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We calculate the first order perturbation correction to the ground state energy and chemical
potential of a harmonically trapped boson gas with contact interactions about the infinite repulsion
Tonks-Girardeau limit. With c denoting the interaction strength, we find that for a large number
of particles N the 1/c correction to the ground state energy increases as N5/2, in contrast to the
unperturbed Tonks-Girardeau value that is proportional to N2. We describe a thermodynamic
scaling limit for the trapping frequency that yields an extensive ground state energy and reproduces
the zero temperature thermodynamics obtained by a local density approximation.

I. INTRODUCTION

The realization of quasi one-dimensional bosonic gases
with tunable interaction parameters at ultracold temper-
atures [1, 2] has renewed interest in theoretical models of
one-dimensional bosons with short-ranged interactions.
Of particular relevance to workers in this field is the
Lieb-Liniger model [3] in which contact interactions are
described by Dirac delta functions. The suitability of
this model in describing the low temperature properties
of these quasi one-dimensional bosonic systems has been
further strengthened by Olshanii’s analysis of the low
energy scattering of atoms under tight transverse har-
monic confinement: The longitudinal s-wave scattering
amplitudes are indeed reproduced by a one-dimensional
pseudopotential proportional to a Dirac delta function
[4]. The resulting demonstration that the magnitude of
this effective delta interaction can be explicitly calculated
from the three-dimensional atomic scattering length and
the dimensions of the confining external trap [5] further
strengthens the link between theoretical one-dimensional
models and quasi one-dimensional experiments.

Still, the free Lieb-Liniger model is quite an ideal-
ization for actual experiments because the atoms are
generally longitudinally confined by an external poten-
tial and thus much effort has been devoted to studying
the effects of confinement of interacting bosons [4, 6, 7].
Introducing an external harmonic potential to the free
Lieb-Linger model of spinless bosons leads to the many-
particle Schrödinger eigenvalue equation[

N∑
i=1

− ~2

2m

∂2

∂x2i
+
mω2x2i

2
− ~2

ma

∑
i<j

δ(xj−xi)

]
Ψb = ĒbΨb,

(1)
where m is the mass of each of the N atoms, ω is
the angular frequency of the trap, and a is the one-
dimensional scattering length. The superscript ‘b’ refers
to the bosonic nature of the labeled quantities. Measur-
ing energy in units of ~ω and length in oscillator units
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` =
√

~/mω gives the dimensionless eigenvalue equation[
N∑
i=1

−1

2

∂2

∂x2i
+

1

2
x2i + c

∑
i<j

δ(xj − xi)

]
Ψb = ĒbΨb, (2)

where we have introduced the dimensionless interaction
strength c = −`/a. We consider here the repulsive case
c > 0 (negative scattering length) to be specific. In
the absence of an harmonic potential the corresponding
eigenvalue equation is solvable by the Bethe ansatz and
consequently much is known about the ground state and
elementary excitations of this system [3], as well as the
properties of the various correlation functions at zero and
finite temperatures [8]. However, for the important case
of harmonic confinement an exact solution to this prob-
lem for general values of the interaction strength c is
lacking. The sole exceptions are the two-particle case
that is separable in relative and central coordinates [9],
and the Tonks-Girardeau (TG) limit of infinite repulsion
c → +∞ in which the exact N -particle wavefunctions
are absolute values of Slater determinants [10]. These
results, especially the latter, are prototypical examples
of the fermion-boson duality derived by Girardeau [11]
and later generalized by Cheon and Shigehara [12] for
one-dimensional systems of particles having contact in-
teractions. For finite values of the interaction parameter
c expressions for the atom density in space and breath-
ing mode frequencies have been calculated using local
density approximations [4, 6, 13], while formal expres-
sions for the self-consistent Hartree-Fock equations for
the single-particle density matrix have been obtained for
general trapping potentials [7].

