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ON JIANG’S ASYMPTOTIC DISTRIBUTION OF THE

LARGEST ENTRY OF A SAMPLE CORRELATION MATRIX

By Deli Li∗ , Yongcheng Qi† , and Andrew Rosalsky‡

Lakehead University, University of Minnesota Duluth, and University of Florida

Let {X,Xk,i; i ≥ 1, k ≥ 1} be a double array of nondegenerate i.i.d.
random variables and let {pn; n ≥ 1} be a sequence of positive integers such
that n/pn is bounded away from 0 and ∞. This paper is devoted to the solu-
tion to an open problem posed in Li, Liu, and Rosalsky [4] on the asymptotic

distribution of the largest entry Ln = max1≤i<j≤pn

∣

∣

∣
ρ̂
(n)
i,j

∣

∣

∣
of the sample

correlation matrix Γn =

(

ρ̂
(n)
i,j

)

1≤i,j≤pn

where ρ̂
(n)
i,j denotes the Pearson

correlation coefficient between (X1,i, · · · , Xn,i)′ and (X1,j , · · · ,Xn,j)′. We
show under the assumption EX2 < ∞ that the following three statements
are equivalent:

(1) lim
n→∞

n2

∫ ∞

(n log n)1/4

(

Fn−1(x)− Fn−1

(

√

n logn

x

))

dF (x) = 0,

(2)

(

n

logn

)1/2

Ln
P→ 2,

(3) lim
n→∞

P

(

nL2
n − an ≤ t

)

= exp

{

− 1√
8π

e−t/2
}

, −∞ < t < ∞

where F (x) = P(|X| ≤ x), x ≥ 0 and an = 4 log pn − log log pn, n ≥ 2. To
establish this result, we present six interesting new lemmas which may be
beneficial to the further study of the sample correlation matrix.

1. Introduction and the main result. This paper is devoted to the solution
of an open problem posed by Li, Liu, and Rosalsky [4] concerning the asymptotic
distribution of the largest entry of a sample correlation matrix. Let n ≥ 2. Consider
a p-variate population (p ≥ 2) represented by a random vector X = (X1, · · · , Xp)
with unknown mean µn = (µ1, · · · , µp), unknown covariance matrix Σ, and un-
known correlation coefficient matrix R. Let Mn,p = (Xk,i)1≤k≤n,1≤i≤p be an n× p
matrix whose rows are an observed random sample of size n from the X population;

that is, the rows ofMn,p are independent copies ofX. SetX
(n)

i =
∑n

k=1 Xk,i/n, 1 ≤
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2 D. LI, Y. QI, AND A. ROSALSKY

i ≤ p. Write

ρ̂
(n)
i,j =

∑n
k=1

(

Xk,i −X
(n)

i

)(

Xk,j −X
(n)

j

)

√

∑n
k=1

(

Xk,i −X
(n)

i

)2
√

∑n
k=1

(

Xk,j −X
(n)

j

)2

which is the Pearson correlation coefficient between the ith and jth columns of
Mn,p. Set

Γn =
(

ρ̂
(n)
i,j

)

1≤i,j≤p

which is the p× p sample correlation matrix obtained from the p columns of Mn,p.
At the origin of the current investigation is the statistical hypothesis testing prob-

lem studied by Jiang [2] based on the asymptotic distribution of the test statistic

Ln = max
1≤i<j≤p

∣

∣

∣ρ̂
(n)
i,j

∣

∣

∣

which is the largest entry of the sample correlation matrix Γn. When both n and p
are large, Jiang [2] considered the statistical test with null hypothesis H0 : R = I,
where I is the p × p identity matrix and obtained the asymptotic distribution of
Ln as n and p both approach infinity. If we assume that the columns of Mn,p are

independent, all the ρ̂
(n)
i,j , 1 ≤ i < j ≤ p should be close to 0. In other words,

Ln should be small. Thus this null hypothesis asserts that the components of X =
(X1, · · · , Xp) are uncorrelated whereas when X has a p-variate normal distribution,
this null hypothesis asserts that these components of X are independent. Jiang [2]
established two limit theorems concerning the test statistic Ln when p = pn ∼ γ−1n
as n → ∞ (0 < γ < ∞) and {X,Xk,i; i ≥ 1, k ≥ 1} is an array of independent
and identically distributed (i.i.d.) nondegenerate random variables. Write Xi =
X1,i, i ≥ 1. In the first limit theorem, assuming that

(1.1) E|X |r < ∞ for some r > 30,

Jiang [2] obtained the asymptotic distribution for Ln. Specifically, Jiang [2] proved
that

(1.2) lim
n→∞

P
(

nL2
n − an ≤ t

)

= exp

{

− 1√
8π

e−t/2

}

, −∞ < t < ∞

where the centering constants an are given by an = 4 log pn− log log pn, n ≥ 2. The
limiting distribution in (1.2) is a type I extreme value distribution.

