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Abstract

This paper is an attempt to extend the notion of viscositytgmh to nonlin-
ear stochastic partial differential integral equationthwionlinear Neumann bound-
ary condition. Using the recently developed theory on galirrd backward doubly
stochastic differential equations driven by a Lévy processprove the existence of
the stochastic viscosity solution, and further extend thelinear Feynman-Kac for-
mula.

AMS Subiject Classification: 60H15; 60H20

Keywords: Stochastic viscosity solution, backward doubly stodhatifferential equation,
Lévy process, stochastic partial differential integralaipn with Neumann boundary con-
dition.

1 Introduction

The notion of the viscosity solution for partial differaadtiequations, first introduced by
Crandall and Liong[7], has an impact on the modern theailetind applied mathematics.
Today the theory has become an indispensable tool in mariiedijelds, especially in
optimal control theory and numerous subjects related td\e refer to the well-known
"User's Guide" by Crandall et al! 8] and the books by Bardakt[1] and Fleming and
Soner[[9] for a detailed account for the theory of (detersiio) viscosity solutions.

Since it is well known that almost all the deterministic deshs in these applied fields
have their stochastic counterparts, many works have eatetiek notion of viscosity solu-
tion to stochastic partial differential equations (SPDiEsshort). The first among them is
done by Lions and Souganidis [12,/13]. They use the so-cédiethastic characteristic"
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to remove the SPDEs. Next, two other ways of defining a stdicheiscosity solution of
SPDEs is considered by Buckdahn and Ma respectively!in| [4n8][6]. In the two first
paper, they used the "Doss-Sussman" transformation teecbiime stochastic viscosity so-
lution of SPDEs with the solution of associated backwardbiipstochastic differential
equations (BDSDEs, in short). In the second one, they intted the stochastic viscosity
solution by using the notion of stochastic sub and super Rsently, based on both previ-
ous work, Boufoussi et al. introduced in [3], the notion afagsity solution of SPDEs with
nonlinear Neumann boundary condition. The existence trésdlerived via the so-called
generalized BDSDEs and the "Doss-Sussman” transformation

Inspired by the aforementioned works, especially [3] arid5]4 this paper considers
the following nonlinear stochastic partial differentiategral equations (SPDIES, in short)
with nonlinear Neumann boundary condition

(£ + Lu(t, x) + F(t,x,ut,x), (U (£,X)R-1) +9(t,x,u(t,x))Bs = 0, (t,x) € [0,T] x O,
Sa(Ex) ot xu(t,x) =0, (t,x)€[0,T]x 00, (1.1
u(T,X) = Up(X), X€ O,

whereB denotes white noise with respect to Brownian mot&rwhich Moreoverf, g, @
andug are some measurable functions with appropriate dimensiod4 is the second-
order differential integral operator of the form:

2
Lo(t,x) = m]_O'(X)%(t,X)—F}U(X)zg(t,X)
(1.2)

in which o is a certain function andy = E(L;), which will be given in Section 3. We
denote

0E(0) = [ [0(tx+000y) ~ Bt 0] pe(y)v(ay), k=1
and

o) Qo 0
%(LX)—i: Fi(x)a_n(t’x)’ VX € 00,

where the functionp Cg(IR{”) is connected to the domaé by the following relation:
©={xeR": Y(x) >0} and 90 = {x € R" : Y(x) = 0}.

The goal of this paper is to determine the definition and nakinally establish the ex-
istence of the stochastic viscosity solution to SPDIES)(ivhich could be used for the pur-
pose of option pricing in a Lévy market. More precisely, weegiome direct links between
this stochastic viscosity solution and the solution of thecalled generalized backward
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doubly stochastic differential equations driven by a Lévggess (BDSDELSs, for short)
initiated by Hu and Reri [10]. Such a relation in a sense coaldibwed as an extension
of the nonlinear Feynman-Kac formula to stochastic PDIEs¢ky to our best knowledge,
is new. Note also that this work could be considered as a gkregion for the updated

result obtained by Ren and Otmahni [15], where the authoed treterministic PDIEs with

nonlinear Neumann boundary conditions.

The rest of this paper is organized as follows. In Section € imroduced notion of
stochastic viscosity solutions and all details associatedSection 3, we review the gen-
eralized backward doubly stochastic differential equetidriven by a Lévy process and
its connection to stochastic PDIEs, from which the existeatthe stochastic viscosity
solution will follow.

