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Abstract

Suppose d ≥ 2 and α ∈ (1, 2). Let D be a bounded C1,1 open set in R
d and b an R

d-valued

function on R
d whose components are in a certain Kato class of the rotationally symmetric α-

stable process. In this paper, we derive sharp two-sided heat kernel estimates for Lb = ∆α/2+b·∇
in D with zero exterior condition. We also obtain the boundary Harnack principle for Lb in D

with explicit decay rate.
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1 Introduction

Throughout this paper we assume d ≥ 2, α ∈ (1, 2) and that X is a (rotationally) symmetric

α-stable process on R
d. The infinitesimal generator of X is ∆α/2 := −(−∆)α/2. We will use B(x, r)

to denote the open ball centered at x ∈ R
d with radius r > 0.

Definition 1.1 For a function f on R
d, we define for r > 0,

Mα
f (r) = sup

x∈Rd

∫

B(x,r)

|f |(y)
|x− y|d+1−α

dy.

A function f on R
d is said to belong to the Kato class Kd,α−1 if limr↓0M

α
f (r) = 0.

Since 1 < α < 2, using Hölder’s inequality, it is easy to see that for every p > d/(α − 1),

L∞(Rd; dx) + Lp(Rd; dx) ⊂ Kd,α−1. Throughout this paper we will assume that b = (b1, · · · , bd)
is an R

d-valued function on R
d such that |b| ∈ Kd,α−1. Define Lb = ∆α/2 + b · ∇. Intuitively, the
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fundamental solution pb(t, x, y) of Lb and the fundamental solution p(t, x, y) of ∆α/2, which is also

the transition density of X, should be related by the following Duhamel’s formula:

pb(t, x, y) = p(t, x, y) +

∫ t

0

∫

Rd

pb(s, x, z) b(z) · ∇zp(t− s, z, y)dzds. (1.1)

Applying the above formula repeatedly, one expects that pb(t, x, y) can be expressed as an infinite

series in terms of p and its derivatives. This motivates the following definition. Define pb0(t, x, y) =

p(t, x, y) and for k ≥ 1,

pbk(t, x, y) :=

∫ t

0

∫

Rd

pbk−1(s, x, z) b(z) · ∇zp(t− s, z, y)dz. (1.2)

The following results are shown in [6, Theroem 1, Lemma 15, Lemma 23] and their proofs.

Here and in the sequel, we use := as a way of definition. For a, b ∈ R, a ∧ b := min{a, b} and

a ∨ b := max{a, b}.

Theorem 1.2 (i) There exist T0 > 0 and c1 > 1 depending on b only through the rate at which

Mα
|b|(r) goes to zero such that

∑∞
k=0 p

b
k(t, x, y) converges locally uniformly on (0, T0]×R

d×R
d

to a positive jointly continuous function pb(t, x, y) and that on (0, T0]× R
d × R

d,

c−1
1

(
t−d/α ∧ t

|x− y|d+α

)
≤ pb(t, x, y) ≤ c1

(
t−d/α ∧ t

|x− y|d+α

)
. (1.3)

Moreover,
∫
Rd p

b(t, x, y)dy = 1 for every t ∈ (0, T0] and x ∈ R
d.

(ii) The function pb(t, x, y) defined in (i) can be extended uniquely to a positive jointly continuous

function on (0,∞)×R
d×R

d so that for all s, t ∈ (0,∞) and (x, y) ∈ R
d×R

d,
∫
Rd p

b(t, x, y)dy =

1 and

pb(s+ t, x, y) =

∫

Rd

pb(s, x, z)pb(t, z, y)dz. (1.4)

(iii) If we define

P b
t f(x) :=

∫

Rd

pb(t, x, y)f(y)dy, (1.5)

then for any f, g ∈ C∞
c (Rd), the space of smooth functions with compact supports,

lim
t↓0

∫

Rd

t−1(P b
t f(x)− f(x))g(x)dx =

∫

Rd

(Lbf)(x) g(x)dx.

Thus pb(t, x, y) is the fundamental solution of Lb in distributional sense.

Here and in the rest of this paper, the meaning of the phrase “depending on b only via the rate

at which Mα
|b|(r) goes to zero” is that the statement is true for any R

d-valued function b̃ on R
d with

Mα
|̃b|
(r) ≤Mα

|b|(r) for all r > 0.

It is easy to show (see Proposition 2.3 below) that the operators {P b
t ; t ≥ 0} defined by (1.5) form

a Feller semigroup and so there exists a conservative Feller process Xb = {Xb
t , t ≥ 0,Px, x ∈ R

d}
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in R
d such that P b

t f(x) = Ex[f(X
b
t )]. The process Xb is in general non-symmetric. We call Xb an

α-stable process with drift b, since its infinitesimal generator is Lb.

For any open subset D ⊂ R
d, we define τ bD = inf{t > 0 : Xb

t /∈ D}. We will use Xb,D to denote

the subprocess of Xb in D; that is, Xb,D
t (ω) = Xb

t (ω) if t < τ bD(ω) and X
b,D
t (ω) = ∂ if t ≥ τ bD(ω),

where ∂ is a cemetery state. The subprocess of X in D will be denoted by XD. Throughout this

paper, we use the convention that for every function f , we extend its definition to ∂ by setting

f(∂) = 0. The infinitesimal generator of Xb,D is Lb|D, that is, Lb on D with zero exterior condition.

The process Xb,D has a transition density pbD(t, x, y) with respect to the Lebesgue measure. (See

(3.3) below.) The transition density pbD(t, x, y) of Xb,D is the fundamental solution of Lb|D. The

transition density of XD is denoted by pD(t, x, y) and it is the fundamental solution of L|D.
The purpose of this paper is to establish the following sharp two-sided estimates on pbD(t, x, y)

in Theorem 1.3. To state this theorem, we first recall that an open set D in R
d is said to be a

C1,1 open set if there exist a localization radius R0 > 0 and a constant Λ0 > 0 such that for every

z ∈ ∂D, there exist a C1,1-function φ = φz : Rd−1 → R satisfying φ(0) = 0, ∇φ(0) = (0, . . . , 0),

‖∇φ‖∞ ≤ Λ0, |∇φ(x) − ∇φ(z)| ≤ Λ0|x − z|, and an orthonormal coordinate system CSz: y =

(y1, · · · , yd−1, yd) := (ỹ, yd) with its origin at z such that

B(z,R0) ∩D = {y ∈ B(0, R0) in CSz : yd > φ(ỹ)}.

The pair (R0,Λ0) is called the characteristics of the C1,1 open set D. We remark that in some

literatures, the C1,1 open set defined above is called a uniform C1,1 open set as (R0,Λ0) is universal

for every z ∈ ∂D. For x ∈ D, let δD(x) denote the Euclidean distance between x and ∂D. Note

that a bounded C1,1 open set may be disconnected.

Theorem 1.3 Let D be a bounded C1,1 open subset of Rd with C1,1 characteristics (R0,Λ0). Define

fD(t, x, y) =

(
1 ∧ δD(x)

α/2

√
t

)(
1 ∧ δD(y)

α/2

√
t

)(
t−d/α ∧ t

|x− y|d+α

)
.

For each T > 0, there are constants c1 = c1(T,R0,Λ0, d, α, diam(D), b) ≥ 1 and c2 = c2(T, d, α,D, b) ≥
1 with the dependence on b only through the rate at which Mα

|b|(r) goes to zero such that

(i) on (0, T ]×D ×D,

c−1
1 fD(t, x, y) ≤ pbD(t, x, y) ≤ c1fD(t, x, y);

(ii) on [T,∞)×D ×D,

c−1
2 e−tλb,D

0 δD(x)
α/2 δD(y)

α/2 ≤ pbD(t, x, y) ≤ c2 e
−tλb,D

0 δD(x)
α/2 δD(y)

α/2,

where −λb,D0 := supRe(σ(Lb|D)) < 0.

Here diam(D) denotes the diameter of D. At first glance, one might think that the estimates

in Theorem 1.3 can be obtained from the estimates for pD(t, x, y) by using a Duhamel’s formula

similar to (1.1) with pb, p and R
d replaced by pbD, pD and D, respectively. Unfortunately such an

approach does not work for pbD(t, x, y). This is because unlike the whole space case, we do not have

a good control on ∇zp
b
D(s, z, y) when z is near the boundary of D. When D = R

d, p(t, x, y) is the
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transition density of the symmetric α-stable process and there is a nice bound for ∇zp(t, z, y). This

is the key reason why the result in Theorem 1.2(i) can be established by using Duhamel’s formula.

Instead, we establish Theorem 1.3 by using probabilistic means through the Feller process Xb.

More specifically, we adapt the road map outlined in our paper [9] that establishes sharp two-sided

Dirichlet heat kernel estimates for symmetric α-stable processes in C1,1 open sets. Clearly, many

new and major difficulties arise when adapting the strategy outlined in [9] to Xb. Symmetric stable

processes are Lévy processes that are rotationally symmetric and self-similar. The Feller process

Xb here is typically non-symmetric, which is the main difficulty that we have to overcome. In

addition, Xb is neither self-similar nor rotationally symmetric. Specifically, our approach consists

of the following four ingredients:

(i) determine the Lévy system of Xb that describes how the process jumps;

(ii) derive an approximate stable-scaling property of Xb in bounded C1,1 open sets, which will be

used to derive heat kernel estimates in bounded C1,1 open sets for small time t ∈ (0, T ] from

that at time t = 1;

(iii) establish two-sided sharp estimates with explicit boundary decay rate on the Green functions

of Xb and its suitable dual process in C1,1 open sets with sufficiently small diameter;

(iv) prove the intrinsic ultracontractivity of (the non-symmetric process) Xb in bounded open sets,

which will give sharp two-sided Dirichlet heat kernel estimates for large time.

In step (ii), we choose a large ball E centered at the origin so that our bounded C1,1 open set

D is contained in 1
4E. Then we derive heat kernel estimates in D at time t = 1 carefully so that

the constants depend on the quantity M defined in (6.5), not on the diameter of D directly. Note

that the constant M has the correct scaling property, while the diameter of D does not. In fact,

the constant c1 in Theorem 1.3 depends on the diameter of D only through M .

We also establish the boundary Harnack inequality for Xb and its suitable dual process in C1,1

open sets with explicit boundary decay rate (Theorem 6.2). However we like to point out that

Theorem 6.2 is not used in the proof of Theorem 1.3.

By integrating the two-sided heat kernel estimates in Theorem 1.3 with respect to t, one can

easily get the following estimates on the Green function Gb
D(x, y) =

∫∞
0 pbD(t, x, y)dt.

Corollary 1.4 Let D be a bounded C1,1 open set in R
d. Then there is a constant c1 = c1(D, d, α, b) ≥

1 with the dependence on b only through the rate at which Mα
|b|(r) goes to zero such that on D×D,

1

c1

1

|x− y|d−α

(
1 ∧ δD(x)

α/2δD(y)
α/2

|x− y|α

)
≤ Gb

D(x, y) ≤
c1

|x− y|d−α

(
1 ∧ δD(x)

α/2δD(y)
α/2

|x− y|α

)
.

The sharp two-sided estimates for pD(t, x, y), corresponding to the case b = 0 in Theorem 1.3,

were first established in [9]. Theorem 1.3 indicates that short time Dirichlet heat kernel estimates

for the fractional Laplacian in bounded C1,1 open sets are stable under gradient perturbations.

Such stability should hold for much more general open sets.

We say that an open set D is κ-fat if there exists an r0 > 0 such that for every x ∈ D

and r ∈ (0, r0], there is some y such that B(y, κr) ⊂ B(x, r) ∩ D. The pair (r0, κ) is called the

characteristics of the κ-fat open set D.
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Conjecture 1.5 Let T > 0 and D be a bounded κ-fat open subset of Rd. Then there is a constant

c1 ≥ 1 depending only on T , D, α and b with the dependence on b only through the rate at which

Mα
|b|(r) goes to zero such that

c−1
1 pD(t, x, y) ≤ pb(t, x, y) ≤ c1pD(t, x, y) for t ∈ (0, T ] and x, y ∈ D

and

c−1
1 GD(x, y) ≤ Gb

D(x, y) ≤ c1GD(x, y) for x, y ∈ D.

In the remainder of this paper, the constants C1, C2, C3, C4 will be fixed throughout this paper.

The lower case constants c0, c1, c2, . . . can change from one appearance to another. The dependence

of the constants on the dimension d and the stability index α will not be always mentioned explicitly.

We will use dx to denote the Lebesgue measure in R
d. For a Borel set A ⊂ R

d, we also use |A|
to denote its Lebesgue measure. The space of continuous functions on R

d will be denoted as

C(Rd), while Cb(R
d) and C∞(Rd) denote the space of bounded continuous functions on R

d and

the space of continuous functions on R
d that vanish at infinity, respectively. For two non-negative

functions f and g, the notation f ≍ g means that there are positive constants c1 and c2 so that

c1g(x) ≤ f(x) ≤ c2g(x) in the common domain of definition for f and g.

2 Feller property and Lévy system

Recall that d ≥ 2 and α ∈ (1, 2). A (rotationally) symmetric α-stable process X = {Xt, t ≥
0,Px, x ∈ R

d} in R
d is a Lévy process such that

Ex

[
eiξ·(Xt−X0)

]
= e−t|ξ|α for every x ∈ R

d and ξ ∈ R
d.

The infinitesimal generator of this process X is the fractional Laplacian ∆α/2, which is a prototype

of nonlocal operators. The fractional Laplacian can be written in the form

∆α/2u(x) = lim
ε↓0

∫

{y∈Rd: |y−x|>ε}
(u(y)− u(x))

A(d,−α)
|x − y|d+α

dy, (2.1)

where A(d,−α) := α2α−1π−d/2Γ(d+α
2 )Γ(1− α

2 )
−1.

We will use p(t, x, y) to denote the transition density of X (or equivalently the heat kernel of

the fractional Laplacian ∆α/2). It is well-known (see, e.g., [2, 12]) that

p(t, x, y) ≍ t−d/α ∧ t

|x− y|d+α
on (0,∞) × R

d × R
d.

The next two lemmas will be used later.

Lemma 2.1 If f is a function belonging to Kd,α−1, then for any compact subset K of Rd,

sup
x∈Rd

∫

K

|f |(y)
|x− y|d−α

dy <∞.

Proof. This follows immediately from the fact that d− α < d+ 1− α. We omit the details. 2

Recall that we are assuming that b is an R
d-valued function on R

d such that |b| ∈ Kd,α−1.
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Lemma 2.2 If f is a function belonging to Kd,α−1, then

lim
t→0

sup
x∈Rd

∫ t

0
P b
s |f |(x)ds = 0.

Proof. By (1.3),

lim
t→0

sup
x∈Rd

∫ t

0
P b
s |f |(x)ds ≤ c1 lim

t→0
sup
x∈Rd

∫ t

0

(
s

∫

B(x,s1/α)c

|f(y)|
|y − x|d+α

dy + s−d/α

∫

B(x,s1/α)
|f(y)|dy

)
ds.

So it suffices to show that the right hand side is zero. Clearly, for any s ≤ 1, we have

∫

B(x,s1/α)
|f(y)|dy ≤ (s1/α)d+1−α sup

x∈Rd

∫

B(x,1)

|f(y)|
|y − x|d+1−α

dy. (2.2)

Now applying [34, Lemma 1.1], we have

sup
x∈Rd

∫

B(x,s1/α)c

|f(y)|
|y − x|d+α

dy ≤ c2(s
1/α)d+1−α(s1/α)−(d+α) = c2s

1/α−2. (2.3)

Now the conclusion follows immediately from (2.2)–(2.3). 2

By the semigroup property of pb(t, x, y) and (1.3), there are constants c1, c2 ≥ 1 such that on

(0,∞) × R
d × R

d,

c−1
1 e−c2t

(
t−d/α ∧ t

|x− y|d+α

)
≤ pb(t, x, y) ≤ c1e

c2t

(
t−d/α ∧ t

|x− y|d+α

)
. (2.4)

Proposition 2.3 The family of operators {P b
t ; t ≥ 0} defined by (1.5) forms a Feller semigroup.

Moreover, it satisfies the strong Feller property; that is, for each t > 0, P b
t f maps bounded measur-

able functions to continuous functions.