In this work, we will use the mentioned fermion-boson
relation to develop perturbative 1/c corrections to the
ground state energy and chemical potential of an harmon-
ically confined interacting boson gas about the Tonks-
Girardeau solution. The details of the specific fermion-
boson mapping we employ here that utilizes a non-local
pseudopotential [7] are given in Section II. In Section
III we present our perturbation calculations for the gen-
eral case of an N -particle system obtaining a closed form
analytical result that is calculable for any N . We ana-
lyze few-body cases and discuss the thermodynamic limit
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N →∞ of our solution in Section IV. We summarize our
results and give concluding remarks in Section V.

II. FERMION-BOSON MAPPING

In one-dimension it has been demonstrated that a
bosonic model with pairwise contact interactions of
strength c can be mapped into a fermionic model with
pairwise interactions of strength 1/c [12]. Specifically,
given a fermionic wavefunction Φf that satisfies the eigen-
value equation[

N∑
i=1

−1

2

∂2

∂x2i
+

1

2
x2i + V̂ f

]
Φf = EfΦf, (3)

an appropriate choice of a pseudopotential operator V̂ f

allows us to make the following correspondence between
the bosonic wavefunction Ψb and its fermionic counter-
part Φf

Ψb = AΦf(x1, . . . , xN ), (4)

where A ≡
∏

i<j sgn(xj − xi) is a function that is com-
pletely antisymmetric under any transposition xi ↔ xj .
Since the complex squares of the wavefunctions Ψb and
Φf are identical, the energy eigenvalues Eb and Ef are
equal. For our specific problem, a suitable fermionic
pseudopotential operator has matrix elements in the co-
ordinate representation given by [7]

〈ϕf|V̂ f|φf〉 = −4

c

∑
i<j

∫
lim

rij→0

[
∂ϕf *

∂rij
× ∂φf

∂rij

]
dRij , (5)

where rij = xj − xi and Rij = 1
2 (xj + xi) are rel-

ative and central coordinates, and ϕf(x1, . . . , xN ) and
φf(x1, . . . , xN ) are the coordinate space wavefunctions
corresponding to the fermionic state kets |ϕf〉 and |φf〉.

In the infinite repulsion limit, the bosonic eigenvalue
equation (2) is solved by the absolute value of the ground
state Slater determinant [10]

Ψb
TG =

1√
N !

∣∣detψn(xm)
∣∣ ≡ AΦf

TG, (6)

where Φf
TG is the fermionic ground state wavefunction,

{xm} are the coordinates of the atoms and {ψn} are the
N lowest energy single-particle harmonic oscillator eigen-

functions ψn(x) = π−1/4(2nn!)−1/2Hn(x)e−x
2/2. The

Hn(x) appearing here are the usual Hermite polynomi-
als. The corresponding energy of this TG ground state
(in units of ~ω) is

Eb
TG = 1

2N
2. (7)

For a finite and large repulsion strength we may therefore
use the quantity 1/c � 1 as a perturbation parameter
for the fermionic problem (3) so that ordinary first-order
perturbation theory gives the desired correction

Eb
0 = Ef

0 = 1
2N

2 + 〈Φf
TG|V̂ f|Φf

TG〉+O(1/c2). (8)

E0

E1

0 5 10 15 20 25 30
1.0

1.2

1.4

1.6

1.8

2.0

2.2

c

E

FIG. 1. The first order perturbation result (dashed line) for
the ground state energy of two delta interacting bosons in a
harmonic trap is compared to the exact solutions for the two
lowest energy levels E0 and E1 (solid lines).

III. GROUND STATE ENERGY CORRECTION

In this section we work mainly in the fermionic sec-
tor and omit the superscripts ‘f’ for brevity. Here, our
objective is to explicitly evaluate the leading correction
δE ≡ 〈ΦTG|V̂ |ΦTG〉 to the ground state energy E0. Since
ΦTG is a Slater determinant and the fermionic interac-
tion operator V̂ is a sum of two-body operators v̂ having
matrix elements

vklmn = −4

c

∫
lim
r→0

{
∂
[
ψk(x1)ψl(x2)

]
∂r

×
∂
[
ψm(x1)ψn(x2)

