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Abstract

Suppose d > 2 and « € (1,2). Let D be a bounded C*! open set in R? and b an R%valued
function on R? whose components are in a certain Kato class of the rotationally symmetric a-
stable process. In this paper, we derive sharp two-sided heat kernel estimates for £ = A*/24p.V
in D with zero exterior condition. We also obtain the boundary Harnack principle for £° in D
with explicit decay rate.
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1 Introduction

Throughout this paper we assume d > 2, a € (1,2) and that X is a (rotationally) symmetric
a-stable process on R%. The infinitesimal generator of X is A%/2 := —(—A)*/2. We will use B(z,7)
to denote the open ball centered at z € R? with radius r > 0.

Definition 1.1 For a function f on R%, we define for r > 0,

|f1(y)
M (r) = sup/ — " dy.
f( ) zeRd J B(x,r) ‘.’L’ _y‘d+l_a

A function f on R? is said to belong to the Kato class Kyq_1 if lim, g M]‘E‘(T) =0.

Since 1 < a < 2, using Holder’s inequality, it is easy to see that for every p > d/(a — 1),
L>®(R%dz) + LP(RY dx) C Kga-1. Throughout this paper we will assume that b = (b!,---  b?)
is an R%valued function on R? such that |b| € Kga—1. Define L£b = A%/2 £ . V. Intuitively, the
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fundamental solution p®(t,x, %) of £® and the fundamental solution p(¢,z,y) of A%/2 which is also
the transition density of X, should be related by the following Duhamel’s formula:

t
zﬂaawzpwmwwﬁfjnﬁ@wwwquw@—&aww@. (1.1)
0 R4

Applying the above formula repeatedly, one expects that p’(t,x,y) can be expressed as an infinite
series in terms of p and its derivatives. This motivates the following definition. Define pg(t, x,y) =
p(t,x,y) and for k > 1,

t
pi(t, x,y) = /0 /]Rd Ph_1(s,2,2)b(2) - Vop(t — s, 2,y)dz. (1.2)

The following results are shown in [0, Theroem 1, Lemma 15, Lemma 23] and their proofs.
Here and in the sequel, we use := as a way of definition. For a,b € R, a A b := min{a,b} and
a Vb := max{a,b}.

Theorem 1.2 (i) There exist Ty > 0 and ¢; > 1 depending on b only through the rate at which
Mﬁj‘ (r) goes to zero such that Y p— p%(t, x,y) converges locally uniformly on (0, Ty] x R? x R?
to a positive jointly continuous function p®(t,z,y) and that on (0,Ty] x R? x RY,

t t
—1 ( ,—d/o b —dfoc n "
c <t /\|$_y|d+a> <p’(t,z,y) <1 <t /\|$_y|d+a>' (1.3)

Moreover, [gpa po(t,z,y)dy = 1 for every t € (0,Tp] and x € R?.

(ii) The function p°(t,z,y) defined in (i) can be extended uniquely to a positive jointly continuous
function on (0,00)xRYxR? so that for all s,t € (0,00) and (z,y) € RIxR?, [o, p"(t, 2, y)dy =

1 and
pb(s +t,x,y) = / pb(s,x,z)pb(t,z,y)dz. (1.4)
Rd
(iii) If we define
Fifa) = [ aan s (1.5

then for any f,g € C2(RY), the space of smooth functions with compact supports,

lim 75_1(Ptbf(:17)—f(il?))g(x)dw=/ (L°f)(@) g(x)da.

t10 Jpd R4

Thus p°(t,z,y) is the fundamental solution of LP in distributional sense.

Here and in the rest of this paper, the meaning of the phrase “depending on b only via the rate
at which M, ‘%“ (1) goes to zero” is that the statement is true for any R%valued function b on R? with

M|%| (r) < My (r) forallr>0.

It is easy to show (see Proposition 23 below) that the operators {P?;¢ > 0} defined by (L)) form
a Feller semigroup and so there exists a conservative Feller process X = {Xf’ ,t>0,P,x € Rd}



in R? such that P} f(x) = E,[f(X?)]. The process X’ is in general non-symmetric. We call X® an
a-stable process with drift b, since its infinitesimal generator is £°.

For any open subset D C R%, we define 7, = inf{t > 0: X} ¢ D}. We will use X>? to denote
the subprocess of X® in D; that is, Xf’D(w) = XP(w) if t < 7% (w) and Xf’D(w) =0 if t > 74 (w),
where 0 is a cemetery state. The subprocess of X in D will be denoted by X?. Throughout this
paper, we use the convention that for every function f, we extend its definition to 0 by setting
f(9) = 0. The infinitesimal generator of X is £°|p, that is, £? on D with zero exterior condition.
The process X»P has a transition density plj’j (t,z,y) with respect to the Lebesgue measure. (See
B3) below.) The transition density plj’j (t,z,9) of X»P is the fundamental solution of £°|p. The
transition density of X” is denoted by pp(t,=,y) and it is the fundamental solution of £|p.

The purpose of this paper is to establish the following sharp two-sided estimates on plj’j (t,z,y)
in Theorem [[L3l To state this theorem, we first recall that an open set D in R? is said to be a
CU1 open set if there exist a localization radius Ry > 0 and a constant Ag > 0 such that for every
z € 0D, there exist a Cl'-function ¢ = ¢, : R¥™1 — R satisfying ¢(0) = 0, V¢(0) = (0,...,0),
Voo < Ao, |Vo(x) — Vo(2)| < Ag|z — 2|, and an orthonormal coordinate system CS,: y =
(Y1, yYd—1,Yd) = (¥, yq) with its origin at z such that

B(z,Ry))ND ={y € B(0,Rp) in CS, :yq > o(y)}.

The pair (Rg, Ag) is called the characteristics of the C! open set D. We remark that in some
literatures, the C1'! open set defined above is called a uniform C' open set as (Rg, Ag) is universal
for every z € OD. For x € D, let dp(x) denote the Euclidean distance between z and dD. Note
that a bounded C! open set may be disconnected.

Theorem 1.3 Let D be a bounded C™' open subset of RY with CY characteristics (Ro, Ag). Define

o) = Op(z)*/? p(y)™/? —d/a t
fD(ta 7y)_ (1/\ \/E > (1/\ \/E > <t /\|$_y|d+a>'

For each T > 0, there are constants ¢; = ¢1(T, Ry, Ao, d, o, diam(D),b) > 1 and co = co(T,d, o, D, b) >
1 with the dependence on b only through the rate at which Mﬁ" (r) goes to zero such that
(i) on (0,7] x D x D,
Cl_lfD(t7 €z, y) < pr(tv €, y) < leD(t7 €Z, y)7

(ii) on [T,00) x D x D,
b,D b,D
eyt em™T 5p(x)* 2 op(y)*? < ph(t,a,y) < coem0T 5p(x)*26p(y)*/?,
where —)\S’D :=supRe(c(L%p)) < 0.

Here diam(D) denotes the diameter of D. At first glance, one might think that the estimates
in Theorem can be obtained from the estimates for pp(t,z,y) by using a Duhamel’s formula
similar to (LI} with p?, p and R? replaced by pr, pp and D, respectively. Unfortunately such an
approach does not work for pr (t,z,y). This is because unlike the whole space case, we do not have
a good control on Vzpr(s, z,y) when z is near the boundary of D. When D = R, p(t, z,y) is the



transition density of the symmetric a-stable process and there is a nice bound for V. p(t, z,y). This
is the key reason why the result in Theorem [[.2[i) can be established by using Duhamel’s formula.
Instead, we establish Theorem by using probabilistic means through the Feller process X°.
More specifically, we adapt the road map outlined in our paper [9] that establishes sharp two-sided
Dirichlet heat kernel estimates for symmetric a-stable processes in C! open sets. Clearly, many
new and major difficulties arise when adapting the strategy outlined in [9] to X°?. Symmetric stable
processes are Lévy processes that are rotationally symmetric and self-similar. The Feller process
X" here is typically non-symmetric, which is the main difficulty that we have to overcome. In
addition, X° is neither self-similar nor rotationally symmetric. Specifically, our approach consists
of the following four ingredients:

(i) determine the Lévy system of X that describes how the process jumps;

(ii) derive an approximate stable-scaling property of X® in bounded C'! open sets, which will be
used to derive heat kernel estimates in bounded C''! open sets for small time ¢ € (0, 7] from
that at time t = 1;

(iii) establish two-sided sharp estimates with explicit boundary decay rate on the Green functions
of X? and its suitable dual process in C'' open sets with sufficiently small diameter;

(iv) prove the intrinsic ultracontractivity of (the non-symmetric process) X? in bounded open sets,
which will give sharp two-sided Dirichlet heat kernel estimates for large time.

In step (ii), we choose a large ball E centered at the origin so that our bounded C'!' open set
D is contained in %E. Then we derive heat kernel estimates in D at time ¢ = 1 carefully so that
the constants depend on the quantity M defined in (G.5]), not on the diameter of D directly. Note
that the constant M has the correct scaling property, while the diameter of D does not. In fact,
the constant ¢; in Theorem [L3] depends on the diameter of D only through M.

We also establish the boundary Harnack inequality for X® and its suitable dual process in C':*
open sets with explicit boundary decay rate (Theorem [6:2). However we like to point out that
Theorem is not used in the proof of Theorem

By integrating the two-sided heat kernel estimates in Theorem with respect to ¢, one can

easily get the following estimates on the Green function GY% (z,y) = OOO P (t,z,y)dt.

Corollary 1.4 Let D be a bounded C%' open set in R%. Then there is a constant ¢; = ca(D,d,a,b) >
1 with the dependence on b only through the rate at which Mﬁ;' (r) goes to zero such that on D x D,

11 <1AaD<x>a/2aD<y>a/2> < Ghla) < o= <M5D<x>a/zap<y>a/2>,

c1 o —yl==e x — yld—e

The sharp two-sided estimates for pp (¢, z,y), corresponding to the case b = 0 in Theorem [[3]
were first established in [9]. Theorem indicates that short time Dirichlet heat kernel estimates
for the fractional Laplacian in bounded CU! open sets are stable under gradient perturbations.
Such stability should hold for much more general open sets.

We say that an open set D is k-fat if there exists an ry > 0 such that for every x € D
and r € (0,7¢], there is some y such that B(y,xr) C B(xz,r) N D. The pair (rp,x) is called the
characteristics of the k-fat open set D.



Conjecture 1.5 Let T > 0 and D be a bounded r-fat open subset of R%. Then there is a constant
c1 > 1 depending only on T', D, a and b with the dependence on b only through the rate at which
Mﬁ;' (r) goes to zero such that

cl_lpD(ta‘Tay) S pb(t7x7y) S ClpD(t7x7y) fOT’ te (07T] and €,y € D

and
¢ 'Gp(z,y) < Gh(z,y) < aiGpla,y) forz,y € D.

In the remainder of this paper, the constants Cy, Cs, Cs, Cy will be fixed throughout this paper.
The lower case constants cg, ¢1, co, ... can change from one appearance to another. The dependence
of the constants on the dimension d and the stability index o will not be always mentioned explicitly.
We will use dz to denote the Lebesgue measure in R%. For a Borel set A C R?, we also use |A]
to denote its Lebesgue measure. The space of continuous functions on R? will be denoted as
C(R%), while Cy(R?) and Cu(R?) denote the space of bounded continuous functions on R¢ and
the space of continuous functions on R% that vanish at infinity, respectively. For two non-negative
functions f and g, the notation f < g means that there are positive constants ¢; and co so that
c19(x) < f(x) < ceg(x) in the common domain of definition for f and g.

2 Feller property and Lévy system

Recall that d > 2 and o € (1,2). A (rotationally) symmetric a-stable process X = {X;,t >
0,P,,x € ]Rd} in R% is a Lévy process such that

E. [eif'(Xt_XO)} = ¢ tiel® for every z € R? and ¢ € R%,

The infinitesimal generator of this process X is the fractional Laplacian A%/2, which is a prototype
of nonlocal operators. The fractional Laplacian can be written in the form

A(d, —a)

A%y (z) = lim (u(y) —u(x))m Y,

(2.1)
10 JiyeRd: [y—z|>e}

where A(d, —a) := a20~1x=d/27(H2)0(1 - 9)~ L
We will use p(t,z,y) to denote the transition density of X (or equivalently the heat kernel of
the fractional Laplacian A%/2). Tt is well-known (see, e.g., [2, [12]) that

t

W on (0, OO) X Rd X Rd.

p(t,z,y) = =Y
The next two lemmas will be used later.