Proof. Since pb(t, x, y) is continuous, by the bounded convergence theorem, P b
t enjoys the strong

Feller property. Moreover, for every f ∈ C∞(Rd) and t > 0,

lim
x→∞

|P b
t f(x)| ≤ lim

x→∞
c1e

c2t

∫

Rd

(
t−d/α ∧ t

|y|d+α

)
|f(x+ y)|dy = 0

and so P b
t f ∈ C∞(Rd). By (2.4), we have

sup
t≤t0

sup
x∈Rd

Px(|Xb
t −Xb

0| ≥ δ) ≤ c1e
c2t0 sup

t≤t0

sup
x∈Rd

∫

{y∈Rd:|x−y|≥δ}

(
t−d/α ∧ t

|x− y|d+α

)
dy

= c3e
c2t0 sup

t≤t0

∫ ∞

δ
rd−1

(
t−d/α ∧ t

rd+α

)
dr ≤ c4e

c2t0

∫ ∞

δt
−1/α
0

ud−1

(
1 ∧ 1

ud+α

)
du

for some c3 = c3(d) > 0 and c4 = c4(d) > 0. Thus

lim
t0↓0

sup
t≤t0

sup
x∈Rd

Px(|Xb
t −Xb

0| ≥ δ) = 0. (2.5)
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For every f ∈ Cb(R
d), x ∈ R

d and ε > 0, there is a δ > 0 so that |f(y) − f(x)| < ε for every

y ∈ B(x, δ). Therefore we have by (2.5),

lim
t↓0

|P b
t f(x)− f(x)| = lim

t↓0

∣∣∣∣
∫

Rd

pb(t, x, y)(f(y) − f(x))dy

∣∣∣∣

≤ lim
t↓0

∫

{y∈Rd:|y−x|<δ}
pb(t, x, y)|f(y)− f(x)|dy + lim

t↓0
2‖f‖∞ Px(|Xb

t − x| ≥ δ)

< ε.

Therefore for every f ∈ Cb(R
d) and x ∈ R

d, limt↓0 P
b
t f(x) = f(x). This completes the proof of the

proposition. 2

We will need the next result, which is an extension of Theorem 1.2(iii).

Proposition 2.4 For any f ∈ C∞
c (Rd) and g ∈ C∞(Rd), we have

lim
t↓0

∫

Rd

t−1(P b
t f(x)− f(x))g(x)dx =

∫

Rd

(Lbf)(x)g(x)dx.

Proof. This proposition can be proved by following the proof of [6, Theorem 1], with some obvious

modifications. Indeed, one can follow the same argument of the proof of [6, Theorem 1] until the

second display on [6, p. 195] with f ∈ C∞
c (Rd) and g ∈ C∞(Rd). Let ε > 0 and use the same

notations as in [6, p. 195] except that K := {z : dist(z,K1) ≤ 1} and we ignore K2. Since

h(x, y) = ∇f(y)g(x) is still uniformly continuous, there exists a δ > 0 such that for all x, y, z with

|x − z| < δ and |y − z| < δ, we have that |h(x, y) − h(z, z)| < ε. Thus the third display on [6, p.

195] can be modified as

∣∣∣It −
∫

Rd

b(z) · ∇f(z)g(z)dz
∣∣∣

≤
∫

Rd

∫

Rd

∫

Rd

∫ t

0

p(t− s, x, z)p(s, z, y)

t
ds|b(z)||h(x, y) − h(z, z)|dxdydz

≤2‖h‖
∫

Kc

∫

K1

(∫

Rd

p(t− s, x, z)dx

)∫ t

0

p(s, z, y)

t
ds|b(z)|dydz

+ 2‖h‖
∫

K

∫ ∫

(B(z,δ)×B(z,δ))c

∫ t

0

p(t− s, x, z)p(s, z, y)

t
ds|b(z)|dxdydz

+ ε

∫

K

∫ ∫

B(z,δ)×B(z,δ)

∫ t

0

p(t− s, x, z)p(s, z, y)

t
ds|b(z)|dxdydz.

The remainder of the proof is the same as that of the proof of [6, Theorem 1]. 2

The Feller process Xb possesses a Lévy system (see [32]), which describes how Xb jumps.

Intuitively, since the infinitesimal generator of Xb is Lb, Xb should satisfy

dXb
t = dXt + b(Xb

t )dt.

So Xb should have the same Lévy system as that of X, as the drift does not contribute to the

jumps. This is indeed true and we are going to give a rigorous proof.
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It is well known that the symmetric stable process X has Lévy intensity function

J(x, y) = A(d,−α)|x − y|−(d+α).

The Lévy intensity function gives rise to a Lévy system (N,H) for X, where N(x, dy) = J(x, y)dy

and Ht = t, which describes the jumps of the process X: for any x ∈ R
d and any non-negative

measurable function f on R+ × R
d × R

d vanishing on {(s, x, y) ∈ R+ × R
d × R

d : x = y} and

stopping time T (with respect to the filtration of X),

Ex


∑

s≤T

f(s,Xs−,Xs)


 = Ex

[∫ T

0

(∫

Rd

f(s,Xs, y)J(Xs, y)dy

)
ds

]
.

(See, for example, [12, Proof of Lemma 4.7] and [13, Appendix A].)

We first show that Xb is a solution to the martingale problem of Lb.

Theorem 2.5 For every x ∈ R
d and every f ∈ C∞

c (Rd),

Mf
t := f(Xb

t )− f(Xb
0)−

∫ t

0
Lbf(Xb

s) ds

is a martingale under Px.

Proof. Define the adjoint operator P b,∗
t of P b

t with respect to the Lebesgue measure by

P b,∗
t f(x) :=

∫

Rd

pb(t, y, x)f(y)dy.

It follows immediately from (1.3) and the continuity of pb(t, x, y) that, for any g ∈ C∞(Rd) and

s > 0, both P b
s g and P b,∗

s g are in C∞(Rd). Thus, for any f, g ∈ C∞
c (Rd) and s > 0, by applying

Proposition 2.4 with h = P b,∗
s g and (1.4), we get that

lim
t↓0

∫

Rd

t−1(P b
t+sf(x)− P b

s f(x))g(x)dx = lim
t↓0

∫

Rd

t−1(P b
t f(x)− f(x))P b,∗

s g(x)dx

=

∫

Rd

Lbf(x)P b,∗
s g(x)dx =

∫

Rd

Ex

[
Lbf(Xb

s)
]
g(x)dx

which implies that

∫

Rd

(P b
t f(x)− f(x))g(x)dx =

∫

Rd

Ex

[∫ t

0
(Lbf)(Xb

s)ds

]
g(x)dx. (2.6)

Using the strong Feller property of P b
t , Lemmas 2.1 and 2.2, we can easily see that the function

x 7→ P b
t f(x)− f(x)− Ex

[∫ t

0
Lbf(Xb

s)ds

]
= Ex

[
Mf

t

]

is continuous, and thus is identically zero on R
d by (2.6). It follows that for any f ∈ C∞

c (Rd) and

x ∈ R
d, Mf is a martingale with respect to Px. 2
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Theorem 2.5 in particular implies that Xb
t = (Xb,1

t , . . . ,Xb,d
t ) is a semi-martingale. By Ito’s

formula, we have that, for any f ∈ C∞
c (Rd),

f(Xb
t )− f(Xb

0) =
d∑

i=1

∫ t

0
∂if(X

b
s−)dX

b,i
s +

∑

s≤t

ηs(f) +
1

2
At(f), (2.7)

where

ηs(f) = f(Xb
s)− f(Xb

s−)−
d∑

i=1

∂if(X
b
s−)(X

b,i
s −Xb,i

s−) (2.8)

and

At(f) =

d∑

i,j=1

∫ t

0
∂i∂jf(X

b
s−)d〈(Xb,i)c, (Xb,j)c〉s. (2.9)

Now suppose that A and B are two bounded closed sets having a positive distance from

each other. Let f ∈ C∞
c (Rd) with f = 0 on A and f = 1 on B. Then we know that Nf

t :=∫ t
0 1A(X

b
s−)dM

f
s is a martingale. Combining Theorem 2.5 and (2.7)–(2.9) with (2.1), we get that

Nf
t =

∑

s≤t

1A(X
b
s−)f(X

b
s)−

∫ t

0
1A(X

b
s)
(
∆α/2f(Xb

s)
)
ds

=
∑

s≤t

1A(X
b
s−)f(X

b
s)−

∫ t

0
1A(X

b
s)

∫

Rd

f(y)J(Xb
s , y)dyds.

By taking a sequence of functions fn ∈ C∞
c (Rd) with fn = 0 on A, fn = 1 on B and fn ↓ 1B , we

get that, for any x ∈ R
d,

∑

s≤t

1A(X
b
s−)1B(X

b
s)−

∫ t

0
1A(X

b
s)

∫

B
J(Xb

s , y)dyds

is a martingale with respect to Px. Thus,

Ex


∑

s≤t

1A(X
b
s−)1B(X

b
s)


 = Ex

[∫ t

0

∫

Rd

1A(X
b
s)1B(y)J(X

b
s , y)dyds

]
.

Using this and a routine measure theoretic arguments, we get

Ex



∑

s≤t

f(Xb
s−,X

b
s)


 = Ex

[∫ t

0

∫

Rd

f(Xb
s , y)J(X

b
s , y)dyds

]

for any non-negative measurable function f on R
d × R

d vanishing on {(x, y) ∈ R
d × R

d : x = y}.
Finally following the same arguments as in [12, Lemma 4.7] and [13, Appendix A], we get

Theorem 2.6 Xb has the same Lévy system (N,H) as X, that is, for any x ∈ R
d and any non-

negative measurable function f on R+ × R
d × R

d vanishing on {(s, x, y) ∈ R+ × R
d × R

d : x = y}
and stopping time T (with respect to the filtration of Xb),

Ex


∑

s≤T

f(s,Xb
s−,X

b
s)


 = Ex

[∫ T

0

(∫

Rd

f(s,Xb
s , y)J(X

b
s , y)dy

)
ds

]
. (2.10)
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For any open subset E of Rd, let E∂ = E ∪ {∂}, where ∂ is the cemetery point. Define for

x, y ∈ E,

NE(x, dy) := J(x, y)dy, NE(x, ∂) :=

∫

Ec

J(x, y)dy

and HE
t := t. Then it follows from the theorem above that (NE ,HE) is a Lévy system for Xb,E ,

that is, for any x ∈ E, any non-negative measurable function f on R+ × E × E∂ vanishing on

{(s, x, y) ∈ R+ × E × E : x = y} and stopping time T (with respect to the filtration of Xb,E),

Ex



∑

s≤T

f(s,Xb,E
s− ,Xb,E

s )


 = Ex

[∫ T

0

(∫

E∂

f(s,Xb,E
s , y)NE(Xb,E

s , dy)

)
dHE

s

]
. (2.11)

3 Subprocess of Xb

In this section we study some basic properties of subprocesses of Xb in open subsets. These

properties will be used in later sections.

Lemma 3.1 For any δ > 0, we have

lim
s↓0

sup
x∈Rd

Px(τ
b
B(x,δ) ≤ s) = 0.

Proof. By the strong Markov property of Xb (see, e.g., [3, pp. 43–44]), we have for every x ∈ R
d,

Px(τ
b
B(x,δ) ≤ s) ≤ Px

(
τ bB(x,δ) ≤ s, Xb

s ∈ B(x, δ/2)
)

+ Px

(
Xb

s ∈ B(x, δ/2)c
)

≤ Ex

[
PX

τb
B(x,δ)

(
|Xb

s−τb
B(x,δ)

−Xb
0| ≥ δ/2

)
; τ bB(x,δ) < s

]
+ Px

(
|Xb

s −Xb
0| ≥ δ/2

)

≤ 2 sup
t≤s

sup
x∈Rd

Px

(
|Xb

t −Xb
0| ≥ δ/2

)
. (3.1)

Now the conclusion of the lemma follows from (2.5). 2

A point z on the boundary ∂G of a Borel set G is said to be a regular boundary point with

respect to Xb if Pz(τ
b
G = 0) = 1. A Borel set G is said to be regular with respect to Xb if every

point in ∂G is a regular boundary point with respect to Xb.

Proposition 3.2 Suppose that G is a Borel set of Rd and z ∈ ∂G. If there is a cone A with vertex

z such that int(A) ∩ B(z, r) ⊂ Gc for some r > 0, then z is a regular boundary point of G with

respect to Xb.

Proof. This results follows from (1.3) and Blumenthal’s zero-one law by a routine argument. For

example, the reader can follow the argument in the proof of [24, Proposition 2.2]. Even though [24,

Proposition 2.2] is stated for open sets, the proof there works for Borel sets. We omit the details.

2

This result implies that all bounded Lipschitz open sets, and in particular, all bounded C1,1

open sets, are regular with respect to Xb. Repeating the argument in the second part of the proof

of [16, Theorem 1.23], we immediately get the following result.
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Proposition 3.3 Suppose that D is an open set in R
d and f is a bounded Borel function on ∂D.

If z is a regular boundary point of D with respect to Xb and f is continuous at z, then

lim
D∋x→z

Ex

[
f
(
Xb

τbD

)
; τ bD <∞

]
= f(z).

Let

kbD(t, x, y) := Ex

[
pb(t− τ bD,X

b
τbD
, y); τ bD < t

]
and pbD(t, x, y) := pb(t, x, y)− kbD(t, x, y). (3.2)

Then pbD(t, x, y) is the transition density of Xb,D. This is because by the strong Markov property

of Xb, for every t > 0 and Borel set A ⊂ R
d,

Px(X
b,D
t ∈ A) =

∫

A
pbD(t, x, y)dy. (3.3)

We will use {P b,D
t } to denote the semigroup of XD and Lb|D to denote the infinitesimal generator

of {P b,D
t }. Using some standard arguments (for example, [4, 16]), we can show the following.

Theorem 3.4 Let D be an open set in R
d. The transition density pbD(t, x, y) is jointly continuous

on (0,∞) ×D ×D. For every t > 0 and s > 0,

pbD(t+ s, x, y) =

∫

D
pbD(t, x, z)p

b
D(s, z, y)dz. (3.4)

If z is a regular boundary point of D with respect to Xb, then for any t > 0 and y ∈ D,

limD∋x→z p
b
D(t, x, y) = 0.

Proof. Note that by (2.4), there exist c1, c2 > 0 such that for all t0 > 0 and δ > 0,

sup
t≤t0

sup
|x−y|≥δ

pb(t, x, y) ≤ c1e
c2t0 sup

t≤t0

sup
|x−y|≥δ

(
t−d/α ∧ t

|x− y|d+α

)
≤ c1e

c2t0 t0
δd+α

< ∞. (3.5)

We first show that kbD(t, x, · ) is jointly continuous on (0,∞) × D × D. For any δ > 0, define

Dδ = {x ∈ D : dist(x,Dc) < δ}. For 0 ≤ s < r and x, y ∈ Dδ, define

h(s, r, x, y) = Ex

[
pb(r − τ bD,X

b
τbD
, y); s ≤ τ bD < r

]
.

Note that

Ex[h(s, r,X
b
s , y)] = Ex[h(s, r,X

b
s , y); s < τ bD] + Ex[h(s, r,X

b
s , y); s ≥ τ bD]

= h(s, r + s, x, y) + Ex[h(s, r,X
b
s , y); s ≥ τ bD]

and

kbD(t, x, y) = h(0, t, x, y)

= h(s, t, x, y) + Ex

[
pb(t− τ bD,X

b
τbD
, y); τ bD < s

]

= Ex[h(s, t − s,Xb
s , y)]− Ex[h(s, t− s,Xb

s , y); τ
b
D ≤ s] + Ex

[
pb(t− τ bD,X

b
τbD
, y); τ bD < s

]
.
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For all t1, t2 ∈ (0,∞), by (3.5), pb(r, z, y) is bounded on (0, t2] × Dc × Dδ by a constant c3.

Consequently, h(s, r, x, y) is bounded by c3 for all x, y ∈ Dδ and s, r ∈ (0, t2] with s < r ∧ (t1/3).

Thus we have from the above display as well as (3.5) that for all t ∈ [t1, t2], s < t1/2 and x, y ∈ Dδ,

|kbD(t, x, y)− Ex[h(s, t− s,Xb
s , y)]| ≤ 2c3Px(τ

b
D ≤ s) ≤ 2c3 sup

z∈Rd

Pz(τ
b
B(z,δ) ≤ s),

which by Lemma 3.1 goes to 0 as s→ 0 (uniformly in (t, x, y) ∈ [t1, t2]×Dδ ×Dδ). Since p
b(t, x, y)

is jointly continuous, it follows from the bounded convergence theorem that Ex[h(s, t− s,Xb
s , y)] is

jointly continuous in (s, t, y) ∈ [0, t1/3]× [t1, t2]×Dδ. On the other hand, for (s, t, y) in any locally

compact subset of (0, t1/3) × [t1, t2] × Dδ, Ex[h(s, t − s,Xb
s , y)] =

∫
Rd p(s, x, z)h(s, t − s, z, y)dy is

equi-continuous in x. Therefore Ex[h(s, t− s,Xb
s , y)] is jointly continuous in (s, t, x, y) ∈ (0, t1/3)×

[t1, t2]×Dδ ×Dδ . Consequently, k
b
D(t, x, y) is jointly continuous in (s, t, y) ∈ [0, t1/3]× [t1, t2]×Dδ

and hence on (0,∞) × D × D. Since pb(t, x, y) is jointly continuous, we can now conclude that

pbD(t, x, y) is jointly continuous on (0,∞) ×D ×D.