]
∂r

}
dR, (9)

we may calculate the perturbation δE using the Slater-
Condon rule δE =

∑
k<l(vklkl − vkllk) [14]. Prior to

calculating the derivatives appearing inside the integral
(9), we must be careful to write the coordinates x1 =
R+ 1

2r and x2 = R− 1
2r in terms of the relative and central

coordinates r and R. The symmetry of the integrand
allows us to write and define vklkl = −vkllk ≡ ṽkl where

ṽkl = −4

c

∫
lim
r→0

{
∂
[
ψk(x1)ψl(x2)

]
∂r

}2

dR. (10)

Thus, the leading correction becomes δE = 2
∑

k<l ṽkl
and is always negative as expected. After some manip-
ulation, we obtain a finite series expression for the en-
ergy correction that may be evaluated for any number of
atoms N :

δE =
1

c

√
2

π3

N−1∑
l=1

Γ
(
l − 1

2

)
Γ(l + 1)

×
l−1∑
k=0

(l − k)2Γ
(
k − 1

2

)
Γ(k + 1)

3F2

[
3
2 ,−k,−l
3
2−k,

3
2−l

; 1

]
. (11)
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FIG. 2. (a) The scaled perturbation −cδE/N2 (dots) grows as a power law
√
N in the limit N → ∞. (b) Our large N result

is consistent with numerical calculations (solid line) in the Thomas-Fermi approximation for
√
N/c� 1. The dashed lines are

regression fits cδE ≈ −0.408N5/2 calculated from values N ∈ [100, 1000]. The prefactor −0.408 is independent of the particular
values chosen in this interval.

IV. FEW PARTICLE RESULTS AND
THERMODYNAMIC LIMIT

The special case of N = 2 particles is separable in
relative and central coordinates and is exactly solvable.
The exact ground state energy E0 of the trapped two
boson system satisfies the transcendental equation

2
Γ
[
1
2 (1 + E0)

]
tan
[
1
2 (1− E0)π

]
Γ
[
E0/2

] = − c√
2
, E0 ∈ [1, 2].

(12)

Our perturbative result (11) gives δE = −(2/c)
√

2/π
and coincides with the leading correction term in the
1/c series expansion of this exact solution about the TG
ground state energy ETG = 2. Also, an essentially iden-
tical result was obtained by Sen [15] for the reduced
single-particle problem using a different local pseudopo-
tential involving the second derivative of the delta func-
tion ∝ δ′′(x2−x1) [16]. A comparison of our perturbation
result and the exact two-particle ground state energy is
given in Figure 1 and we observe good agreement be-
tween the two results in the strongly interacting regime
c� 10.

Before discussing the situation for more than two parti-
cles, let us restore units and rewrite the perturbed ground
state energy as

E0(N) = 1
2~ωN

2
[
1 + 2α(N)/c

]
+O(1/c2), (13)

where α(N) is a dimensionless function of N . For val-
ues of N up to 103 the magnitude of the scaled first order
correction −cδE(N)/N2 is plotted in Figure 2a as a func-
tion of N on a double logarithmic plot. Inspection of this
graph suggests a simple power law scaling for the first-
order correction with large N . Leading order asymptotic
analysis reveals that the partial sums in Eq. (11) scale as
∼N3/2 for large N so that N2α(N) ∼ N5/2:

E0(N) ≈ 1
2~ωN

2
[
1 + 2α0

√
N/c

]
, N →∞. (14)

Indeed, for as few as N = 15 particles the factor α(N)
is quite well approximated (within 1%) by the function

α0

√
N with α0 ≈ −0.408. In other words, the correction

factor α(N) reaches its asymptotic scaling behavior for
systems as small as N � O(101).

