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Summary
Following [2] (2009) we deliver V -binomials’ recurrence formula for Lucas
sequence Vn companion to Un sequence [1] (1878). This formula is not
present neither in [1] (1878) nor in [2] (2009), nor in [3] (1915), nor in [4]
(1936), nor in [5] (1949) and neither in all other quoted here as ”‘Lucas (p, q)-
people”’ references [1-29]- far more not complete. Meanwhile V -binomials’
recurrence formula for Lucas sequence Vn easily follows from the original
Theorem 17 in [2] absent in quoted papers except for [2] of course. Our
formula may and should be confronted with [3] (1915) Fontené recurrence
i.e. (6) or (7) identities in [7] (1969) which, as we indicate, also stem easily
from the Theorem 17 in [2].
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1 Preliminaries

Notation a,b a 6= b in [1] (1878) is used for the roots of the equation x2 =
Px−Q or (a, b) ≡ (u, v) in [2] (2009) for the roots of the equation x2 = ℓx−1.
The identification (a, b) ≡ (p, q) i.e. p, q are used in ”‘Lucas (p, q)-people”’
publications recently and in recent past (look into not complete list of ref-
erences [2 - 29] and p, q-references therein).
Lucas (p, q)-people would then use U -identifications:

np,q =
n−1
∑

j=0

pn−j−1qj = Un =
pn − qn

p− q
, 0p,q = U0 = 0, 1p,q = U1 = 1,

where p, q denote now the roots of the equation x2 = sx+ t hence p+ q = s
and pq = −t and the empty sum convention was used for 0p,q = 0. Usually
one assumes p 6= q. In general also s 6= t - though according to the context
[10] (1989) s = t may happen to be the case of interest.

The Lucas U -binomial coefficients
(

n
k

)

U
≡

(

n
k

)

p,q
are then defined as follows
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Definition 1 Let U be as in [1] i.e Un = np,q then U -binomial coefficients
for any n, k ∈ N ∪ {0} are defined as follows

(

n

k

)

U

=

(

n

k

)

p,q

=
np,q!

kp,q! · (n− k)p,q!
=

n
k
p,q

kp,q!
(1)

where np,q! = np,q ·(n−1)p,q ·...·1p,q and n
k
p,q = np,q ·(n−1)p,q ·...·(n−k+1)p,q.

Definition 2 Let V be as in [1] i.e Vn = pn + qn, hence V0 = 2 and Vn =
p + q = s. Then V -binomial coefficients for any n, k ∈ N ∪ {0} are defined
as follows

(

n

k

)

V

=
Vn!

Vk! · V(n− k)!
=

V
k
n

Vk!
(2)

where Vn! = Vn · Vn−1 · ... · V1 and V
k
n = Vn · Vn−1 · ... · Vn−k+1.

One easily generalizes L-binomial to L-multinomial coefficients [29] .

Definition 3 Let L be any natural numbers’ valued sequence i.e. Ln ∈ N

and s ∈ N. L-multinomial coefficient is then identified with the symbol

(

n

k1, k2, ..., ks

)

L

=
Ln!

Lk1 ! · ... · Lks !
(3)

where ki ∈ N and
∑s

i=1 ki = n for i = 1, 2, ..., s. Otherwise it is equal to
zero.

Naturally for any natural n, k and k1 + ...+ km = n− k the following holds

(

n

k

)

L

·

(

n− k

k1, k2, ..., km

)

L

=

(

n

k, k1, k2, ..., km

)

L

(4)

2 V -binomial coefficients’ recurrence

The authors of [2] prove (Th. 17) the following nontrivial recurrence for the
general case of

(

r+s
r,s

)

L[p,q]
L-binomial arrays in multinomial notation. Let

s, r > 0. Then

(

r + s

r, s

)

L[p,q]

= g1(r, s) ·

(

r + s− 1

r − 1, s

)

L[p,q]

+ g2(r, s) ·

(

r + s− 1

r, s− 1

)

L[p,q]

(5)

where
(

r
r,0

)

L
=

(

s
0,s

)

L
= 1.
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L[p, q]r+s = g1(r, s) · L[p, q]r + g2(r, s) · L[p, q]s.(6)

Taking into account the U -addition formula i.e. the first of two trigonometric-
like L-addition formulas (42) from [1] [see also [20], [22]] (L[p, q] = L = U, V )
i.e.

2Ur+s = UrVs + UsVr, 2Vr+s = VrVs + UsUr(7)

one readily recognizes that the U -binomial recurrence from the Corollary 18
in [2] is identical with the U -binomial recurrence (58) [1]. However there is
not companion V -binomial recurrence neither in [1] (1878) nor in [2] (2009).

This V -binomial recurrence is given right now in the form of (5) adapted to
L[p, q] = V [p, q] = V - Lucas sequence case.

(

r + s

r, s

)

V [p,q]

= h1(r, s)

(

r + s− 1

r − 1, s

)

V [p,q]

+ h2(r, s)

(

r + s− 1

r, s− 1

)

V [p,q]

,(8)

where p 6= q and
(

r
r,0

)

L
=

(

s
0,s

)

L
= 1.

Vr+s = h1(r, s)Vr + h2(r, s)Vs.(9)

and where (p 6= q)

h1 · (p
rqs − qrps) = pr+sqs − qr+sps,(10)

h2 · (q
rps − prqs) = pr+sqr − qr+spr.(11)

The recurrent relations (13) and (14) in [28] for np,q-binomial coefficients are
special cases of this paper formula (5) i.e. of Th. 17 in [2] with straightfor-
ward identifications of g1, g2 in (13) and in (14) in [28] as well as this paper
recurrence (6) for L = U [p, q]n = np,q sequence.

g1 = pr, g2 = qs,(12)

or
g1 = qr, g2 = ps,(13)

whle

(s+ r)p,q = psrp,q + qrsp,q = (r + s)q,p = qrsp,q + psrp,q.(14)

Now let A is any natural numbers’ or even complex numbers’ valued se-
quence. One readily sees that also (1915) Fontené recurrence for Fontené-
Ward generalized A-binomial coefficients i.e. equivalent identities (6) , (7)
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in [7] are special cases of this paper formula (5) i.e. of Th. 17 in [2] with
straightforward identifications of g1, g2 in this paper formula (5) identities
while this paper recurrence (6) becomes trivial identity.
Namely, the identities (6) and (7) from [7] (1969) read correspondingly:

(

r + s

r, s

)

A

= 1 ·

(

r + s− 1

r − 1, s

)

A

+
Ar+s −Ar

As

(

r + s− 1

r, s− 1

)

A

,(15)

(

r + s

r, s

)

A

=
Ar+s −As

Ar
·

(

r + s− 1

r − 1, s

)

A

+ 1 ·

(

r + s− 1

r, s − 1

)

A

,(16)

where p 6= q and
(

r
r,0

)

L
=

(

s
0,s

)

L
= 1. And finally we have tautology identity

As+r ≡
Ar+s −As

Ar
·Ar + 1 ·As.(17)

As for combinatorial interpretations of L-binomial or L-multinomial
coefficients we leave that subject apart from this note because this note is
to be deliberately short. Nevertheless we direct the reader to some papers
and references therein; these are herethe following: [30] (2010),[2] (2009),
[29] (2009), [10] (1989),[11] (1991),[13] (1992), [14] (1993), [15] (1994), [16]
(1994), [26] (2004),[26] (2004), [29] (2009) and to this end see [8].
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