2 Notion of viscosity solution for SPDIE

2.1 Notations, assumptions and definitions

Let (Q, 7 ;IP) be a complete probability space on whict-dimensional Brownian motion
B = (Bt)i>0 is defined . LetF® = ftﬁ denote the natural filtration generated Byaug-
mented by thé?-null sets of# . Further, letaf; denote all the=B-stopping times such

0<T1<T,as. andv B be the set of all almost surely finife®-stopping times. Let us
introduce

= {x= Doy [dle = (3 P2 <o)
{ R i; }
For generic Euclidean spacEsE; = R" or ¢2 and we introduce the following:

1. The symbolck"([0,T] x E;E;) stands for the space of &-valued functions de-
fined on[0,T] x E which arek-times continuously differentiable ihand n-times
continuously differentiable irx, and Ct';’”([O,T] x E;Ez) denotes the subspace of
c*"([0,T] x E;Ey) in which all functions have uniformly bounded partial deriv
tives.

2. For any suls-field 6 C 78, c*"(g,[0,T] x E;E1) (resp. ¢"(6,[0,T] x E;Ey))
denotes the space of atk"([0,T] x E;E;) (resp. Ct'f’”([O,T] x E;Ejz))-valued ran-
dom variable that arg ® 8 ([0, T] x E)-measurable;

3. ckN(FB,[0,T] x E;Ey) (respci"(FB, [0, T] x E; Ey)) is the space of all random fields
©c c*"(71,[0,T] x E;E; (resp. ¢%"(#1,[0,T] x E;Ez), such that for fixeck € E
andt € [0, T], the mappingo+— a(t,w, x) is FB-progressively measurable.

4. For any suls-field g C #B and a real numbep > 0, LP(g;E) to be allE-valued
G -measurable random varialjesuch thatf|g|P < .

Furthermore, regardless of their dimensions we denote byand| - | the inner product and

norm inE andEy, respectively. Foft,xy) € [0,T] xR x R, we denotdy = (5%, ..., %),
Dy = (05, )j—1, Dy = 2, Dt = &. The meaning oDy andDyy is then self-explanatory.

Let © be an open connected and smooth bounded domaRi'¢d > 1) such that for a
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function @ € c2(R"), © and its boundary® are characterized b§ = {{ > 0}, 90 =

{w =0} and, for anyx € 00, JW(X) is the unit normal vector pointing towards the interior
of ©.

Throughout this paper, we shall make use of the followingditag assumptions:

(A1) The functiono : R" — R" is uniformly Lipschitz continuous, with a Lipschitz
constan > 0.

(A2) The functionf : Q x [0,T] x © x R x £2 — R is a continuous random field such that
for fixed , (x,y,q), f(-,-,X,y,0%Qq) is aft%—measurable; and there exists a constant
K >0, forall (t,xy,2), (t',X,y,Z) € [0,T] x R" x R x £?, such that foiP-a.e.w,

11(62,0,0,0,0)] <K

(@t x2) — (@ X,Y,2)] < K(t—t|+[x—X|+ ly—Y| + |z~ Z]).

(A3) The functiong: Q x [0,T] x © x R — R is a continuous random field such that, for
fixed (x,y),9(-,-,x,y) is a 7,5 -measurable; and there exists a conskant 0, for all
(t,xy), (',X,y) €[0,T] x R"x R, such that foi”-a.e.w,

|9(w,0,0,0)] <K

@, t,%,Y) — @', X, y)| < K(t=t'|+ [x=X|+]y—Y]).

(A4) The functionug : R" — R is continuous, for alk € R", such that for some positive
constantX, p > 0,

[Uo(X)] < K(L1+[x[P).

(A5) The functiong € C2**([0, T] x © x R;RY).

As shown by the work of Buckdahn and Ma [4, 5], our definitionstdchastic viscos-
ity solution will depend heavily on the following stochasflow n € C(FB,[0,T] x R" x
R), defined as the unique solution of the following stochasifier@ntial equation in the
Stratonovich sense:

]
ntxy) = y+ /t (a(s:xN(SX.Y)), 0dBs). (2.1)

We refer the reader t0[4] for a lucid discussion on this toplader the assumptiofA5),
the mappingy — n(t,x,y) defines a diffeomorphism for at,x), P-a.s. (see Protter [16]).
Let us denote itg-inverse bye(t,x,y). Then, one can show thaft,x,y) is the solution to
the following first-order SPDE:

e(t,xy) =y—/tT<Dy€(S,X,y), a(s,x,n(s,x,y)) odBs).