Lemma 2.1 If f is a function belonging to K4 n—1, then for any compact subset K of RY,

sup/ Lyd)_ady<oo.
r€R4 K’x_y’

Proof. This follows immediately from the fact that d — o < d 4+ 1 — a. We omit the details. O

Recall that we are assuming that b is an R%valued function on R? such that ] € Kga—1-



Lemma 2.2 If f is a function belonging to K4 n—1, then

t
lim sup / PP f|(z)ds = 0.
0

t—0 rERd

Proof. By (L3,

t t )]
lim Sup/ Psbf z)ds < ¢1 lim sup/ s/ 7dy+s—d/a/ F)ldy | ds.
t—=0 . crd Jo /() =0 . cpra Jo B(z,s/)e ly — x|dte B(m,sl/a)‘ ()

So it suffices to show that the right hand side is zero. Clearly, for any s < 1, we have

_ /W)l
f(y)|dy < (s¥*)HH1= qup / — = dy. 2.2
/B(x,sl/a)’ )l (=) Bap) |y — x|tz (22)

zeR4

Now applying [34] Lemma 1.1], we have

|f(y)] 1/ayd4+1—a 1/ay—(d+a) 1/a—2
sup / T a=dy < ca(s S =98 . 2.3
S Jnastveye g — ] (s7%) (s7%) (2.3)
Now the conclusion follows immediately from (Z2])-(23)). 0

By the semigroup property of pb(t,x,y) and (3]), there are constants c1,cy > 1 such that on
(0,00) x RY x RY,

t t
—1_—cot [ y—d/a b cot | 4j—d/a
cie t N ——F—— | <p’(t,z < cse t N————— . 2.4
' ( Iw—yl‘”o‘)_p(’ ) =a < Iw—yl‘“a) 24
Proposition 2.3 The family of operators {P};t > 0} defined by (L3H) forms a Feller semigroup.
Moreover, it satisfies the strong Feller property; that is, for each t > 0, Ptb f maps bounded measur-
able functions to continuous functions.

Proof. Since p°(t,,y) is continuous, by the bounded convergence theorem, PP enjoys the strong
Feller property. Moreover, for every f € Cuo(R?) and t > 0,

t
lim | P} < i cat / ¢4l p dy =0
i PP < Jim e [ (67000 A ) Gt o)y
and so PP f € Coo(R?). By ([@4)), we have

¢
sup sup P, (|X? — X§| > ) < 1% sup sup / <t_d/a A d+a> dy
t<to zRd 1<to zeRd J {yeRd:|u—y|>5} |z -yl

¢ a1 (- t w [ a1 1

— c21l0 — —a/o coto —

= c3e sup/ T <t A > dr < ¢qe / u <1 A ) du
t<to Js rd+a 5ty udte

for some ¢3 = ¢3(d) > 0 and ¢4 = c4(d) > 0. Thus

lim sup sup P, (| X2 — X% > 6) = 0. (2.5)
tod0 <ty zeRrd



For every f € Cy(R?), x € R and £ > 0, there is a 6 > 0 so that |f(y) — f(z)| < ¢ for every
y € B(x,0). Therefore we have by (2.3]),

fim [P f(2) — f(2)] = lim

)¢ = @)y

tl0
< lim P (t 2, y)| f(y) — f(@)ldy + 1im 2| f[|oo Pu(|XP — 2| > 6)
t10 {yeR4:|y—z|<5} t40
< &

Therefore for every f € Cy(RY) and x € RY, limyjo PP f(x) = f(z). This completes the proof of the
proposition. O

We will need the next result, which is an extension of Theorem [L2[(iii).

Proposition 2.4 For any f € C°(R%) and g € Coo (R?), we have

i [P (@) ~ f@)g(o)dn = [ (LD @g()da.

tl0 JRrd Rd

Proof. This proposition can be proved by following the proof of [6, Theorem 1], with some obvious
modifications. Indeed, one can follow the same argument of the proof of [6] Theorem 1] until the
second display on [6, p. 195] with f € C®(R?) and g € Coo(R?). Let ¢ > 0 and use the same
notations as in [0, p. 195] except that K := {z : dist(z,K;) < 1} and we ignore K. Since
h(z,y) = Vf(y)g(z) is still uniformly continuous, there exists a 6 > 0 such that for all x,y, z with
|z — 2| < ¢ and |y — z| < d, we have that |h(z,y) — h(z,z)| < e. Thus the third display on [0 p.
195] can be modified as

‘It — / b(z) - Vf(z)g(z)dz‘

R4

t f—
S/ / / /p(t 8,:17,z)P(s,Z,y)ds‘b(z)uh(x,y)—h(z,z)\da:dydz
Re JRA JRA Jo t
t
§2Hh”/ / </ p(t—s,x,z)dg;>/ Mdsfb(Z)]dydz
¢ JKy R4 0 t
t —
+2HhH/ // /p(t 92 AP Y) 4132 dedyd
K (B(2,0)x B(2,6))¢ J0 t
t J—
JFE/ // /p(t 87%2)])(8’Z’y)ds!b(z)!dxdydz.
K B(2,6)x B(2,8) 40 t

The remainder of the proof is the same as that of the proof of [6, Theorem 1]. O

The Feller process X® possesses a Lévy system (see [32]), which describes how X° jumps.
Intuitively, since the infinitesimal generator of X is £°, X? should satisfy

dX} = dX; +b(X})dt.

So X? should have the same Lévy system as that of X, as the drift does not contribute to the
jumps. This is indeed true and we are going to give a rigorous proof.



It is well known that the symmetric stable process X has Lévy intensity function
J(x,y) = Ald, —a)lz —y| 7+

The Lévy intensity function gives rise to a Lévy system (N, H) for X, where N(x,dy) = J(z,y)dy
and H; = t, which describes the jumps of the process X: for any z € R? and any non-negative
measurable function f on Ry x R? x R? vanishing on {(s,z,y) € Ry x R* x R? : 2 = y} and
stopping time T (with respect to the filtration of X),

e |3 160 | =5 [ [ ([ s xematxey) as).

s<T

(See, for example, [12], Proof of Lemma 4.7] and [I3] Appendix A].)
We first show that X? is a solution to the martingale problem of L.

Theorem 2.5 For every x € R? and every f € C°(RY),
t

Ml = FOX]) = 1K)~ [ 20 ds
0

1$ a martingale under P.

Proof. Define the adjoint operator Ptb’* of P} with respect to the Lebesgue measure by
Py f(x) = /Rd P (t,y, ) f(y)dy.
It follows immediately from (3] and the continuity of pb(¢,z,y) that, for any g € Cuo(R?) and
s > 0, both PPg and Pé”*g are in Cso(RY). Thus, for any f,g € C®(R%) and s > 0, by applying
Proposition 2.4] with h = P>+ g and (4], we get that
tim [ NP (@) — PPE@)g(@)de =tm [ NPV () — f(@) PP g(a)ds
tl0 Jrd tl0 Jrd

-/, L f(x) Py g(x)de = /]R Eq [ﬁbf(Xi’)] g(x)dw

which implies that
[ #brw - st = [ B[ [ @ pxs] s 26)
Using the strong Feller property of Ptb, Lemmas 2.1] and 2.2}, we can easily see that the function
e g0~ )~ | [ 2pcchas)| . ]

is continuous, and thus is identically zero on R? by (Z6). It follows that for any f € C2°(R?) and
z € RY, M7 is a martingale with respect to P,. O



Theorem in particular implies that X} = (Xf ’1, e ,Xf ’d) is a semi-martingale. By Ito’s
formula, we have that, for any f € C2°(R%),

FXD) — F(XD) Z/anb Xb“ans AL (2.7)
where d
ns(f) = FXD) = f(X2) =D 0 f (X )(xh — X (2.8)
=1
and
S / 010, F (X )A((XP)e, (XPI)e).. (2.9)
1,j=1

Now suppose that A and B are two bounded closed sets having a positive distance from
each other. Let f € C*(R%) with f = 0 on A and f = 1 on B. Then we know that Ntf =
fg 14(X? )dM{ is a martingale. Combining Theorem 25 and 7)—(E3J) with @I), we get that

M= 3 f(xd) - /t1A<X§> (ao2f(xD)) ds

s<t
= LAX2)F(XD) — [ 1a(XD) | fly)J (XL, y)dyds.
> [ [

By taking a sequence of functions f,, € C®°(R?%) with f,, =0 on A, f, =1 on B and f, | 15, we
get that, for any z € RY,

SESjtlA(XS_)lB(X,?)— /0 1a(X?) /B J(XP y)dyds

is a martingale with respect to P,. Thus,

Eo [ Y 1a(X2)1p(XD)| =E, [// 14(X2)15( )J(Xg,y)dyds].
R4

s<t
Using this and a routine measure theoretic arguments, we get
b b ! b b
Zf(Xs—7Xs) =E, |:/ f(me)J(sty)dde]
s<t 0 JRre

for any non-negative measurable function f on R? x R? vanishing on {(z,y) € R x R? : z = y}.
Finally following the same arguments as in [I12) Lemma 4.7] and [I3, Appendix A], we get

Theorem 2.6 X° has the same Lévy system (N,H) as X, that is, for any x € R% and any non-
negative measurable function f on Ry x R? x R? vanishing on {(s,z,y) € Ry x RE x R : 2 = y}
and stopping time T (with respect to the filtration of X°),

e | > (s, X0, =E, U;( f(s, X8, y)J( g,y)dy> ds] . (2.10)

s<T



For any open subset E of R? let Ey = E U {0}, where 0 is the cemetery point. Define for
z,y €k,
NE(w,dy) i= Sy, N(w.0)i= [ ey

c

and HF :=t. Then it follows from the theorem above that (N¥, HF) is a Lévy system for X%%
that is, for any x € FE, any non-negative measurable function f on R, x E X Ey vanishing on
{(s,2,y) ER. x E x E: x =y} and stopping time T (with respect to the filtration of XF),

T
E, | > f(s, X2, X0F)| =E, [ / < f(s,XS’E,wNE(XS’E,dy)) dH;E]. (2.11)
0 Ey

s<T

3 Subprocess of X

In this section we study some basic properties of subprocesses of X? in open subsets. These
properties will be used in later sections.

Lemma 3.1 For any é > 0, we have

lim sup P, (72 <s) =0.
510 xERRi 3 Bled) = )

Proof. By the strong Markov property of X? (see, e.g., [3, pp. 43-44]), we have for every = € R?,

Pu(rhes < 8) < Po (Tg(x,é) <s Xbe B(:L",(S/Q)) + B, (Xg c B(x,5/2)c>

< E, [PX ) <|X§_Tb ~xb > 5/2) T ) < s} + P, (|X§ — XY > 5/2)
"B(z,8) B(,9) ’
< 2supsup P, <|Xf - X} > 5/2) . (3.1)
t<s zcRd
Now the conclusion of the lemma follows from (Z2.5]). O

A point z on the boundary dG of a Borel set GG is said to be a regular boundary point with
respect to X if PZ(Tg = 0) = 1. A Borel set G is said to be regular with respect to X if every
point in G is a regular boundary point with respect to X?.

Proposition 3.2 Suppose that G is a Borel set of R and z € OG. If there is a cone A with vertex
z such that int(A) N B(z,r) C G° for some r > 0, then z is a regular boundary point of G with
respect to X b,

Proof. This results follows from (3]) and Blumenthal’s zero-one law by a routine argument. For
example, the reader can follow the argument in the proof of [24] Proposition 2.2]. Even though [24],
Proposition 2.2] is stated for open sets, the proof there works for Borel sets. We omit the details.
Od

This result implies that all bounded Lipschitz open sets, and in particular, all bounded C'!
open sets, are regular with respect to X?. Repeating the argument in the second part of the proof
of [T6, Theorem 1.23], we immediately get the following result.

10



Proposition 3.3 Suppose that D is an open set in R® and f is a bounded Borel function on 0D.
If z is a reqular boundary point of D with respect to X° and f is continuous at z, then

lim E, [f(XTb%);Tg < oo] = f(2).

Dox—z
Let
b L b b b ) b b b
kEp(t,xz,y) == By [p (t =7, X2, y); Th < t} and pp(t,z,y) = p’(t,z,y) —kp(t,z,y). (3.2)

Then plb(t, x,y) is the transition density of X»”. This is because by the strong Markov property
of X, for every t > 0 and Borel set A C R,

PP € 4) = [ ity (3.3)

We will use {Ptb’D} to denote the semigroup of X and £’|p to denote the infinitesimal generator
of {Ptb’D}. Using some standard arguments (for example, [4], [16]), we can show the following.

Theorem 3.4 Let D be an open set in R?. The transition density pr(t,m,y) s jointly continuous
on (0,00) x D x D. For everyt >0 and s > 0,

Po(t + 5,2,y) = /D Po(t, 2, 2 (s, 2, y)dz. (3.4)

If = is a regular boundary point of D with respect to X, then for any t > 0 and y € D,
1imD9w—>z pr(t,JE,y) =0.