In the second limit theorem, under the assumption that

E|X |r < ∞ for all 0 < r < 30,

Jiang [2] proved the following strong limit theorem which is referred to as the strong
law of the logarithm for Ln, n ≥ 2:

(1.3) lim
n→∞

(

n

logn

)1/2

Ln = 2 almost surely (a.s.).
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ASYMPTOTIC DISTRIBUTION OF LARGEST ENTRY 3

Throughout this paper, we let {pn; n ≥ 1} be a sequence of integers in [2,∞)
such that n/pn is bounded away from 0 and ∞; this condition is of course less
restrictive than Jiang’s [2] condition limn→∞

n
pn

= γ ∈ (0,∞).

Since the appearance of Jiang’s [2] paper, in subsequent papers by several au-
thors, the moment condition (1.1) has been gradually relaxed. Zhou [8, Theorem
1.1] showed that (1.2) holds if

(1.4) x6
P (|X1X2| ≥ x) → 0 as x → ∞.

Another moment condition for (1.2) to hold has been obtained recently by Liu, Lin,
and Shao [6, Theorem 1.1] who showed that (1.2) holds under the condition

n3
P

(

|X1X2| ≥
√

n logn
)

→ 0 as n → ∞

which is equivalent to

(1.5)
x6

log3 x
P (|X1X2| ≥ x) → 0 as x → ∞.

Recently, under the assumption that X is nondegenerate with

E|X |2+δ < ∞ for some δ > 0,

Li, Liu, and Rosalsky [4, Theorem 2.6] showed that the following three statements
are equivalent:

(1.6) lim
n→∞

n2

∫ ∞

(n logn)1/4

(

Fn−1(x) − Fn−1

(√
n logn

x

))

dF (x) = 0,

(1.7)

(

n

logn

)1/2

Ln
P→ 2,

(1.8) lim
n→∞

P
(

nL2
n − an ≤ t

)

= exp

{

− 1√
8π

e−t/2

}

, −∞ < t < ∞

where F (x) = P(|X | ≤ x), x ≥ 0, and an = 4 log pn − log log pn, n ≥ 2. The
statement (1.7) is referred to as the weak law of the logarithm for Ln and (1.8) is
the Jiang’s [2] asymptotic distribution (1.2) for Ln. Li, Liu, and Rosalsky [4, Remark
2.6] then raised the open problem as to whether or not the three statements above
are still equivalent under the weaker assumption that X is nondegenerate with

(1.9) EX2 < ∞,

and conjectured specifically that the implications (1.7) ⇒ (1.6) and (1.7) ⇒ (1.8)
can both fail if it is only assumed that X is nondegenerate with (1.9). This is what
we call the second moment problem on the asymptotic distribution of the largest
entry of a sample correlation matrix.

The main result of this paper is the following theorem which provides a positive
answer to this open problem and hence gives a negative answer to each of the above
conjectures.
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4 D. LI, Y. QI, AND A. ROSALSKY

Theorem 1.1. Let {X,Xk,i; i ≥ 1, k ≥ 1} be a double array of i.i.d. random
variables. Suppose that n/pn is bounded away from 0 and ∞. If X is nondegenerate
with (1.9), then the three statements (1.6), (1.7), and (1.8) above are equivalent.

Clearly (1.4) holds if EX6 < ∞ which is substantially weaker than (1.1), and
(1.5) is weaker than (1.4). By Remarks 2.3 and 2.4 of Li, Liu, and Rosalsky [4],
(1.6) implies that

x6

log3/2 x
P(|X | ≥ x) → 0 as x → ∞

which ensures that

E|X |r < ∞ for all 0 < r < 6.

We will prove Theorem 1.1 in Section 3. In Section 2, we present seven prelimi-
nary lemmas where six of them are interesting new lemmas which may be beneficial
to the further study of the sample correlation matrix.

Li and Rosalsky [5, Theorem 2.4] proved that (1.3) holds under the assumption
that X is nondegenerate with

(1.10)
∞
∑

n=1

P

(

max
1≤i<j≤n

|XiXj | ≥
√

n logn

)

< ∞.

For c ∈ (−∞,∞) write

Wc,n = max
1≤i<j≤pn

∣

∣

∣

∣

∣

n
∑

k=1

(Xk,i − c) (Xk,j − c)

∣

∣

∣

∣

∣

and Wn = W0,n, n ≥ 1.

Under the assumption that EX4 < ∞, as in the proof of Theorem 2.4 of Li and
Rosalsky [5], we see that (1.3) is equivalent to

lim
n→∞

Wµ,n

σ2
√
n logn

= 2 a.s.

