A note on V-binomials' recurrence for Lucas sequence V_{n} companion to U_{n} sequence

Andrzej Krzysztof Kwaśniewski

Member of the Institute of Combinatorics and its Applications, Winnipeg, Manitoba, Canada

PL-15-674 Białystok, Konwaliowa 11/11, Poland

e-mail: kwandr@gmail.com

Abstract

Summary Following [2] (2009) we deliver V-binomials' recurrence formula for Lucas sequence V_{n} companion to U_{n} sequence [1] (1878). This formula is not present neither in [1] (1878) nor in [2] (2009), nor in [3] (1915), nor in [4] (1936), nor in [5] (1949) and neither in all other quoted here as "Lucas (p, q) people"' references [1-29]- far more not complete. Meanwhile V-binomials' recurrence formula for Lucas sequence V_{n} easily follows from the original Theorem 17 in [2] absent in quoted papers except for [2] of course. Our formula may and should be confronted with [3] (1915) Fontené recurrence i.e. (6) or (7) identities in [7] (1969) which, as we indicate, also stem easily from the Theorem 17 in [2].

AMS Classification Numbers: 05A10, 05A30
Keywords: Lucas sequence, generalized binomial coefficients

1 Preliminaries

Notation a,b $a \neq b$ in [1] (1878) is used for the roots of the equation $x^{2}=$ $P x-Q$ or $(a, b) \equiv(u, v)$ in [2] (2009) for the roots of the equation $x^{2}=\ell x-1$. The identification $(a, b) \equiv(p, q)$ i.e. p, q are used in "'Lucas (p, q)-people", publications recently and in recent past (look into not complete list of references [2-29] and p, q-references therein).
Lucas (p, q)-people would then use U-identifications:

$$
n_{p, q}=\sum_{j=0}^{n-1} p^{n-j-1} q^{j}=U_{n}=\frac{p^{n}-q^{n}}{p-q}, 0_{p, q}=U_{0}=0,1_{p, q}=U_{1}=1
$$

where p, q denote now the roots of the equation $x^{2}=s x+t$ hence $p+q=s$ and $p q=-t$ and the empty sum convention was used for $0_{p, q}=0$. Usually one assumes $p \neq q$. In general also $s \neq t$ - though according to the context [10] (1989) $s=t$ may happen to be the case of interest.
The Lucas U-binomial coefficients $\binom{n}{k}_{U} \equiv\binom{n}{k}_{p, q}$ are then defined as follows

Definition 1 Let U be as in [1] i.e $U_{n}=n_{p, q}$ then U-binomial coefficients for any $n, k \in \mathbb{N} \cup\{0\}$ are defined as follows

$$
\begin{equation*}
\binom{n}{k}_{U}=\binom{n}{k}_{p, q}=\frac{n_{p, q}!}{k_{p, q}!\cdot(n-k)_{p, q}!}=\frac{n \frac{k}{p, q}}{k_{p, q}!} \tag{1}
\end{equation*}
$$

where $n_{p, q}!=n_{p, q} \cdot(n-1)_{p, q} \cdot \ldots \cdot 1_{p, q}$ and $n \frac{k}{p, q}=n_{p, q} \cdot(n-1)_{p, q} \cdot \ldots \cdot(n-k+1)_{p, q}$.

Definition 2 Let V be as in [1] i.e $V_{n}=p^{n}+q^{n}$, hence $V_{0}=2$ and $V_{n}=$ $p+q=s$. Then V-binomial coefficients for any $n, k \in \mathbb{N} \cup\{0\}$ are defined as follows

$$
\begin{equation*}
\binom{n}{k}_{V}=\frac{V_{n}!}{\left.V_{k}!\cdot V_{(} n-k\right)!}=\frac{V_{n}^{\underline{k}}}{V_{k}!} \tag{2}
\end{equation*}
$$

where $V_{n}!=V_{n} \cdot V_{n-1} \cdot \ldots \cdot V_{1}$ and $V_{n}^{k}=V_{n} \cdot V_{n-1} \cdot \ldots \cdot V_{n-k+1}$.