Proof. Note that by (2.4]), there exist ¢1,ce > 0 such that for all g > 0 and § > 0,

up up T —d t t
b cat /(]{ cato 0
S S D (tv 7y) < e sup sup <t A 7> < cie < ) (3.5)
t<to |z—y|>d t<to |z—y|>5 ‘LZ' — y‘d-i-oe — sd+o 00

We first show that k% (t,z, -) is jointly continuous on (0,00) x D x D. For any § > 0, define
Ds = {x € D : dist(z, D) < §}. For 0 < s <r and x,y € Dy, define

h(s,r,x,y) = Ex |:pb(7, - Tngbb 7y)7 s < T% < T:| .
D

T

Note that
Ew[h(svrv ng)] = Ex[h(sara Xg7y);3 < 7—%] —|—Ex[h(s,r, X57y);3 > T%]
= h(s,r+s,z,y) + Ex[h(s,r, Xf,y); s = T%)]
and

kb (t,,y) = h(0,t,,y)
= h(s,t,,y) +Ex [p°(t = 75, X7y )i 7h < 8]
D

T

= Eiﬂ[h(svt - 87X57y)] _Em[h(s7t - S7Xg7y);7—% < S] +EIE pb(t - T?%ngvy)a T?) < S] .
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For all t1,t; € (0,00), by @3, p°(r,2,y) is bounded on (0,%3] x D® x Ds by a constant c;.
Consequently, h(s,r,x,y) is bounded by ¢3 for all z,y € Ds and s, € (0,t3] with s < r A (¢1/3).
Thus we have from the above display as well as [3.0]) that for all ¢ € [t1,t2], s < t1/2 and =,y € Ds,

|k‘%(t,$,y) —E;[h(s,t — s,Xf,y)H < 2631%(7’,% <) < 2c3 su% ]P)Z(T%(Z’é) <s),
z€R

which by Lemma Bl goes to 0 as s — 0 (uniformly in (¢, z,y) € [ti,t2] x Ds x Ds). Since pb(t, z,y)
is jointly continuous, it follows from the bounded convergence theorem that E,[h(s,t — s, X?,y)] is
jointly continuous in (s,t,y) € [0,¢1/3] X [t1,t2] X Ds. On the other hand, for (s,t,y) in any locally
compact subset of (0,¢1/3) x [t1,t2] X Ds, Ex[h(s,t — s, X2, y)] = [pap(s, 2, 2)h(s,t — s,2,y)dy is
equi-continuous in x. Therefore E,[h(s,t — s, X?,y)] is jointly continuous in (s,t,z,y) € (0,t1/3) x
[t1,t2] x Ds x Ds. Consequently, k% (¢, z,y) is jointly continuous in (s,t,y) € [0,1/3] X [t1,t2] X Ds
and hence on (0,00) x D x D. Since pb(t,x,y) is jointly continuous, we can now conclude that
p%(t,:z:,y) is jointly continuous on (0,00) x D x D.

By Proposition [3.3] the last assertion of the theorem can be proved using the argument in the
last paragraph of the proof of [16, Theorem 2.4]. We omit the details. O

The next result is a short time lower bound estimate for pr(t,m,y) near the diagonal. The
technique used in its proof is well-known. We give the proof here to demonstrate that symmetry
of the process is not needed.

Proposition 3.5 For any a1 € (0,1), ag > 0, a3 > 0 and R > 0, there is a constant ¢ =
c(d, o, ay,a2,as, R,b) > 0 with the dependence on b only via the rate at which M“g“ (r) goes to zero

such that such that for all o € R and r € (0, R],

p%(xw)(t,:n,y) > ot for all x,y € B(xg,a1r) and t € [agr®, agr?]. (3.6)

Proof. Let k := as/(2a3) and B, := B(zg,r). We first show that there is a constant ¢; € (0, 1) so
that (3:6) holds for all » > 0, x,y € B(xg,a17) and t € [k c17®, e17¢).

For r > 0, t € [ker®, e17?], and z,y € B(xg,a1r), since |z — y| < 2a17 < 2a1(key )~ VotV
and t < ¢;r® < R%, we have by (24]) and (3.2),

1

t— 70
dfo,— - By
plfgr (t,x,y) > czclJr foy=dfe _ c.|, Lo <y (t— T%T) LN

|X£b - y|d+a 7

T

(3.7)

where the positive constants ¢; = ¢;(d, a, a1,a9,as, R,b),i = 2,3, are independent of ¢; € (0, 1].
Observe that
]be —yl >0 —=ay)r fort — 7 <t <er,
B,

T

and so b b 1+d/
@
t— B, < t— 7B, < G t—d/a‘ (38)
X0, —yldte T ((1—ay)r))dte = (1 —ap)tte

TB,

Note that if ¢; < ((1 —aq)/2)%, by 24), for t < 172,

P, (X0 ¢ Bl (1 - ar/2) = | Ptz )y

B(z,(1—a1)r/2)c

12



t
f
B(a,(1—ay)r/2)e [T —y[d+e

where ¢4 is independent of ¢;. Now by the same argument as in the proof of Lemma [B.1] we have

t
dz < c4— < ¢q0p
TOC

]P(E <Tg(:c,(1—a1)r) S t) S 26461. (39)

Consequently, we have from (B7)—33),

1+d Cl+d/a
Ph,(t2,y) = <ch1+ /o - 03(1—1¢1W1P’x <T%T < t)) f—d/a

1+d/a
1+d/a Cq b —d/o
<0201 €3 (1 _ al)d—i—a Py <TB(w,(1—a1)T) < t>> t

1+d C1 _
> cl+ /o <(32 — 26403W> 4/

v

Clearly we can choose ¢; < ag A ((1 —aq)/2)* small so that plj’gr (t,x,y) > cst~%*. This establishes
B8) for any zg € R%, r > 0 and t € [keyr®, e17?).

Now for r > 0 and t € [aor®, asr®], define ky = [ag/c1] + 1. Here for a > 1, [a] denotes
the largest integer that does not exceed a. Then, since ¢; < ag, t/ky € [kcir®, c1r®]. Using the
semigroup property ([B.4) ko times, we conclude that for all z,y € B(zg,air) and ¢ € [agr?®, azr®],

b
pB(x()’r) (t7 xz, y)

= / / p%(x07T)(t/ko,m,w1)...p%(xw)(t/ko,wn_l,y)dwl...dwn_l
B(zo,r) B(zo,r)

> / / p%(x07T)(t/ko,m,w1)...p%(xw)(t/ko,wn_l,y)dw1...dwn_l
B(zog,a11) B(zo,a1r)

ko—1
> Cﬁt_d/a.

> et /o)™ (es(t/ko) ™™ |B(0,1)|(arr)")
The proof of (B.0]) is now complete. O

Using the domain monotonicity of pl]j, the semigroup property ([B.4]) and the Lévy system of
X" the above proposition yields the following.

Corollary 3.6 For every open subset D C RY, plj:,(t,x,y) 1s strictly positive.

Proof. For z € D, denote by D(x) the connected component of D that contains z. If y € D(z),
using a chaining argument and Proposition B.5] we have

If y ¢ D(x), then by using the strong Markov property and the Lévy system (ZI0) of X?,

pht,z,y) = B pr(t_T?)(mng%(z)?y); Thiy <t

13



= [p%(t - Tg(m)’XTbgm’y);TbD(w) = t’Xbe:'Jm © D(y)}
t
> / / pr(x)(S,:E,Z) (/ J(z,w)pr(y) (t— S,w,y)dw> dzds > 0.
0 JD(x) D(y)
The corollary is thus proved. O

In the remainder of this section we assume that D is a bounded open set in R?. The proof of
the next lemma is standard. For example, see [23, Lemma 6.1].

Lemma 3.7 There exist positive constants C1 and Cy depending only on d, o, diam(D) and b with
the dependence on b only through the rate at which M‘%“ (r) goes to zero such that

Phlt,z,y) < Cre™ @, (t,3,y) € (1,00) x D x D.
Proof. Put L := diam(D). By (3], for every x € D we have

P (rh < 1) > P, (X! € R4\ D) = /Rd\pr(l,x,y)dy

1 1
>c IAN—— dyzc/ <1/\—>dz>0.
1/Rd\D< |$—y|d+°‘> oes oy |z|dto

sup/ (1,2, y)dy = supPu(rh > 1) < 1.
z€D JD zeD

Thus

The Markov property of X then implies that there exist positive constants ¢ and c3 such that
/ P (t, z,y)dy < cpe™ 3 for (t,x) € (0,00) x D.
D

It follows from (I3 that there exists ¢4 > 0 such that p%(1,2,y) < p°(1,2,y) < ¢4 for every
(x,y) € D x D. Thus for any (t,z,y) € (1,00) x D x D, we have

shit.e) = |

Pyt —1,2,2)p% (1, z,y)dz < C4/ Pt — 1,2, 2)dz < cyeqe” Y,
D D

Combining the result above with ([3) we know that there exists a positive constant ¢; =
c1(d, a, diam(D), b) with the dependence on b only through the rate at which M |%‘| (r) goes to zero
such that for any (¢, x,y) € (0,00) x D x D,

_d t
Phlt,z,y) < <t o A W) . (3.10)

Therefore the Green function GI]:) (z,y) = fooo plb(t, x,y)dt is finite and continuous off the diagonal
of D x D and

Ghlx,y) < e (3.11)

|z — yli=e
for some positive constant cy = ¢y(d, o, diam(D), b) with the dependence on b only through the rate
at which M (r) goes to zero.
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4 Uniform estimates on Green functions

Let

gp(z,y) = ! (1 A

e —ylde

dp(x)dp(y) ) o/ .

|z —y?

The following lemma is needed in deriving sharp bounds on the Green function Gl(’] when U is some
small C1! open set. It can be regarded as a new type of 3G estimates.

Lemma 4.1 There exists a positive constant Cs = C3(d, ) such that for all x,y,z € D,

gp(z,9) 1 1
_JEVmIl L 4.1
gD(wa) ‘Z — y’ A 5D(Z) = C39D(:an) (‘Z’ — Z’d+1_a + ‘Z — y’d+1_a ( )
and
gp(w, 2) 9p(2,y) gp(x,y) 1 1
< . 4.2
=700 o=yl Adn(@) = Ta—ylAdp@) \fo—apie T p—ga ) 42

Proof. Put r(x,y) = 0p(z) + dp(y) + |z — y|. Note that for a,b > 0,

ab ab

< < . 4.
arp SNt =2T (43)
Moreover for x,y € D, since
5p(x)* < 6p(x)(6p(y) + |z — yl) < dp(2)dp(y) + 6p(x)*/2 + |z — y|*/2,
one has
dp(x)* < 20p(x)ép(y) + = —y[*.
It follows from these observations that
dp(7)dp(y) < 5D(1’3)5D(y)> dp(x)dp(y)
L (AN < L 4.4
e =\ TR ) SR e “4)
Consequently, we have
1 5p()/26p(y)*/?
T,y) < 4.5
90(09) = i (i) 45)
Now
ap(. 2) gp(2,y)
"z =yl Adp(z)

« @ o d—a
— gD(ﬂf,y) |Z_y|+5D(Z) 5D(Z) ’I"(:I;"y) < |33‘ y| >

|z —ylop(z) r(z,2)*r(2,9)* \|z—2| |z -y
r(y,z) 6p(2)* " r(z,y)” |z — | e
( )

‘Z_y‘ T(‘Taz)ar(z7y)a .Z'—Z‘ ’Z_y‘

ey @) <5D<z>r<x,y>>“‘l< z —y| >d (46)

|2 = ylr(z,z) \r(z,2)r(zy) |z = 2] - [z =y

< gD(x7y)
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Since r(x,y) < r(z,z) + r(z,v),

dp(z)r(z,y) dp(z) dp(z)

< < 2.
M@ ey) = () )
On the other hand, since dp(y) < dp(x) + |z — yl,
ray) sl 0@ e = el + (= yl+ p(@)
lz—ylr(z,z) = = [z—ylr(z,2) ~ |z —ylr(z,2)
2 2 2 2
< < .
r(z,z) lz—yl 7w =zl |z -yl

Hence we deduce from (6] that

gp(z,y)
|z =yl A dp(2)

o (1 1 )( |z —y| )d_a
< 2%p(z,y) +
o=z " |z—yl) \lz—2| |z -yl
et (s ) (e )
B Nz =2 |z —yl) \|z =2t |z —ylde

1 1
< C2gD(‘Tay) |l‘ — z|d+1_a + |Z _ y|d+1—a ’

gp(z, 2)

where ¢; and ¢ are positive constants depending only on d and «. This proves (.T]).
Now we show that (£2]) holds. Note that by (4.3,

9p(z,2) 9p(2,9)
[z — 2| Aép(z) |z —y| A dp(z)
Sp(x)*/?6p(y)*/? [z — 2] |z —y dp(2)”
|z — 2|z —yldtime (jz — 2[ Adp(2)) (]2 — Y| A dp(2)) 7z, 2)* (2, )"
o ld+l—a
_ gy |z —y| e (4.7)
[z —y|Adp(z) |z —2|HH70)z — yldtize
where
eyl Adp() e[|z~ y] ()" r(,9)°
|z —y| (Jz = 2| Adp(@))(|z =yl A dp(2)) r(z, 2)*r(z,y)*
It follows from (43]) and the fact that |x — z| + dp(2) < r(x, z) that
7 = [z —y|dp(z) |z — 2| [z —yl(jz — 2|+ dp(2))(|z — Y[+ 0p(2)) dp(2)*r(z,y)”
|z =yl (|z =yl + dp(z)) (lz = 2[0p(2))(|z — y[p(2)) r(z,z)r(z,y)*
op(2)* r(a,y)*! 1 1 1
= < « < 2.
T e e e VP A E
The inequality ([£2]) now follows from (7). O
Recall that Gp is the Green function of X2. Tt is known that
d
V.Gp(z,y)| £ ————Gp(z,y). 4.8
V-G ()] < TG (eut) (4.9

(See [8, Corollary 3.3].) Recall also that b is an R%valued function on R such that [b| € Kgq_1.
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Proposition 4.2 If D is a bounded open set and 1pb has compact support in D, then Gl]j satisfies

Glb(xvy) = GD(xvy) + /D GbD(x7Z)b(Z) : VZGD(Zvy)dZ‘ (49)

Proof. Recall that by Theorem EH, for every f € C2°(R?), Mtf = f(X)) - (X)) - fg L f(X?P)ds
is a martingale with respect to P,. Since 1pb has compact support in D, in view of BI1I), (£S])
and the fact that |b] € Kg -1, MtJj\TD is a uniformly integrable martingale.