(where µ = EX and σ2 = E(X −µ)2) which by Theorem 2.3 of Li and Rosalsky [5]
and Lemma 4.1 of Li, Liu, and Rosalsky [4] is, in turn, equivalent to (1.10). Then,
by Remark 2.4 of Li, Liu, and Rosalsky [4], we see that (1.10) is equivalent to

(1.11)

∞
∑

n=1

n

∫ ∞

(n log n)1/4

(

Fn−1(x)− Fn−1

(√
n logn

x

))

dF (x) < ∞.

Since (1.3) implies (1.7) and, by the discussion above, (1.6) ensures that EX4 < ∞,
we obtain the following strong limit theorem for Ln by applying Theorem 1.1.

Theorem 1.2. Let {X,Xk,i; i ≥ 1, k ≥ 1} be a double array of i.i.d. random
variables. Suppose that n/pn is bounded away from 0 and ∞. If X is nondegenerate
with (1.9), then the two statements (1.3) and (1.11) are equivalent.
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ASYMPTOTIC DISTRIBUTION OF LARGEST ENTRY 5

2. Preliminary lemmas. To prove Theorem 1.1, we use the following seven
preliminary lemmas. Lemma 2.5 is one of the remarkable Lévy inequalities. The
other six lemmas are new and may be of independent interest.

Lemma 2.1. Let {Y, Yn; n ≥ 1} be a sequence of i.i.d. nonnegative random
variables such that EY = ν < ∞. Then, for any given ǫ > 0 and q ≥ 1, we have

(2.1) P

(∑n
k=1 Yk

n
> ν − ǫ

)

= 1− o
(

n−q
)

as n → ∞.

Proof. Since Y is a nonnegative random variable such that EY = ν < ∞,
there exists a positive constant b = b(ǫ), depending on ǫ and the distribution of X
only, such that

ν − ǫ

2
≤ EY I{Y ≤ b} ≤ ν.

Note that

P

(∑n
k=1 Yk

n
> ν − ǫ

)

≥ P

(∑n
k=1 YkI{Yk ≤ b}

n
> ν − ǫ

)

= P

(∑n
k=1 (YkI{Yk ≤ b} − EY I{Y ≤ b})

n
> ν − EY I{Y ≤ b} − ǫ

)

≥ P

(∑n
k=1 (YkI{Yk ≤ b} − EY I{Y ≤ b})

n
> − ǫ

2

)

= 1− P

(∑n
k=1 (YkI{Yk ≤ b} − EY I{Y ≤ b})

n
≤ − ǫ

2

)

≥ 1− P

( |∑n
k=1 (YkI{Yk ≤ b} − EY I{Y ≤ b})|

n
≥ ǫ

2

)

and, by Theorem 2.10 of Petrov [7],

P

( |∑n
k=1 (YkI{Yk ≤ b} − EY I{Y ≤ b})|

n
≥ ǫ

2

)

≤ E |∑n
k=1 (YkI{Yk ≤ b} − EY I{Y ≤ b})|2q+2

(ǫ/2)2q+2n2q+2

≤ τnq
∑n

k=1 E |YkI{Yk ≤ b} − EY I{Y ≤ b}|2q+2

(ǫ/2)2q+2n2q+2

≤ τ(2b/ǫ)2q+2n−q−1,

where τ is a positive constant depending only on 2q + 2. We thus see that (2.1)
holds. �
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6 D. LI, Y. QI, AND A. ROSALSKY

Lemma 2.2. Let {X, Xk,i; i ≥ 1, k ≥ 1} be a double array of i.i.d. random
variables such that EX = 0 and EX2 = 1. Then, for any given ǫ > 0

(2.2) lim
n→∞

nP



n

(

n

logn

)1/2

∣

∣

∣X
(n)

1 X
(n)

2

∣

∣

∣

√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> ǫ



 = 0.

Proof. Since EX2 = 1, by Lemma 2.1 we have that

P

(

∑n
k=1 X

2
k,1

n
>

1

2

)

= P

(

∑n
k=1 X

2
k,2

n
>

1

2

)

= 1− o
(

n−3
)

as n → ∞.

For n ≥ 1, write

An =

{

∑n
k=1 X

2
k,1

n
>

1

2

}

⋂

{

∑n
k=1 X

2
k,2

n
>

1

2

}

.

Then

P (An) =
(

1− o
(

n−3
))2

= 1− o
(

n−3
)

and P (Ac
n) = o

(

n−3
)

as n → ∞.