To obtain a thermodynamic limit with an extensive
ground state energy, we observe that in addition to send-
ing the number of particles to infinity we must also re-
quire the trapping frequency ω to vanish as 1/N . As
we shall see, this condition allows us to reproduce the
Thomas-Fermi results near the Tonks-Girardeau limit.
This scaling requirement implies that the quantity `/

√
N

approaches a constant in the thermodynamic limit, in
contrast to the thermodynamic limit in the case of a Lieb-
Liniger gas confined in a flat-bottomed box, in which the
linear dimension of the system is taken to scale propor-
tionally with particle number [17]. Looking back at our

asymptotic expression α(N) ≈ α0

√
N , we find that the

quantity
√
N/c approaches a constant value as N → ∞

in our prescribed thermodynamic limit. This is pre-
cisely the condition used in Ref. [6] to obtain the ground
state energy of the trapped interacting boson gas in the
Thomas-Fermi formalism, which we reproduce here in
Figure 2b. We find that our first order 1/c result is re-

liable for
√
N/c . 0.1, which means that for a typical

experimental setup with 105 atoms first order perturba-
tion theory and the Thomas-Fermi result coincide only
in the extreme limit c� 103.

If we now define the Tonks-Girardeau limit chemical
potential as µTG ≡ limN→∞, ω→0 ~ωN and the scaled

interaction parameter as γ ≡ limN→∞, ω→0 c/
√
N , we

obtain the zero temperature chemical potential

µ ≈ µTG

[
1 + 5

2α0/γ
]
. (15)

The first term in this expression corresponds to the chem-
ical potential of free fermions in a one-dimensional har-
monic trap while the last term gives the reduction in the



4

chemical potential due to the finite repulsion correction
and serves as a measure of the departure of the system
from the unitarity limit.

V. CONCLUDING REMARKS

In this work we have calculated the first order finite
repulsion correction to the ground state energy of har-
monically trapped bosons having contact interactions for
any finite number of particles N . For N � O(101) we
found that for a fixed interaction strength this correction
scales as a power law N5/2, which allowed us to describe
a thermodynamic limit that reproduces known results
from Thomas-Fermi approaches. This contribution clar-
ifies the smooth transition of the ground state proper-
ties of harmonically confined interacting boson systems
as the number of particles go to infinity near the Tonks-
Girardeau limit. We have demonstrated that in this
strongly interacting regime, to at least the leading order
in 1/c, finite number effects are negligible in under cur-
rent experimental situtations that have ∼105−6 atoms.

A natural extension of this work would involve higher
order corrections to the ground state energy and many-

body wavefunction, as was done recently for a wedge-
shaped trapping potential [18]. If we take the set of
all fermionic Slater determinants as an expansion basis
for ordinary perturbation theory about the TG limit, we
discover that the perturbing pseudopotential couples the
ground state to an infinite number of excited states. We
therefore expect a complicated analytical result for the
second order energy correction resulting in a numerical
problem that may require a truncation of the correspond-
ing Hilbert space. However, on the basis of the agreement
between our asymptotic results and the Thomas-Fermi
calculation (Figure 2b), we conjecture that the second
order correction scales as N3/c2 > 0 in the thermody-
namic limit.
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Found. Phys., 28, 549 (1998).

[10] M. D. Girardeau, E. M. Wright, and J. M. Triscari,
Phys. Rev. A, 63, 033601 (2001); M. D. Girardeau and
E. M. Wright, Laser Phys., 12, 8 (2002).

[11] M. D. Girardeau, J. Math. Phys., 1, 516 (1960).
[12] T. Cheon and T. Shigehara, Phys. Rev. Lett., 82, 2536

(1999).
[13] C. Menotti and S. Stringari, Phys. Rev. A, 66, 043610

(2002).
[14] E. U. Condon, Phys. Rev., 36, 1121 (1930).
[15] D. Sen, Int. J. Mod. Phys. A, 14, 1789 (1999).
[16] As noted in Ref. [7], Sen’s potential and the pseudopo-

tential used here yield identical interaction matrix ele-
ments between states described by continuous fermionic
wavefunctions. Since our calculations involve continuous
Slater determinants, the distinction between pseudopo-
tentials is not relevant here.

[17] M. T. Batchelor, X. W. Guan, N. Oelkers, and C. Lee,
J. Phys. A: Math. Gen., 38, 7787 (2005).
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