One easily generalizes L-binomial to L-multinomial coefficients [29] .
Definition 3 Let L be any natural numbers' valued sequence i.e. $L_{n} \in \mathbb{N}$ and $s \in \mathbb{N}$. L-multinomial coefficient is then identified with the symbol

$$
\begin{equation*}
\binom{n}{k_{1}, k_{2}, \ldots, k_{s}}_{L}=\frac{L_{n}!}{L_{k_{1}}!\cdot \ldots \cdot L_{k_{s}}!} \tag{3}
\end{equation*}
$$

where $k_{i} \in \mathbb{N}$ and $\sum_{i=1}^{s} k_{i}=n$ for $i=1,2, \ldots, s$. Otherwise it is equal to zero.

Naturally for any natural n, k and $k_{1}+\ldots+k_{m}=n-k$ the following holds

$$
\begin{equation*}
\binom{n}{k}_{L} \cdot\binom{n-k}{k_{1}, k_{2}, \ldots, k_{m}}_{L}=\binom{n}{k, k_{1}, k_{2}, \ldots, k_{m}}_{L} \tag{4}
\end{equation*}
$$

$2 \quad V$-binomial coefficients' recurrence

The authors of [2] prove (Th. 17) the following nontrivial recurrence for the general case of $\binom{r+s}{r, s}$ L[p,q] L-binomial arrays in multinomial notation. Let $s, r>0$. Then
(5) $\binom{r+s}{r, s}_{L[p, q]}=g_{1}(r, s) \cdot\binom{r+s-1}{r-1, s}_{L[p, q]}+g_{2}(r, s) \cdot\binom{r+s-1}{r, s-1}_{L[p, q]}$
where $\binom{r}{r, 0}_{L}=\binom{s}{0, s}_{L}=1$.

$$
\begin{equation*}
L[p, q]_{r+s}=g_{1}(r, s) \cdot L[p, q]_{r}+g_{2}(r, s) \cdot L[p, q]_{s} \tag{6}
\end{equation*}
$$

Taking into account the U-addition formula i.e. the first of two trigonometriclike L-addition formulas (42) from [1] [see also [20], [22]] ($L[p, q]=L=U, V$) i.e.

$$
\begin{equation*}
2 U_{r+s}=U_{r} V_{s}+U_{s} V_{r}, \quad 2 V_{r+s}=V_{r} V_{s}+U_{s} U_{r} \tag{7}
\end{equation*}
$$

one readily recognizes that the U-binomial recurrence from the Corollary 18 in [2] is identical with the U-binomial recurrence (58) [1]. However there is not companion V-binomial recurrence neither in [1] (1878) nor in [2] (2009).

This V-binomial recurrence is given right now in the form of (5) adapted to $L[p, q]=V[p, q]=V$ - Lucas sequence case.
(8) $\binom{r+s}{r, s}_{V[p, q]}=h_{1}(r, s)\binom{r+s-1}{r-1, s}_{V[p, q]}+h_{2}(r, s)\binom{r+s-1}{r, s-1}_{V[p, q]}$,
where $p \neq q$ and $\binom{r}{r, 0}_{L}=\binom{s}{0, s}_{L}=1$.

$$
\begin{equation*}
V_{r+s}=h_{1}(r, s) V_{r}+h_{2}(r, s) V_{s} . \tag{9}
\end{equation*}
$$

and where $(p \neq q)$

$$
\begin{align*}
& h_{1} \cdot\left(p^{r} q^{s}-q^{r} p^{s}\right)=p^{r+s} q^{s}-q^{r+s} p^{s}, \tag{10}\\
& h_{2} \cdot\left(q^{r} p^{s}-p^{r} q^{s}\right)=p^{r+s} q^{r}-q^{r+s} p^{r} . \tag{11}
\end{align*}
$$

The recurrent relations (13) and (14) in [28] for $n_{p, q}$-binomial coefficients are special cases of this paper formula (5) i.e. of Th. 17 in [2] with straightforward identifications of g_{1}, g_{2} in (13) and in (14) in [28] as well as this paper recurrence (6) for $L=U[p, q]_{n}=n_{p, q}$ sequence.

