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1. Introduction

Quantum information and computation are one of the fastest expanding areas of modern

physics. Among many different physical implementations of qubits (for a review see,

e.g., Ref. [1]) the solid state devices seem to be the most promising because of their

scalability, tunability and relatively long coherence times.

The spin of a single electron semiconductor quantum dot (QD) placed in a magnetic

field B is a natural two-level system suitable for use as a qubit [2, 3]. The Zeeman

splitting phenomenon is responsible for creation of an energy gap ∆Z between two

electron states with opposite spin. However, quantum confinement properties of QDs

can be deeply mutated to crater-like nanostructures (in other words to ring-shaped

QDs) called hereafter quantum rings (QRs) [4, 5, 6, 7, 8, 9]. Just like QDs, QRs possess

atom-like properties making them attractive candidates for future device applications in

quantum information processing. These nanometer-size rings which are the nanoscopic

analogues of benzene have many intriguing properties. The ability to fill QR with one

or a few electrons offers new possibilities, e.g., to detect persistent current (PC) carried

by single electron states [8] or the magnetoinduced change of the ground state [7, 6].

In this paper we discuss the possibility of building spin qubits on defect free QRs

and show that they can be used for quantum state manipulation. Owing to the strong

confinement of electrons in QRs the orbital states are strongly quantized and the electron

spin states are very stable due to the substantial suppression of spin-flip mechanisms. It

is well known that QDs are one of the best systems for solid state qubit implementations

with relaxation times exceeding seconds. It is thus interesting to relate qubits built

on QRs to those on QDs. In this context we show that QRs are also attractive for

the realization of spin qubits with relaxation times of the same order as for QDs. The

considerations in this paper are general and can be used both for electrostatically defined

QRs (EQRs) [4, 10] and self-assembled QRs (SQRs)[6, 7, 8, 9]. EQRs can be primarily

controlled electrically, SQRs can be primarily controlled optically.

In Section 2 we introduce basic characteristics of quantum rings, discuss the

formation of spin qubits and provide a brief description of how to manipulate their states.

In Section 3 we make estimations of the relaxation and decoherence times. General

discussion of possible experimental realizations is given in Section 4 and conclusions are

presented in Section 5.

2. Quantum confinement of semiconductor quantum ring and the

formation of spin qubits

Nowadays technology allows the preparation and characterization of very small, high-

mobility semiconductor structures of dot or ring geometry with very good resolution.

Recently several high-quality quantum rings on, e.g., AlGaAs-GaAs heterostructures [4],

InGaAs [7, 6] and GaAs [9] have been produced and investigated. Here we consider a

semiconductor QR of radius r0 and finite thickness containing a single or a few electrons.
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The ring is placed in a static magnetic field parallel (B‖ ) or perpendicular (B⊥) to its

plane. The in-plane orientation is favourable as it does not disturb the orbital levels

[11]. The nanometer size of the ring causes quantum size effects important.

For a 2D ring in a static magnetic field B⊥ we assume the Hamiltonian in the form

H =
1

2m∗
(p+ eA)2 +

e~

2me

σ̂ ·B + V (r), (1)

where m∗ is the effective electron mass, A = (0, xBz, 0) is the vector potential, V (r) is

the confinement potential the exact form of which will be given later in the text. If the

ring is placed in a parallel magnetic field B‖ instead of B⊥ then A = 0.

The energy spectrum of a QR consists of a set of discrete levels Enl due to radial

motion with radial quantum numbers n = 0, 1, 2, . . ., and rotational motion with angular

momentum quantum numbers l = 0,±1,±2 . . .. The single particle wave function is of

the form

Ψnl = Rnl (r) exp (ilφ)χσ, (2)

with the radial part Rnl(r) and the spin part χσ. For finite–width QRs both Enl and

Ψnl have to be calculated numerically [12]. In contradiction to QDs, the energy levels

numbered by n > 0 always lie higher in energy than those with increasing l and they

do not enter the following analysis.

