‘
O c

0 100 200
Time(fs)



@ 3 4 |

2t |l :
c 1
S 4l |
7))
g 0 [ | - Energy € (a.u.)
& -0.25 -0.2 -0.15 -0.1 -0.05 0
G 1.6 (b)]2.2 , (c)2:5 (d)
— 1 5 4

0.8 1.4 1.6

-0.26399 -0.26392-0.25918 -0.25904-0.09458  -0.09443

18 (e)]2.2 ()54 (9)
)
-l
14 ZWWWWWWW\AM
1000 2000 3000 1000 2000 3000 1000 2000 3000
Time(fs) Time(fs) Time(fs)