Note that X
(n)

1 and X
(n)

2 are independent and E

(

X
(n)

1

)2

= E

(

X
(n)

2

)2

= 1/n. For

any given ǫ > 0, we hus have that

nP



n

(

n

logn

)1/2

∣

∣

∣X
(n)

1 X
(n)

2

∣

∣

∣

√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> ǫ





≤ nP











n

(

n

log n

)1/2

∣

∣

∣
X

(n)

1 X
(n)

2

∣

∣

∣

√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> ǫ







⋂

An



+ nP (Ac
n)

≤ nP











n

(

n

log n

)1/2

∣

∣

∣X
(n)

1 X
(n)

2

∣

∣

∣

√

(1/2)n
√

(1/2)n
> ǫ







⋂

An



+ o
(

n−2
)

≤ nP

(

2

(

n

log n

)1/2 ∣
∣

∣
X

(n)

1 X
(n)

2

∣

∣

∣
> ǫ

)

+ o
(

n−2
)

≤ n×
E

(

2
(

n
log n

)1/2 ∣
∣

∣X
(n)

1 X
(n)

2

∣

∣

∣

)2

ǫ2
+ o

(

n−2
)

= n×
4
(

n
logn

)

× 1
n × 1

n

ǫ2
+ o

(

n−2
)

= O

(

1

logn

)

,

which yields (2.2). �
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ASYMPTOTIC DISTRIBUTION OF LARGEST ENTRY 7

Lemma 2.3. Let {X,Xn; n ≥ 1} be a sequence of i.i.d. random variables such
that EX = 0 and EX2 = 1. Let {X ′, X ′

n; n ≥ 1} be an independent copy of
{X,Xn; n ≥ 1}. Then, for any given ǫ > 0

(2.3) P

(∑n
k=1(Xk −X ′

k)
2

∑n
k=1 X

2
k

> 1− ǫ

)

= 1− o
(

n−1
)

as n → ∞.

Proof. Note that
∑n

k=1(Xk −X ′
k)

2

∑n
k=1 X

2
k

= 1− 2
∑n

k=1 XkX
′
k

∑n
k=1 X

2
k

+

∑n
k=1(X

′
k)

2

∑n
k=1 X

2
k

≥ 1− 2
∑n

k=1 XkX
′
k

∑n
k=1 X

2
k

.

We thus have that

(2.4)

{ |∑n
k=1 XkX

′
k|

∑n
k=1 X

2
k

< ǫ/2

}

⊆
{∑n

k=1(Xk −X ′
k)

2

∑n
k=1 X

2
k

> 1− ǫ

}

.

Since EX2 = 1, by Lemma 2.1 we have that

P

(∑n
k=1 X

2
k

n
>

1

2

)

= 1− o
(

n−2
)

as n → ∞.

Since EX = 0, EX2 = 1, and X ′ is an independent copy of X , we have that

E(XX ′) = (EX)2 = 0 and E(XX ′)2 =
(

EX2
)2

= 1. It follows from Theorem 4 of
Baum and Katz [1] that

P

( |∑n
k=1 XkX

′
k|

n
≥ ǫ/4

)

= o
(

n−1
)

as n → ∞

and hence that

P

( |∑n
k=1 XkX

′
k|

∑n
k=1 X

2
k

≥ ǫ/2

)

= P

(

|
∑n

k=1 XkX
′
k|

∑n
k=1 X

2
k

≥ ǫ/2,

n
∑

k=1

X2
k > n/2

)

+ P

(

|
∑n

k=1 XkX
′
k|

∑n
k=1 X

2
k

≥ ǫ/2,

n
∑

k=1

X2
k ≤ n/2

)

≤ P

( |∑n
k=1 XkX

′
k|

n
≥ ǫ/4

)

+ P

(

n
∑

k=1

X2
k ≤ n/2

)

= o
(

n−1
)

as n → ∞.

So, in view of (2.4), the conclusion (2.3) is established. �

Lemma 2.4. Let {X, Xk,i; i ≥ 1, k ≥ 1} be a double array of i.i.d. random
variables such that EX = 0 and EX2 = 1. Let {X ′, X ′

k,i; i ≥ 1, k ≥ 1} be an
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8 D. LI, Y. QI, AND A. ROSALSKY

independent copy of {X, Xk,i; i ≥ 1, k ≥ 1}. Write X̂ = X −X ′, X̂k,i = Xk,i −
X ′

k,i, i ≥ 1, k ≥ 1. If, for some constant 0 < a < ∞,

(2.5) lim
n→∞

nP





(

n

logn

)1/2 |∑n
k=1 Xk,1Xk,2|

√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a



 = 0,

then

(2.6) lim
n→∞

nP





(

n

log n

)1/2

∣

∣

∣

∑n
k=1 X̂k,1X̂k,2

∣

∣

∣

√

∑n
k=1 X̂

2
k,1

√

∑n
k=1 X̂

2
k,2

> 8a



 = 0.