The application of a magnetic field B splits the orbital energy levels by

∆Z = gsµBB, (3)

where gs is the electron spin g-factor and µB is the Bohr magneton. Another important

energy gap is the distance from the highest occupied orbital state (l) to the first excited

orbital state (l ± 1),

∆l =

{

E0,l±1 − E0,l, forB = B‖,

E0,l−1 − E0,l, forB = B⊥.
(4)

If the following relation holds

kBT ≪ ∆Z ≪ ∆l, (5)

the two Zeeman sublevels of the orbital l are well separated from the others and the

ring can be well approximated as a two-state system (a qubit). We assume that the

’operating’ orbital l is occupied by a single electron only, i.e., for l = 0 the number of

electrons is Ne = 1, for |l| = 1, Ne = 3, etc.

In our analysis we consider several different quantum rings. The radii and confining

potentials of three of them (A, B, C) are chosen to roughly reproduce the energy spectra

of the recently grown InGaAs rings described in Refs. [6], [7], and [8], respectively. The

confining potential used in all these cases is assumed to be of the following form,

V1(r) =
1

2
m∗ω2

0 (r − r0)
2 , (6)

where the parameters are collected in Table 1.
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Table 1. The parameters and relaxation times of three modelled InGaAs quantum

rings corresponding (in alphabetical order) to the experimental rings described in Refs.

[6], [7] and [8]. The ring geometry has been reached by the confining potential V1(r)

(Eq. 6); ~ω0 is the potential strength. B‖ = 1T has been assumed.

Ring r0 [nm] ~ω0 [meV] T
0

1
[s] T

1

1
[s] T

2

1
[s] T

3

1
[s]

A 20 15 0.015 0.053 0.067 0.071

B 14 12 0.26 0.19 0.14 0.11

C 11.5 25 1.35 1.88 1.66 1.36

For the remaining rings we have assumed the same radius as for ring B, but the

potential takes on different shapes. In order to be able to compare results for QRs and

QDs, we parametrize the potential in such a way that it can reproduce both harmonic

potential of a QD as well as a δ–like potential of a quasi one–dimensional (1D) QR. It

is given by

V2(r) =
1

2
m∗ω2

0

[

(1− k)r2 +
k

1− k
(r − r0)

2

]

=
1

2
m∗ω2

QDr
2 +

1

2
m∗ω2

QR (r − r0)
2 . (7)

It is a superposition of QD and QR potentials, where the confinement (a measure of

radial localization of the electron wave function) is given by ~ωQD and ~ωQR, respectively.

For k = 0 the second term vanishes and the potential describes harmonic QD. On the

other hand, in the k → 1 limit it describes a 1D QR. Therefore, changing k from 0 to

1 one can observe how the properties of a quantum system evolve while moving from

QD to QR. The radius of QR is defined by r0 in Eq. 6, i.e., it is the distance from

the center of the ring to the minimum of the confining potential. The definition of the

radius of harmonic QD is not so unambiguous – we use r0 defined by the shape of the

ground state wave function Ψ(r, φ) ∝ exp(−r/r0). In order to ensure that the size of

the system does not depend on k, and therefore that its properties depend only on the

shape of the potential, in Eq. 7 we assume

ω0 = 2~/m∗r20, (8)

what gives the radius of the QD equal to r0. Fig. 1 shows the radial part of the

wave function for ground state (l = 0) and four lowest excited states (l = 1, . . . , 4) for

different values of k: for k = 0 we model QD (Fig. 1a), for 0 < k < 1 we get QRs of

decreasing thickness (Fig. 1b,c), reaching at k = 0.999 a quasi 1D ring (Fig. 1d). The

corresponding shape of the confining potential is shown in the insets.

We would like to stress that our model calculations are for the circularly symmetric

nanostructures, whereas some of the experimentally fabricated rings may have slightly

different symmetry and therefore slightly different energy spectrum. Additionally, we

neglect any imperfectnesses that are present in real rings (impurities, variable thickness,

etc.).
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Figure 1. The radial part R0l(r) of the electron wave function (2) plotted as a function

of radius r for different values the orbital quantum number l. Panels a − d include

results for different shapes of the confining potential (7) (shown in the inset plots). In

all cases r0 = 14nm, B‖ = 1T have been assumed.

In order to use quantum rings in quantum computation it is necessary to establish

a way to perform single qubit operations and to implement efficient quantum logic gates

on pairs of qubits. During the past few years a big progress have been made towards

full control of quantum states of single and coupled spins in QDs [11, 13, 14]. Going

carefully through all this one finds that most of those features are shared also by ring-

shaped QDs.