Define D; := {z € D : dist(z, D¢) > 1/j}. Let ¢ € C(R?) with ¢ > 1, supp[¢] C B(0,1) and
Jga &(z)dz = 1. For any ¢ € C.(D), define f = Gpi and f,, := ¢y, * f, where ¢p(z) := np(nx).
Clearly f, € C°(R?) and f, converges uniformly to f = Gpy. Fix j > 1. Since E,[MJ"] =
E. [Mfgj], and for every y € D; and sufficiently large n,

b+ (A2 f)(y) = / 0n(2)A(G ) (y — 2)dz,

B(0,1/n)

we have, by Dynkin’s formula, that for sufficiently large n,
B, [ (X8,)] = fule) = [ G (en) (8200 +50) - VEulw)) dy
J D]

_ b
= GD
Dj

= [ Gh @) (=6, x 6w +0) - 6.+ (VGO0 ) .

(29) (&0 (A2)() +b(y) - 60 % (V)W) dy

J

Taking n — oo, we get, by [B.II]), (£8) and the fact that |b] € Kg o1,

E. £ (x4, )] = £@) = [ Gh, ) (o) +00) - VCo0) . (@10)

Now using the fact that 1pb has compact support in D, taking j — oo, we have by BIII), (£S])
and the fact that |b] € Kgq—1,

fl@) = /D Gl () (—(y) + b(y) - V(Cpt) (v) d.

Hence we have

—~Gp(z) = —Gh + G4 (b- VGp).

This shows that for each z € D, (@) holds for a.e. y € D. Since GY% is continuous off the diagonal
of D x D, we get that (@3] holds for all z,y € D. O

We will derive two-sided estimates on Green function of X? on certain nice open sets when the
diameter of such open sets are less than or equal to some constant depending on b only through
the rate at which Mg (r) goes to zero.

Proposition 4.3 There exists a positive constant v, = r(d, a,b) with the dependence on b only
via the rate at which M“g“ (r) goes to zero such that for any ball B = B(xg,r) of radius r < r, and
anyn > 1,

27'Gp(z,y) < GY(z,y) < 2Gp(z,y), =,y € B,
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where
bo(x) = b(x)1pe () + b(x)1k, (z), z=eR? (4.11)

with K, being an increasing sequence of compact subsets of B such that U, K, = B.

Proof. It is well known that there exists a constant ¢; = ¢;(d, «) > 1 such that

1 35(2)05(y) 1 35(x)05(y) \ "
< <o BBV (4
R P S P =Gy sap s (1N o —yp 412

Define f,?(m,y) recursively for n > 1, k > 0 and (z,y) € B x B by

IN(z,y) = Gp(z,y),
ey = /B T (2, 2)bu(2) - V. G2, ),

Iterating (4.9) gives that for each m > 2,

Go(ry) =Y Ii(x.y) + /B G (,2)bn(2) - VLI (2,y)dz  for (z,y) € B x B. (4.13)
k=0

Using induction, Lemma 1], (£8) with D = B and ([@I2]), we see that there exists a positive
constant ¢z (in fact, one can take co = 2ngc‘z’ where Cj is the constant in Lemma [ ]) depending
only on d and « such that for n,k > 1 and (z,y) € B x B,

~ k

T (2,9)] < e2G(w,y) (M (2r)) (4.14)
and G(e.) .

n B\Z,Y o

There exists an 1 > 0 depending on b only via the rate at which M, ) (r) goes to zero such that

1
(63 ~
C2 M‘b‘(r) < TZ@ fOT every 0 <r S 1. (416)
(BII) and (LI5)—(@I6) imply that if » < 7;/2, then for n > 1 and (z,y) € B x B,

Gb"(x 2)bn(2) - VLI (2,y)dz
<co (/ G (x,2)|b(z |‘ —y\(/\é)( )d2> <C2M|%|(2T))m

1 Gglzy) 1\
< -
=03 </B ppereE—L )'dz> <1+2cz>

1 b(2)| 1o\
< -
<o (f, mmme e yets) (s

- (d+1- b(2)| [b](2)
< 1 2 m o (d+1 Oc) / ’ d
<e5 (14 2¢9) |z —y| s \Jz — Z’d"'l_a + ly — Z’d"'l_a Z

<cg (1 + 2c9) (MY | — | ~(dH1=)
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which goes to zero as m — oo. In the second inequality, we have used the fact that b,, is compactly
supported in B. Thus, by @I3), G4 (z,y) = Y52, I1(z,y). Moreover, by (I4),

(1+2¢)7% < Gp(z,y)/2.

Nk

Y IR y)| < e2Gpla,y)
k=1

e
Il

1

It follows that for any o € R? and B = B(xzg,r) of radius r < 71 /2,
Gp(r,y)/2 < Glg’(:n,y) < 3Gp(z,y)/2 forallm >1and z,y € B.
This proves the theorem. O

For any bounded C'! open set D with characteristic (Rg, Ag), it is well known (see, for instance
[35] Lemma 2.2]) that there exists L = L(Rg,Ag,d) > 0 such that for every z € 9D and r < Ry,
one can find a C™! open set Uz, with characteristic (rRo/L, AgL/r) such that D N B(z,7/2) C
U.r C DN B(z,r). For the remainder of this paper, given a bounded C! open set D, Utz
always refers to the C'! open set above.

For Uy ), we also have a result similar to Proposition

Proposition 4.4 For every CY! open set D with the characteristic (Ro, o), there ewists ro =
ro(d, o, Ry, Ao, b) € (0,(Ro A1)/8] with the dependence on b only via the rate at which M, (r) goes
to zero such that for any for alln > 1, z € 9D and r < rg, we have

2_1GU(z,r) (‘Tuy) < G?}EZ’T) (x7y) < 2GU(2,7") (x7y)7 T,y € U(Z,T)7 (417)
where
bu(z) = b(a)1ue,  (2) +b(2)1k, (), =€ R4 (4.18)

with Ky, being an increasing sequence of compact subsets of U, ;) such that U, K;, = Uy, ).

Proof. It is well known, (see [22], for instance) that, for any bounded C'! open set U, there exists
c1 = c1(Ro, Ao, diam(U)) > 1 such that

1 1 < du (z)du (y)
¢, ——— (1N —F—72
Uz — yld—e |z — y?

M) S (419)

1
<@ <cg— | 1A
) < vt < (1220

It follows from this, the fact that r‘lU(Z,T) is a C1'! open set with characteristic (Ro/L,AoL) and
scaling that, for any bounded C''! open set D with characteristics (Rg, Ag), there exists a constant
ca2 = c2(Ro, Ao, d) > 1 such that for all z € 9D, r < Ry and z,y € U, ,,

1 ov. . (®)ou,, ., (y) 1 du., . (@)ou,, ., (y)

—1 () ) (=,7) )

- <G <cp— [ 1A .
d-a ( |z —y|? < Cuen(@y) S e |z — yld—e |z —y|?

Now we can repeat the argument of Theorem to complete the proof. O

Now we are going to extend Propositions d.3H4.4] to GS’B and Gl[’]( o) For the remainder of this
section, we let U be either a ball B = B(xg,r) with r < r, where r, is the constant in Proposition
or U(z,r) (for a CY1 open set D with the characteristic (Rg, Ag)) with r < ro where rq is the
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constant in Proposition L4l We also let b, be defined by either ([@II]) or (£I8]) and we will take
care of the two cases simultaneously.
By [6, Lemma 13] and its proof, there exists a constant Cy > 0 such that

[, [ vt 5.0 29005, 2l < Coptta,0) < i,
R4

and so

/R d /0 plt = 5.,2)lbn (2) [ Vb5, 203 ldsdz < Caplt, 2, )Ny (1) (4.20)

= sup / / |b(2) \w — 2|7 A s_(d+1)/°‘) dsdz
weRd JR4

which is finite and goes to zero as t — 0 by [6l Corollary 12]. Moreover,

where

/Rd/ = 8,2, 2)[b(2) = bn(2)[|V2p(s, 2,y)|dsdz

< Cup(t, =, y)Ny_y, (1)

= Cyp(t,z,y) sup / / b(2) — 2|7 A s_(d“)/o‘) dsdz. (4.21)
weR U\Kn
Now, by [0, (27)],
Pkt )| V Iy (2, )| < (CalNy (1) p(t, @, y). (4.22)

Choose T7 > 0 small so that .
C4Nb(t) < 5, t<Ti. (4.23)

We will fix this constant 77 until the end of this section.

Lemma 4.5 For all k > 1 and (t,z,y) € (0,T1] x R? x R?,

t
\pZ”(t,a:,y)—pZ(t,a:,y)] < kC42_(k_1)p(t,x,y) sup /U\K / |b(2)] (\w — z\_d_l A s_(d+1)/a> dsdz.

weRd

Proof. We prove the lemma by the induction. For k = 1, we have

t
) =it < [ [ a2l = 5] o bl (e,

Thus by ([@2I)), the lemma is true for k = 1.
Now we assume k& > 1 and the lemma is true for k. Let

t
Ttz i= [ b2Vl = s,200)| = bol(2)dds

and
IT(n,t,2,y) : / L s,2) = b, 2Vt = 220 (2l

Then we have
’p%:_l(t?xyy) _PZ+1(’57$7?J)’ < I(n,t,x,y) + [I(TL?taxay)
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By @21)-#&.23),
I(t,z,y) < (CaNy(t) / / —s,2,2)|b(2) — bp(2)||V2p(s, z,y)|dsdz
= C2 " p(t, z,y) sup/ / |b(2) \w—z\ —d= 1/\s_(dJrl)/Ol> dsdz. (4.24)
weR? U\Kn

On the other hand, by the induction assumption, (£.20) and ([Z23]),

t
II(t,z,y) < kC42_(k_1)<sup/ /\b(z)\<\w—z\_d_1/\3_(d+1)/°‘> dsdz)
weR U\Kn 0

t
< / / p(s,2,9) [V aplt — 5, 2,) 1B ()| dzds
R2 Jo

< kC2~ %D (N, (0)p(t, 2, y) sup/ / |b(z) z|_d_1/\8_(d+1)/a) dsdz.
weRd JU\ Ky,
< kC27Fp(t, z,y) sup/ / |b(2) ]w 2|7 AT (d+1)/°‘) dsdz. (4.25)
weR U\Kn
Combining ([4.24]) and ([@.25)), we have proved the lemma. O

Theorem 4.6 p’(t,z,y) converges uniformly to p°(t,z,y) on any [a,b] x R x R, where 0 < a <
b < co. Moreover,
hm Gb”f G? Uf for every f € Cy(U). (4.26)

Proof. We first consider the case (¢,z,y) € [to, T1] x R? x R%. By Theorem [L2(i) and Lemma E.3],

sup |pb(t7x7y) _pbn (t,x,y)|
(t7x7y)€[t07Tl}XRd><Rd
(0. 0]

< sup > bkt w,y) — ph(t, =, y)]

(t,z,y)€to,T1]xRd xR b1

(o]
< Oy sup Zk2_(k_1)p(t,a; y) sup / / |b(2) — 27 A s_(d+1)/°‘) dsdz
(t,fE,y) [t07T1} xR xR4 k=1 weRd U\Kn
T
< 4C’4t0 /o sup / / — 7|74t As_(d+1)/°‘) dsdz,
weRd JU\Kn,

which goes to zero as n — oo.
If (t,x,y) € (T1,2T1] x R? x R?, using the semigroup property ([4) with t; = T1/2,

sup P’ (t,,y) — (¢, 2, y)]
(t,z,y)e(Th,2T1 ] xREIX R
< sup | pb(tl, x, z)pb(t —t1,2,y)dz — / pb” (t1,x, z)pb" (t —t1,2,y)dz|
(t,m,y)G(T1,2T1]><Rd><Rd R4 R4
S sup / pb(tl,x,Z)’pb(t—ch’y) _pbn(t_tl7z7y)‘dz
(t,z,y)e(Th,2T1 ] xREIX R R4
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+ sup [P (t1, x, 2) — pP(tr, x, 2)|p° (t — t1, 2,y)|dzds,
(tz,y)€(T1,2T1 ] xRIxRE JR?

which is, by (IL3]), less than or equal to ¢; tl_d/ “ times

sup |pb(t —t1,2,Yy) — pb” (t —t1,2,y)|dz + sup / |pb”(t1, x,z) — pb(tl, x, z)|dzds.
(ty)e(T1,2Th] xR J R4 z€Rd JRA

Now, by the first case, we see that the above goes to zero as n — oo. Iterating the above argument
one can deduce that the theorem holds for L = [tg, kTp| for any integer k > 2. This completes the
proof of the first claim of the theorem.