By Proposition 3.3, the last assertion of the theorem can be proved using the argument in the

last paragraph of the proof of [16, Theorem 2.4]. We omit the details. 2

The next result is a short time lower bound estimate for pbD(t, x, y) near the diagonal. The

technique used in its proof is well-known. We give the proof here to demonstrate that symmetry

of the process is not needed.

Proposition 3.5 For any a1 ∈ (0, 1), a2 > 0, a3 > 0 and R > 0, there is a constant c =

c(d, α, a1, a2, a3, R, b) > 0 with the dependence on b only via the rate at which Mα
|b|(r) goes to zero

such that such that for all x0 ∈ R
d and r ∈ (0, R],

pbB(x0,r)
(t, x, y) ≥ c t−d/α for all x, y ∈ B(x0, a1r) and t ∈ [a2r

α, a3r
α]. (3.6)

Proof. Let κ := a2/(2a3) and Br := B(x0, r). We first show that there is a constant c1 ∈ (0, 1) so

that (3.6) holds for all r > 0, x, y ∈ B(x0, a1r) and t ∈ [κ c1r
α, c1r

α].

For r > 0, t ∈ [κ c1r
α, c1r

α], and x, y ∈ B(x0, a1r), since |x − y| ≤ 2a1r ≤ 2a1(κc1)
−1/αt−1/α

and t ≤ c1r
α ≤ Rα, we have by (2.4) and (3.2),

pbBr
(t, x, y) ≥ c2c

1+d/α
1 t−d/α − c3Ex


1{τbBr

≤t}


(t− τ bBr

)−d/α ∧
t− τ bBr

|Xb
τbBr

− y|d+α




 , (3.7)

where the positive constants ci = ci(d, α, a1, a2, a3, R, b), i = 2, 3, are independent of c1 ∈ (0, 1].

Observe that

|Xb
τbBr

− y| ≥ (1− a1)r for t− τ bBr
≤ t ≤ c1r

α,

and so
t− τ bBr

|Xb
τbBr

− y|d+α
≤

t− τ bBr

((1− a1)r))d+α
≤ c

1+d/α
1

(1− a1)d+α
t−d/α. (3.8)

Note that if c1 < ((1− a1)/2)
α, by (2.4), for t ≤ c1r

α,

Px

(
Xb

t /∈ B(x, (1− a1)r/2)
)

=

∫

B(x,(1−a1)r/2)c
pb(t, x, y)dy
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≤ c3

∫

B(x,(1−a1)r/2)c

t

|x− y|d+α
dz ≤ c4

t

rα
≤ c4c1

where c4 is independent of c1. Now by the same argument as in the proof of Lemma 3.1, we have

Px

(
τ bB(x,(1−a1)r)

≤ t
)
≤ 2c4c1. (3.9)

Consequently, we have from (3.7)–(3.9),

pbBr
(t, x, y) ≥

(
c2c

1+d/α
1 − c3

c
1+d/α
1

(1− a1)d+α
Px

(
τ bBr

≤ t
))

t−d/α

≥
(
c2c

1+d/α
1 − c3

c
1+d/α
1

(1− a1)d+α
Px

(
τ bB(x,(1−a1)r)

≤ t
))

t−d/α

≥ c
1+d/α
1

(
c2 − 2c4c3

c1
(1− a1)d+α

)
t−d/α.

Clearly we can choose c1 < a3 ∧ ((1− a1)/2)
α small so that pbBr

(t, x, y) ≥ c5t
−d/α. This establishes

(3.6) for any x0 ∈ R
d, r > 0 and t ∈ [κ c1r

α, c1r
α].

Now for r > 0 and t ∈ [a2r
α, a3r

α], define k0 = [a3/c1] + 1. Here for a ≥ 1, [a] denotes

the largest integer that does not exceed a. Then, since c1 < a3, t/k0 ∈ [κ c1r
α, c1r

α]. Using the

semigroup property (3.4) k0 times, we conclude that for all x, y ∈ B(x0, a1r) and t ∈ [a2r
α, a3r

α],

pbB(x0,r)
(t, x, y)

=

∫

B(x0,r)
. . .

∫

B(x0,r)
pbB(x0,r)

(t/k0, x, w1) . . . p
b
B(x0,r)

(t/k0, wn−1, y)dw1 . . . dwn−1

≥
∫

B(x0,a1r)
. . .

∫

B(x0,a1r)
pbB(x0,r)

(t/k0, x, w1) . . . p
b
B(x0,r)

(t/k0, wn−1, y)dw1 . . . dwn−1

≥ c5(t/k0)
−d/α

(
c5(t/k0)

−d/α |B(0, 1)|(a1r)d
)k0−1

≥ c6t
−d/α.

The proof of (3.6) is now complete. 2

Using the domain monotonicity of pbD, the semigroup property (3.4) and the Lévy system of

Xb, the above proposition yields the following.

Corollary 3.6 For every open subset D ⊂ R
d, pbD(t, x, y) is strictly positive.

Proof. For x ∈ D, denote by D(x) the connected component of D that contains x. If y ∈ D(x),

using a chaining argument and Proposition 3.5, we have

pbD(t, x, y) ≥ pbD(x)(t, x, y) > 0.

If y /∈ D(x), then by using the strong Markov property and the Lévy system (2.10) of Xb,

pbD(t, x, y) = Ex

[
pbD(t− τ bD(x),X

b
τb
D(x)

, y); τ bD(x) < t

]
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≥ Ex

[
pbD(t− τ bD(x),X

b
τb
D(x)

, y); τ bD(x) < t,Xb
τb
D(x)

∈ D(y)

]

≥
∫ t

0

∫

D(x)
pbD(x)(s, x, z)

(∫

D(y)
J(z, w)pbD(y)(t− s,w, y)dw

)
dzds > 0.

The corollary is thus proved. 2

In the remainder of this section we assume that D is a bounded open set in R
d. The proof of

the next lemma is standard. For example, see [23, Lemma 6.1].

Lemma 3.7 There exist positive constants C1 and C2 depending only on d, α, diam(D) and b with

the dependence on b only through the rate at which Mα
|b|(r) goes to zero such that

pbD(t, x, y) ≤ C1e
−C2t, (t, x, y) ∈ (1,∞)×D ×D.

Proof. Put L := diam(D). By (1.3), for every x ∈ D we have

Px(τ
b
D ≤ 1) ≥ Px(X

b
1 ∈ R

d \D) =

∫

Rd\D
pb(1, x, y)dy

≥ c1

∫

Rd\D

(
1 ∧ 1

|x− y|d+α

)
dy ≥ c1

∫

{ |z| ≥L }

(
1 ∧ 1

|z|d+α

)
dz > 0.

Thus

sup
x∈D

∫

D
pbD(1, x, y)dy = sup

x∈D
Px(τ

b
D > 1) < 1.

The Markov property of Xb then implies that there exist positive constants c2 and c3 such that
∫

D
pbD(t, x, y)dy ≤ c2e

−c3t for (t, x) ∈ (0,∞) ×D.

It follows from (1.3) that there exists c4 > 0 such that pbD(1, x, y) ≤ pb(1, x, y) ≤ c4 for every

(x, y) ∈ D ×D. Thus for any (t, x, y) ∈ (1,∞)×D ×D, we have

pbD(t, x, y) =

∫

D
pbD(t− 1, x, z)pbD(1, z, y)dz ≤ c4

∫

D
pbD(t− 1, x, z)dz ≤ c2c4e

−c3(t−1).

2

Combining the result above with (1.3) we know that there exists a positive constant c1 =

c1(d, α,diam(D), b) with the dependence on b only through the rate at which Mα
|b|(r) goes to zero

such that for any (t, x, y) ∈ (0,∞) ×D ×D,

pbD(t, x, y) ≤ c1

(
t−

d
α ∧ t

|x− y|d+α

)
. (3.10)

Therefore the Green function Gb
D(x, y) =

∫∞
0 pbD(t, x, y)dt is finite and continuous off the diagonal

of D ×D and

Gb
D(x, y) ≤ c2

1

|x− y|d−α
(3.11)

for some positive constant c2 = c2(d, α,diam(D), b) with the dependence on b only through the rate

at which Mα
|b|(r) goes to zero.
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4 Uniform estimates on Green functions

Let

gD(x, y) :=
1

|x− y|d−α

(
1 ∧ δD(x)δD(y)

|x− y|2
)α/2

.

The following lemma is needed in deriving sharp bounds on the Green function Gb
U when U is some

small C1,1 open set. It can be regarded as a new type of 3G estimates.

Lemma 4.1 There exists a positive constant C3 = C3(d, α) such that for all x, y, z ∈ D,

gD(x, z)
gD(z, y)

|z − y| ∧ δD(z)
≤ C3gD(x, y)

(
1

|x− z|d+1−α
+

1

|z − y|d+1−α

)
(4.1)

and

gD(x, z)

|x− z| ∧ δD(x)
gD(z, y)

|z − y| ∧ δD(z)
≤ C3

gD(x, y)

|x− y| ∧ δD(x)

(
1

|x− z|d+1−α
+

1

|z − y|d+1−α

)
. (4.2)

Proof. Put r(x, y) = δD(x) + δD(y) + |x− y|. Note that for a, b > 0,

ab

a+ b
≤ a ∧ b ≤ 2

ab

a+ b
. (4.3)

Moreover for x, y ∈ D, since

δD(x)
2 ≤ δD(x)(δD(y) + |x− y|) ≤ δD(x)δD(y) + δD(x)

2/2 + |x− y|2/2,

one has

δD(x)
2 ≤ 2δD(x)δD(y) + |x− y|2.

It follows from these observations that

δD(x)δD(y)

(r(x, y))2
≤
(
1 ∧ δD(x)δD(y)

|x− y|2
)

≤ 24
δD(x)δD(y)

(r(x, y))2
. (4.4)

Consequently, we have

gD(x, y) ≍
1

|x− y|d−α

δD(x)
α/2δD(y)

α/2

(r(x, y))α
. (4.5)

Now

gD(x, z)
gD(z, y)

|z − y| ∧ δD(z)

≍ gD(x, y)
|z − y|+ δD(z)

|z − y| δD(z)
δD(z)

α r(x, y)α

r(x, z)α r(z, y)α

( |x− y|
|x− z| · |z − y|

)d−α

≤ gD(x, y)
r(y, z)

|z − y|
δD(z)

α−1 r(x, y)α

r(x, z)α r(z, y)α

( |x− y|
|x− z| · |z − y|

)d−α

= gD(x, y)
r(x, y)

|z − y| r(x, z)

(
δD(z) r(x, y)

r(x, z) r(z, y)

)α−1 ( |x− y|
|x− z| · |z − y|

)d−α

. (4.6)
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Since r(x, y) ≤ r(x, z) + r(z, y),

δD(z) r(x, y)

r(x, z) r(z, y)
≤ δD(z)

r(x, z)
+
δD(z)

r(z, y)
≤ 2.

On the other hand, since δD(y) ≤ δD(x) + |x− y|,
r(x, y)

|z − y| r(x, z) ≤ 2
|x− y|+ δD(x)

|z − y| r(x, z) ≤ 2
|x− z|+ (|z − y|+ δD(x))

|z − y| r(x, z)

≤ 2

r(x, z)
+

2

|z − y| ≤
2

|x− z| +
2

|z − y| .

Hence we deduce from (4.6) that

gD(x, z)
gD(z, y)

|z − y| ∧ δD(z)

≤ 2αgD(x, y)

(
1

|x− z| +
1

|z − y|

) ( |x− y|
|x− z| · |z − y|

)d−α

≤ c1gD(x, y)

(
1

|x− z| +
1

|z − y|

) (
1

|x− z|d−α
+

1

|z − y|d−α

)

≤ c2gD(x, y)

(
1

|x− z|d+1−α
+

1

|z − y|d+1−α

)
,

where c1 and c2 are positive constants depending only on d and α. This proves (4.1).

Now we show that (4.2) holds. Note that by (4.5),

gD(x, z)

|x− z| ∧ δD(x)
gD(z, y)

|z − y| ∧ δD(z)

≍ δD(x)
α/2δD(y)

α/2

|x− z|d+1−α|z − y|d+1−α

|x− z| · |z − y|
(|x− z| ∧ δD(x))(|z − y| ∧ δD(z))

δD(z)
α

r(x, z)α r(z, y)α

≍ gD(x, y)

|x− y| ∧ δD(x)
· |x− y|d+1−α

|x− z|d+1−α|z − y|d+1−α
· I, (4.7)

where

I :=
|x− y| ∧ δD(x)

|x− y| · |x− z| · |z − y|
(|x− z| ∧ δD(x))(|z − y| ∧ δD(z))

δD(z)
α r(x, y)α

r(x, z)α r(z, y)α
.

It follows from (4.3) and the fact that |x− z|+ δD(z) ≍ r(x, z) that

I ≍ |x− y| δD(x)
|x− y| (|x− y|+ δD(x))

· |x− z| · |z − y|(|x− z|+ δD(x))(|z − y|+ δD(z))

(|x− z| δD(x))(|z − y| δD(z))
δD(z)

α r(x, y)α

r(x, z)α r(z, y)α

≍ δD(z)
α−1 r(x, y)α−1

r(x, z)α−1 r(z, y)α−1
≤ δD(z)

α−1

(
1

r(x, z)α−1
+

1

r(y, z)α−1

)
≤ 2.

The inequality (4.2) now follows from (4.7). 2

Recall that GD is the Green function of XD. It is known that

|∇zGD(z, y)| ≤
d

|z − y| ∧ δD(z)
GD(z, y). (4.8)

(See [8, Corollary 3.3].) Recall also that b is an R
d-valued function on R

d such that |b| ∈ Kd,α−1.
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Proposition 4.2 If D is a bounded open set and 1Db has compact support in D, then Gb
D satisfies

Gb
D(x, y) = GD(x, y) +

∫

D
Gb

D(x, z)b(z) · ∇zGD(z, y)dz. (4.9)

Proof. Recall that by Theorem 2.5, for every f ∈ C∞
c (Rd), Mf

t := f(Xb
t )− f(Xb

0)−
∫ t
0 Lbf(Xb

s) ds

is a martingale with respect to Px. Since 1Db has compact support in D, in view of (3.11), (4.8)

and the fact that |b| ∈ Kd,α−1, M
f
t∧τD

is a uniformly integrable martingale.

Define Dj := {x ∈ D : dist(x,Dc) > 1/j}. Let φ ∈ C∞
c (Rd) with φ ≥ 1, supp[φ] ⊂ B(0, 1) and∫

Rd φ(x)dx = 1. For any ψ ∈ Cc(D), define f = GDψ and fn := φn ∗ f , where φn(x) := ndφ(nx).

Clearly fn ∈ C∞
c (Rd) and fn converges uniformly to f = GDψ. Fix j ≥ 1. Since Ex[M

fn
0 ] =

Ex[M
fn
τDj

], and for every y ∈ Dj and sufficiently large n,

φn ∗ (∆α/2f)(y) =

∫

B(0,1/n)
φn(z)∆

α/2(GDψ)(y − z)dz,

we have, by Dynkin’s formula, that for sufficiently large n,

Ex

[
fn

(
Xb

τDj

)]
− fn(x) =

∫

Dj

Gb
Dj

(x, y)
(
∆α/2fn(y) + b(y) · ∇fn(y)

)
dy

=

∫

Dj

Gb
Dj

(x, y)
(
φn ∗ (∆α/2f)(y) + b(y) · φn ∗ (∇f)(y)

)
dy

=

∫

Dj

Gb
Dj

(x, y) (−φn ∗ ψ(y) + b(y) · φn ∗ (∇(GDψ)(y)) dy.

Taking n→ ∞, we get, by (3.11), (4.8) and the fact that |b| ∈ Kd,α−1,

Ex

[
f
(
Xb

τDj

)]
− f(x) =

∫

D
Gb

Dj
(x, y) (−ψ(y) + b(y) · ∇(GDψ)(y)) dy. (4.10)

Now using the fact that 1Db has compact support in D, taking j → ∞, we have by (3.11), (4.8)

and the fact that |b| ∈ Kd,α−1,

−f(x) =
∫

D
Gb

D(x, y) (−ψ(y) + b(y) · ∇(GDψ)(y)) dy.

Hence we have

−GDψ(x) = −Gb
Dψ +Gb

D(b · ∇GDψ).