Proof. Since EX2 = 1, by Lemma 2.3 we have that

P

(

∑n
k=1 X̂

2
k,1

∑n
k=1 X

2
k,1

>
1

2

)

= P

(

∑n
k=1 X̂

2
k,2

∑n
k=1 X

2
k,2

>
1

2

)

= 1− o
(

n−1
)

as n → ∞.

For n ≥ 2, write

Bn =

{

∑n
k=1 X̂

2
k,1

∑n
k=1 X

2
k,1

>
1

2

}

⋂

{

∑n
k=1 X̂

2
k,2

∑n
k=1 X

2
k,2

>
1

2

}

.

Then

P (Bn) =
(

1− o
(

n−1
))2

= 1− o
(

n−1
)

and P (Bc
n) = o

(

n−1
)

as n → ∞.

We thus see that (2.5) implies that

nP





(

n

log n

)1/2 |∑n
k=1 Xk,1Xk,2|

√

∑n
k=1 X̂

2
k,1

√

∑n
k=1 X̂

2
k,2

> 2a





≤ nP











(

n

logn

)1/2 |∑n
k=1 Xk,1Xk,2|

√

∑n
k=1 X̂

2
k,1

√

∑n
k=1 X̂

2
k,2

> 2a







⋂

Bn



+ nP (Bc
n)

≤ nP











(

n

logn

)1/2 |∑n
k=1 Xk,1Xk,2|

√

(1/2)
∑n

k=1 X
2
k,1

√

(1/2)
∑n

k=1 X
2
k,2

> 2a







⋂

Bn



+ o(1)

≤ nP





(

n

logn

)1/2 |∑n
k=1 Xk,1Xk,2|

√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a



+ o(1)

→ 0 as n → ∞.

Note that {X ′, X ′
k,i; i ≥ 1, k ≥ 1} is an independent copy of {X,Xk,i; i ≥ 1, k ≥ 1}

and
n
∑

k=1

X̂k,1X̂k,2 =

n
∑

k=1

Xk,1Xk,2 −
n
∑

k=1

X ′
k,1Xk,2 −

n
∑

k=1

Xk,1X
′
k,2 +

n
∑

k=1

X ′
k,1X

′
k,2, n ≥ 1.
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It thus follows that

nP





(

n

logn

)1/2

∣

∣

∣

∑n
k=1 X̂k,1X̂k,2

∣

∣

∣

√

∑n
k=1 X̂

2
k,1

√

∑n
k=1 X̂

2
k,2

> 8a





≤ nP





(

n

logn

)1/2 |∑n
k=1 Xk,1Xk,2|

√

∑n
k=1 X̂

2
k,1

√

∑n
k=1 X̂

2
k,2

> 2a





+ nP





(

n

logn

)1/2

∣

∣

∣

∑n
k=1 X

′
k,1Xk,2

∣

∣

∣

√

∑n
k=1 X̂

2
k,1

√

∑n
k=1 X̂

2
k,2

> 2a





+ nP





(

n

logn

)1/2

∣

∣

∣

∑n
k=1 Xk,1X

′
k,2

∣

∣

∣

√

∑n
k=1 X̂

2
k,1

√

∑n
k=1 X̂

2
k,2

> 2a





+ nP





(

n

logn

)1/2

∣

∣

∣

∑n
k=1 X

′
k,1X

′
k,2

∣

∣

∣

√

∑n
k=1 X̂

2
k,1

√

∑n
k=1 X̂

2
k,2

> 2a





= 4nP





(

n

logn

)1/2 |∑n
k=1 Xk,1Xk,2|

√

∑n
k=1 X̂

2
k,1

√

∑n
k=1 X̂

2
k,2

> 2a





→ 0 as n → ∞,

i.e., (2.6) holds. �

A sequence {V1, ..., Vn} of random variables with values in R is called a sym-
metric sequence if, for every choice of signs ±, (±V1, ...,±Vn) has the same distri-
bution as (V1, ..., Vn) in R

n. Equivalently, (V1, ..., Vn) has the same distribution as
(ε1V1, ..., εnVn) in R

n where {ε1, ..., εn} is a Rademacher sequence which is inde-

pendent of (V1, ..., Vn). Clearly {V (n)
1 , ..., V

(n)
n } is a symmetric sequence of random

variables where

V
(n)
j =

X̂j,1X̂j,2
√

∑n
k=1 X̂

2
k,1

√

∑n
k=1 X̂

2
k,2

, j = 1, ..., n.

The following result is one of the remarkable Lévy inequalities; see Ledoux and
Talagrand [7, Proposition 2.3].