First observe that by (I3), for each fixed z € R? and for every 0 < t; < to < --- < t}, the
distributions of {(Xff, . ,XZ:L),PQC} form a tight sequence. Next, by the same argument as that

for @0,
P, (X' ¢ B(z,r)) <p foralln>1, 0<s<tandzecR?

implies
P, <Slip|Xf" Xg”| > 2r> =P, ( B w2r) < t) < 2p foralln>1,2¢eR%
s<t

Hence by (L3 and the same argument leading to (Z.3]), we have for every r > 0,

lim sup P, <sup|Xf” - Xg”| > 27") =0.
0 p>1,2eR s<t

Thus it follows from the Markov property and [2I, Theorem 2| (see also [19, Corollary 3.7.4]
and [T, Theorem 3]) that, for each x € R? the laws of {X% P,} form a tight sequence in the
Skorohod space D([0,00), R?). Combining this and Theorem 8] with [I9, Corollary 4.8.7] we get
that X® converges to X? weakly. It follows directly from the definition of Skorohod topology on
D(]0,00),RY) (see, e.g., [19, Section 3.5]) that {t < 75} and {t > 7[13]} are disjoint open subsets
in D([0,00),R%). Thus the boundary of {t < 7%} in D([0, 00), RY) is contained in {75 <t < 7% }
Note that, by the strong Markov property,

P, (7t <) =Pu (<7l + 7 00, XD € 0U)
=P, (0<hoby, Xt coU) =P, <PXi5 (0<rh)sxt, 8U> -

The last equality follows from the regularity of U; that is, ]P)Z(T[Iz] =0) = 1 for every z € OU (see
Proposition 3.2)). Therefore, using the Lévy system for X?,

Pm<ﬁl}§t§7’g>sz<7’g:t:7'g)
< IP’AX?G@U)—I—]P}( =75 and X TU_ / pP(t,x,y)dy +0=0,
ou

which implies that the boundary of {t < 73} in D([0, 00), R?) is P,-null for every = € U. For every
f e (), f(X)H)1 (1<) 15 8 bounded function on D([0,00), R?) with discontinuity contained in
the boundary of {t < 7}. Thus we have (cf. Theorem 2.9.1(vi) in [I8])

lim E, [f(X,f’”)l {tql}n}} —E, [f(th)l et (4.27)

n—oo
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Given f € Cy(U) and € > 0, choose T > 1 large such that 20105 || f[|.oe™ 2T < & where C} and
Cy are constants in Lemma [B.7] with D = U. By the bounded convergence theorem and Fubini’s
theorem, from (L27) we have

T T T
: bn, — 1 bn _ b
i B | [0 pt] = Ji, [ e [0 g = e | [ OB ]

On the other hand, by the choice of T" and the fact that C; and Cy depending only on d, o, diam(U)
and b with the dependence on b only through the rate at which M“g“ (r) goes to zero, we have by
Lemma [3.7]

o bn > b
E, [ /T X! )1{t<Tgn}dt] +E, [ /T f(Xt)l{KTg}dt}
< Hf”oo/ (/L)(p%(t,w,y) +p§’>(t,w,y))dy> dt < 201||f||oo/T e ldt < e.

T

This completes the proof of (4.20]). O
As immediate consequences of ([£.26]) and Propositions E.3HAL4, we get the following

Theorem 4.7 There exists a constant r, = r.(d,a,b) > 0 with the dependence on b only via the

rate at which M (r) goes to zero such that for any ball B = B(xg,r) of radius r < r,

27'Gp(x,y) < GY(x,y) < 2Gp(z,y), z,y € B.

Theorem 4.8 For every CY' open set D with the characteristic (Ry, Ag), there exists a constant
ro = ro(d, a, Ry, Ao, b) € (0, (Ro A 1)/8] with the dependence on b only via the rate at which M, (r)
goes to zero such that for any for any z € 0D and r < rg, we have

2—1GU(“) (z,y) < G?J(“) (z,y) < 2Gu,. (7,y), x,y € Uiy (4.28)

We will need the above two results later on.

5 Duality

In this section we assume that F is an arbitrary bounded open set in R?. We will discuss some
basic properties of X% and its dual process under some reference measure. The results of this
section will be used later in this paper.

By Theorem B4 and Corollary 3.8, X*¥ has a jointly continuous and strictly positive transition
density pr(t, x,y). Using the continuity of pr(t, x,y) and the estimate

_ t
pr(t,ﬂf,y) < pb(t,lﬂ,y) < CleCQt <t 4/ A m) )

the proof of the next proposition is easy. We omit the details.

Proposition 5.1 X% is a Hunt process and it satisfies the strong Feller property, i.e, for every
feL®E), PPf(z):= Ex[f(XfE)] is bounded and continuous in E.
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Define
hg(x) = /EG%(y,a:)dy and &p(dr) = hg(z)dz.

The following result says that g is a reference measure for X%,

Proposition 5.2 &g is an excessive measure with for X®E, i.e., for every Borel function f >0,

[ a2 [ B (10005 ¢ulas).

Moreover, hg is a strictly positive, bounded continuous function on E.

Proof. By the Markov property, we have for any Borel function f > 0 and = € F,
[ B [t Gy = B [ B 10605 as
- /0 B [ft)]as < [ f@)Gh)
Integrating with respect to x, we get by Fubini’s theorem,
E [ XPP)] hp(y)dy < hi(y)d
B ST he(y)dy < Ef(y) B(y)dy.

The second claim follows from (B.I1]), the continuity of G% and the strict positivity of p% (Corollary

3.6). O

We define a transition density with respect to the reference measure £g by

b(t,z,y)
2 (4 zy) = PEETY)
Let ab (z.9)
b R e\, Y
Gplz,y) = tox,y)dt = 2
b = [ Aty = SE2

Then @%(x, y) is the Green function of X»¥ with respect to the reference measure g.
Before we discuss properties of @%(x, y), let us first recall some definitions.
Definition 5.3 Suppose that U is an open subset of E. A Borel function u on E is said to be

(i) harmonic in U with respect to X*F if

u(z) = E, [u(Xﬁ;E)] , x € B, (5.1)

B

for every bounded open set B with B C U;

(ii) excessive with respective to X if u is non-negative and

u(z) > E, [u(XfE)] and u(zr) = ltifélEx [u(XfE)] ’ t> 0,z € E;
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(iii) a potential with respect to XOE if it is excessive with respect to X%F and for every sequence
{Up}n>1 of open sets with U, C U,11 and U, U, = E,

lim E, [u(XTb;E)} = 0; ¢g-a.e. x € B,

n—oo Un

(iv) a pure potential with respect to X b.E if it is a potential with respect to X*F and

lim E, [u(XfE)} =0, (p-a.e. T € E;
t—o0

(v) regular harmonic with respect to X®F in U if u is harmonic with respect to X*F in U and
(51) is true for B=U.

We list some properties of the Green function @%(w, y) of X»¥ that we will need later.
(A1) @?E(az,y) > 0 for all (z,y) € E x E; @%(az,y) = oo if and only if x =y € E;
(A2) For every = € E, @?E(w, -) and 61;3( -,x) are extended continuous in F;
(A3) For every compact subset K of E, [, @%(:p,y)ﬁE(dy) < 0.

(A3) follows from (B.I1I) and Proposition [5.21 Both (A1) and (A2) follow from (BI1l), Proposi-
tion [0.2], domain monotonicity of Green functions and the lower bound in (Z12).

From (A1)-(A3), we know that the process X*¥ satisfies the condition (R) on [I7, p. 211] and
the conditions (a)-(b) of [I7, Theorem 5.4]. It follows from [I7, Theorem 5.4] that X*¥ satisfies
Hunt’s Hypothesis (B). Thus by [17, Theorem 13.24] X" has a dual process X", which is a
standard process.

In addition, we have the following.

—b . . . . .
(A4) For each y, x + Gp(r,y) is excessive with respect to X®F and harmonic with respect to
XYF in B\ {y}. Moreover, for every open subset U of E, we have

E, [GE(X;’f,y)] = Gylz.y), (w9 e ExU (5.2)

where T(I} = inf{t > 0: Xf’E € U}. In particular, for every y € E and € > 0, @?E(-,y) is
regular harmonic in £\ B(y, ) with respect to X%,

Proof of (A4). It follows from [15, Proposition 3] and [28, Theorem 2 on p. 373] that, to prove
(A4), it suffices to show that, for any x € E \ U, the function

y—Ep [al;f (X%f,y)}

is continuous on U. (See the proof of [30, Theorem 1].) Fix x € E\ U and y € U. Put r := dy(y).
Let y € B(y,r/4). It follows from (2.I1)) and (B.II) that, for any ¢ € (0, 5),

—b (b E . b E B b A(d, —a) —=b
Ez |:GE(XT[17] 7y)7XT[bj S B(y75):| - /B(y,é) < U GE\U(‘Taw)hU _Z|d+adw GE(Zay)dZ
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< / 1 1 dz
mfgeB (v, r/4 e(Y) JB B(y,0) E\U |z — ’d *|w — ’d+a |z — ?/J\‘d_a'

Thus, for any € > 0, there is a § € (0, 5) such that

x {@% (X%UE,y);X%UE € B(y,9)| < for every y € B(y,r/4). (5.3)

£
4
Now we fix this § and let {y,} be a sequence of points in B(y,r/4) converging to y. Since the
function (z,u) — @%(z,u) is bounded and continuous in (E \ B(y,d)) x B(y, %), we have by the
bound convergence theorem that there exists ng > 0 such that for all n > ng,

—=b b,E b,E c b b,E bE €
E, [GE(XTU ): X5F € By, 6) ] _E, [GE(XTU Jyn); X2F € B(y,8)° } <z (G4
Since € > 0 is arbitrary, combining (5.3]) and(5.4]), the proof of (A4) is now complete. O

Theorem 5.4 For eachy € E, © — @%(az,y) is a pure potential with respect to XY . In fact, for
every sequence {Up }n>1 of open sets with U, C Upy1 and U,U, = E, lim,, o E [GE(Xbb ,y)] =0

for every x £y in E. Moreover, for every x,y € E, we have lim;_, Ew[@%( X, ,y)] = 0.

Proof. For y € E, let X>F¥ denote the h-conditioned process obtained from X*¥ with h(-) =
@%(-, y) and let EY denote the expectation for X®F¥ starting from = € E.

Let © # y € E. Using (A1)-(A2), (A4) and the strict positivity of @%, and applying [29]
Theorem 2], we get that the lifetime COEY of XPEY ig finite PY-a.s. and

bEy y_
télbn% , X" =y Plas. (5.5)

Let {Ey, k > 1} be an increasing sequence of relatively compact open subsets of E such that
EkCEkCEandU ° By =FE. Then

[GE(Xbb ,y)} GE(HJ y)PY (TEk < ¢PEv).

By ([B&5), we have limy_, oo IP’%(T%k < ¢®EY) = 0. Thus limy,_,o E [GE(Xbb ,y)] =0.
Ey
The last claim of the theorem is easy. By ([8I0]) and ([BI1]), for every z,y € E, we have

c dz
|:GE( bE)Z/)]S d /E’Z_y‘d_av

tahgp(y)

which converges to zero as t goes to oco. O

‘We note that

HhEHoo

[ Gteesan < TEE [ Ghtey)ds = gl < .
E E

So we have
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(A5) for every compact subset K of E, [} @%(az,y)gE(dx) < 0.

Using (A1)-(A5), BII) and Theorem .4 we get from [27, 28] that X*F has a Hunt process as a
dual.

Theorem 5.5 There exists a transient Hunt process XYE in E such that X®F is a strong dual of
XE with respect to the measure £g, that is, the density of the semigroup {PtE}tzo of XU is given
by ﬁ%(t,y,:n) and thus

/ f(2) PEg(x)ep (dz) = / 9(x)BE f(2)ep(dr) for all f.g € L3(E,£x).
FE E

Proof. The existence of a dual Hunt process XE is proved in [27] 28]. To show XOE ig transient,
we need to show that for every compact subset K of E, [ @?E(:E, y)Ep(dx) is bounded. This is just
(A5) above. O

In Theorem 2.6, we have determined a Lévy system (N, H) for X? with respect to the Lebesgue
measure dz. To derive a Lévy system for X*F, we need to consider a Lévy system for X* with
respect to the reference measure g(dz). One can easily check that, if

—F J(x,y)
N e, dy) = hi(y)

and Hf := t, then (NE,HE) is a Lévy system for X»F with respect to the reference measure
¢p(dx). Tt follows from [20] that a Lévy system (N¥, HE) for X%¥ satisfies HF =t and

oldy) for (0.9) € Ex B N'@,0) = [ Iy

NP(y, de)¢p(dy) = N (2, dy)ép(da).