This shows that for each x ∈ D, (4.9) holds for a.e. y ∈ D. Since Gb
D is continuous off the diagonal

of D ×D, we get that (4.9) holds for all x, y ∈ D. 2

We will derive two-sided estimates on Green function of Xb on certain nice open sets when the

diameter of such open sets are less than or equal to some constant depending on b only through

the rate at which Mα
|b|(r) goes to zero.

Proposition 4.3 There exists a positive constant r∗ = r∗(d, α, b) with the dependence on b only

via the rate at which Mα
|b|(r) goes to zero such that for any ball B = B(x0, r) of radius r ≤ r∗ and

any n ≥ 1,

2−1GB(x, y) ≤ Gbn
B (x, y) ≤ 2GB(x, y), x, y ∈ B,
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where

bn(x) = b(x)1Bc(x) + b(x)1Kn(x), x ∈ R
d (4.11)

with Kn being an increasing sequence of compact subsets of B such that ∪nKn = B.

Proof. It is well known that there exists a constant c1 = c1(d, α) > 1 such that

c−1
1

1

|x− y|d−α

(
1 ∧ δB(x)δB(y)

|x− y|2
)α/2

≤ GB(x, y) ≤ c1
1

|x− y|d−α

(
1 ∧ δB(x)δB(y)

|x− y|2
)α/2

. (4.12)

Define Ĩnk (x, y) recursively for n ≥ 1, k ≥ 0 and (x, y) ∈ B ×B by

Ĩn0 (x, y) := GB(x, y),

Ĩnk+1(x, y) :=

∫

B
Ĩnk (x, z)bn(z) · ∇zGB(z, y)dz.

Iterating (4.9) gives that for each m ≥ 2,

Gbn
B (x, y) =

m∑

k=0

Ĩnk (x, y) +

∫

B
Gbn

B (x, z)bn(z) · ∇z Ĩ
n
m(z, y)dz for (x, y) ∈ B ×B. (4.13)

Using induction, Lemma 4.1, (4.8) with D = B and (4.12), we see that there exists a positive

constant c2 (in fact, one can take c2 = 2dC3c
3
1 where C3 is the constant in Lemma 4.1) depending

only on d and α such that for n, k ≥ 1 and (x, y) ∈ B ×B,

|Ĩnk (x, y)| ≤ c2GB(x, y)
(
c2M

α
|b|(2r)

)k
(4.14)

and

|∇xĨ
n
k (x, y)| ≤ c2

GB(x, y)

|x− y| ∧ δB(x)
(
c2M

α
|b|(2r)

)k
. (4.15)

There exists an r̂1 > 0 depending on b only via the rate at which Mα
|b|(r) goes to zero such that

c2M
α
|b|(r) <

1

1 + 2c2
for every 0 < r ≤ r̂1. (4.16)

(3.11) and (4.15)–(4.16) imply that if r ≤ r̂1/2, then for n ≥ 1 and (x, y) ∈ B ×B,

∣∣∣∣
∫

B
Gbn

B (x, z)bn(z) · ∇z Ĩ
n
m(z, y)dz

∣∣∣∣

≤c2
(∫

B
Gbn

B (x, z)|b(z)| GB(z, y)

|z − y| ∧ δB(z)
dz

)(
c2M

α
|b|(2r)

)m

≤c3
(∫

B

1

|x− z|d−α

GB(z, y)

|z − y| |b(z)|dz
)(

1

1 + 2c2

)m

≤c4
(∫

B

1

|x− z|d+1−α

|b(z)|
|z − y|d+1−α

dz

)(
1

1 + 2c2

)m

≤c5 (1 + 2c2)
−m |x− y|−(d+1−α)

∫

B

( |b(z)|
|x− z|d+1−α

+
|b|(z)

|y − z|d+1−α

)
dz

≤c6 (1 + 2c2)
−(m+1) |x− y|−(d+1−α),
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which goes to zero as m→ ∞. In the second inequality, we have used the fact that bn is compactly

supported in B. Thus, by (4.13), Gbn
B (x, y) =

∑∞
k=0 Ĩ

n
k (x, y). Moreover, by (4.14),

∞∑

k=1

|Ĩnk (x, y)| ≤ c2GB(x, y)

∞∑

k=1

(1 + 2c2)
−k ≤ GB(x, y)/2.

It follows that for any x0 ∈ R
d and B = B(x0, r) of radius r ≤ r̂1/2,

GB(x, y)/2 ≤ Gbn
B (x, y) ≤ 3GB(x, y)/2 for all n ≥ 1 and x, y ∈ B.

This proves the theorem. 2

For any bounded C1,1 open set D with characteristic (R0,Λ0), it is well known (see, for instance

[35, Lemma 2.2]) that there exists L = L(R0,Λ0, d) > 0 such that for every z ∈ ∂D and r ≤ R0,

one can find a C1,1 open set U(z,r) with characteristic (rR0/L,Λ0L/r) such that D ∩ B(z, r/2) ⊂
U(z,r) ⊂ D ∩ B(z, r). For the remainder of this paper, given a bounded C1,1 open set D, U(z,r)

always refers to the C1,1 open set above.

For U(z,r), we also have a result similar to Proposition 4.3.

Proposition 4.4 For every C1,1 open set D with the characteristic (R0,Λ0), there exists r0 =

r0(d, α,R0,Λ0, b) ∈ (0, (R0 ∧ 1)/8] with the dependence on b only via the rate at which Mα
|b|(r) goes

to zero such that for any for all n ≥ 1, z ∈ ∂D and r ≤ r0, we have

2−1GU(z,r)
(x, y) ≤ Gbn

U(z,r)
(x, y) ≤ 2GU(z,r)

(x, y), x, y ∈ U(z,r), (4.17)

where

bn(x) = b(x)1Uc
(z,r)

(x) + b(x)1Kn(x), x ∈ R
d (4.18)

with Kn being an increasing sequence of compact subsets of U(z,r) such that ∪nKn = U(z,r).

Proof. It is well known, (see [22], for instance) that, for any bounded C1,1 open set U , there exists

c1 = c1(R0,Λ0,diam(U)) > 1 such that

c−1
1

1

|x− y|d−α

(
1 ∧ δU (x)δU (y)

|x− y|2
)

≤ GU (x, y) ≤ c1
1

|x− y|d−α

(
1 ∧ δU (x)δU (y)

|x− y|2
)
. (4.19)

It follows from this, the fact that r−1U(z,r) is a C
1,1 open set with characteristic (R0/L,Λ0L) and

scaling that, for any bounded C1,1 open set D with characteristics (R0,Λ0), there exists a constant

c2 = c2(R0,Λ0, d) > 1 such that for all z ∈ ∂D, r ≤ R0 and x, y ∈ U(z,r),

c−1
2

1

|x− y|d−α

(
1 ∧

δU(z,r)
(x)δU(z,r)

(y)

|x− y|2

)
≤ GU(z,r)

(x, y) ≤ c2
1

|x− y|d−α

(
1 ∧

δU(z,r)
(x)δU(z,r)

(y)

|x− y|2

)
.

Now we can repeat the argument of Theorem 4.3 to complete the proof. 2

Now we are going to extend Propositions 4.3–4.4 to Gb
B and Gb

U(z,r). For the remainder of this

section, we let U be either a ball B = B(x0, r) with r ≤ r∗ where r∗ is the constant in Proposition

4.3 or U(z, r) (for a C1,1 open set D with the characteristic (R0,Λ0)) with r ≤ r0 where r0 is the
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constant in Proposition 4.4. We also let bn be defined by either (4.11) or (4.18) and we will take

care of the two cases simultaneously.

By [6, Lemma 13] and its proof, there exists a constant C4 > 0 such that

∫

Rd

∫ t

0
p(t− s, x, z)|b(z)||∇zp(s, z, y)|dsdz ≤ C4p(t, x, y) ≤ C4Nb(t),

and so ∫

Rd

∫ t

0
p(t− s, x, z)|bn(z)||∇zp(s, z, y)|dsdz ≤ C4p(t, x, y)Nb(t) (4.20)

where

Nb(t) := sup
w∈Rd

∫

Rd

∫ t

0
|b(z)|

(
|w − z|−d−1 ∧ s−(d+1)/α

)
dsdz

which is finite and goes to zero as t→ 0 by [6, Corollary 12]. Moreover,

∫

Rd

∫ t

0
p(t− s, x, z)|b(z) − bn(z)||∇zp(s, z, y)|dsdz

≤ C4p(t, x, y)Nb−bn(t)

= C4p(t, x, y) sup
w∈Rd

∫

U\Kn

∫ t

0
|b(z)|

(
|w − z|−d−1 ∧ s−(d+1)/α

)
dsdz. (4.21)

Now, by [6, (27)],

|pbk(t, x, y)| ∨ |pbnk (t, x, y)| ≤ (C4Nb(t))
kp(t, x, y). (4.22)

Choose T1 > 0 small so that

C4Nb(t) <
1

2
, t ≤ T1. (4.23)

We will fix this constant T1 until the end of this section.

Lemma 4.5 For all k ≥ 1 and (t, x, y) ∈ (0, T1]× R
d × R

d,

|pbnk (t, x, y)−pbk(t, x, y)| ≤ kC42
−(k−1)p(t, x, y) sup

w∈Rd

∫

U\Kn

∫ t

0
|b(z)|

(
|w − z|−d−1 ∧ s−(d+1)/α

)
dsdz.

Proof. We prove the lemma by the induction. For k = 1, we have

|pbn1 (t, x, y)− pb1(t, x, y)| ≤
∫ t

0

∫

Rd

p(s, x, z)|∇zp(t− s, z, y)| |b − bn|(z)dzds.

Thus by (4.21), the lemma is true for k = 1.

Now we assume k ≥ 1 and the lemma is true for k. Let

I(n, t, x, y) :=

∫ t

0

∫

Rd

|pbk(s, x, z)||∇zp(t− s, z, y)| |b − bn|(z)dzds

and

II(n, t, x, y) :=

∫ t

0

∫

Rd

|pbnk (s, x, z) − pbk(s, x, z)| |∇zp(t− s, z, y)||bn(z)|dzds.

Then we have

|pbnk+1(t, x, y)− pbk+1(t, x, y)| ≤ I(n, t, x, y) + II(n, t, x, y).
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By (4.21)–(4.23),

I(t, x, y) ≤ (C4Nb(t))
k

∫

Rd

∫ t

0
p(t− s, x, z)|b(z) − bn(z)||∇zp(s, z, y)|dsdz

= C42
−kp(t, x, y) sup

w∈Rd

∫

U\Kn

∫ t

0
|b(z)|

(
|w − z|−d−1 ∧ s−(d+1)/α

)
dsdz. (4.24)

On the other hand, by the induction assumption, (4.20) and (4.23),

II(t, x, y) ≤ kC42
−(k−1)

(
sup
w∈Rd

∫

U\Kn

∫ t

0
|b(z)|

(
|w − z|−d−1 ∧ s−(d+1)/α

)
dsdz

)

×
∫

Rd

∫ t

0
p(s, x, y)|∇zp(t− s, z, y)||bn(z)|dzds

≤ kC42
−(k−1)(C4Nb(t))p(t, x, y) sup

w∈Rd

∫

U\Kn

∫ t

0
|b(z)|

(
|w − z|−d−1 ∧ s−(d+1)/α

)
dsdz.

≤ kC42
−kp(t, x, y) sup

w∈Rd

∫

U\Kn

∫ t

0
|b(z)|

(
|w − z|−d−1 ∧ s−(d+1)/α

)
dsdz. (4.25)

Combining (4.24) and (4.25), we have proved the lemma. 2

Theorem 4.6 pbn(t, x, y) converges uniformly to pb(t, x, y) on any [a, b]×R
d ×R

d, where 0 < a <

b <∞. Moreover,

lim
n→∞

Gbn
U f = Gb

Uf for every f ∈ Cb(U ). (4.26)

Proof. We first consider the case (t, x, y) ∈ [t0, T1]×R
d ×R

d. By Theorem 1.2(i) and Lemma 4.5,

sup
(t,x,y)∈[t0,T1]×Rd×Rd

|pb(t, x, y) − pbn(t, x, y)|

≤ sup
(t,x,y)∈[t0,T1]×Rd×Rd

∞∑

k=1

|pbnk (t, x, y) − pbk(t, x, y)|

≤ C4 sup
(t,x,y)∈[t0,T1]×Rd×Rd

∞∑

k=1

k2−(k−1)p(t, x, y) sup
w∈Rd

∫

U\Kn

∫ t

0
|b(z)|

(
|w − z|−d−1 ∧ s−(d+1)/α

)
dsdz

≤ 4C4t
−d/α
0 sup

w∈Rd

∫

U\Kn

∫ T1

0
|b(z)|

(
|w − z|−d−1 ∧ s−(d+1)/α

)
dsdz,

which goes to zero as n→ ∞.

If (t, x, y) ∈ (T1, 2T1]× R
d × R

d, using the semigroup property (1.4) with t1 = T1/2,

sup
(t,x,y)∈(T1,2T1]×Rd×Rd

|pb(t, x, y)− pbn(t, x, y)|

≤ sup
(t,x,y)∈(T1,2T1]×Rd×Rd

|
∫

Rd

pb(t1, x, z)p
b(t− t1, z, y)dz −

∫

Rd

pbn(t1, x, z)p
bn(t− t1, z, y)dz|

≤ sup
(t,x,y)∈(T1,2T1]×Rd×Rd

∫

Rd

pb(t1, x, z)|pb(t− t1, z, y) − pbn(t− t1, z, y)|dz
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+ sup
(t,x,y)∈(T1,2T1]×Rd×Rd

∫

Rd

|pbn(t1, x, z)− pb(t1, x, z)|pbn(t− t1, z, y)|dzds,

which is, by (1.3), less than or equal to c1 t
−d/α
1 times

sup
(t,y)∈(T1 ,2T1]×Rd

∫

Rd

|pb(t− t1, z, y)− pbn(t− t1, z, y)|dz + sup
x∈Rd

∫

Rd

|pbn(t1, x, z) − pb(t1, x, z)|dzds.

Now, by the first case, we see that the above goes to zero as n→ ∞. Iterating the above argument

one can deduce that the theorem holds for L = [t0, kT0] for any integer k ≥ 2. This completes the

proof of the first claim of the theorem.

First observe that by (1.3), for each fixed x ∈ R
d and for every 0 ≤ t1 < t2 < · · · < tk, the

distributions of {(Xbn
t1 , · · · ,X

bn
tk
),Px} form a tight sequence. Next, by the same argument as that

for (3.1),

Px(X
bn
s /∈ B(x, r)) ≤ p for all n ≥ 1, 0 ≤ s ≤ t and x ∈ R

d

implies

Px

(
sup
s≤t

|Xbn
t −Xbn

0 | ≥ 2r

)
= Px

(
τ bnB(x,2r) ≤ t

)
≤ 2p for all n ≥ 1, x ∈ R

d.

Hence by (1.3) and the same argument leading to (2.5), we have for every r > 0,

lim
t↓0

sup
n≥1,x∈R

Px

(
sup
s≤t

|Xbn
t −Xbn

0 | ≥ 2r

)
= 0.

Thus it follows from the Markov property and [21, Theorem 2] (see also [19, Corollary 3.7.4]

and [1, Theorem 3]) that, for each x ∈ R
d, the laws of {Xbn ,Px} form a tight sequence in the

Skorohod space D([0,∞),Rd). Combining this and Theorem 4.6 with [19, Corollary 4.8.7] we get

that Xbn converges to Xb weakly. It follows directly from the definition of Skorohod topology on

D([0,∞),Rd) (see, e.g., [19, Section 3.5]) that {t < τ bU} and {t > τ b
Ū
} are disjoint open subsets

in D([0,∞),Rd). Thus the boundary of {t < τ bU} in D([0,∞),Rd) is contained in {τ bU ≤ t ≤ τ b
Ū
}.

Note that, by the strong Markov property,

Px

(
τ bU < τ bŪ

)
= Px

(
τ bU < τ bU + τ bŪ ◦ θτbU ,X

b
τbU

∈ ∂U
)

=Px

(
0 < τ bŪ ◦ θτbU ,X

b
τbU

∈ ∂U
)
= Px

(
PXb

τb
U

(
0 < τ bŪ

)
;Xb

τbU
∈ ∂U

)
= 0.