The QR qubit can be initialized by, e.g., thermal equilibration or by optical pumping,

coherently manipulated (through magnetic resonance technique or by faster electrical

and optical gates) and read out using both electrical and optical techniques [9, 11, 15].

Coherent coupling of EQRs leading to the formation of, e.g., the CNOT gate can

be obtained in an analogous way as for QDs [2, 3], by assembling a system of two

coplanar QRs with the possibility of tuning their exchange coupling J by gating the

barrier between them. Such coupling can be switched on and off by electrical impulses.

Quantum gates for SQRs can be accomplished by electronic or photonic connections

[9, 13, 16]. Single qubit rotations together with the CNOT gate form an universal set
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of quantum logic gates. Remarkably the operations are very fast, on the order of pico

to nanoseconds [17]. Thus very many coherent operations can be performed during the

decoherence times estimated in Section 3.

Recently a scheme for creating coherent coupling of spin qubits, each placed in

a microcavity, by entanglement swapping [18] has been proposed. Such long-distance

entanglement is a crucial ingredient for quantum communication.

The long term promise of spin qubits depends crucially on the relaxation and

decoherence times which are strongly related to the quantization of the orbital states in

QRs and can be different than in QDs due to different geometry.

As the experiments were performed mainly at B ≥ 1T, in the following we fix the

magnitude of the magnetic field to B = 1T. We also assume the electron spin g-factor

| gs |= 0.8 for InGaAs samples [19], which gives the electron spin Zeeman splitting

∆Z = 0.046meV.

3. Spin relaxation and decoherence

The main difficulty in development of a quantum computer is to keep the qubits in the

quantum regime for a sufficiently long time. The ideal situation would be to cut off the

interaction with the environment that is the main source of destruction of a quantum

state. This is, however, a very difficult task as this interaction is equally needed (for

steering, measurement, etc.) as unwanted (decoherence, relaxation).

Electron spin decoherence is caused primarily by spin-lattice relaxation via phonon

scattering and spin-orbit (SOI) interaction and by hyperfine (HFI) interaction with

nuclear spins [20, 21, 22]. At first we discuss the spin relaxation time T1. At magnetic

fields B < 0.1T the dominant relaxation mechanism is the HFI but for larger fields this

mechanism is suppressed by the mismatch between the nuclear and electron Zeeman

energies. At 0.5T< B < 10T the SOI causes spin relaxation by mixing the spin and

orbital states and providing the mechanism for coupling of spins to (mainly) piezoelectric

phonons. The prolongation of spin relaxation times for small nanostructures stems from

a drastic reduction in spin-phonon coupling mediated by the combination of electron-

phonon and SOI, due to strong confinement.

The comprehensive analysis of relaxation due to phonons in QDs has been given in

Refs. [20]–[23]. It was shown that at B = 1T the relaxation is dominated by a single–

phonon admixture process; it has been verified in several experiments [10, 11, 19, 24].

To discuss the relaxation we have followed Ref. [20] and in particular Eq. 7, which is

valid for a set of confining potentials and therefore for different shapes of the sample.

We have used it to estimate relaxation times for circularly symmetric systems discussed

above placed in the magnetic field B‖ (B⊥ ). We obtained

1

T l
1

= 2Cph

(

αl
xx

)2 (

1 + cos2ϑ
)

∆5
z, (9)
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where ϑ = 0 for B = B⊥, ϑ = π/2, B = B‖; the exact form of Cph is given in Ref. [20],

αl
xx =

∑

l′′

2e2
| < 0, l′′|x|0, l > |2

E0,l′′ − E0,l

=
4π2e2

∆l

Ξ2
l , (10)

where 0 stands for the quantum number n, l is the orbital number of the highest occupied

state, and

Ξl =

∫ ∞

0

R∗
0lR0l′r

2dr, (11)

is the ’overlap factor’, where R0l is the radial part of the electron wave function (2) and

l′ = l − 1 if the field is perpendicular to the ring or l′ = l ± 1 for a parallel field.

Inserting Eq. 10 into Eq. 9 and applying little algebra one obtains the relaxation

time for a nanosystem with a single electron in the highest occupied state l given by

T l
1 =

η

∆5
z

∆2
l

Ξ4
l

, (12)

where

η =
~
5

Λp(2π)4(m∗)2(1 + cos2 ϑ)
, (13)

Λp is the dimensionless constant depending on the strength of the effective spin-

piezoelectric phonon coupling and the magnitude of SOI, Λp = 0.007 for GaAs type

systems [19, 20].