Therefore, using J(z,y) = J(y, x), we have for every stopping time 7" with respect to the filtration
of X0F ,

bE

o f(s, X2EXME)| = R, / ( / f(s 2 &b’,ﬁ’;é (dy)) dﬁf]

s<T
_ o8 I & whew)
- /0 </Ef( )T R dy>d]' >0

That is,

Let

PP f(z) = / Pt 2, y)f(y)ép(dy) and PPPf(x) = / Pt y,2) f(y)Ep(dy).
E E

For any open subset U of FE, we use XYEU to denote the subprocess of XYE in U, i.e.,
Xf’E’U(w) = Xf’E(w) if t < ?;}’E(w) and Xf’E’U(w) =0ift > ?;}’E(w), where ?;}E = inf{t >
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0: X’f ® ¢ U} and 9 is the cemetery state. Then by [33, Theorem 2] and Remark 2 following it,
X%V and X%PU are dual processes with respect to €. Now we let

b
BB it y, x)he(y)
T, x, =

(5.7)

By the joint continuity of pl(’](t, x,7y) (Theorem [B.4)) and the continuity and positivity of hg (Propo-
sition [5.2)), we know that ﬁ?}E(t, -,+) is jointly continuous on U x U. Thus we have the following.

Theorem 5.6 For every open subset U:\, ﬁ(z}E(t,a:,y) 18 strictly positive and jointly continuous on
U x U and is the transition density of X"®U with respect to the Lebesque measure. Moreover,

@b,E($ y) = Glf](yal’)hE(y)

b, —r (5.8)

1s the Green function of XOEU with respect to the Lebesgue measure so that for every nonnegative

E, [ /0 %'Ef()?fﬂ) dt] = /U Gy (.9)f (y)dy.

Borel function f,

6 Scaling property and uniform boundary Harnack principle

In this section, we first study the scaling property of X°, which will be used later in this paper.
For A > 0, let Y;b’)‘ := AX%_,,. For any function f on R?, we define f*(-) = f(A-). Then we
have

B[] = [ 50t A ) P ).

It follows from Theorem [[L2(iii) that for any f,g € C°(R?),

tim [ 17 ELFOP)] - f(@))g(a)de
Rd

= lim [ AP A ) = FAAT2)g (A ) de
tl0 JRd

= i [ A0 (P AR - P )
tl0 JRd
= x [ (CAPRPE) b V) s
R4
_ /\d—a/ (_(_A)Q/Qf/\(z) + A\b(2) - Vf(AZ)) 9(Az)dz
Rd
(o sera oa)s
Thus {)\Xil[it, t >0} is the subprocess of XA in AD. So for any A > 0, we have
pi;ab(Ail')(taxay) = )\_dpll))()\_at, )\—11,7 A_ly) for t>0 and LY < AD’ (61)
Gp "N ay) = AU e A Yy) for @y € AD. (6.2)
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Define

ba(z) == N "%(z/\)  for z € R% (6.3)
Then we have
d .
- b'|(A " y)dy
Mg (r) = Ao sup/ —
2] Z-Z:;xERd |lz—y|<r |l‘ - y|d+1—a

d .
b|(z)d
= S [ i = VRO
— erd Jjg—s1<a-1r [T — 2]
Therefore for every A > 1 and r > 0,
M, () = Mg (A~ hr) < Mg (r). (6.4)

In the remainder of this paper, we fix a bounded C1!' open set D in R? with C'"! characteristics
(Ro,Ag) and a ball E C R? centered at the origin so that D C $E. Define

M := M(b,E) := sup ()

: (6.5)
m,yE%E hE(y)

which is a finite positive constant no less than 1. Note that, in view of the scaling property (G.2]),
we have
M(b, E) = M(by, \E). (6.6)

Although F and D are fixed, the constants in all the results of this section will depend only on
d,a, Ry, Ag, b and M (not the diameter of D directly) with the dependence on b only via the rate
at which M (r) goes to zero. In view of (6.4]) and (G.0]), the results of this section in particular
hold for £ (equivalently, for X®*) and the pair (AD, A\E) for every A > 1.

In the remainder of this section, we will establish a uniform boundary Harnack principle on D
for certain harmonic functions for X»¥ and X®¥. Since the arguments are mostly similar for X
and X% we will only give the proof for X%,

A real-valued function u on E is said to be harmonic in an open set U C E with respect to
XE if for every relatively compact open subset B with B C U,

E, “u()?ng)H < oo and u(z)=E, [u()?ng)} for every x € B. (6.7)
B B
A real-valued function v on FE is said to be regular harmonic in an open set U C E with respect to
XUE if @) is true with B = U. Clearly, a regular harmonic function in U is harmonic in U.
For any bounded open set U, define the Poisson kernel for X? of U as

Ky (z,2) = /UG%(:E,y)J(y, 2)dy, (x,z) € U x (RT\ D).

When U C FE, we define the Poisson kernel for XOE of U C E as

f?gE(x,Z) = Z;E;; /UG?J(y,a;)J(z,y)dy, (z,2) €U x (E\U). (6.8)
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By (ZII) and (5.6]), we have
E, [f(Xbb,E) ;éXb / Kb (x,2)f(2)dz
Tu

and

b B bE
E, [f()?fﬁ);ﬂ% #XZFE] - " ( / F(z) LK ’)hE(Z)dz) ds
T T. 0 F7C

U U7 U U hE( bE)

_ /Gb Yo hE /f )()dzdy (6.9)

U
/KbExz z)dz

Lemma 6.1 Suppose that U is a bounded CY' open set in R% with U C %E and diam(U) < 3r,
where r, is the constant in Theorem [{.7. Then

P, (X% €ol) =0 for every x € U (6.10)
and
P, (XZEE €dl) =0 for every x € U. (6.11)
U

Proof. The proof is similar to that of [4, Lemma 6]. For our readers’ convenience, we are going to
spell out the details of the proof of (6I1)). Let B, := B(z,dy(x)/3). By (B.6) we have for x € U,

sop 3 B G (y,x)hp(y) Iy, 2)he(2)
Px(‘){?fsfe(zlE)\U) - / hi(z) </<2E>\U he(y) d>dy.

Since diam(U) < 3r, dy(z)/3 < ry, thus by Theorem [£7] for = € U,

r (X5 e GENY) 2 @ (“%Z’Z%) [ G ) ( /(§E)\UJ<y,z>dz> dy

4

o M'P, <XTBZ € (ZE) \ U> : (6.12)

v

where M is the constant defined in (6.5). By the scaling property of X,

3
P, <XTBI € (Z

= / G B(6y (2)-12,1/3) (OU (2) "'z, ) / J(a,b)db | da. (6.13)
By (z)~tz,1/3) Su(x)~1(2E)\U

Let z, € OU be such that dy(z) = |z — z,|. Since U is C1Y, 6y(z) "N ((2E)\U) D éuy(z) ' (2E\ 3E)
and Oy (z) < 3ry, there exists n > 0 such that, under an appropriate coordinate system, we have
2+ C C dy(2) 1 (3E) \ U) where

Com{y = y0) €RT 0 < ya < (12n) 7 and (Jyf -+ 93, <nya.
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Thus there is a constant ¢y > 0 such that

inf / J(a,b)db > co > 0 for every 1z € U.
a€B(ou (x)~'2,1/3) Jsy (2)~1((3E)\V)

Combining this with ([G.12))-(6.13),

. 3
inf P, <Xf;7EE € (ZE)\ U> > cieo M Ey [Tp(0,1/3)] = €3 > 0. (6.14)
zeU TBy 4 ’

On the other hand, since by (5.6) P, (X#,E € 9U) = 0 for every z € U, we have
B

e, (%45 cov) =5, [IP’X (R'E € o): R°E. e U
T, _b.E T,

U U B T

Thus inductively, Pw()?f;g € 9U) = limy_, o0 pi(x), where
Tu

~b
U By B

po(z) = P, (2;;3 68U> and  py() = E, [pk_l()z;@);;%bg GU} for k> 1.

By (©.14),

suppi41(w) < (1—c3)suppy(e) < (1-e3)"™ = 0.
zelU zeU
Therefore P, (XZL;E € dU) =0 for every z € U. -
Tu

Let z € dD. We will say that a function u : R? — R vanishes continuously on D¢ N B(z,r) if
u=0on D°N B(z,7) and v is continuous at every point of 9D N B(z, ).

Theorem 6.2 (Boundary Harnack principle) There exist positive constants ¢; = c1(d, v, Ro, Ao, b)
and r1 = r1(d, a, Ry, Ao, b) with the dependence on b only via the rate at which M|%‘| (r) goes to zero
such that for all z € OD, r € (0,71] and all function v > 0 on R that is positive harmonic with
respect to X (or X0 respectively) in D N B(z,r) and vanishes continuously on DN B(z,r) (or
D¢, respectively) we have

u(x) 2 6p(2)*/?

— <M ————, z,y € DN B(z,7/4).
u(y) = Gp(y)e? (&r/4)

Proof. We only give the proof for X%E_ Recall that r, and ro are the constants from Theorem [£.7]
and Theorem [L§ respectively. Let r1 = r, Arg and fix r € (0, r1] throughout this proof. Recall that
there exists L = L(Ry, Ag,d) such that for every z € 9D and r < Ry/2, one can find a C"! open
set U = U,y with C! characteristic (rRg/L,AgL/r) such that DN B(z,7/2) c U C DN B(z,7).
Without loss of generality, we assume z = 0.

Note that, by the same proof as that of [I1, Lemma 4.2], every nonnegative function u in R?
that is harmonic with respect to X*Ein DN B (0,r) and vanishes continuously on D¢ is regular
harmonic in D N B(0,r) with respect to XbE,
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For all functions v > 0 on E that is positive regular harmonic for X*E in DN B (0,7) and
vanishing on D¢, by (5.6) and Lemma [6.I] we have

u(z) = E, [u()/fTb;E);XTb;E € D\U} = I?g’E(:E,w)u(w)dw
U U D\U
= by, x hp () w, y)u(w)dw
- [ 6t >< [ o v )dy. (615)

Define

hy(x) :==Ey [u(Xs, ); X7, € D\ U] = /UGU(y,:E) (/D J(w,y)u(w)dw) dy,

\U

which is positive regular harmonic for X in DN B(0,r/2) and vanishing on D°. Applying Theorem

A8 to (6.I3]), we get
M7 hy(v) < u(z) < etMhy(z) for z € D. (6.16)

By the boundary Harnack principle for X in C1! open sets (see [14] [36]), there is a constant c > 1
that depends only on Ry, Ag, d and « so that

hu(2)
< ¢y forxz,ye DN B(0,r/4).
hu(y)
Combining this with (6.I0) and the two-sided estimates on Gy (z,y) we arrive at the conclusion of
the theorem. O

7 Small time heat kernel estimates

Our strategy is to first establish sharp two-sided estimates on pr (t,z,y) at time ¢t = 1. We then
use a scaling argument to establish estimates for ¢t < T

We continue to fix a ball E centered at the origin and a C! open set D C %E with character-
istics (Rp, Ao). Recall that M > 1 is the constant defined in (6.1]).

The next result follows from Proposition B35 (B.7) and (6.5])

Proposition 7.1 Forallay € (0,1), az,as, R > 0, there is a constant ¢; = ¢1(d, v, a1, az, a3, R, M,b) >
0 with the dependence on b only via the rate at which M“g“ (r) goes to zero such that for all open ball
B(zo,7) C 2F withr < R,

b, F

pB(xO’T,)(t,:E,y) > eyt for all z,y € B(zg,a17r) and t € [agr®, azr®].

Again, we emphasize that the constants in all the results of the remainder of this section
(except Theorem where the constant also depends on 7" for a obvious reason) will depend only
on d,a, Ry, Ay, M (not the diameter of D directly) and b with the dependence on b only through
the rate at which Mg (r) goes to zero. In view of (G3]), (64]) and (G.6]), in particular all the results
of this section are applicable to £ and the pair (AD, AE) for every A > 1.

Recall that r, and 7o are the constants from Theorem .7 and Theorem [L.]] respectively, which
depend only on d, «, Ry, Ag and b with the dependence on b only via the rate at which Mﬁ" (r)
goes to zero.
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Lemma 7.2 There is ¢; = ¢i(d, a, Ry, r, M, Ao, b) > 0 with the dependence on b only via the rate
at which M‘b‘( ) goes to zero such that for all x € D

P () > 1/4) < ¢ (1 A 5D(a;)°‘/2> (7.1)

and
P,(75F > 1/4) < ¢y <1 A op (e )a/2> . (7.2)

Proof. We only give the proof of ([Z.2]). The proof of (7I) is similar. Recall that there exists
L = L(Ry, Ay, d) such that for every z € 9D and r» < Ry, one can find a C'! open set Uiz
with C! characteristic (rRo/L, AgL/r) such that DN B(z,r/2) C U,y C DN B(z,r). Clearly it
suffices to prove (2] for = € D with dp(x) < ro/8.
Choose @, € OD such that §p(x) = |z — Q.| and choose a C'! open set U := U@, ,ro/2) With
C1! characteristic (roRo/(2L),2M0L/ro) such that D N B(Qx,7m0/4) CU C DN B(Qx,70/2).
Note that by (5.8]), (6.8) and Lemma [6.1]

P, (?gE > 1/4) < P, (?}}E > 1/4) +P, <X’f;,€5 € D)
Tu
< 4B, [7 ] +P, <)?f;,€3 eD>

Tu

. b ) b hE(z) 5 .
= 4 [ GhwgE */D\U/G U)oy e 2

Now using Theorem 8], we get

P, (7" > 1/4)

IN

401M/GU y,x)dy + 1 M /GU(y,:z:)J(y,z)dydz
D\U

= 401M/ Guy(z,y)dy + ¢ MP, (XTU €D\ U)
U
< 625U(x)a/2 = 625[)(3:)0‘/2.