The last equality follows from the regularity of Ū ; that is, Pz(τ
b
Ū
= 0) = 1 for every z ∈ ∂U (see

Proposition 3.2). Therefore, using the Lévy system for Xb,

Px

(
τ bU ≤ t ≤ τ bŪ

)
= Px

(
τ bU = t = τ bŪ

)

≤ Px(X
b
t ∈ ∂U) + Px

(
t = τ bU and Xb

τU− 6= Xb
τU

)
=

∫

∂U
pb(t, x, y)dy + 0 = 0,

which implies that the boundary of {t < τ bU} in D([0,∞),Rd) is Px-null for every x ∈ U . For every

f ∈ Cb(U), f(Xb
t )1{t<τbU } is a bounded function on D([0,∞),Rd) with discontinuity contained in

the boundary of {t < τ bU}. Thus we have (cf. Theorem 2.9.1(vi) in [18])

lim
n→∞

Ex

[
f(Xbn

t )1
{t<τbnU }

]
= Ex

[
f(Xb

t )1{t<τbU }

]
. (4.27)
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Given f ∈ Cb(U ) and ε > 0, choose T > 1 large such that 2C1C
−1
2 ‖f‖∞e−C2T < ε where C1 and

C2 are constants in Lemma 3.7 with D = U . By the bounded convergence theorem and Fubini’s

theorem, from (4.27) we have

lim
n→∞

Ex

[∫ T

0
f(Xbn

t )1
{t<τbnU }

dt

]
= lim

n→∞

∫ T

0
Ex

[
f(Xbn

t )1
{t<τbnU }

]
dt = Ex

[∫ T

0
f(Xb

t )1{t<τbU }dt

]
.

On the other hand, by the choice of T and the fact that C1 and C2 depending only on d, α, diam(U)

and b with the dependence on b only through the rate at which Mα
|b|(r) goes to zero, we have by

Lemma 3.7

Ex

[∫ ∞

T
f(Xbn

t )1
{t<τbnU }

dt

]
+ Ex

[∫ ∞

T
f(Xb

t )1{t<τbU }dt

]

≤ ‖f‖∞
∫ ∞

T

(∫

D
(pbnD (t, x, y) + pbD(t, x, y))dy

)
dt ≤ 2C1‖f‖∞

∫ ∞

T
e−C2tdt < ε.

This completes the proof of (4.26). 2

As immediate consequences of (4.26) and Propositions 4.3–4.4, we get the following

Theorem 4.7 There exists a constant r∗ = r∗(d, α, b) > 0 with the dependence on b only via the

rate at which Mα
|b|(r) goes to zero such that for any ball B = B(x0, r) of radius r ≤ r∗,

2−1GB(x, y) ≤ Gb
B(x, y) ≤ 2GB(x, y), x, y ∈ B.

Theorem 4.8 For every C1,1 open set D with the characteristic (R0,Λ0), there exists a constant

r0 = r0(d, α,R0,Λ0, b) ∈ (0, (R0 ∧ 1)/8] with the dependence on b only via the rate at which Mα
|b|(r)

goes to zero such that for any for any z ∈ ∂D and r ≤ r0, we have

2−1GU(z,r)
(x, y) ≤ Gb

U(z,r)
(x, y) ≤ 2GU(z,r)

(x, y), x, y ∈ U(z,r). (4.28)

We will need the above two results later on.

5 Duality

In this section we assume that E is an arbitrary bounded open set in R
d. We will discuss some

basic properties of Xb,E and its dual process under some reference measure. The results of this

section will be used later in this paper.

By Theorem 3.4 and Corollary 3.6, Xb,E has a jointly continuous and strictly positive transition

density pbE(t, x, y). Using the continuity of pbE(t, x, y) and the estimate

pbE(t, x, y) ≤ pb(t, x, y) ≤ c1e
c2t

(
t−d/α ∧ t

|x− y|d+α

)
,

the proof of the next proposition is easy. We omit the details.

Proposition 5.1 Xb,E is a Hunt process and it satisfies the strong Feller property, i.e, for every

f ∈ L∞(E), PE
t f(x) := Ex[f(X

b,E
t )] is bounded and continuous in E.
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Define

hE(x) :=

∫

E
Gb

E(y, x)dy and ξE(dx) := hE(x)dx.

The following result says that ξE is a reference measure for Xb,E .

Proposition 5.2 ξE is an excessive measure with for Xb,E, i.e., for every Borel function f ≥ 0,
∫

E
f(x)ξE(dx) ≥

∫

E
Ex

[
f(Xb,E

t )
]
ξE(dx).

Moreover, hE is a strictly positive, bounded continuous function on E.

Proof. By the Markov property, we have for any Borel function f ≥ 0 and x ∈ E,
∫

E
Ey

[
f(Xb,E

t )
]
Gb

E(x, y)dy = Ex

∫ ∞

0
E
Xb,E

s

[
f(Xb,E

t )
]
ds

=

∫ ∞

0
Ex

[
f(Xb,E

t+s)
]
ds ≤

∫

E
f(y)Gb

E(x, y)dy.

Integrating with respect to x, we get by Fubini’s theorem,
∫

E
Ey

[
f(Xb,E

t )
]
hE(y)dy ≤

∫

E
f(y)hE(y)dy.

The second claim follows from (3.11), the continuity of Gb
E and the strict positivity of pbE (Corollary

3.6). 2

We define a transition density with respect to the reference measure ξE by

pbE(t, x, y) :=
pbE(t, x, y)

hE(y)
.

Let

G
b
E(x, y) :=

∫ ∞

0
pbE(t, x, y)dt =

Gb
E(x, y)

hE(y)
.

Then G
b
E(x, y) is the Green function of Xb,E with respect to the reference measure ξE .

Before we discuss properties of G
b
E(x, y), let us first recall some definitions.

Definition 5.3 Suppose that U is an open subset of E. A Borel function u on E is said to be

(i) harmonic in U with respect to Xb,E if

u(x) = Ex

[
u
(
Xb,E

τbB

)]
, x ∈ B, (5.1)

for every bounded open set B with B ⊂ U ;

(ii) excessive with respective to Xb,E if u is non-negative and

u(x) ≥ Ex

[
u
(
Xb,E

t

)]
and u(x) = lim

t↓0
Ex

[
u
(
Xb,E

t )
]
, t > 0, x ∈ E;
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(iii) a potential with respect to Xb,E if it is excessive with respect to Xb,E and for every sequence

{Un}n≥1 of open sets with Un ⊂ Un+1 and ∪nUn = E,

lim
n→∞

Ex

[
u
(
Xb,E

τbUn

)]
= 0; ξE-a.e. x ∈ E;

(iv) a pure potential with respect to Xb,E if it is a potential with respect to Xb,E and

lim
t→∞

Ex

[
u
(
Xb,E

t )
]
= 0, ξE-a.e. x ∈ E;

(v) regular harmonic with respect to Xb,E in U if u is harmonic with respect to Xb,E in U and

(5.1) is true for B = U .

We list some properties of the Green function G
b
E(x, y) of X

b,E that we will need later.

(A1) G
b
E(x, y) > 0 for all (x, y) ∈ E × E; G

b
E(x, y) = ∞ if and only if x = y ∈ E;

(A2) For every x ∈ E, G
b
E(x, · ) and G

b
E( · , x) are extended continuous in E;

(A3) For every compact subset K of E,
∫
K G

b
E(x, y)ξE(dy) <∞.

(A3) follows from (3.11) and Proposition 5.2. Both (A1) and (A2) follow from (3.11), Proposi-

tion 5.2, domain monotonicity of Green functions and the lower bound in (4.12).

From (A1)–(A3), we know that the process Xb,E satisfies the condition (R) on [17, p. 211] and

the conditions (a)–(b) of [17, Theorem 5.4]. It follows from [17, Theorem 5.4] that Xb,E satisfies

Hunt’s Hypothesis (B). Thus by [17, Theorem 13.24] Xb,E has a dual process X̂b,E , which is a

standard process.

In addition, we have the following.

(A4) For each y, x 7→ G
b
E(x, y) is excessive with respect to Xb,E and harmonic with respect to

Xb,E in E \ {y}. Moreover, for every open subset U of E, we have

Ex

[
G

b
E

(
Xb,E

T b
U

, y
)]

= G
b
E(x, y), (x, y) ∈ E × U (5.2)

where T b
U := inf{t > 0 : Xb,E

t ∈ U}. In particular, for every y ∈ E and ε > 0, G
b
E( · , y) is

regular harmonic in E \B(y, ε) with respect to Xb,E .

Proof of (A4). It follows from [15, Proposition 3] and [28, Theorem 2 on p. 373] that, to prove

(A4), it suffices to show that, for any x ∈ E \ U , the function

y 7→ Ex

[
G

b
E

(
Xb,E

TU
, y
)]

is continuous on U . (See the proof of [30, Theorem 1].) Fix x ∈ E \ U and y ∈ U . Put r := δU (y).

Let ŷ ∈ B(y, r/4). It follows from (2.11) and (3.11) that, for any δ ∈ (0, r2 ),

Ex

[
G

b
E

(
Xb,E

T b
U

, ŷ
)
;Xb,E

T b
U

∈ B(y, δ)
]
=

∫

B(y,δ)

(∫

E\U
Gb

E\U (x,w)
A(d,−α)
|w − z|d+α

dw

)
G

b
E(z, ŷ)dz
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≤ c1
inf ỹ∈B(y,r/4) hE(ỹ)

∫

B(y,δ)

(∫

E\U

1

|x− w|d−α

1

|w − z|d+α
dw

)
dz

|z − ŷ|d−α
.

Thus, for any ǫ > 0, there is a δ ∈ (0, r2 ) such that

Ex

[
G

b
E

(
Xb,E

TU
, y
)
;Xb,E

TU
∈ B(y, δ)

]
≤ ε

4
for every ŷ ∈ B(y, r/4). (5.3)

Now we fix this δ and let {yn} be a sequence of points in B(y, r/4) converging to y. Since the

function (z, u) 7→ G
b
E(z, u) is bounded and continuous in (E \ B(y, δ)) × B(y, δ2), we have by the

bound convergence theorem that there exists n0 > 0 such that for all n ≥ n0,
∣∣∣Ex

[
G

b
E

(
Xb,E

TU
, y
)
;Xb,E

TU
∈ B(y, δ)c

]
− Ex

[
G

b
E

(
Xb,E

TU
, yn
)
;Xb,E

TU
∈ B(y, δ)c

]∣∣∣ ≤ ε

2
. (5.4)

Since ε > 0 is arbitrary, combining (5.3) and(5.4), the proof of (A4) is now complete. 2

Theorem 5.4 For each y ∈ E, x 7→ G
b
E(x, y) is a pure potential with respect to Xb,E. In fact, for

every sequence {Un}n≥1 of open sets with Un ⊂ Un+1 and ∪nUn = E, limn→∞ Ex[G
b
E(X

b,E

τbUn

, y)] = 0

for every x 6= y in E. Moreover, for every x, y ∈ E, we have limt→∞ Ex[G
b
E(X

b,E
t , y)] = 0.

Proof. For y ∈ E, let Xb,E,y denote the h-conditioned process obtained from Xb,E with h(·) =

G
b
E(·, y) and let Ey

x denote the expectation for Xb,E,y starting from x ∈ E.

Let x 6= y ∈ E. Using (A1)-(A2), (A4) and the strict positivity of G
b
E , and applying [29,

Theorem 2], we get that the lifetime ζb,E,y of Xb,E,y is finite P
y
x-a.s. and

lim
t↑ζb,E,y

Xb,E,y
t = y P

y
x-a.s.. (5.5)

Let {Ek, k ≥ 1} be an increasing sequence of relatively compact open subsets of E such that

Ek ⊂ Ek ⊂ E and ∪∞
k=1Ek = E. Then

Ex

[
G

b
E

(
Xb,E

τbEk

, y
)]

= G
b
E(x, y)P

y
x

(
τ bEk

< ζb,E,y
)
.

By (5.5), we have limk→∞ P
y
x(τ bEk

< ζb,E,y) = 0. Thus limk→∞ Ex[G
b
E(X

b,E

τbEk

, y)] = 0.

The last claim of the theorem is easy. By (3.10) and (3.11), for every x, y ∈ E, we have

Ex

[
G

b
E

(
Xb,E

t , y
)]

≤ c

t
d
αhE(y)

∫

E

dz

|z − y|d−α
,

which converges to zero as t goes to ∞. 2

We note that
∫

E
G

b
E(x, y)ξE(dx) ≤

‖hE‖∞
hE(y)

∫

E
Gb

E(x, y)dx = ‖hE‖∞ <∞.

So we have
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(A5) for every compact subset K of E,
∫
K G

b
E(x, y)ξE(dx) <∞.

Using (A1)–(A5), (3.11) and Theorem 5.4 we get from [27, 28] that Xb,E has a Hunt process as a

dual.

Theorem 5.5 There exists a transient Hunt process X̂b,E in E such that X̂b,E is a strong dual of

Xb,E with respect to the measure ξE, that is, the density of the semigroup {P̂E
t }t≥0 of X̂b,E is given

by pbE(t, y, x) and thus

∫

E
f(x)PE

t g(x)ξE(dx) =

∫

E
g(x)P̂E

t f(x)ξE(dx) for all f, g ∈ L2(E, ξE).

Proof. The existence of a dual Hunt process X̂b,E is proved in [27, 28]. To show X̂b,E is transient,

we need to show that for every compact subset K of E,
∫
K G

b
E(x, y)ξE(dx) is bounded. This is just

(A5) above. 2

In Theorem 2.6, we have determined a Lévy system (N,H) for Xb with respect to the Lebesgue

measure dx. To derive a Lévy system for X̂b,E , we need to consider a Lévy system for Xb,E with

respect to the reference measure ξE(dx). One can easily check that, if

N
E
(x, dy) :=

J(x, y)

hE(y)
ξE(dy) for (x, y) ∈ E × E, N

E
(x, ∂) :=

∫

Ec

J(x, y)dy

and H
E
t := t, then (N

E
,H

E
) is a Lévy system for Xb,E with respect to the reference measure

ξE(dx). It follows from [20] that a Lévy system (N̂E , ĤE) for X̂b,E satisfies ĤE
t = t and

N̂E(y, dx)ξE(dy) = N
E
(x, dy)ξE(dx).

Therefore, using J(x, y) = J(y, x), we have for every stopping time T with respect to the filtration

of X̂b,E,

Ex


∑

s≤T

f(s, X̂b,E
s− , X̂b,E

s )


 = Ex

[∫ T

0

(∫

E
f(s, X̂b,E

s , y)
J(X̂b,E

s , y)

hE(X̂
b,E
s )

ξE(dy)

)
dĤE

s

]

= Ex

[∫ T

0

(∫

E
f(s, X̂b,E

s , y)
J(X̂b,E

s , y)hE(y)

hE(X̂
b,E
s )

dy

)
ds

]
. (5.6)

That is,

N̂E(x, dy) =
J(x, y)hE(y)

hE(x)
dy.

Let

P b,E
t f(x) :=

∫

E
pbE(t, x, y)f(y)ξE(dy) and P̂ b,E

t f(x) :=

∫

E
pbE(t, y, x)f(y)ξE(dy).

For any open subset U of E, we use X̂b,E,U to denote the subprocess of X̂b,E in U , i.e.,

X̂b,E,U
t (ω) = X̂b,E

t (ω) if t < τ̂ b,EU (ω) and X̂b,E,U
t (ω) = ∂ if t ≥ τ̂ b,EU (ω), where τ̂ b,EU := inf{t >
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0 : X̂b,E
t /∈ U} and ∂ is the cemetery state. Then by [33, Theorem 2] and Remark 2 following it,

Xb,U and X̂b,E,U are dual processes with respect to ξE . Now we let

p̂b,EU (t, x, y) :=
pbU(t, y, x)hE(y)

hE(x)
. (5.7)

By the joint continuity of pbU(t, x, y) (Theorem 3.4) and the continuity and positivity of hE (Propo-

sition 5.2), we know that p̂b,EU (t, ·, ·) is jointly continuous on U × U . Thus we have the following.

Theorem 5.6 For every open subset U , p̂b,EU (t, x, y) is strictly positive and jointly continuous on

U × U and is the transition density of X̂b,E,U with respect to the Lebesgue measure. Moreover,

Ĝb,E
U (x, y) :=

Gb
U (y, x)hE(y)

hE(x)
(5.8)

is the Green function of X̂b,E,U with respect to the Lebesgue measure so that for every nonnegative

Borel function f ,

Ex

[∫ τ̂b,EU

0
f
(
X̂b,E

t

)
dt

]
=

∫

U
Ĝb,E

U (x, y)f(y)dy.

6 Scaling property and uniform boundary Harnack principle

In this section, we first study the scaling property of Xb, which will be used later in this paper.

For λ > 0, let Y b,λ
t := λXb

λ−αt. For any function f on R
d, we define fλ( · ) = f(λ · ). Then we

have

Ex

[
f
(
Y b,λ
t

)]
=

∫

Rd

pb(λ−αt, λ−1x, y)fλ(y)dy.