It follows from Eq. 12 that T l
1 depends on ∆l, i.e., on the number of electrons

Ne and on Ξl, i.e., on the wave functions of the neighbouring l states (see Eq. 11 and

Fig. 1a-d). Notice, that in contrast to QDs where ∆l = ~ω0, for QRs the energy gaps

between neighbouring l states are l-dependent and increase with increasing l (faster for

a thinner ring), tending to

∆1D
l =

~
2

2m∗r20
(2l + 1) , (14)

for a quasi 1D ring (see Fig. 2a).

Let us first discuss the case of a single electron (Ne = 1, l = 0) - the results are

denoted in Fig. 2a-c as solid black lines. For QDs (k = 0) the formula (11) reads

(

Ξdot
0

)2
=

~
2

4π2m∗~ω0

. (15)

Replacing Ξl in Eq. 12 by Ξdot
0 gives

T 0,dot
1 = Λ−1

p

~ (~ω0)
4

(∆Z)
5 (1 + cos2 ϑ)

, (16)

i.e., the relaxation time for QDs obtained in Ref. [20].
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It is interesting to compare the relaxation times for QRs and QDs – we show below

that T 0,dot
1 is a higher limit of T 0

1 . From Eqs. 12 and 16 one can find the formula relating

them:

T 0
1 = T 0,dot

1

(

∆0

~ω0

)2(
Ξdot
0

Ξ0

)4

. (17)

It follows from our results (Figs. 2a and 2b) that for singly occupied nanostructure for

arbitrary ring thickness

~ω0 > ∆0,

Ξdot
0 < Ξ0

}

⇒ T 0
1 < T 0,dot

1 , (18)

i.e., assuming the same size, QD is the structure having the longest relaxation time. To

understand the first of the inequalities we compare the formulas for ∆0 for QD (Eq. 8)

and 1D QR (Eq. 14). We see that ~ω0 = 4∆1D
0 . For rings of finite thickness ∆0 changes

smoothly between these two values.

The inequality between the overlap factors Ξ0 and Ξdot
0 , follows from the difference in

shape and distribution of the radial parts R0l (Fig. 1a-d). We see that for QD the

radial functions are concentrated closer to r = 0 than for QRs where they stay mostly

at larger r. Additionally, for QD the difference between the R00(r) and R01(r) is much

more significant than for QR. Both these properties result in a smaller value of Ξ0 for

QD than for QR, leading to the relations (18).

Notice that the relation (18) is a consequence of the assumed parabolic shape of the

potential confining both the QDs and QRs. For, e.g. a rectangular potential, the charge

distribution of the electrons would be different leading to the decrease of the difference

between T 0
1 and T 0,dot

1 - the calculations are in progress.

The situation, however, changes if the number of electrons is larger than one. It

was shown [4, 11] that for such cases the electron–electron interaction is well described

by the constant interaction model - it shifts the single electron spectra by a multiple of

the charging energy, (Ne−1)EC . Assuming this, the spectra in Figs. 2 and 3 correspond

to the energies after the charging energy has been subtracted.

One can see from Fig. 1a that for QDs with l > 0 the maxima of the wave functions

move to larger r leading to an increase of Ξdot
l (Fig. 2b) and subsequent decrease of

T dot
1 (Fig. 2c). For QRs of the large thickness (0 < k < 0.8) the situation is similar

as for QDs, but for thinner rings with k > 0.8 both the decrease of Ξl (Fig. 2b) and

the simultaneous increase of ∆l (Fig. 2a) lead to a substantial increase of T l
1 (see Fig.

2c and Table 2). Such relatively thin rings with relaxation times exceeding seconds at

B = 1T are within reach for nowadays nanotechnology. In Table 1 we also presented

the relaxation times for the rings A − C. We see that they increase considerably with

decreasing radius of the rings reaching the value of T 0
1 = 1.35s already for singly occupied

ring C. However because the rings A−C are relatively thick we do not get the essential

increase of T l
1 > 1.