$$
\begin{equation*}
g_{1}=p^{r}, \quad g_{2}=q^{s}, \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
g_{1}=q^{r}, \quad g_{2}=p^{s}, \tag{13}
\end{equation*}
$$

whle

$$
\begin{equation*}
(s+r)_{p, q}=p^{s} r_{p, q}+q^{r} s_{p, q}=(r+s)_{q, p}=q^{r} s_{p, q}+p^{s} r_{p, q} . \tag{14}
\end{equation*}
$$

Now let A is any natural numbers' or even complex numbers' valued sequence. One readily sees that also (1915) Fontené recurrence for FontenéWard generalized A-binomial coefficients i.e. equivalent identities (6), (7)
in [7] are special cases of this paper formula (5) i.e. of Th. 17 in [2] with straightforward identifications of g_{1}, g_{2} in this paper formula (5) identities while this paper recurrence (6) becomes trivial identity.
Namely, the identities (6) and (7) from [7] (1969) read correspondingly:

$$
\begin{align*}
& \binom{r+s}{r, s}_{A}=1 \cdot\binom{r+s-1}{r-1, s}_{A}+\frac{A_{r+s}-A_{r}}{A_{s}}\binom{r+s-1}{r, s-1}_{A}, \tag{15}\\
& \binom{r+s}{r, s}_{A}=\frac{A_{r+s}-A_{s}}{A_{r}} \cdot\binom{r+s-1}{r-1, s}_{A}+1 \cdot\binom{r+s-1}{r, s-1}_{A}, \tag{16}
\end{align*}
$$

where $p \neq q$ and $\binom{r}{r, 0}_{L}=\binom{s}{0, s}_{L}=1$. And finally we have tautology identity

$$
\begin{equation*}
A_{s+r} \equiv \frac{A_{r+s}-A_{s}}{A_{r}} \cdot A_{r}+1 \cdot A_{s} . \tag{17}
\end{equation*}
$$

As for combinatorial interpretations of L-binomial or L-multinomial coefficients we leave that subject apart from this note because this note is to be deliberately short. Nevertheless we direct the reader to some papers and references therein; these are herethe following: [30] (2010),[2] (2009), [29] (2009), [10] (1989),[11] (1991),[13] (1992), [14] (1993), [15] (1994), [16] (1994), [26] (2004), [26] (2004), [29] (2009) and to this end see [8].