It follows from Theorem 1.2(iii) that for any f, g ∈ C∞
c (Rd),

lim
t↓0

∫

Rd

t−1(Ex[f(Y
b,λ
t )]− f(x))g(x)dx

= lim
t↓0

∫

Rd

λ−α(λαt)−1(P b
λ−αtf

λ(λ−1x)− fλ(λ−1x))gλ(λ−1x)dx

= lim
t↓0

∫

Rd

λd−α(λαt)−1(P b
λ−αtf

λ(z)− fλ(z))gλ(z)dz

= λd−α

∫

Rd

(
−(−∆)α/2fλ(z) + b(z) · ∇fλ(z)

)
gλ(z)dz

= λd−α

∫

Rd

(
−(−∆)α/2fλ(z) + λb(z) · ∇f(λz)

)
g(λz)dz

=

∫

Rd

(
−(−∆)α/2f(x) + λ1−αb(λ−1x) · ∇f(x)

)
g(x)dx.

Thus
{
λXb,D

λ−αt
, t ≥ 0

}
is the subprocess of Xλ1−αb(λ−1·) in λD. So for any λ > 0, we have

p
λ1−αb(λ−1·)
λD (t, x, y) = λ−dpbD(λ

−αt, λ−1x, λ−1y) for t > 0 and x, y ∈ λD, (6.1)

G
λ1−αb(λ−1·)
λD (x, y) = λα−dGb

D(λ
−1x, λ−1y) for x, y ∈ λD. (6.2)
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Define

bλ(x) := λ1−αb(x/λ) for x ∈ R
d. (6.3)

Then we have

Mα
|bλ|

(r) = λ1−α
d∑

i=1

sup
x∈Rd

∫

|x−y|≤r

|bi|(λ−1y)dy

|x− y|d+1−α

=

d∑

i=1

sup
x̂∈Rd

∫

|x̂−z|≤λ−1r

|bi|(z)dz
|x̂− z|d+1−α

=Mα
|b|(λ

−1r).

Therefore for every λ ≥ 1 and r > 0,

Mα
|bλ|

(r) =Mα
|b|(λ

−1r) ≤Mα
|b|(r). (6.4)

In the remainder of this paper, we fix a bounded C1,1 open set D in R
d with C1,1 characteristics

(R0,Λ0) and a ball E ⊂ R
d centered at the origin so that D ⊂ 1

4E. Define

M := M(b,E) := sup
x,y∈ 3

4
E

hE(x)

hE(y)
, (6.5)

which is a finite positive constant no less than 1. Note that, in view of the scaling property (6.2),

we have

M(b,E) =M(bλ, λE). (6.6)

Although E and D are fixed, the constants in all the results of this section will depend only on

d, α,R0,Λ0, b and M (not the diameter of D directly) with the dependence on b only via the rate

at which Mα
|b|(r) goes to zero. In view of (6.4) and (6.6), the results of this section in particular

hold for Lbλ (equivalently, for Xbλ) and the pair (λD, λE) for every λ ≥ 1.

In the remainder of this section, we will establish a uniform boundary Harnack principle on D

for certain harmonic functions for Xb,E and X̂b,E. Since the arguments are mostly similar for Xb,E

and X̂b,E , we will only give the proof for X̂b,E .

A real-valued function u on E is said to be harmonic in an open set U ⊂ E with respect to

X̂b,E if for every relatively compact open subset B with B ⊂ U ,

Ex

[∣∣u
(
X̂b

τ̂b,EB

)∣∣
]
<∞ and u(x) = Ex

[
u
(
X̂b

τ̂b,EB

)]
for every x ∈ B. (6.7)

A real-valued function u on E is said to be regular harmonic in an open set U ⊂ E with respect to

X̂b,E if (6.7) is true with B = U . Clearly, a regular harmonic function in U is harmonic in U .

For any bounded open set U , define the Poisson kernel for Xb of U as

Kb
U (x, z) :=

∫

U
Gb

U (x, y)J(y, z)dy, (x, z) ∈ U × (Rd \ U).

When U ⊂ E, we define the Poisson kernel for X̂b,E of U ⊂ E as

K̂b,E
U (x, z) :=

hE(z)

hE(x)

∫

U
Gb

U (y, x)J(z, y)dy, (x, z) ∈ U × (E \ U). (6.8)
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By (2.11) and (5.6), we have

Ex

[
f
(
Xb

τb,EU

)
; Xb

τbU−
6= Xb

τbU

]
=

∫

U
c
Kb

U (x, z)f(z)dz

and

Ex

[
f
(
X̂b,E

τ̂b,EU

)
; X̂b,E

τ̂b,EU −
6= X̂b,E

τ̂b,EU

]
= Ex

∫ τ̂b,EU

0

(∫

U
c
f(z)

J(X̂b,E
s , z)hE(z)

hE
(
X̂b,E

s

) dz

)
ds

=

∫

U

Gb
U (y, x)hE(y)

hE(x)

∫

U
c
f(z)

J(y, z)hE(z)

hE(y)
dzdy (6.9)

=

∫

U
c
K̂b,E

U (x, z)f(z)dz.

Lemma 6.1 Suppose that U is a bounded C1,1 open set in R
d with U ⊂ 1

2E and diam(U) ≤ 3r∗
where r∗ is the constant in Theorem 4.7. Then

Px

(
Xb

τbU
∈ ∂U

)
= 0 for every x ∈ U (6.10)

and

Px

(
X̂b,E

τ̂b,EU

∈ ∂U
)
= 0 for every x ∈ U. (6.11)

Proof. The proof is similar to that of [4, Lemma 6]. For our readers’ convenience, we are going to

spell out the details of the proof of (6.11). Let Bx := B(x, δU (x)/3). By (5.6) we have for x ∈ U ,

Px

(
X̂b,E

τ̂b,EBx

∈ (
3

4
E) \ U

)
=

∫

Bx

Gb
Bx

(y, x)hE(y)

hE(x)

(∫

( 3
4
E)\U

J(y, z)hE(z)

hE(y)
dz

)
dy.

Since diam(U) ≤ 3r∗, δU (x)/3 ≤ r∗, thus by Theorem 4.7, for x ∈ U ,

Px

(
X̂b,E

τ̂b,EBx

∈ (
3

4
E) \ U

)
≥ c1

(
inf

u,v∈ 3
4
E

hE(u)

hE(v)

)∫

Bx

GBx(x, y)

(∫

( 3
4
E)\U

J(y, z) dz

)
dy

≥ c1M
−1

Px

(
XτBx

∈ (
3

4
E) \ U

)
, (6.12)

where M is the constant defined in (6.5). By the scaling property of X,

Px

(
XτBx

∈ (
3

4
E) \ U

)
= PδU (x)−1x

(
XτδU (x)−1Bx

∈ δU (x)
−1(

3

4
E) \ U

)

=

∫

B(δU (x)−1x,1/3)
GB(δU (x)−1x,1/3)(δU (x)

−1x, a)

(∫

δU (x)−1( 3
4
E)\U

J(a, b)db

)
da. (6.13)

Let zx ∈ ∂U be such that δU (x) = |x−zx|. Since U is C1,1, δU (x)
−1((34E)\U) ⊃ δU (x)

−1(34E \ 1
2E)

and δU (x) ≤ 3r∗, there exists η > 0 such that, under an appropriate coordinate system, we have

zx + Ĉ ⊂ δU (x)
−1((34E) \ U) where

Ĉ :=
{
y = (y1, · · · , yd) ∈ R

d : 0 < yd < (12r∗)
−1 and

√
y21 + · · ·+ y2d−1 < ηyd

}
.
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Thus there is a constant c2 > 0 such that

inf
a∈B(δU (x)−1x,1/3)

∫

δU (x)−1(( 3
4
E)\U)

J(a, b)db ≥ c2 > 0 for every x ∈ U.

Combining this with (6.12)–(6.13),

inf
x∈U

Px

(
X̂b,E

τ̂b,EBx

∈ (
3

4
E) \ U

)
≥ c1c2M

−1
Ew

[
τB(0,1/3)

]
≥ c3 > 0. (6.14)

On the other hand, since by (5.6) Px

(
X̂

τ̂b,EBx

∈ ∂U
)
= 0 for every x ∈ U , we have

Px

(
X̂b,E

τ̂b,EU

∈ ∂U
)

= Ex

[
P
X̂b,E

τ̂
b,E
Bx

(
X̂b,E

τ̂b,EU

∈ ∂U
)
; X̂b,E

τ̂b,EBx

∈ U

]
.

Thus inductively, Px(X̂
b,E

τ̂b,EU

∈ ∂U) = limk→∞ pk(x), where

p0(x) := Px

(
X̂b,E

τ̂b,EU

∈ ∂U

)
and pk(x) := Ex

[
pk−1

(
X̂b,E

τ̂b,EBx

)
; X̂b,E

τ̂b,EBx

∈ U

]
for k ≥ 1.

By (6.14),

sup
x∈U

pk+1(x) ≤ (1− c3) sup
x∈U

pk(x) ≤ (1− c3)
k+1 → 0.

Therefore Px(X̂
b,E

τ̂b,EU

∈ ∂U) = 0 for every x ∈ U . 2

Let z ∈ ∂D. We will say that a function u : Rd → R vanishes continuously on Dc ∩ B(z, r) if

u = 0 on Dc ∩B(z, r) and u is continuous at every point of ∂D ∩B(z, r).

Theorem 6.2 (Boundary Harnack principle) There exist positive constants c1 = c1(d, α,R0,Λ0, b)

and r1 = r1(d, α,R0,Λ0, b) with the dependence on b only via the rate at which Mα
|b|(r) goes to zero

such that for all z ∈ ∂D, r ∈ (0, r1] and all function u ≥ 0 on R
d that is positive harmonic with

respect to Xb (or X̂b,E, respectively) in D ∩B(z, r) and vanishes continuously on Dc ∩B(z, r) (or

Dc, respectively) we have

u(x)

u(y)
≤ c1M

2 δD(x)
α/2

δD(y)α/2
, x, y ∈ D ∩B(z, r/4).

Proof. We only give the proof for X̂b,E . Recall that r∗ and r0 are the constants from Theorem 4.7

and Theorem 4.8 respectively. Let r1 = r∗∧r0 and fix r ∈ (0, r1] throughout this proof. Recall that

there exists L = L(R0,Λ0, d) such that for every z ∈ ∂D and r ≤ R0/2, one can find a C1,1 open

set U = U(z,r) with C
1,1 characteristic (rR0/L,Λ0L/r) such that D ∩B(z, r/2) ⊂ U ⊂ D ∩B(z, r).

Without loss of generality, we assume z = 0.

Note that, by the same proof as that of [11, Lemma 4.2], every nonnegative function u in R
d

that is harmonic with respect to X̂b,E in D ∩ B(0, r) and vanishes continuously on Dc is regular

harmonic in D ∩B(0, r) with respect to X̂b,E.
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For all functions u ≥ 0 on E that is positive regular harmonic for X̂b,E in D ∩ B(0, r) and

vanishing on Dc, by (5.6) and Lemma 6.1, we have

u(x) = Ex

[
u
(
X̂b,E

τbU

)
;Xb,E

τbU
∈ D \ U

]
=

∫

D\U
K̂b,E

U (x,w)u(w)dw

=

∫

U
Gb

U (y, x)

(∫

D\U

hE(w)

hE(x)
J(w, y)u(w)dw

)
dy. (6.15)

Define

hu(x) := Ex [u(XτU );XτU ∈ D \ U ] =

∫

U
GU (y, x)

(∫

D\U
J(w, y)u(w)dw

)
dy,

which is positive regular harmonic for X in D∩B(0, r/2) and vanishing on Dc. Applying Theorem

4.8 to (6.15), we get

c−1
1 M−1hu(x) ≤ u(x) ≤ c1Mhu(x) for x ∈ D. (6.16)

By the boundary Harnack principle for X in C1,1 open sets (see [14, 36]), there is a constant c2 > 1

that depends only on R0,Λ0, d and α so that

hu(x)

hu(y)
≤ c2 for x, y ∈ D ∩B(0, r/4).

Combining this with (6.16) and the two-sided estimates on GU (x, y) we arrive at the conclusion of

the theorem. 2

7 Small time heat kernel estimates

Our strategy is to first establish sharp two-sided estimates on pbD(t, x, y) at time t = 1. We then

use a scaling argument to establish estimates for t ≤ T .

We continue to fix a ball E centered at the origin and a C1,1 open set D ⊂ 1
4E with character-

istics (R0,Λ0). Recall that M > 1 is the constant defined in (6.5).

The next result follows from Proposition 3.5, (5.7) and (6.5)

Proposition 7.1 For all a1 ∈ (0, 1), a2, a3, R > 0, there is a constant c1 = c1(d, α, a1, a2, a3, R,M, b) >

0 with the dependence on b only via the rate at which Mα
|b|(r) goes to zero such that for all open ball

B(x0, r) ⊂ 3
4E with r ≤ R,

p̂b,EB(x0,r)
(t, x, y) ≥ c1 t

−d/α for all x, y ∈ B(x0, a1r) and t ∈ [a2r
α, a3r

α].

Again, we emphasize that the constants in all the results of the remainder of this section

(except Theorem 7.8 where the constant also depends on T for a obvious reason) will depend only

on d, α,R0,Λ0, M (not the diameter of D directly) and b with the dependence on b only through

the rate at which Mα
|b|(r) goes to zero. In view of (6.3), (6.4) and (6.6), in particular all the results

of this section are applicable to Lbλ and the pair (λD, λE) for every λ ≥ 1.

Recall that r∗ and r0 are the constants from Theorem 4.7 and Theorem 4.8 respectively, which

depend only on d, α, R0, Λ0 and b with the dependence on b only via the rate at which Mα
|b|(r)

goes to zero.
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Lemma 7.2 There is c1 = c1(d, α,R0, r,M,Λ0, b) > 0 with the dependence on b only via the rate

at which Mα
|b|(r) goes to zero such that for all x ∈ D

Px(τ
b
D > 1/4) ≤ c1

(
1 ∧ δD(x)α/2

)
(7.1)

and

Px(τ̂
b,E
D > 1/4) ≤ c1

(
1 ∧ δD(x)α/2

)
. (7.2)

Proof. We only give the proof of (7.2). The proof of (7.1) is similar. Recall that there exists

L = L(R0,Λ0, d) such that for every z ∈ ∂D and r ≤ R0, one can find a C1,1 open set U(z,r)

with C1,1 characteristic (rR0/L,Λ0L/r) such that D ∩B(z, r/2) ⊂ U(z,r) ⊂ D ∩B(z, r). Clearly it

suffices to prove (7.2) for x ∈ D with δD(x) < r0/8.

Choose Qx ∈ ∂D such that δD(x) = |x −Qx| and choose a C1,1 open set U := U(Qx,r0/2) with

C1,1 characteristic (r0R0/(2L), 2Λ0L/r0) such that D ∩B(Qx, r0/4) ⊂ U ⊂ D ∩B(Qx, r0/2).

Note that by (5.8), (6.8) and Lemma 6.1,

Px

(
τ̂ b,ED > 1/4

)
≤ Px

(
τ̂ b,EU > 1/4

)
+ Px

(
X̂b,E

τ̂b,EU

∈ D

)

≤ 4Ex

[
τ̂ b,EU

]
+ Px

(
X̂b,E

τ̂b,EU

∈ D

)

= 4

∫

U
Gb

U (y, x)
hE(y)

hE(x)
dy +

∫

D\U

∫

U
Gb

U (y, x)
hE(z)

hE(x)
J(y, z)dydz.

Now using Theorem 4.8, we get

Px

(
τ̂ b,ED > 1/4

)
≤ 4c1M

∫

U
GU (y, x)dy + c1M

∫

D\U

∫

U
GU (y, x)J(y, z)dydz

= 4c1M

∫

U
GU (x, y)dy + c1MPx

(
XτU ∈ D \ U

)

≤ c2δU (x)
α/2 = c2δD(x)

α/2.

The last inequality is due to (4.19) and the boundary Harnack inequality for X in C1,1 open sets.