The last inequality is due to (£I9) and the boundary Harnack inequality for X in C'%! open sets.
O

Lemma 7.3 Suppose that Uy, Us, U are open subsets of R* with Uy, Us C U C %E and dist(Uy,Us) >
0. Let Uy :=U\ (U1 UUs). If x € Uy and y € Us, then for all t > 0,

Ptz y) <Pu(Xh, €Us)- sup pp(s, z,y) + (MIE;B[T&]) - sup  J(u,z2), (7.3)
Uy s<t,z€Us uelUy, 2€U3

plfj(t,y,:n) < MIP’:B(XAZ,E € Ug) sup pE u(s,z,y)+ M (t/\E [TU ]) - sup  J(u,z) (7.4)
U1 s<t,z€Usz uelUy, zeUs

and

b b ~b,E .
pu(1/3,2,) > WP (10, > 1/3) By (7 > 1/3) 'ueUllI}geUS J(u, z). (7.5)
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Proof. The proof of (73] is similar to the proof of [5, Lemma 2], which is a variation of the proof
of [9, Lemma 2.2]. Hence we omit its proof. We will present a proof for (T.4)-(75). Using the

strong Markov property and (&.71]), we have

he(x)
b E\T) b E
pult,y,x) = p (t,x,y
ol ) he(y)™Y ( )
he(z) [AbE AbE b E b.E ]
— EZ‘ 5 t — XA Ly 7 <t
hE(y) Py ( blE ) Ur
= hp (@) =0, E ~b,E vbE ~b,F Sb,E
- E pU (t_TUl 7XAb,E7y) TU <tXbEEU2
hE(y) Tu, ™,
h ~
T E(x)Er {ﬁ?}E(t—ﬂl}’E,Xﬁﬂ,y) ol <t, X505 € U3:| — I+ II.
h‘E(y) L gt ™

Using (5.7) again,

h
1< el <#}E <t X4 € U2> ( sup ﬁZ}E(szvy)>

Ul s<t, Z€U2

U1 s<t,z€Us hE(Z)

he(a
( sup hE—(b)> P, <XAbE € U2> < sup ¥ (s,y, z)) .
a,be%E E( ) Uy s<t,z€Us

On the other hand, by (5.6) and (5.7,

_ hpx) [f B (s 1 u uzhE(Z) b s zhE(y)
= hE(y)/O < UlpUl( )< Us I, )hE(u)pU(t Y )hE(z)

h h
= E\% ]P)w <7/:[l}E <t XEbEj:? S U2> ( sup pl[)](S,y,Z) E(y)

IN

t
< M sup  J(u,2) / P, (?II}E > s) </ Pt — s,y,z)dz) ds
uelUy, z€Us 0 Us
< M/ TU > s)ds-  sup  J(u,z2)
uGUl,ZGUS
< M(tAE, [ ]) sup  J(u,z).
uGUl,ZEUg

Now we consider the lower bound. By (2II]) and (5.1),

pt(1/3,2,y)
Em |:pll7f (1/3 _7517X£5 7y>;7_£b]1 < 1/37X7lz[l} € U3]
1 1

— /01/3 </U1 Pl (s, 2, u) (/UB J(u, 2)pr(1/3 — s,y,z)dz> du> ds

1/3
> inf  J(u, z)/ / pE(1/3 — s,z,y)]P’x(T[I}1 > s)dzds
0 Us

v

\%

uelUy, zeUs
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1/3

> Py >1 inf b(1/3 —

> Bty >1/3) ot J2) [ ] /8 s gpdeds
1/3 h (

_ b : 5(y)

= P.(rg, >1/3) UEUllI}EEU3 J(u,z)/o . pU3 B3 - )hE(Z)dzds

1 b 1/3 b,E
. . . B
> M Py (r, > 1/3)u€U111}£6U3 J(u,z)/o Py (7, > 1/3 —s)ds
1
> ——Pu(rh, > 1/3) _inf  J(u,2)P, (7 > 1/3).

3M

uelUy, z€Us

Lemma 7.4 There is a positive constant ¢; = c1(d, o, Ry, Ao, M, b) with the dependence on b only
via the rate at which M\%\ (r) goes to zero such that for all z,y € D,

ph1/20) < e (1060 2) (1n o) (76)
and
ph(1/2,2,y) < 1 (1A 3p(y)*/?) (1 A m> : (7.7)

Proof. We only give the proof of (Z.7). Recall that there exists L = L(Rp, Ao, d) such that for every
z € 8D and r < Ry/2, one can find a C*! open set Uy, ) with C! characteristic (rRo/L, AoL /)
such that DN B(z,7/2) C U,y C DN B(z,7).

It follows from (3] that

1
b b
pp(1/2,z,y) < p°(1/2,2,y) < @ <1/\ W>7

so it suffices to prove of (1) for y € D with dp(y) < r9/8.
When |z — y| < rg, by the semigroup property (34]), (IL3) and (E.7),

(12, 2,y) — /D P14, 2, 2)plh (1/4, 2, y)d=

he(y)
< / b(1/4, z) E(1/4,y ,z)hE(Z)dz

< CQM/ <1/\ |d+a>ﬁ%E(l/4,y,z)dz
< MP,(75E > 1/4).

Applying ([Z.2), we get

Pp(1/2,2,y) < o (1 A 5D(y)“/2)
< e (1vrit) (1000)") (1 A W) .
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Finally we consider the case that |z —y| > r¢ (and dp(y) < 10/8). Fix y € D with dp(y) < ro/8
and let Q € 9D be such that |y — Q| = dp(y). Choose a Ct! open set Uy, := Uq,,,) with C1!
characteristic (roRo/L,AoL/ro) such that D N B(Q,r0/2) C U, C DN B(Q, o).

Let D3 :={z € D : |z—y| > |z —y|/2} and Dy := D\ (U, U D3). Note that |z —y| > (do+10)/4
for z € D3. So, if u € Uy and z € D3, then

1 1
u =2l 2 [z =yl = |y —ul 2 |z —y| = (60 +70)/8 2 5|z —yl| = |z —yl.
Thus

1
sup  J(u,z) < sup J(u,z) < eq <1 A 7> . (7.8)
u€Uy, z€D3 (u,2):|u—z[> L[z —y| | — y|d+a

If z € Dy, then |z — x| > |z —y| — |y — 2| > |r — y|/2. Thus by (L3,

1
sup  ph(s,z,x) < sup  pP(s,z,x) <es  sup LA
$<1/2,z€D2 s<1/2,z€D3 $<1/2,z€D>

1

for some c5,cg > 0. Applying Lemmas [[3] with (Z.8]) and (Z.9]), we obtain,

1 _
ph(1/2,2,y) < c7 (1 A m) <Py (XZEE c D) +E, [#}ﬂ) ,

’TUy

On the other hand, by (£.8]), (6.8), Lemma [6.1] and Theorem [£.8],

b = hg(z) hg(z)
E, 757 + P <XE’E € D> GY (=, —dz—l—/ GY (w,
Y |: Uy ] Yy T[l},yE Uy( y) o, Jo, Uy( y) hE(y)

U, he(y)

< M GUy(z,y)dz+08M/ Gy, (w,y)J(w, z)dwdz
Uy D\U, JU,

< by, (y)*? = codp(y)™/?.

J(w, z)dwdz

Therefore

1
b < a/2 — .
pp(1/2,2,y) < c100p(y) LA |z — y|dte

([Z8) can be proved in a similar way. O

Lemma 7.5 There is a positive constant ¢; = c1(d, o, Ry, Ao, M, b) with the dependence on b only
via the rate at which Mﬁj‘ (r) goes to zero such that for all z,y € D,

(1, z,y) < o (1 A 5D(x)a/2) (1 A 5D(y)°‘/2) <1 A W) . (7.10)

Proof. Using (Z.6)-(71), the semigroup property ([34]) and the two-sided estimates of p(t, x,y),
PhLay) = [ /22 2ph(1/2. 2 0)ds
R

36



1

< /2 a/2 /
< c(1nop@) ) (1A0p(y) Rd<1A\x—z\d+a> (1/\‘Z_y‘d+a>dz
< c<1/\5D Ol/2><1/\6D a/Q /dp(l/Z:Ez (1/2,z,y)dz

R
= c(l/\&D( )0‘/2> p(1,z,9)

/2 a/2

< c(1nop@) ) (1A0p(y) <1/\‘x_y‘d+a>.

Lemma 7.6 If r > 0 then there is a constant ¢c; = c1(d, c,r, M,b) > 0 with the dependence on b
only via the rate at which M (r) goes to zero such that for every B(u,r), B(v,r) C 3E,

1

b

pB(u,r)UB(v,r)(1/37u7v) > <1 N m) .
Proof. If ju —v| < r/2, by Proposition

1
p%(um)uB(v’r)(l/?),u,’u) > pB(ur (1/3 u ’U) > C1 > C9 (1 A W) .

|[u— v|< /2

If |u — v| > r/2, with U; = B(u,r/8) and Us = B(v,r/8), we have by (.5

1 ~ .
p%(u,r)UB(v,r) (1/3,u,v) = gPu(T& >1/3) Py (7 b v 1/3) w€U11n£€U3 J(w, 2)
1
>c pb wr 13,u,zdz/ ﬁbE 13,v,zdz<1/\7>
/B(u,r/16) Bur/s)(1/ ) Bluyr/16) Br/®) )/ ) lu — vldte

; b . b,E 1
- (zeB%B,E/m Piturss) (13,1 Z>> (zeB%EE/IG) Pty 130 Z>> <1 M- v\‘”‘“) '

Now applying Propositions and [T, we conclude that

1
b
pB(u,r)UB(v,r)(1/37u7v) 2>c <1 N m) .

Lemma 7.7 There is a positive constant ¢; = c1(d, o, Ry, Ao, M, b) with the dependence on b only
via the rate at which My (r) goes to zero such that

P51,z y) > ¢ (1 A 5D(x)a/2) (1 A 5D(y)°‘/2> <1 A m> )

Proof. Recall that g < R/8 is the constant from Theorem .8 which depends only on d, «, Ry, Ag,
b with the dependence on b only via the rate at which M‘ ‘( 1) goes to zero. Since D is CY! with C'!
characteristics (Rp, Ag) there exist 6 = §(Rp, Ag) € (0,79/8) and L = L(Rgy,Ag) > 1 such that for
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all z,y € D, we can choose &, € DN B(z, Ld) and &, € DN B(y, L) with B(;,20) N B(y,26) =0,
B(&,20)NB(y,20) = 0 and B(&;,20+2r9)UB(&y,20+2r¢) C D (which is possible since 7y < Ry/8).
Note that by the semigroup property (B8.4) and Lemma [7.0]

P (1,2,9)

v

b (1/3, 2, u)p% (1/3,u, v)pY (1/3, v, y)dudv
B(€y7 ng'v

/(5 /B§ b(1/3,x u)pB(u 5/2)UB(w.s/2) (1/3:u )P (1/3, v, y)dudy
yy :m

v

>cl/ / b (1/3, 2, u)(J (u,v) A1)p5(1/3,v, y)dudv
B(EZ—M §CL‘7

>c inf J(u,v) A1 / 5 (1/3, 2, u)du / 5 (1/3,v,y)dv | .
1((u70)63(wx3m< (o)A ) ( [ b ) ( [ /)

(7.11)

Iflx—y|>d/8,|u—v| <21+ L)J+ |x —y| < (174 16L)|z — y| and we have

1
inf Ju,v)AN1) > co [ 1IN ——— . 7.12
(u7v>eB<5x,6>xB<sy,6>( ) A1) = ez ( |z — y\d+a> (r12)
If |z —y| <d/8, |u—v] <2(2+4 L) and
1

inf J ANl)>ec3>2cy | IN——7F— . 7.13
enEpxpi, s Y N 2@z ( o — y\d+a> (r13)

We claim that

[ etz e (1nap@?), [ /e 2 e (1A00))
B(&y,9) B(&y,9)

(7.14)
which, combined with (CII)-(ZI3]), proves the theorem.
We only give the proof of the second inequality in (CI4). If dp(y) > d, by (T35,

/ P (13,0, )dv
B(&y,6/2)