Lemma 2.5. Let {V1, ..., Vn} be a symmetric sequence of random variables with
values in R. Then, for every t > 0,

P

(

max
1≤j≤n

|Vj | > t

)

≤ 2P

(∣

∣

∣

∣

∣

n
∑

k=1

Vk

∣

∣

∣

∣

∣

> t

)

.
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10 D. LI, Y. QI, AND A. ROSALSKY

Lemma 2.6. Let {X, Xk,i; i ≥ 1, k ≥ 1} be a double array of i.i.d. random
variables with EX2 = 1. Then, for any given constant 0 < a < ∞,

(2.7) nP



n1/4 max1≤j≤n |Xj,1Xj,2|
√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a



 = O(1) as n → ∞

if and only if

(2.8) n2
P



n1/4 |X1,1X1,2|
√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a



 = O(1) as n → ∞.

Proof. For n ≥ 1, write

Cn,j =







n1/4 |Xj,1Xj,2|
√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a







, j = 1, 2, ..., n.

Since, for n ≥ 1,

nP



n1/4 max1≤j≤n |Xj,1Xj,2|
√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a



 = nP





n
⋃

j=1

Cn,j





≤ n

n
∑

j=1

P (Cn,j)

= n2
P (Cn,1)

= n2
P



n1/4 |X1,1X1,2|
√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a



 ,

we see that (2.8) implies (2.7). On the other hand, we have that for n ≥ 1,

(2.9)

nP



n1/4 max1≤j≤n |Xj,1Xj,2|
√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a





= nP





n
⋃

j=1

Cn,j





≥ n





n
∑

j=1

P (Cn,j)−
∑

1≤i<j≤n

P (Cn,i ∩Cn,j)





= n2
P (Cn,1)−

n2(n− 1)

2
P (Cn,1 ∩ Cn,2)

≥ n2
P (Cn,1)− n3

P (Cn,1 ∩Cn,2) .
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We now deal with n3
P (Cn,1 ∩Cn,2). Let An, n ≥ 1 be exactly as in the proof of

Lemma 2.2, i.e.,

An =

{

∑n
k=1 X

2
k,1

n
>

1

2

}

⋂

{

∑n
k=1 X

2
k,2

n
>

1

2

}

, n ≥ 1.

Since EX2 = 1, it follows from Lemma 2.1 that

P (An) =
(

1− o
(

n−3
))2

= 1− o
(

n−3
)

and P (Ac
n) = o

(

n−3
)

as n → ∞.

Note that X1,1X1,2 and X2,1X2,2 are independent. We thus have that

P (Cn,1 ∩ Cn,2)

= P











n1/4 |X1,1X1,2|
√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a







⋂







n1/4 |X2,1X2,2|
√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a











= P











n1/4 |X1,1X1,2|
√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a







⋂







n1/4 |X2,1X2,2|
√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a







⋂

An





+ P











n1/4 |X1,1X1,2|
√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a







⋂







n1/4 |X2,1X2,2|
√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a







⋂

Ac
n





≤ P

({

n1/4 |X1,1X1,2|
√

(1/2)n
√

(1/2)n
> a

}

⋂

{

n1/4 |X2,1X2,2|
√

(1/2)n
√

(1/2)n
> a

}

⋂

An

)

+ o
(

n−3
)

≤ P

({

2|X1,1X1,2|
n3/4

> a

}

⋂

{

2 |X2,1X2,2|
n3/4

> a

})

+ o
(

n−3
)

= P

(

2 |X1,1X1,2|
n3/4

> a

)

P

(

2 |X2,1X2,2|
n3/4

> a

)

+ o
(

n−3
)

≤
(

4E (X1,1X1,2)
2

a2n6/4

)(

4E (X2,1X2,2)
2

a2n6/4

)

+ o
(

n−3
)

= O
(

n−3
)

and so we have by (2.9) that

n2
P



n1/4 |X1,1X1,2|
√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a



 ≤ nP



n1/4 max1≤j≤n |Xj,1Xj,2|
√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a



+O(1).

The conclusion (2.8) then follows from (2.7). �

Lemma 2.7. Let {X, Xk,i; i ≥ 1, k ≥ 1} be a double array of i.i.d. random
variables with EX2 = 1. If (2.8) holds for some constant 0 < a < ∞, then

(2.10) E|X |r < ∞ for all 0 < r <
8

3
.
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12 D. LI, Y. QI, AND A. ROSALSKY

Proof. Since EX2 = 1, by the weak law of large numbers we see that

P

(

∑n
k=2 X

2
k,1

n
< 1.8

)

= P

(

∑n
k=2 X

2
k,2

n
< 1.8

)

→ 1 as n → ∞.