2

Lemma 7.3 Suppose that U1, U3, U are open subsets of Rd with U1, U3 ⊂ U ⊂ 3
4E and dist(U1, U3) >

0. Let U2 := U \ (U1 ∪ U3). If x ∈ U1 and y ∈ U3, then for all t > 0,

pbU(t, x, y) ≤ Px

(
Xb

τbU1

∈ U2

)
· sup
s<t, z∈U2

pbU(s, z, y) +
(
t ∧ Ex[τ

b
U1
]
)
· sup
u∈U1, z∈U3

J(u, z), (7.3)

pbU (t, y, x) ≤MPx

(
X̂b,E

τ̂b,EU1

∈ U2

)
· sup
s<t, z∈U2

p̂bE,U(s, z, y) +M
(
t ∧ Ex[τ̂

b,E
U1

]
)
· sup
u∈U1, z∈U3

J(u, z) (7.4)

and

pbU(1/3, x, y) ≥
1

3M
Px

(
τ bU1

> 1/3
)
Py

(
τ̂ b,EU3

> 1/3
)
· inf
u∈U1, z∈U3

J(u, z) . (7.5)
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Proof. The proof of (7.3) is similar to the proof of [5, Lemma 2], which is a variation of the proof

of [9, Lemma 2.2]. Hence we omit its proof. We will present a proof for (7.4)–(7.5). Using the

strong Markov property and (5.7), we have

pbU (t, y, x) =
hE(x)

hE(y)
p̂b,EU (t, x, y)

=
hE(x)

hE(y)
Ex

[
p̂b,EU

(
t− τ̂ b,EU1

, X̂b,E

τ̂b,EU1

, y
)
; τ̂ b,EU1

< t

]

=
hE(x)

hE(y)
Ex

[
p̂b,EU

(
t− τ̂ b,EU1

, X̂b,E

τ̂b,EU1

, y
)
; τ̂ b,EU1

< t, X̂b,E

τ̂b,EU1

∈ U2

]

+
hE(x)

hE(y)
Ex

[
p̂b,EU

(
t− τ̂ b,EU1

, X̂b,E

τ̂b,EU1

, y
)
; τ̂ b,EU1

< t, X̂b,E

τ̂b,EU1

∈ U3

]
=: I + II .

Using (5.7) again,

I ≤ hE(x)

hE(y)
Px

(
τ̂ b,EU1

< t, X̂b,E

τ̂b,EU1

∈ U2

)(
sup

s<t, z∈U2

p̂b,EU (s, z, y)

)

=
hE(x)

hE(y)
Px

(
τ̂ b,EU1

< t, X̂b,E

τ̂b,EU1

∈ U2

)(
sup

s<t, z∈U2

pbU (s, y, z)
hE(y)

hE(z)

)

≤
(

sup
a,b∈ 3

4
E

hE(a)

hE(b)

)
Px

(
X̂b,E

τ̂b,EU1

∈ U2

)(
sup

s<t, z∈U2

pbU (s, y, z)

)
.

On the other hand, by (5.6) and (5.7),

II =
hE(x)

hE(y)

∫ t

0

(∫

U1

p̂b,EU1
(s, x, u)

(∫

U3

J(u, z)
hE(z)

hE(u)
pbU (t− s, y, z)

hE(y)

hE(z)
dz

)
du

)
ds

≤
(

sup
a,b∈ 3

4
E

hE(a)

hE(b)

)∫ t

0

(∫

U1

p̂b,EU1
(s, x, u)

(∫

U3

J(u, z)pbU (t− s, y, z)dz

)
du

)
ds

≤ M

(
sup

u∈U1, z∈U3

J(u, z)

)∫ t

0
Px(τ̂

b,E
U1

> s)

(∫

U3

pbU(t− s, y, z)dz

)
ds

≤ M

∫ t

0
Px(τ̂

b,E
U1

> s)ds · sup
u∈U1, z∈U3

J(u, z)

≤ M(t ∧ Ex[τ̂
b,E
U1

]) · sup
u∈U1, z∈U3

J(u, z) .

Now we consider the lower bound. By (2.11) and (5.7),

pbU(1/3, x, y)

≥ Ex

[
pbU

(
1/3 − τ bU1

,Xb
τbU1

, y
)
; τ bU1

< 1/3,Xb
τbU1

∈ U3

]

=

∫ 1/3

0

(∫

U1

pbU1
(s, x, u)

(∫

U3

J(u, z)pbU (1/3− s, y, z)dz

)
du

)
ds

≥ inf
u∈U1, z∈U3

J(u, z)

∫ 1/3

0

∫

U3

pbU (1/3 − s, z, y)Px(τ
b
U1
> s)dzds
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≥ Px(τ
b
U1
> 1/3) inf

u∈U1, z∈U3

J(u, z)

∫ 1/3

0

∫

U3

pbU3
(1/3 − s, z, y)dzds

= Px(τ
b
U1
> 1/3) inf

u∈U1, z∈U3

J(u, z)

∫ 1/3

0

∫

U3

p̂b,EU3
(1/3 − s, y, z)

hE(y)

hE(z)
dzds

≥ M−1
Px(τ

b
U1
> 1/3) inf

u∈U1, z∈U3

J(u, z)

∫ 1/3

0
Py(τ̂

b,E
U3

> 1/3− s)ds

≥ 1

3M
Px(τ

b
U1
> 1/3) inf

u∈U1, z∈U3

J(u, z)Py(τ̂
b,E
U3

> 1/3) .

2

Lemma 7.4 There is a positive constant c1 = c1(d, α,R0,Λ0,M, b) with the dependence on b only

via the rate at which Mα
|b|(r) goes to zero such that for all x, y ∈ D,

pbD(1/2, x, y) ≤ c1

(
1 ∧ δD(x)α/2

)(
1 ∧ 1

|x− y|d+α

)
(7.6)

and

pbD(1/2, x, y) ≤ c1

(
1 ∧ δD(y)α/2

)(
1 ∧ 1

|x− y|d+α

)
. (7.7)

Proof. We only give the proof of (7.7). Recall that there exists L = L(R0,Λ0, d) such that for every

z ∈ ∂D and r ≤ R0/2, one can find a C1,1 open set U(z,r) with C
1,1 characteristic (rR0/L,Λ0L/r)

such that D ∩B(z, r/2) ⊂ U(z,r) ⊂ D ∩B(z, r).

It follows from (1.3) that

pbD(1/2, x, y) ≤ pb(1/2, x, y) ≤ c1

(
1 ∧ 1

|x− y|d+α

)
,

so it suffices to prove of (7.7) for y ∈ D with δD(y) < r0/8.

When |x− y| ≤ r0, by the semigroup property (3.4), (1.3) and (5.7),

pbD(1/2, x, y) =

∫

D
pbD(1/4, x, z)p

b
D(1/4, z, y)dz

≤
∫

D
pb(1/4, x, z)p̂b,ED (1/4, y, z)

hE (y)

hE (z)
dz

≤ c2M

∫

D

(
1 ∧ 1

|x− z|d+α

)
p̂b,ED (1/4, y, z)dz

≤ c2MPy(τ̂
b,E
D > 1/4).

Applying (7.2), we get

pbD(1/2, x, y) ≤ c3

(
1 ∧ δD(y)α/2

)

≤ c3

(
1 ∨ rd+α

0

)(
1 ∧ δD(y)α/2

)(
1 ∧ 1

|x− y|d+α

)
.
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Finally we consider the case that |x−y| > r0 (and δD(y) < r0/8). Fix y ∈ D with δD(y) < r0/8

and let Q ∈ ∂D be such that |y − Q| = δD(y). Choose a C1,1 open set Uy := U(Q,r0) with C1,1

characteristic (r0R0/L,Λ0L/r0) such that D ∩B(Q, r0/2) ⊂ Uy ⊂ D ∩B(Q, r0).

Let D3 := {z ∈ D : |z− y| > |x− y|/2} and D2 := D \ (Uy ∪D3). Note that |z− y| > (δ0+ r0)/4

for z ∈ D3. So, if u ∈ Uy and z ∈ D3, then

|u− z| ≥ |z − y| − |y − u| ≥ |z − y| − (δ0 + r0)/8 ≥ 1

2
|z − y| ≥ 1

4
|x− y|.

Thus

sup
u∈Uy, z∈D3

J(u, z) ≤ sup
(u,z):|u−z|≥ 1

4
|x−y|

J(u, z) ≤ c4

(
1 ∧ 1

|x− y|d+α

)
. (7.8)

If z ∈ D2, then |z − x| ≥ |x− y| − |y − z| ≥ |x− y|/2. Thus by (1.3),

sup
s<1/2, z∈D2

pbD(s, z, x) ≤ sup
s<1/2, z∈D2

pb(s, z, x) ≤ c5 sup
s<1/2, z∈D2

(
1 ∧ 1

|x− z|d+α

)

≤ c6

(
1 ∧ 1

|x− y|d+α

)
(7.9)

for some c5, c6 > 0. Applying Lemmas 7.3 with (7.8) and (7.9), we obtain,

pbD(1/2, x, y) ≤ c7

(
1 ∧ 1

|x− y|d+α

)(
Py

(
X̂b,E

τ̂b,EUy

∈ D
)
+ Ey

[
τ̂ b,EUy

])
.

On the other hand, by (5.8), (6.8), Lemma 6.1 and Theorem 4.8,

Ey

[
τ̂ b,EUy

]
+ Py

(
X̂b,E

τ̂b,EUy

∈ D
)

=

∫

Uy

Gb
Uy
(z, y)

hE(z)

hE(y)
dz +

∫

D\Uy

∫

Uy

Gb
Uy
(w, y)

hE(z)

hE(y)
J(w, z)dwdz

≤ c8M

∫

Uy

GUy(z, y)dz + c8M

∫

D\Uy

∫

Uy

GUy(w, y)J(w, z)dwdz

≤ c9δUy(y)
α/2 = c9δD(y)

α/2.

Therefore

pbD(1/2, x, y) ≤ c10δD(y)
α/2

(
1 ∧ 1

|x− y|d+α

)
.

(7.6) can be proved in a similar way. 2

Lemma 7.5 There is a positive constant c1 = c1(d, α,R0,Λ0,M, b) with the dependence on b only

via the rate at which Mα
|b|(r) goes to zero such that for all x, y ∈ D,

pbD(1, x, y) ≤ c1

(
1 ∧ δD(x)α/2

)(
1 ∧ δD(y)α/2

)(
1 ∧ 1

|x− y|d+α

)
. (7.10)

Proof. Using (7.6)-(7.7), the semigroup property (3.4) and the two-sided estimates of p(t, x, y),

pbD(1, x, y) =

∫

Rd

pbD(1/2, x, z)p
b
D(1/2, z, y)dz
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≤ c
(
1 ∧ δD(x)α/2

)(
1 ∧ δD(y)α/2

) ∫

Rd

(
1 ∧ 1

|x− z|d+α

)(
1 ∧ 1

|z − y|d+α

)
dz

≤ c
(
1 ∧ δD(x)α/2

)(
1 ∧ δD(y)α/2

) ∫

Rd

p(1/2, x, z)p(1/2, z, y)dz

= c
(
1 ∧ δD(x)α/2

)
p(1, x, y)

≤ c
(
1 ∧ δD(x)α/2

)(
1 ∧ δD(y)α/2

)(
1 ∧ 1

|x− y|d+α

)
.

2

Lemma 7.6 If r > 0 then there is a constant c1 = c1(d, α, r,M, b) > 0 with the dependence on b

only via the rate at which Mα
|b|(r) goes to zero such that for every B(u, r), B(v, r) ⊂ 3

4E,

pbB(u,r)∪B(v,r)(1/3, u, v) ≥ c1

(
1 ∧ 1

|u− v|d+α

)
.

Proof. If |u− v| ≤ r/2, by Proposition 3.5

pbB(u,r)∪B(v,r)(1/3, u, v) ≥ inf
|u−v|<r/2

pbB(u,r)(1/3, u, v) ≥ c1 ≥ c2

(
1 ∧ 1

|u− v|d+α

)
.

If |u− v| ≥ r/2, with U1 = B(u, r/8) and U3 = B(v, r/8), we have by (7.5)

pbB(u,r)∪B(v,r)(1/3, u, v) ≥
1

3
Pu(τ

b
U1
> 1/3)Pv(τ̂

b,E
U3

> 1/3) inf
w∈U1, z∈U3

J(w, z)

≥ c

∫

B(u,r/16)
pbB(u,r/8)(1/3, u, z)dz

∫

B(v,r/16)
p̂b,EB(u,r/8)(1/3, v, z)dz

(
1 ∧ 1

|u− v|d+α

)

≥ c

(
inf

z∈B(u,r/16)
pbB(u,r/8)(1/3, u, z)

)(
inf

z∈B(v,r/16)
p̂b,EB(u,r/8)(1/3, v, z)

)(
1 ∧ 1

|u− v|d+α

)
.

Now applying Propositions 3.5 and 7.1, we conclude that

pbB(u,r)∪B(v,r)(1/3, u, v) ≥ c

(
1 ∧ 1

|u− v|d+α

)
.

2

Lemma 7.7 There is a positive constant c1 = c1(d, α,R0,Λ0,M, b) with the dependence on b only

via the rate at which Mα
|b|(r) goes to zero such that

pbD(1, x, y) ≥ c1

(
1 ∧ δD(x)α/2

)(
1 ∧ δD(y)α/2

)(
1 ∧ 1

|x− y|d+α

)
.

Proof. Recall that r0 ≤ R0/8 is the constant from Theorem 4.8 which depends only on d, α, R0,Λ0,

b with the dependence on b only via the rate at whichMα
|b|(r) goes to zero. Since D is C1,1 with C1,1

characteristics (R0,Λ0) there exist δ = δ(R0,Λ0) ∈ (0, r0/8) and L = L(R0,Λ0) > 1 such that for
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all x, y ∈ D, we can choose ξx ∈ D ∩B(x,Lδ) and ξy ∈ D ∩B(y, Lδ) with B(ξx, 2δ) ∩B(y, 2δ) = ∅,
B(ξx, 2δ)∩B(y, 2δ) = ∅ and B(ξx, 2δ+2r0)∪B(ξy, 2δ+2r0) ⊂ D (which is possible since r0 ≤ R0/8).

Note that by the semigroup property (3.4) and Lemma 7.6,

pbD(1, x, y)

≥
∫

B(ξy ,δ)

∫

B(ξx,δ)
pbD(1/3, x, u)p

b
D(1/3, u, v)pbD(1/3, v, y)dudv

≥
∫

B(ξy ,δ)

∫

B(ξx,δ)
pbD(1/3, x, u)p

b
B(u,δ/2)∪B(v,δ/2)(1/3, u, v)p

b
D(1/3, v, y)dudv

≥c1
∫

B(ξy ,δ)

∫

B(ξx,δ)
pbD(1/3, x, u)(J(u, v) ∧ 1)pbD(1/3, v, y)dudv

≥c1
(

inf
(u,v)∈B(ξx ,δ)×B(ξy ,δ)

(J(u, v) ∧ 1)

)(∫

B(ξx,δ)
pbD(1/3, x, u)du

)(∫

B(ξy ,δ)
pbD(1/3, v, y)dv

)
.

(7.11)

If |x− y| ≥ δ/8 , |u− v| ≤ 2(1 + L)δ + |x− y| ≤ (17 + 16L)|x− y| and we have

inf
(u,v)∈B(ξx ,δ)×B(ξy ,δ)

(J(u, v) ∧ 1) ≥ c2

(
1 ∧ 1

|x− y|d+α

)
. (7.12)

If |x− y| ≤ δ/8 , |u− v| ≤ 2(2 + L)δ and

inf
(u,v)∈B(ξx ,δ)×B(ξy ,δ)

(J(u, v) ∧ 1) ≥ c3 ≥ c4

(
1 ∧ 1

|x− y|d+α

)
. (7.13)

We claim that
∫

B(ξy ,δ)
pbD(1/3, x, u)du ≥ c5

(
1 ∧ δD(x)α/2

)
,

∫

B(ξy ,δ)
pbD(1/3, v, y)dv ≥ c5

(
1 ∧ δD(y)α/2

)
,

(7.14)

which, combined with (7.11)–(7.13), proves the theorem.

We only give the proof of the second inequality in (7.14). If δD(y) > δ, by (7.5),

∫

B(ξy ,δ/2)
pbD(1/3, v, y)dv

≥ 1

3M

(∫

B(ξy ,δ)
Pv(τ

b
B(ξy ,δ)

> 1/3)dv

)
Py(τ̂

b,E
B(y,δ) > 1/3) inf

w∈B(ξy ,δ), z∈B(y,δ)
J(w, y) (7.15)

which is greater than or equal to some positive constant depending only on d, α,R0,Λ0, M and b

with the dependence on b only via the rate at which Mα
|b|(r) goes to zero by Propositions 3.5 and

7.1.

If δD(y) ≤ δ, choose a Q ∈ ∂D be such that |y − Q| = δD(y) and choose a C1,1 open set

Uy := U(Q,r0) with C1,1 characteristic (r0R0/L,Λ0L/r0) such that D ∩ B(Q, r0/2) ⊂ Uy ⊂ D ∩
B(Q, r0) ⊂ D ∩B(Q, 3r0/2) =: Vy. Then by (7.5),

∫

B(ξy ,δ/2)
pbD(1/3, v, y)dv
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≥ 1

3M

(∫

B(ξy ,δ)
Pv

(
τ bB(ξy ,δ)

> 1/3
)
dv

)
Py

(
τ̂ b,EVy

> 1/3
)

inf
w∈B(ξy ,δ), z∈Vy

J(w, y) (7.16)

which is greater than or equal to c6 Py(τ̂
b,E
Vy

> 1/3) for some positive constant c6 depending only

on d, α,R0,Λ0, M and b with the dependence on b only via the rate at which Mα
|b|(r) goes to zero

by Propositions 3.5 and 7.1.