We now define the notion of stochastic viscosity solution 3&DIEs [T.11). In order to
simply the notation, we denote:

Atg(9(t.X) = LO(t,) + F(t,X O (t, %), (9 (t, X)) — %<g, Dyg) (t,%,6(t,x))
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and‘l—’(t,x) = n(tax>¢(t>x))
Definition 2.1. (1) A random fieldu € C(F,[0,T] x ©) is called a stochastic viscosity
subsolution of the SPDIE$ (1.1) if(T,x) < up(x), for all x € © and if for any stop-
ping timeT € a/g%, any state variabl € L°(#.%,(0,T] x ©), and any random field ¢
CL2(# Br,[0,T] x R") satisfying that
u(t,x) —W(t,x) <0=u(t(w),{(w) - ¥ (1(w),&(w)

for all (t,x) in a neighborhood of¢, 1), P-a.e. on the sef0 < T < T}, it holds that

(a) onthe evenfO <1< T},

Afg(W(1,§)) —DyW(1,§) Di9 (1,§) <O, P-a.e.;

(b) onthe evenf0 <1< T} N{ € 00},

: ov
min {Af.g (l.IJ (T7 E)) - quJ (T7 E) Dtd) (T7 E) ) _% (T7 E) - (p(T7 E? b g (T7 E))} < 07 P-a.e.

(2.2)

(2) A random fieldu € C(FB,[0,T] x ©) is called a stochastic viscosity subsolution of the

SPDIE(f,g) @) if u(T,x) > up(x), for all x € © and if for any stopping time < MO‘?T,

any state variablé ¢ L°(#.8,[0,T] x ©), and any random field € C*?(# B1,[0,T] x R")

satisfying that

U(t,X) - Lp(tax) > 0= U(T(w)aa(w)) - LP(T((*));E((*)))
for all (t,x) in a neighborhood of¢, 1), P-a.e. on the sef0 < 1 < T}, it holds that
(a)ontheevenfO< 1< T},

Atg(WP(1,€)) —DyW(1,€) Did (1,€) > 0, P-a.e.;

(b) onthe evenf0 <1< T} N{§ € 00},

max{Afg (W(1,§)) —DyW(1,§) Dt (1,8), _o¥ (1,§) —o(1,&,¥ (T,E))} > 0,P-a.e.

on
(2.3)

(3) Arandom fieldu € ¢ (FB, [0,T] x 6) is called a stochastic viscosity solution of SPDIE
(f,g) (.0) if it is both a stochastic viscosity subsolution andsacechastic viscosity super-
solution.

Remark2.2 We remark that iff, ¢ are deterministic and) = 0, the flown becomes
nt,x,y) =y andW(t,x) = ¢(t,x), v (t,x,y) € [0, T] x R" x R. Thus, definition 2L co-
incides with the definition of (deterministic) viscositylstion of PDIE (f,0,@) given in
[15].

Next, the following notion of a random viscosity solutionliviie a bridge linking the
stochastic viscosity solution and its deterministic cegpért.

Definition 2.3. A random fieldu € C(FB, [0, T] x ©) is called anw-wise viscosity solution
if for P-almost allw € Q, u(w, -, -) is a deterministic viscosity solution of SPD(E,0, @).



2.2 Doss-Sussmann transformation

In this subsection, we study the Doss-Sussmann transfammalt enables us to convert
SPDIE(f,qg,) to an SPDIEf,0,¢), wheref andgare well-defined random field depend-
ing on f, g and@respectively. We get the following important result.