For n ≥ 1, write

Dn =

{

∑n
k=2 X

2
k,1

n
< 1.8

}

⋂

{

∑n
k=2 X

2
k,2

n
< 1.8

}

.

Then there exists a positive integer n0 such that, for all n ≥ n0,

P (Dn) ≥ 0.5,
a2

n1/2
≤ 0.19,

and
√

(1.8a)2n3/2 + 4a4n+ 2a2n1/2 ≤ 2an3/4.

Let βn =
√

(1.8a)2n3/2 + 4a4n, n ≥ 1. Note that Dn, X1,1, and X1,2 are indepen-
dent. We thus have that for all n ≥ n0

P



n1/4 |X1,1X1,2|
√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> a





≥ P

({

X2
1,1X

2
1,2 >

a2

n1/2

n
∑

k=1

X2
k,1

n
∑

k=1

X2
k,2

}

⋂

Dn

)

≥ P

({

X2
1,1X

2
1,2 >

a2

n1/2
(X2

1,1 + 1.8n)(X2
1,2 + 1.8n)

}

⋂

Dn

)

≥ 0.5P

(

X2
1,1X

2
1,2 >

a2

n1/2

(

X2
1,1X

2
1,2 + 1.8n(X2

1,1 +X2
1,2) + (1.8n)2

)

)

≥ 0.5P
(

X2
1,1X

2
1,2 > 0.19X2

1,1X
2
1,2 + 1.8a2n1/2(X2

1,1 +X2
1,2) + (1.8a)2n3/2

)

= 0.5P
(

(0.9X2
1,1 − 2a2n1/2)(0.9X2

1,2 − 2a2n1/2) > (1.8a)2n3/2 + 4a4n
)

= 0.5P
(

(0.9X2
1,1 − 2a2n1/2)(0.9X2

1,2 − 2a2n1/2) > β2
n

)

≥ 0.5P
(

0.9X2
1,1 − 2a2n1/2 > βn, 0.9X

2
1,2 − 2a2n1/2 > βn

)

= 0.5
(

P

(

0.9X2 > βn + 2a2n1/2
))2

≥ 0.5
(

P

(

0.9X2 > 2an3/4
))2

.

Thus it follows from (2.8) that

lim sup
n→∞

(

nP
(

0.9X2 > 2an3/4
))2

= lim sup
n→∞

n2
(

P

(

0.9X2 > 2an3/4
))2

< ∞
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and hence that

lim sup
n→∞

nP
(

0.9X2 > 2an3/4
)

< ∞,

which is equivalent to

lim sup
x→∞

x4/3
P

((

0.9

2a

)

X2 > x

)

< ∞.

It now is easy to verify that

E
(

X2
)(4/3)−δ

< ∞ for all 0 < δ < 4/3,

thereby proving (2.10). �

3. Proof of Theorem 1.1. With the preliminaries accounted for, Theorem
1.1 may be proved.

Proof of Theorem 1.1. Since X is nondegenerate with (1.9), we see that

0 < σ2 = E(X − µ)2 < ∞ where µ = EX.

Note that, for all i and j, the Pearson correlation coefficient between
(

X1,i−µ
σ , ...,

Xn,i−µ
σ

)′

and
(

X1,j−µ
σ , ...,

Xn,j−µ
σ

)′
is the exactly same as the Pearson correlation coefficient

between (X1,i, ..., Xn,i)
′
and (X1,j, ..., Xn,j)

′
. We thus can assume that, without

loss of generality, EX = 0 and EX2 = 1.
Since n/pn is bounded away from 0 and ∞, we see that

lim
n→∞

an
4 logn

= 1

Thus (1.8) implies that
(

n

logn

)

L2
n

P→ 4

whence the implication (1.8) ⇒ (1.7) follows.
By Remarks 2.3 and 2.4 of Li, Liu, and Rosalsky [4], (1.6) implies that

x6

log3/2 x
P(|X | ≥ x) → 0 as x → ∞

which ensures in particular that EX4 < ∞. By Theorem 2.6 of Li, Liu, and Rosalsky
[4], the implication (1.6) ⇒ (1.8) follows.

We thus only need to show that (1.7) implies (1.6). Clearly, it follows from (1.7)
that

lim
n→∞

P

(

(

n

logn

)1/2

Ln > 3

)

= 0
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14 D. LI, Y. QI, AND A. ROSALSKY

which implies that

(3.1) lim
n→∞

P

(

(

n

logn

)1/2

max
1≤i≤pn/2

∣

∣

∣ρ̂
(n)
2i−1,2i

∣

∣

∣ > 3

)

= 0.