The results presented in Fig. 2 and in Table 2 have been obtained for the magnetic

field parallel to the ring. In such a case the movement of electrons is not affected by
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Figure 2. a) The orbital energy gap ∆l as a function of the potential parameter k, for

different values of l (corresponding to different occupation Ne). For k = 0 the potential

(Eq. 7) models QD and ∆l is l-independent. Increasing k we reach (for k → 1) the

1D-QR limit with ∆l defined by Eq. 14; b) The overlap factor Ξl; c) the relaxation

time T1 plotted as a function of k for different orbital states l. r0 = 14nm has been

assumed.

the field what results in a two–fold degeneracy of orbital states E0,l = E0,−l. This

degeneracy, however, is removed when there is a nonzero component of the magnetic

field perpendicular to the ring. Then, E0,−|l| < E0,|l| and the distance to the first excited

state has to be calculated according to the lower line in Eq. 4. It leads to smaller values

of ∆l than for the field parallel to the QR. Since the overlap factor Ξl is very weakly

modified by the perpendicular field (Fig. 3b), the relaxation time given by Eq. 12 is

reduced but still T1 ≥ 1s for l > 0 is accessible (see Fig. 3 and Table 3).

To build a qubit on singly occupied QR of small thickness one could in principle

make use of the other (than l = 0) Bohm–Aharonov minima of the dispersion relation

E(B⊥). However due to the strong decrease of T1 with increasing the magnetic field

(Eq. 12) the relaxation times for such qubits would be much shorter.

To compare the results for B‖ and B⊥ compare the 7th row in Table 2 with the 3rd

row in Table 3 (bolded rows).
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Table 2. The relaxation time T
l
1

for different values of the orbital number l

(equivalently, the number of electrons Ne) and different shapes of the potential V2(r).

r0 = 14nm, B‖ = 1T have been assumed.

k l=0 l=1 l=2 l=3 l=4

0 8.03 2.01 0.89 0.50 0.32

0.5 1.55 0.83 0.52 0.35 0.26

0.7 0.67 0.78 0.64 0.51 0.41

0.8 0.44 0.88 0.89 0.79 0.69

0.85 0.35 0.98 1.13 1.09 0.99

0.9 0.27 1.11 1.54 1.64 1.59

0.95 0.20 1.26 2.28 2.91 3.19

0.99 0.15 1.26 3.20 5.54 7.92

1D-QR 0.13 1.18 3.25 6.28 10.22
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B [T]
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c

Figure 3. a) The orbital energy gap ∆l as a function of the magnetic field B = B⊥,

for different values of l; b) The overlap factor Ξl; the inset plot shows the detailed curve

l = 0; c) the relaxation time T
l
1
. The remaining parameters are: k = 0.95, r0 = 14nm.
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Table 3. The relaxation time T
l
1

for different values of the orbital number l and the

magnetic filed B⊥. r0 = 14nm and k = 0.95 have been assumed.

B [T] l=0 l=1 l=2 l=3 l=4

0.6 1.789 14.035 26.390 34.093 37.754

0.8 0.38 3.209 6.110 7.933 8.809

1.0 0.110 1.013 1.953 2.549 2.838

1.2 0.04 0.392 0.766 1.004 1.121

1.4 0.016 0.174 0.345 0.456 0.510

1.6 0.007 0.086 0.173 0.229 0.257

1.8 0.003 0.046 0.093 0.125 0.140

2.0 0.002 0.026 0.054 0.072 0.081

The above model considerations have been done for InGaAs/GaAs rings but the

underlying physics is similar to other systems with somehow different set of parameters.

In GaAs and GaAs/AlGaAs nanosystems the spin gs factor changes in a range gs ∼

0.2− 0.4 [11]. Assuming that material properties entering Eq. 12 are roughly the same

as for InGaAs/GaAs and Ne = 1 we obtain, e.g., for the ring B made out of material with

gs = 0.4, T1 ∼ 6.4s and for the ring C (with gs = 0.4), T1 ∼ 43s. However, one has to

stress that these very long relaxation times have been obtained taking into account only

SO mediated interaction with piezoelectric phonons. Considering also other mechanisms

of relaxation, (e.g., due to fluctuations of the electric and magnetic field, deformational

phonons, multiphonon processes, and circuit noise) which we neglected in the above

model calculations, can further limit the relaxation time.