1 b.E .
> P, (2 >1/3)dv | P, (77" . > 1/3 inf J(w, 7.15
Y </B(§y,6) ( B(&y,0) /3) ) y( B(y,5) / )weB(gy,cS),zeB(y,é) (w,y) ( )

which is greater than or equal to some positive constant depending only on d, a, Ry, Ag, M and b
with the dependence on b only via the rate at which M|b|( ) goes to zero by Propositions and
1l
If 6p(y) < 6, choose a @ € D be such that |y — Q| = dp(y) and choose a C! open set
Uy := Ug.ry) with C! characteristic (roRo/L, AgL/rq) such that D N B(Q,r0/2) C U, C DN
B(Q,ro) C DN B(Q,3rg/2) =: V. Then by (75,

/ Py (1/3,0, 9)dv
B(&y,6/2)
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1 b.E .
p— P, (7 >1/3)dv | P, (707 > 1/3 f J(w, 7.16
- M </B(§y75) <TB(£y’6) /) U) y<TV‘” / >wEB(sly]%>7zeVy (w.y) (716)

which is greater than or equal to cg Py(?‘b/’yE > 1/3) for some positive constant c¢g depending only
on d,a, Ry, Ay, M and b with the dependence on b only via the rate at which M, |%‘| (r) goes to zero
by Propositions and [C.11

Let B(yo,c7ro) be a ball in DN (B(Q,3rg/2) \ B(Q,79)) where ¢; = ¢7(Ag,ro,d) > 0. By the
strong Markov property,

. _b.E SbE
(weB(mf )IP’U, (TB(w,C7ro/2) > 4)> Py (XAb’E € B(y0,07r0/2)>

Y0,c770/2 TUy
~b,E vo,E
< By Poor (7 1); X455, € Blyo, crro/2
- Y XZE;],EE TB(XE’,)I:;E,C7T’0/2) =) ﬁ}f € Blyo,ero/2)
L Uy Uy
< Ey ]P))?b,E (?‘I;’E > 4) ,XELEE S B(y0,677‘0/2)
~b,E y TU’y
-

= P, (#%E > 4,5&;& € B(y0,077‘0/2)> <P, <7A-‘b,yE > 4) ‘
Tu
Using Propositions [[1], we get
]P’y (?XIZE > 4> > Cg]P)y <Xi})€5 € B(yo, C77’0/2)> . (717)
Uy

Now applying (5.8), (6.8)) and Theorem [£8]

~ hg(z
P, <XE;7,EE € B(y07677‘0/2)> = / Gl()]y(way)hE( )J(w,z)dwdz
Tuy B(yo,crro/2) J Uy E (y)
> coM! Gl(’]y (w,y)J(w, z)dwdz
B(yo,c7r0/2) J Uy
> 610(5Uy (y)a/2 = 0105D(y)a/2. (718)
Combining (Z.I5)-(7I8), we have proved (T.14)). O

Theorem 7.8 There exists ¢ = c1(d, o, Ry, Ao, T, M,b) > 0 with the dependence on b only via the
rate at which M\%\ (r) goes to zero such that for 0 <t <T, z,y € D,

)/ o/
Pt zy) < <1 A L(\/% 2) (1 A 751’(\% 2) (t—d/a A Ty ;’CM) (7.19)

T a/2 a/2
ot (1 A %) (1 A %) (t—d/a A W) < ph(t,z,y). (7.20)

and
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Proof. Let D; := t~'/*D and E; := t~'/*E. By the scaling property in (61)), (ZI9)[Z20) is
equivalent to

(a—1)/ap(sl/a. !
v, 1) < e (1 A ép, (x)a/z) (1 A OD, (y)a/2> (1 " W)

and

_ N N 1 (a1)/ap(il/a.
Cll (1/\(5Dt(x) /2) (1/\5Dt(y) /2> <1/\W> Spi)t bt )(1,$,y)

The above holds in view of 3], (64), (66) and the fact that for ¢ < T, the D;’s are C'! open
sets in R? with the same C'b' characteristics (Ro(T)~Y%, Ag(T)~/®). The theorem is thus proved.
O

8 Large time heat kernel estimates

Recall that we have fixed a ball E centered at the origin and M > 1 is the constant in (G.5]). Let
U be an arbitrary open set U C %E and we let

—bE L P?J(t7x7y)

pU (t7 xz, y) T hE‘(y) ’
which is strictly positive, bounded and continuous on (¢, x,y) € (0,00) x U x U because pl(’](t, x,y) is
strictly positive, bounded and continuous on (¢,z,y) € (0,00) x U x U and hg/(y) is strictly positive
and continuous on E. For each z € U, (t,y) — ]_Q?J’E(t,x,y) is the transition density of (X®U P,)
with respect to the reference measure g and, for each y € U, (¢,z) — ﬁ?}E(t, x,y) is the transition
density of ()A( bEU, Py), the dual process of X bU with respect to the reference measure £g.

Let

PPV f () = /U PE (o) f)p(dy) and  BPEVf(z) = /U P (4, y,2) f (9)En(dy).

Let ﬁ?J’E and EZE be the infinitesimal generators of the semigroups {Ptb’E’U} and {]%b’E’U} on
L?(U, &g), respectively.

Note that, since for each t > 0, ﬁ?}E(t,a:,y) is bounded in U x U, it follows from Jentzsch’s

Theorem ([31, Theorem V.6.6 on page 337]) that the common value —)\S’E’U = sup Re(a(ﬁlz]’E)) =
sup RG(O'(EI[)}E)) is an eigenvalue of multiplicity 1 for both ﬁl;}E and ﬁl;]’E, and that an eigenfunction
QS?}E of EIE}E associated with /\IS’E’U can be chosen to be strictly positive with H(;S?}E | 22(Uen(da)) = 1

b,E,U

and an eigenfunction Q/JIbJ’E of E[’JE associated with Ay can be chosen to be strictly positive with

bE
IV L2 e p(da)) = 1-
It is clear from the definition that, for any Borel function f,

ptvava(x) = Ptb’Uf(x) for every x € U and t > 0.

Thus the operators £°|;; and E?J’E have the same eigenvalues. In particular, the eigenvalue )\S’E’U

does not depend on F and so from from now on we will denote it by )\S’U.
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Definition 8.1 The semigroups {Ptb’E’U} and {Eb’E’U} are said to be intrinsically ultracontractive
if, for any t > 0, there exists a constant ¢, > 0 such that

otz y) < cont (@) (y)  foray e U

It follows from [25] Theorem 2.5] that if {Ptb’E’U} and {ﬁtb’E’U} are intrinsically ultracontractive
then for any ¢ > 0 there exists a positive constant ¢; > 1 such that

Bl (t ) > oy (@i () for a,y € UL (8.1)

Theorem 8.2 For every B(xo,2r) C U there exists a constant ¢ = ¢(d, v, r,diam(U), M) > 0 such
that for every x € D,

Eg

"
/0 1B(xo,r>(Xf’U)dt] > cE, [T}}] (8.2)

~b,E
T;

[

Proof. The method of the proof to be given below is now well-known. (See [I0] 26]). For the
reader’s convenience, we present the details here. We give the proof of ([83]) only. The proof for
([B2) is similar. Fix a ball B(zg,2r) C U and put

Eg

1B<xovr>(>?fvaU>dt] > cE. 75" (8:3)

By := B(xg,7/4), Kj:= B(xg,7/2) and By := B(xg,r).

Let {0;,t > 0} be the shift operators of X%E and we define stopping times S,, and T,, recursively
by

Sl ((U) = 07
Th(w) = Sp(w)+ ’7:?]’6{1 0fg,(w) for Sy(w) < ?[l}E
and  Spi1(w) = Th(w) +757 0, (w) for Tp(w) < 7"

Clearly S, < ?ZI}E Let S :=lim, o S, < #}E On {S < #}E}, we must have S, < T, < S,41 for
every n > 0. Using the fact that IP’I(?gE < o0) = 1 for every x € U and the quasi-left continuity of
XbEU e have P, (S < ?;}’E) = 0. Therefore, for every x € U,

P, ( lim S, = lim T, = ?5’5) -1 (8.4)

n—o0 n—oo

For any x € Ky, by Proposition (7.I]) we have

2re
~b, E ~b, FE
E, [7'3’2 ] > co/ PB, (t,z,y)dtdy > ¢, for every z € Kj.
B(zo,r/2) Jre

Now it follows from the strong Markov property that

E, [Sn+1 — Tn] = E,. [EX\—%E,U [?25]7 T, < ?;}’E}
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> P, (X'%va e BO> — ¢E, []P’ e <XE,,E;U €B >]

s TU\K

Note that for any x € U \ Ba, by (IB:QI) we have

Gb (yvx) dZ
-1 o U\K1
M A, )/U\Kl (@) /Lzo<<diam<v>>d+a>5’f(dy>
= CQE [

Y]

T0\K)

for some constant cp = ca(ev, 7, diam(U), M) > 0. It follows then
Ex [Sn+1 — Tn] Z ClcgEm [E)?g,fU [?Il}\EKlﬂ = ClcgEm [Tn — Sn] (8.5)

Since )/ff’E’U € By for T,, <t < Sp+1, we have by (84

7" SbEU & T HEU Snt1 Sb,E,U
E, / 1g, (X)) at| = E, Z(/ 15, (X, )dt+/ 1, (X} )dt)
0 =1 \Us, T,
[ oo SnJrl
> E, Z(/ 1BQ(XbEU)dt>]
Ln=1 n
- Ex Z(Sn-i—l_Tn)
Ln=1

Using (84) and B3] and noting that X"V ¢ U\ By for t € [T},, Spi1), we get

~b,E [ oo
B, / % 15, (Xf,E,U)dt] > ek, Z(T" — Sn)]
0 Ln=1
& T HEU Snt1 SbE,U
2 ClcgEx Z . 1U\B2 ( )dt + 1U\B2 (X )dt
:n:;gYE n n
= ek, / 1U\B2 (th’E’U)dt] .
0
Thus

Eq

~b,E
v SbEU 1 b.E
15, (X0P0)at| > —22 g [ }
/o a( ) ]_1+Clc2 = |v

Theorem 8.3 {PbE Y and {]%b’E’U} are intrinsically ultracontractive.

Proof. Since ¢b B _ Ay Pb E, U?/)(b]E, it follows that zﬁ[bj’E is strictly positive, bounded and contin-
uous in U. Theorem R2] implies that

b,E
B <o | G = 9) 0 F e (dz) < o /

U Coy) b e ) — by (s.6)
W) v hpl) U )\bU v @

E(Y)
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Similarly, .
bE
ot (). (8.7)

E, [T(l}] < 3
0

By the semigroup property and (L3)),
py (twy) = /U B (t/3,2,7) /U By (13,2, w)B" (t/3, w, y)ép(dw)ép(dz)

< e [ a6 [ AEC 0 0E )

= gt YR (7" > /3) Py (77 > 1/3)
< (9es /) YR, 1)) By [757).

This together with (8.6])—(8.1) establishes the intrinsic ultracontractivity of {Ptb’E’U} and {ﬁtb’E’U}.
g

Applying [25, Theorem 2.7], we obtain

Theorem 8.4 There exist positive constants ¢ and v such that

bE 2>V _bE
MU eo pU (t7x7y)

00" (@)e5" (y)

where M;}’E = fU ¢%E(?J)¢2E(y)§E(dy) <1

— 1| <ce™, (t,z,y) € (1,00) x U x U (8.8)

Now we can present the

Proof of Theorem [I.3|(ii). Assume that the ball E is large enough so that D C %E. Since
(b%E = e)‘g’DPlb ’D(b%E and Q/JIBE = e)‘g’Dﬁlb ’E’Dl/}lgE, we have from Theorem [[3)i) that on D,

0@ = (1000@) [ (Lnop)?) (18—t ) dbE iy = dp(@? (59

and

w%E(m) = <1/\5D(az)a/2>/

D

e
(8.10)

Theorem and (89)—([RI0) imply that
¢ op () 26p (y)*? < ﬁlz’)E(t,a:,y) < ebp(x)20p(y)*/? for (t,z,y) € (0,00) x D x D,
and so
crle Y op(x)20p (y)*? < Pl (t,x,y) < erei0p (@) %6 (y)*/? for (t,z,y) € (0,00) x D x D.

Furthermore, by Theorem and (B.9), there exist ¢ > 1 and 77 > 0 such that for all
(t,xz,y) € [Th1,00) x D x D,

gt e S ()2 5p(y)*? < BiE(ta,y) < caem™ Sp(a)/2 6p(y)/2,
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which implies that
5t em ™ op (@) op(y)*? < Phlta,y) < cae”0 dp (@) op(y)*,
If T < Ty, by Theorem [L.3(i), there is a constant c¢o > 1 such that
e o) 5p ()% < phy(t,z,y) < cadp()/?6p(y)*/? for t € [T,T1) and x,y € D.

This establishes Theorem [L3[(ii). O

Remark 8.5 (i) Using Corollary [[4] and the argument of the proof of Lemma 6.1l (6.10]) is, in
fact, true for all bounded open set U with exterior cone condition.

(i) In view of Corollary [[L4] the estimate (A.8)) and Lemma 1] we can deduce from (£I0]) by
the dominated convergence theorem that Proposition holds for general b with [b] € Ky q4—1. O
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