References

[1] Edouard LUCAS Théorie des Fonctions Numériques Simplement Priodiques, American Journal of Mathematics, Volume 1, (1878): 184-240 (Translated from the French by Sidney Kravitz, Edited by Douglas Lind Fibonacci Association 1969
[2] Nicholas A. Loehr, Carla D. Savage August 26, 2009 Generalizing the combinatorics of binomial coefficients via ℓ-nomials with corrections noted (thanks to Bruce Sagan), Integers, to appear.
[3] Fonten Georges Généralisation d'une formule connue, Nouvelles Annales de Mathématiques (4) 15 (1915) p. 112
[4] Ward Morgan, A calculus of sequences, Amer.J. Math. 58 (1936): 255266.
[5] Jarden D., Motzkin T., The product of Sequences with the common linear recursion formula of Order 2, Riveon Lematimatica 3 , (1949): 25-27.
[6] Torretoo R. F., Fuchs J. A. Generalized Binomial Coefficients, The Fibonacci Quarterly,vol. 2, (1964): 296-302 .
[7] Gould H.W. The Bracket Function and Fontené-Ward Generalized binomial Coefficients with Applications to Fibonomial Coefficients, The Fibonacci Quarterly vol.7, (1969): 23-40.
[8] Bernd Voigt A common generalization of binomial coefficients, Stirling numbers and Gaussian coefficients Publ. I.R.M.A. Strasbourg, 1984, 229/S-08 Actes de Seminaire Lotharingien, p. 87-89. , In: Frolk, Zdenk (ed.): Proceedings of the 11th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1984, pp. 339-359.
[9] Luis Verde-Star, Interpolation and combinatorial functions. Studies in Applied Mathematics, 79: (1988):65-92.
[10] Ira M. Gessel, X. G. Viennot,Determinant Paths and Plane Partitions, (1989):- Preprint; see(10.3) page 24
http : //people.brandeis.edu/ gessel/homepage/papers/pp.pdf
[11] M. Wachs, D. White, p, q-Stirling Numbers and Set Partition Statistics, Journal of Combinatorial Theory, Series A 56, (1991): 27-46.
[12] R. Chakrabarti and R. Jagannathan, A (p, q)-Oscillator Realization of Two-parameter Quantum Algebras, J. Phys. A: Math. Gen. 24,(1991): L711.
[13] J.Katriel, M. Kibler, Normal ordering for deformed boson operators and operator-valued deformed Stirling numbers, J. Phys. A: Math. Gen. 25,(1992):2683-2691.
[14] A. de Medicis and P. Leroux, A unified combinatorial approach for q-(and p,q-)Stirling numbers, J. Statist. Plann. Inference 34 (1993): 89-105.
[15] Michelle L. Wachs: sigma -Restricted Growth Functions and p,q-Stirling Numbers. J. Comb. Theory, Ser. A 68(2), (1994):470-480.
[16] SeungKyung ParkP-Partitions and q-Stirling Numbers, Journal of Combinatorial Theory, Series A, 68, (1994): 33-52.
[17] A. De Médicis, P. Leroux, Generalized Stirling Numbers. Convolution Formulae and p, q-Analogues, Canad. J. Math. 47, ((1995):474-499.
[18] Mirek Majewski and Andrzej Nowicki, From generalized binomial symbols to Beta and Alpha sequences, Papua New Guinea Journal of Mathematics, Computing and Education, 4, (1998): 73-78.
[19] M. Dziemiańczuk, W.Bajguz, On GCD-morphic sequences,IeJNART: Volume (3), September (2009): 33-37. arXiv:0802.1303v1, [v1] Sun, 10 Feb 2008 05:03:40 GMT
[20] W.Bajguz, A.K.Kwaniewski On generalization of Lucas symmetric functions and Tchebycheff polynomials ,Integral Transforms and Special Functions Vol. 8 Numbers 3-4, (1999): 165-174 .
[21] Alexandru Ioan Lupas, A guide of Fibonacci and Lucas polynomials, Octogon, Math. Magazine, vol.7, No 1, (1999): 2-12.
[22] W. Bajguz, On generalized of Tchebycheff polynomials, Integral Transforms and Special Functions, Vol. 9, No. 2 (2000), pp. 91-98
[23] Eric R. Tou, Residues of Generalized Binomial Coefficients Modulo a Product of Primes, senior thesis, Spring (2002):, Department of Mathematics and Computer Science, Gustavus Adolphus College, St. Peter, MN, http : //sites.google.com/site/erikrtou/home, promotor John M. Holte.
[24] Karen Sue Briggs, Q-analogues and p, q-analogues of rook numbers and hit numbers and their extensions, Ph.D. thesis, University, of California, San Diego (2003).
[25] Karen Sue Briggs and J. B. Remmel, A p,q-analogue of a Formula of Frobenius, Electron. J. Comb. 10 (2003), No R9.
[26] J. B. Remmel and Michelle L. Wachs, Rook Theory, Generalized Stirling Numbers and (p, q)-Analogues, The Electronic Journal of Combinatorics 11 , (Nov 22, 2004), No R 84.
[27] Karen Sue Briggs, A Rook Theory Model for the Generalized p,q-Stirling Numbers of the First and Second Kind, Formal Power Series and Algebraic Combinatorics, Series Formélles et Combinatoire Algébrique San Diego, California 2006
[28] Roberto B. Corcino, ON p,q-Binomial Coefficients, INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 ,(2008), No A29.
[29] M. Dziemiańczuk, Generalization of Fibonomial Coefficients, arXiv:0908.3248v1 [v1] Sat, 22 Aug (2009), 13:18:44 GMT
[30] Bruce E. Sagan, Carla D. Savage, Combinatorial Interpretation of Binomial Coefficient Analogues Related to Lucas Sequences, INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY (2010), (2010), to appear