Proposition 2.4. AssumgA1l)—(A5) hold. A random field u is a stochastic viscosity sub-
(resp. super)-solution to SPDIEf,g,¢) (L.1)if and only if «-,-) = &(-,-,u(-,-)) is a
stochastic viscosity sub-(resp. super)-solution to SPOID, @), with

F(t7 X, Y, (Z(k) )le)

1 [ee]
—— | f({t,x,n(t,xy), [ Dy, % ¥)ZX +o(x)Den(t, X, ¥) 1 +/6k t,X, Y, U)V du> >
sty | (0. (D2 + otopamitxy ey + [ e xyuian)

_%gDyg(tv)(»n(t»Xv y)) + an (t>X7 y) + G(X)nyn (t,X,y) <Z(1) +/Rel(tvx>y> U)V(dU)>

1 oo 2
30Xy 3 |2+ JREAESANCT ] (2.4)
and
(P(t,X,y) = m [h(ta)(?n(t?Xay)) + Dxn(taXJ)Dw(X)] . (25)
The proces$ is defined by
84(t, %, y,u) = [N(t,x+0()u,y) =N (t, %) pe(U). (2.6)

Remark2.5. Let us recall that under the assumptiohb) the random fieldh belongs to
C%22(FB [0, T] x R" x R), and hence that the same is true forThen, considering the
transformatiort¥(t,x) = n(t,x, (t,x)), we obtain

DyW = Dyn+DynDyo,
DWW = Dxxr]+2(nyn)(DX¢)*+(Dwn)(DX¢)(DX¢)*+(Dyn)(DXX(I))'

Moreover, since for allt,x,y) € [0,T] x R" x R the equalitye(t,x,n(t,x,y)) =y holds
P-almost surely, we also have

Dye+DyeDyxn =

DyeDyn =

Dio€ +2(Dxye(DxN)" + (Dyye) (Dx ) (DxN)" + (Dy€) (Do) - =
(Dxy€)(Dyn) + (Dyye) (Dxn)(Dyn) + (Dye) (Dyyn) =
(Dyye)(Dyn)? + (Dye)(Dyyn) =

O 0o Pr o

where all the derivatives of the random field, -, -) are evaluated 4dt,x,n(t,x,y)), and all
those ofn(-,-,-) are evaluated 4dt,x.y).



Proof of Proposition 2.4 We shall only prove that iti € C(FB; [0, T] x R") is a stochastic
viscosity subsolution to SPDIES,g,9), thenv(-,-) = &(-,-,u(-,-)) € C(FB,[0,T] x R")
is a stochastic viscosity subsolution to SPDfIVE),?p). The remaining part can be proved
without enough difficulties in the similar way.

To this end, leu € C(FB;[0,T] x R") be a stochastic viscosity subsolution to SPDIEs
(f.0,¢) and letv(t,x) = &(t,x, u(t,x)). Letus taker € # 2, & € L?(7B,R") arbitrarily, and
letd € C1?(#.B,R") be such that

V(OO,t,X) - (I)((x),t,X) < 0= V(“’»T(U’)’E(w)) - (I)(OO,T(Q)),E(Q)))

for all (t,x) in a neighborhood of¢, 1), P-a.e. onthe sef0 < 1 < T}.
SettingW(t,x) = n(t,x,$(t,x)) and since mapping — n(t,x,$(t,x,y)) is strictly in-
creasing, we have

ut,x) —W(t,x) = n(t,xv(t,x)) —n(t,x,(t,x))
0=n(1,&,v(1,&)) —n(1,&$(1,&)) = u(t,§) — W(1,8),

for all (t,x) in a neighborhood of¢, 1), P-a.e. on the sef0 < 1 < T}. Therefore, since is
a stochastic viscosity subsolution to SPDIEg, @), it follows thatP-a.e. on{0 <1< T},

Atg(W(1,8)) —DyW(1,&) Did (1,€) > 0. (2.7)
On the other hand, we have

LP(t,x) = La(tx6(tx)) +Dyn(t X, ¢(t,x))Lo(t,x)
+0(X)DxyN (t,%, ¢ (t, X)) (Dxd(t, X))

+%Dyyr](t,x,¢(t,x))(Dx¢(taX))2=

wherely is the same as the operator with all the derivatives taken with respect to the
second variable from which together with[(Z]4), we obtain

IN

Dys(t,x7LP(t,X))Afg(LIJ(t,X)) = Aﬁo(q)(t?X))'
Finally, in virtue of [2.7), we get

A o(9(T,€)) = Die(T, ).