Since ρ̂
(n)
2i−1,2i, 1 ≤ i ≤ pn/2, are i.i.d. random variables, (3.1) ensures that

lim
n→∞

(pn/2)P

(

(

n

logn

)1/2
∣

∣

∣ρ̂
(n)
1,2

∣

∣

∣ > 3

)

= 0.

Since n/pn is bounded away from 0 and ∞, we have that

(3.2) lim
n→∞

nP

(

(

n

log n

)1/2 ∣
∣

∣
ρ̂
(n)
1,2

∣

∣

∣
> 3

)

= 0.

Note that for n ≥ 1,

n
∑

k=1

(

Xk,j −X
(n)

j

)2

=

(

n
∑

k=1

X2
k,j

)

− n
(

X
(n)

j

)2

≤
n
∑

k=1

X2
k,1, j = 1, 2

and

n
∑

k=1

(

Xk,1 −X
(n)

1

)(

Xk,2 −X
(n)

2

)

=

(

n
∑

k=1

Xk,1Xk,2

)

− nX
(n)

1 X
(n)

2 .

It thus follows that for n ≥ 1,

∣

∣

∣ρ̂
(n)
1,2

∣

∣

∣ =

∣

∣

∣

∑n
k=1

(

Xk,1 −X
(n)

1

)(

Xk,2 −X
(n)

2

)∣

∣

∣

√

∑n
k=1

(

Xk,1 −X
(n)

1

)2
√

∑n
k=1

(

Xk,2 −X
(n)

2

)2

≥

∣

∣

∣

∑n
k=1

(

Xk,1 −X
(n)

1

)(

Xk,2 −X
(n)

2

)∣

∣

∣

√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

≥ |∑n
k=1 Xk,1Xk,2|

√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

−
n
∣

∣

∣
X

(n)

1 X
(n)

2

∣

∣

∣

√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

.
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Then by (3.2) and Lemma 2.2, we have that

nP





(

n

logn

)1/2 |∑n
k=1 Xk,1Xk,2|

√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> 4





≤ nP

(

(

n

logn

)1/2 ∣
∣

∣
ρ̂
(n)
1,2

∣

∣

∣
> 3

)

+ nP



n

(

n

logn

)1/2

∣

∣

∣X
(n)

1 X
(n)

2

∣

∣

∣

√

∑n
k=1 X

2
k,1

√

∑n
k=1 X

2
k,2

> 1





→ 0 as n → ∞,

which, by applying Lemma 2.4, implies that (2.6) holds with a = 4. It now follows
from Lemma 2.5 and (2.6) that

(3.3)

lim
n→∞

nP









(

n

logn

)1/2 max1≤j≤n

∣

∣

∣

X̂j,1√
2

X̂j,2√
2

∣

∣

∣

√

∑n
k=1

(

X̂k,1√
2

)2
√

∑n
k=1

(

X̂k,2√
2

)2
> 32









= lim
n→∞

nP





(

n

logn

)1/2 max1≤j≤n

∣

∣

∣X̂j,1X̂j,2

∣

∣

∣

√

∑n
k=1 X̂

2
k,1

√

∑n
k=1 X̂

2
k,2

> 32





= 0.

Note that limn→∞ n1/4/(n/ logn)1/2 = 0. It thus follows from (3.3) that

(3.4) lim
n→∞

nP









n1/4
max1≤j≤n

∣

∣

∣

X̂j,1√
2

X̂j,2√
2

∣

∣

∣

√

∑n
k=1

(

X̂k,1√
2

)2
√

∑n
k=1

(

X̂k,2√
2

)2
> 32









= 0.

Clearly, {X̂/
√
2, X̂k,i/

√
2; i ≥ 1, k ≥ 1} is a double array of i.i.d. random variables

with E(X̂/
√
2)2 = 1. By applying Lemma 2.6, (3.4) yields

lim sup
n→∞

n2
P









n1/4

∣

∣

∣

X̂1,1√
2

X̂1,2√
2

∣

∣

∣

√

∑n
k=1

(

X̂k,1√
2

)2
√

∑n
k=1

(

X̂k,2√
2

)2
> 32









< ∞,

which, by applying Lemma 2.7, ensures, in particular, that

(3.5) E

( |X −X ′|√
2

)r

= E

(

|X̂|√
2

)r

< ∞ for all 0 < r < 8/3.
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It follows from (3.5) and the weak symmetrization inequality

P(|X −median(X)| > t) ≤ 2P(|X −X ′| > t) for all t ≥ 0

that
E|X |r < ∞ for all 0 < r < 8/3.

Since 2 < 2 + (1/3) < 8/3, by applying Theorem 2.6 of Li, Liu, and Rosalsky [4],
(1.6) follows from (1.7). This completes the proof of Theorem 1.1. �
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