The spin decoherence time T2 for nanosystems made out of III-V semiconductors is

limited by HFI as it was shown [21] that SOI does not lead to pure dephasing. Several

strategies have been proposed to decrease the randomness in the nuclear-spin system

which can be useful also for QRs. Dynamic nuclear polarization [25] and putting the

the nuclear spins in a particular quantum state [26] are very promising. The estimated

decoherence times are T2 ∼ 10 − 100µs [25, 27, 28] for the considered magnetic field.

An alternative approach is to use a quantum ring with holes instead of electrons. For a

hole the hyperfine coupling is expected to be much weaker than for an electron because

of the p-symmetry of the valence band [29]. Recent experiments have shown that hole

spins remain coherent an order of magnitude longer than electron spins [30].

Because of the detrimental effect of nuclear spins one can use different material.

If QRs were made not of III-V semiconductors (with non-zero nuclear spin) but of the

group IV isotopes with zero nuclear spins, the coherence times should be longer because

of the absence or very small (in isotopically not purified) hyperfine interaction. As a

result one could then get T2 = 2T1, which is a relatively long time.

Besides ’natural’ semiconductors there exists another material having amazing
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capabilities for electronics. Carbon nanotubes constitute a new class of ballistic low

dimensional quantum systems which also can be used for the implementation of a qubit

[31, 32]. They are attractive because the zero nuclear spin of the dominant isotope 12C

yields a strongly reduced hyperfine interaction.

Decoherence times both for QDs and QRs depend strongly on the material used,

however it seems that the reduced dimensionality of the device leads to an increase of

decoherence times [33, 34]. Because of ubiquitous nature of Si in modern electronics

the estimations for Si rings [35] are important. It is known that the magnitude of

the SOI in Si is ten times smaller than in GaAs and thus the relaxation times should

be hundred times longer. However, for Si and SiGe systems gs ∼ 2 and these two

factors make T1 of the same order as for GaInAs rings. At the same time these systems

should have long decoherence times T2 = 2T1 due to the absence of nuclear spins.

Si, the best semiconducting material for charge based electronics also seems to be a

promising choice for spintronics and for quantum computing [14]. Summarizing, the

decoherence times of electron spins in material with few or no nuclear spins as well as

decoherence times for hole spins are expected to be much longer than for the group III-V

semiconductors. However, in all considered materials the decoherence times are much

longer than the initialization, qubit operations and measurement times allowing for

quantum error correction scheme to be efficient. Recently a significant reduction of the

randomness in the nuclear field reducing electron spin dephasing has been investigated

both experimentally and theoretically [36, 37, 38, 39].

4. Discussion and possible experimental realizations of quantum rings

The crucial point for quantum information processing is the necessity to keep coherence

for a sufficiently long time. Based on the model calculations restoring roughly the

energy spectra of experimentally feasible rings we have shown that quantum rings placed

in a static magnetic field can be resistant to relaxation due to spin-orbit mediated

electron-phonon interaction that is the main source of spin relaxation at magnetic fields

0.5T< B < 10T. It is known that QDs can have long relaxation times of the order

of 1s at B = 1T [10, 19]. Thus we asked the question whether such long T1 can be

reached also in QRs. The relaxation (and decoherence) time depends on the relevant

orbital energy gap and the overlap factor which can be modified by changing the size

and thickness of the ring. It also depends on the factor gs, number of electrons, material

parameters and different systems were examined to optimize coherence. The estimated

relaxation times (at B = 1T) for the experimentally fabricated rings are in the range

between a few milliseconds to a few seconds.

Looking for qubits with relaxation times exceeding seconds (T1>1s) our results can

be summarized as follows:

a)for nanosystems with r0 > 12nm the rings with Ne > 1 are required (the advantage of

energy gaps ∆l increasing with l).

Such rings can be produced by (i) methods relying on self assembled growth
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(SQRs), (ii) methods using nanolitographical procedures and electrostatic potentials

(EQRs). Both methods have been successfully applied to obtain ring structures with

one dimensional confinement of carriers (electrons and/or holes). Method (i) consists

of modifications of growth procedures applied for quantum dot formations. After the

Stranski-Krastanov (S-K) growth of QDs the surface is covered with an appropriate

capping layer, and then the structure is annealed for the appropriate time. This method

of transforming S-K QD into QR structures has been successfully applied to InGaAs

QDs grown on GaAs surfaces by different epitaxial methods - metalorganic vapor phase

epitaxy [40] and molecular beam epitaxy [5, 41].