Let B(y0, c7r0) be a ball in D ∩ (B(Q, 3r0/2) \ B(Q, r0)) where c7 = c7(Λ0, r0, d) > 0. By the

strong Markov property,

(
inf

w∈B(y0,c7r0/2)
Pw

(
τ̂ b,EB(w,c7r0/2)

> 4
))

Py

(
X̂b,E

τ̂b,EUy

∈ B(y0, c7r0/2)

)

≤ Ey


P

X̂b,E

τ̂
b,E
Uy

(
τ̂ b,E
B(X̂b,E

τ̂
b,E
Uy

,c7r0/2)
> 4
)
; X̂b,E

τ̂b,EUy

∈ B(y0, c7r0/2)




≤ Ey


P

X̂b,E

τ̂
b,E
Uy

(
τ̂ b,EVy

> 4
)
; X̂b,E

τ̂b,EUy

∈ B(y0, c7r0/2)




= Py

(
τ̂ b,EVy

> 4, X̂b,E

τ̂b,EU

∈ B(y0, c7r0/2)

)
≤ Py

(
τ̂ b,EVy

> 4
)
.

Using Propositions 7.1, we get

Py

(
τ̂ b,EVy

> 4
)
≥ c8Py

(
X̂b,E

τ̂b,EUy

∈ B(y0, c7r0/2)

)
. (7.17)

Now applying (5.8), (6.8) and Theorem 4.8,

Py

(
X̂b,E

τ̂b,EUy

∈ B(y0, c7r0/2)

)
=

∫

B(y0,c7r0/2)

∫

Uy

Gb
Uy
(w, y)

hE(z)

hE(y)
J(w, z)dwdz

≥ c9M
−1

∫

B(y0,c7r0/2)

∫

Uy

Gb
Uy
(w, y)J(w, z)dwdz

≥ c10δUy(y)
α/2 = c10δD(y)

α/2. (7.18)

Combining (7.15)–(7.18), we have proved (7.14). 2

Theorem 7.8 There exists c1 = c1(d, α,R0,Λ0, T,M, b) > 0 with the dependence on b only via the

rate at which Mα
|b|(r) goes to zero such that for 0 < t ≤ T , x, y ∈ D,

pbD(t, x, y) ≤ c1

(
1 ∧ δD(x)

α/2

√
t

)(
1 ∧ δD(y)

α/2

√
t

)(
t−d/α ∧ t

|x− y|d+α

)
(7.19)

and

c−1
1

(
1 ∧ δD(x)

α/2

√
t

)(
1 ∧ δD(y)

α/2

√
t

)(
t−d/α ∧ t

|x− y|d+α

)
≤ pbD(t, x, y). (7.20)

39



Proof. Let Dt := t−1/αD and Et := t−1/αE. By the scaling property in (6.1), (7.19)–(7.20) is

equivalent to

p
t(α−1)/αb(t1/α·)
Dt

(1, x, y) ≤ c1

(
1 ∧ δDt(x)

α/2
)(

1 ∧ δDt(y)
α/2
)(

1 ∧ 1

|x− y|d+α

)

and

c−1
1

(
1 ∧ δDt(x)

α/2
)(

1 ∧ δDt(y)
α/2
)(

1 ∧ 1

|x− y|d+α

)
≤ p

t(α−1)/αb(t1/α·)
Dt

(1, x, y).

The above holds in view of (6.3), (6.4), (6.6) and the fact that for t ≤ T , the Dt’s are C1,1 open

sets in R
d with the same C1,1 characteristics (R0(T )

−1/α,Λ0(T )
−1/α). The theorem is thus proved.

2

8 Large time heat kernel estimates

Recall that we have fixed a ball E centered at the origin and M > 1 is the constant in (6.5). Let

U be an arbitrary open set U ⊂ 1
4E and we let

pb,EU (t, x, y) :=
pbU (t, x, y)

hE(y)
,

which is strictly positive, bounded and continuous on (t, x, y) ∈ (0,∞)×U×U because pbU(t, x, y) is

strictly positive, bounded and continuous on (t, x, y) ∈ (0,∞)×U ×U and hE(y) is strictly positive

and continuous on E. For each x ∈ U , (t, y) 7→ pb,EU (t, x, y) is the transition density of (Xb,U ,Px)

with respect to the reference measure ξE and, for each y ∈ U , (t, x) 7→ pb,EU (t, x, y) is the transition

density of (X̂b,E,U ,Py), the dual process of Xb,U with respect to the reference measure ξE.

Let

P b,E,U
t f(x) :=

∫

U
pb,EU (t, x, y)f(y)ξE(dy) and P̂ b,E,U

t f(x) :=

∫

U
pb,EU (t, y, x)f(y)ξE(dy).

Let Lb,E
U and L̂b,E

U be the infinitesimal generators of the semigroups {P b,E,U
t } and {P̂ b,E,U

t } on

L2(U, ξE), respectively.

Note that, since for each t > 0, pb,EU (t, x, y) is bounded in U × U , it follows from Jentzsch’s

Theorem ([31, Theorem V.6.6 on page 337]) that the common value −λb,E,U
0 := supRe(σ(Lb,E

U )) =

supRe(σ(L̂b,E
U )) is an eigenvalue of multiplicity 1 for both Lb,E

U and L̂b,E
U , and that an eigenfunction

φb,EU of Lb,E
U associated with λb,E,U

0 can be chosen to be strictly positive with ‖φb,EU ‖L2(U,ξE(dx)) = 1

and an eigenfunction ψb,E
U of L̂b,E

U associated with λb,E,U
0 can be chosen to be strictly positive with

‖ψb,E
U ‖L2(U,ξE(dx)) = 1.

It is clear from the definition that, for any Borel function f ,

P b,E,U
t f(x) = P b,U

t f(x) for every x ∈ U and t > 0.

Thus the operators Lb|U and Lb,E
U have the same eigenvalues. In particular, the eigenvalue λb,E,U

0

does not depend on E and so from from now on we will denote it by λb,U0 .
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Definition 8.1 The semigroups {P b,E,U
t } and {P̂ b,E,U

t } are said to be intrinsically ultracontractive

if, for any t > 0, there exists a constant ct > 0 such that

pb,EU (t, x, y) ≤ ctφ
b,E
U (x)ψb,E

U (y) for x, y ∈ U.

It follows from [25, Theorem 2.5] that if {P b,E,U
t } and {P̂ b,E,U

t } are intrinsically ultracontractive

then for any t > 0 there exists a positive constant ct > 1 such that

pb,EU (t, x, y) ≥ c−1
t φb,EU (x)ψb,E

U (y) for x, y ∈ U. (8.1)

Theorem 8.2 For every B(x0, 2r) ⊂ U there exists a constant c = c(d, α, r,diam(U),M) > 0 such

that for every x ∈ D,

Ex

[∫ τbU

0
1B(x0,r)

(
Xb,U

t

)
dt

]
≥ cEx

[
τ bU

]
(8.2)

and

Ex

[∫ τ̂b,EU

0
1B(x0,r)

(
X̂b,E,U

t

)
dt

]
≥ cEx

[
τ̂ b,EU

]
. (8.3)

Proof. The method of the proof to be given below is now well-known. (See [10, 26]). For the

reader’s convenience, we present the details here. We give the proof of (8.3) only. The proof for

(8.2) is similar. Fix a ball B(x0, 2r) ⊂ U and put

B0 := B(x0, r/4), K1 := B(x0, r/2) and B2 := B(x0, r).

Let {θt, t > 0} be the shift operators of X̂b,E and we define stopping times Sn and Tn recursively

by

S1(ω) := 0,

Tn(ω) := Sn(ω) + τ̂ b,EU\K1
◦ θSn(ω) for Sn(ω) < τ̂ b,EU

and Sn+1(ω) := Tn(ω) + τ̂ b,EB2
◦ θTn(ω) for Tn(ω) < τ̂ b,EU .

Clearly Sn ≤ τ̂ b,EU . Let S := limn→∞ Sn ≤ τ̂ b,EU . On {S < τ̂ b,EU }, we must have Sn < Tn < Sn+1 for

every n ≥ 0. Using the fact that Px(τ̂
b,E
U <∞) = 1 for every x ∈ U and the quasi-left continuity of

X̂b,E,U , we have Px(S < τ̂ b,EU ) = 0. Therefore, for every x ∈ U ,

Px

(
lim
n→∞

Sn = lim
n→∞

Tn = τ̂ b,EU

)
= 1. (8.4)

For any x ∈ K1, by Proposition (7.1) we have

Ex

[
τ̂ b,EB2

]
≥ c0

∫

B(x0,r/2)

∫ 2rα

rα
p̂b,EB2

(t, x, y)dtdy ≥ c1 for every x ∈ K1.

Now it follows from the strong Markov property that

Ex [Sn+1 − Tn] = Ex

[
E
X̂b,E,U

Tn

[
τ̂ b,EB2

]
; Tn < τ̂ b,EU

]
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≥ c1Px

(
X̂b,E,U

Tn
∈ B0

)
= c1Ex

[
P
X̂b,E,U

Sn

(
X̂b,E,U

τ̂b,E
U\K1

∈ B0

)]
.

Note that for any x ∈ U \B2, by (6.9), we have

Px

(
X̂b,E,U

τ̂b,E
U\K1

∈ B0

)
=

∫

U\K1

Gb
U\K1

(y, x)

hE(x)

∫

B0

(
J(y, z)hE(z)

hE(y)
dz

)
ξE(dy)

≥ M−1A(d,−α)
∫

U\K1

Gb
U\K1

(y, x)

hE(x)

∫

B0

(
dz

(diam(U))d+α

)
ξE(dy)

= c2Ex

[
τ̂ b,EU\K1

]

for some constant c2 = c2(α, r,diam(U),M) > 0. It follows then

Ex [Sn+1 − Tn] ≥ c1c2Ex

[
E
X̂b,E,U

Sn

[
τ̂ b,EU\K1

]]
= c1c2Ex[Tn − Sn]. (8.5)

Since X̂b,E,U
t ∈ B2 for Tn < t < Sn+1, we have by (8.4)

Ex

[∫ τ̂b,EU

0
1B2

(
X̂b,E,U

t

)
dt

]
= Ex

[
∞∑

n=1

(∫ Tn

Sn

1B2

(
X̂b,E,U

t

)
dt+

∫ Sn+1

Tn

1B2

(
X̂b,E,U

t

)
dt

)]

≥ Ex

[
∞∑

n=1

(∫ Sn+1

Tn

1B2

(
X̂b,E,U

t

)
dt

)]

= Ex

[
∞∑

n=1

(Sn+1 − Tn)

]
.

Using (8.4) and (8.5) and noting that X̂b,E,U
t /∈ U \B2 for t ∈ [Tn, Sn+1), we get

Ex

[∫ τ̂b,EU

0
1B2

(
X̂b,E,U

t

)
dt

]
≥ c1c2Ex

[
∞∑

n=1

(Tn − Sn)

]

≥ c1c2Ex

[
∞∑

n=1

(∫ Tn

Sn

1U\B2

(
X̂b,E,U

t

)
dt+

∫ Sn+1

Tn

1U\B2

(
X̂b,E,U

t

)
dt

)]

= c1c2Ex

[∫ τ̂b,EU

0
1U\B2

(
X̂b,E,U

t

)
dt

]
.

Thus

Ex

[∫ τ̂b,EU

0
1B2

(
X̂b,E,U

t

)
dt

]
≥ c1 c2

1 + c1 c2
Ex

[
τ̂ b,EU

]
.

2

Theorem 8.3 {P b,E,U
t } and {P̂ b,E,U

t } are intrinsically ultracontractive.

Proof. Since ψb,E
U = eλ

b,U
0 P̂ b,E,U

1 ψb,E
U , it follows that ψb,E

U is strictly positive, bounded and contin-

uous in U . Theorem 8.2 implies that

Ex

[
τ̂ b,EU

]
≤ c1

∫

B2

Gb,E
U (z, y)

hE(y)
ψb,E
U (z)ξE(dz) ≤ c1

∫

U

Gb,E
U (z, y)

hE(y)
ψb,E
U (z)ξE(dz) =

c1

λb,U0

ψb,E
U (y). (8.6)
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Similarly,

Ex

[
τ bU
]
≤ c2

λb,U0

φb,EU (x). (8.7)

By the semigroup property and (1.3),

pb,EU (t, x, y) =

∫

U
pb,EU (t/3, x, z)

∫

U
pb,EU (t/3, z, w)pb,EU (t/3, w, y)ξE(dw)ξE(dz)

≤ c3t
−d/α

∫

U
pb,EU (t/3, x, z)ξE(dz)

∫

U
pb,EU (t/3, w, y)ξE(dw)

= c3t
−d/α

Px

(
τ b,EU > t/3

)
Py

(
τ̂ b,EU > t/3

)

≤ (9c3/t
2) t−d/α

Ex

[
τ bU
]
Ey

[
τ̂ b,EU

]
.

This together with (8.6)–(8.7) establishes the intrinsic ultracontractivity of {P b,E,U
t } and {P̂ b,E,U

t }.
2

Applying [25, Theorem 2.7], we obtain

Theorem 8.4 There exist positive constants c and ν such that

∣∣∣∣∣
M b,E

U etλ
b,U
0 pb,EU (t, x, y)

φb,EU (x)ψb,E
U (y)

− 1

∣∣∣∣∣ ≤ ce−νt, (t, x, y) ∈ (1,∞) × U × U (8.8)

where M b,E
U :=

∫
U φ

b,E
U (y)ψb,E

U (y)ξE(dy) ≤ 1.

Now we can present the

Proof of Theorem 1.3(ii). Assume that the ball E is large enough so that D ⊂ 1
4E. Since

φb,ED = eλ
b,D
0 P b,D

1 φb,ED and ψb,E
D = eλ

b,D
0 P̂ b,E,D

1 ψb,E
D , we have from Theorem 1.3(i) that on D,

φb,ED (x) ≍
(
1 ∧ δD(x)α/2

)∫

D

(
1 ∧ δD(y)α/2

)(
1 ∧ 1

|x− y|d+α

)
φb,ED (y)dy ≍ δD(x)

α/2 (8.9)

and

ψb,E
D (x) ≍

(
1 ∧ δD(x)α/2

) ∫

D

(
1 ∧ δD(y)α/2

)(
1 ∧ 1

|x− y|d+α

)
hE(y)

hE(x)
ψb,E
D (y)dy ≍ δD(x)

α/2.

(8.10)

Theorem 8.3 and (8.9)–(8.10) imply that

c−1
t δD(x)

α/2δD(y)
α/2 ≤ pb,ED (t, x, y) ≤ ctδD(x)

α/2δD(y)
α/2 for (t, x, y) ∈ (0,∞) ×D ×D,

and so

c−1
1 c−1

t δD(x)
α/2δD(y)

α/2 ≤ pbD(t, x, y) ≤ c1ctδD(x)
α/2δD(y)

α/2 for (t, x, y) ∈ (0,∞)×D ×D.

Furthermore, by Theorem 8.4 and (8.9), there exist c2 > 1 and T1 > 0 such that for all

(t, x, y) ∈ [T1,∞)×D ×D,

c−1
2 e−tλb,D

0 δD(x)
α/2 δD(y)

α/2 ≤ pb,ED (t, x, y) ≤ c2 e
−tλb,D

0 δD(x)
α/2 δD(y)

α/2,
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which implies that

c−1
3 e−tλb,D

0 δD(x)
α/2 δD(y)

α/2 ≤ pbD(t, x, y) ≤ c3 e
−tλb,D

0 δD(x)
α/2 δD(y)

α/2,

If T < T1, by Theorem 1.3(i), there is a constant c2 ≥ 1 such that

c−1
2 δD(x)

α/2 δD(y)
α/2 ≤ pbD(t, x, y) ≤ c2 δD(x)

α/2 δD(y)
α/2 for t ∈ [T, T1) and x, y ∈ D.

This establishes Theorem 1.3(ii). 2

Remark 8.5 (i) Using Corollary 1.4 and the argument of the proof of Lemma 6.1, (6.10) is, in

fact, true for all bounded open set U with exterior cone condition.

(ii) In view of Corollary 1.4, the estimate (4.8) and Lemma 4.1, we can deduce from (4.10) by

the dominated convergence theorem that Proposition 4.2 holds for general b with |b| ∈ Kd,α−1. 2
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