Another method, namely liquid droplet epitaxy can be applied, if in the process of

vapor phase epitaxial growth of binary, or multinary materials, one of the constituting

elements can occur in liquid phase at the growth surface. This method is usually used

for growing QR like structures from GaAs and InGAs [42, 43, 44]. Usually the SQRs

structures obtained by the S-K QD growth followed by a post-growth annealing, as well

as those grown by droplet epitaxy have radii in the range of 14 to 50 nm [6, 7, 9, 16].

In method (ii) the appropriate potential profiles confining carriers into QR geometry

can be realized either by etching the QR like patterns from the layered heterostructures

[45] or by depositing the metallic gates defining the appropriate electrostatic potential

profiles, on top of structures with 2-dimensional electron (or hole) gas [46].

b) QRs with r0 < 12nm occupied by a single electron have the required relaxation times.

Despite the difficulties in producing such small structures the successful realization

of the MBE grown InAs QR structures, with radius of 11.5nm has been reported [8]

and used in our considerations. Another possibility of practical realization of the QR

structures with radii in the range of 10 nm (or less) is the combination of axial and

radial heterostructures in one semiconductor nanowire (NW), i.e. the growth of a

heterojunction in the NW shell with appropriate combination of materials, for example

a NW with AlGaAs core, GaAs shell, and thin InAs section within the GaAs shell

only. This type of NW structures have not been realized yet, to our knowledge, however

due to the very rapid progress in the NW growth technology the future realization of

such structures can be anticipated. Recently Mohseni et. al. [45] reported the QR-

like confinement of electrons on top parts of core-shell GaAsP/GaP nanowires grown by

molecular beam epitaxy. The use of nanowires has some advantages in comparison to the

QD or QR structures fabricated by the S-K or liquid droplet epitaxy growth methods.

NWs can easily be grown on pre-patterned substrates, i.e. they can be oriented in plane

in periodical structures, defined by the patterning process [46]. The dimension of NWs

can also be precisely controlled. In particular the radii of NWs can be smaller than 5

nm [47], which is rather impossible in case of self assembled QDs.

The successful realization of structures which are closer to nano-ring geometries

namely semiconductor nanotubes was also reported for some semiconducting materials

like Si [48], ZnO [49], or GaN [50]. However realization of QR structures would need

implementation of axial heterostructures in nanotube geometries, which has not been

demonstrated yet, to our knowledge. Another possibility is to define a set of QRs in a
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nanotube by local gate electrodes. Probably the combination of confinement due to the

electric potential defined by metallic gates in the small sections of core shell nanowire

structures, already successfully applied to define QD like potential [47] seems, at present

to be the best method for realization of QR type confinement studied in our paper. It

seems that the relatively thin rings of radius smaller than 10nm with relaxation times

exceeding seconds are within reach for nowadays nanotechnology.

5. Summary

Quantum information processing and spintronics have been major driving forces towards

full control of single-spin systems. In particular fascinating phenomena based on carrier

confinement in ring shaped nanostructures have intrigued physicists for many years. It

was found that nanorings with R < 20nm can be considered as almost ideal quantum

systems [16] and thus can be, besides QDs, excellent systems for spin studies.

We have investigated quantum rings with a single or a few electrons and have

shown that they can be treated as quantum bits fulfilling DiVincenzo criteria [51]. We

have shown that for both QDs and QRs long relaxation times exceeding seconds at

B = 1T are possible. It follows from our analysis that for singly occupied structures

QDs have always longer relaxation time than QRs but for relatively thin rings with

higher occupation the relaxation times can exceed those for QDs. However (see e.g.

Table 1) even singly occupied rings with r0 ≤ 10nm can have relaxation times exceeding

seconds. The single occupancy of rings makes the experiments and the analysis more

transparent, however, there is an open question whether qubits with Ne > 1 can have

some other advantages over those with Ne = 1.

The presented considerations demonstrate the feasibility of operating single-electron

spin in QR as the quantum bit. This is of big relevance for the use in quantum

information processing devices.

Finally, it should be stressed that multiply connected ring geometry offers additional

(orbital) degree of freedom to be used for quantum manipulations. It is possible to build

a qubit also on the orbital degrees of freedom [52, 53] in some analogy to flux qubits

on superconducting rings. Thus quantum carrier confinement in circular nanostructures

can be the basis of many applications in quantum information processing devices.
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