That is, part (a) of Definition 2.1. is established. To degaat (b), noting that for all
(t,x) € [0,T] x 00, we have

ov
%(t,x) = DyW(t,x) - OY(x)

= Dt x 0(t,%)) - DB(X) + Dyn (t,x ¢ (t,x)) Dx (t,X) - Ow(x)

DX O o

)
) BW0) +Dyn(t,x, ¢ (t,x)) 5 - (L, ).

This shows that
o (6(])

T+ EWLE) ~ D0t 0) (8 Bt or.E))
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where @ is defined by[(25). Becaud®yn(t,x,y) is strictly positive, we havé-a.s. on
{0<t<T}IN{E €00}

o¢

min{AﬁO(q)(T,E)) —Dig(,€), —5-(1,8) —Eb(r,E,cb(r,E))} > 0.

That is,v is a stochastic viscosity subsolution of SPDIED, @). O

3 Generalized BDSDELs and SPDIEs with Neumann boundary
condition

The main object of this section is to show how a semi-lineaDI&(f,g, @) (1.1) is re-
lated to the so-called generalized BDSDELs (GBDSDELSs, fmrf§ initiated by Hu and
Ren[10], in the Markovian case. To begin with, let us introelanother complete probabil-
ity space(Q’, 7', P") on which we define a Lévy procekscharacterized by the following
famous Lévy-Khintchine formula

) 2 .
E(eU) = e W with ®(u) = —ibu+ %uz —/ (6% — 1—iuylyy<q) ) v(dy).
. <

ThusL is characterized by its Lévy tripléb, o,v) whereb € R,0? > 0 andv is a measure
defined inR\ {0} which satisfies that

(i) Ja(TAYV(dy) < +eo,

(i) 3 &> 0and\ > Osuch thatf| . .c€*¥v(dy) < +oo.
This implies that the random variable have moment of all orders, i.ey =E(L;) =b-+
fMZlyv(dy) and m = [72y'v(dy) <, Vi>2. Forthe background on Lévy processes,
we refer the reader to[[2, 17].

We define the following family o6-fields:

7tL:0-(Lr_Ls7S§r§t)\/N/7

wherea(’ denotes all th@'-null sets in# . DenoteF" = (%) o<t<T.
Next, we consider the product space, 7 ,P) where

Q=0xQ; F=707,; P=PaP,

and definer; = 75 © 7" for all t € [0, T]. We remark thaF = {#, t € [0, T]} is neither
increasing nor decreasing so that it does not a filtrationthEy we assume that random
variablest (w), w e Q and{(w'), o' € Q' are considered as random variable<bwia the
following identifications:

E(w o) =&(w); (wu)=qw).

We denote byH 1)), the Teugels Martingale associated with the Lévy prodéss
t € [0,T]}. More precisely

HO — Y0 46 Y 0D 4o gY@
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whereYt(') =Ll —m for all i > 1 with L} a power-jump process. That ig = L; and
Ll = Socst (ALs) for alli > 2, whereX— = limg ~ Xs andAX; = % — X It was shown in
Nualart and Schoutens [[14] that the coefficienjs correspond to the orthonormalization
of the polynomials 1x,x?, ... with respect to the measupédx) = x2dv(x) + 28(dx):

qi—l()—cll +C|| 1X +“‘+Ci71-
We set
pi(X) =xG_1(X) =X + G X1 gk,

The martingalgH (1)), can be chosen to be pairwise strongly orthonormal martngal
We consider the following spaces of processes:

1. o %(¢?) denotes the space 6f-valued, square integrable amg -measurable pro-
cesse® = {¢ : t € [0, T]} such that

:
0122 =E | dt < e

2. $2(R) is the subspace air 2(R) formed by ther;-measurable, right continuous with
left limit (rcll) processesh = {¢; : t € [0, T]} such that

1012, = ( sup w)

Finally, let£2 = 52(R) x 9 ?(¢?) be endowed with the norm
2, (T2
02 == ( sup e+ [ zla).
o<t<T 0

3.1 Aclass of reflected diffusion process and GBDSDELs

We now introduce a class of reflected diffusion process. Q.éte a regular convex and
bounded subsect &&" , which is such that for a functiop € CZ(R"), © = {x € R":

P(x) > 0}, 00 = {x € R": Y(x) = 0} and for allx € 90, OY(x) coincides with the unit
normal pointing towards the interior 6f (see[11]). Under assumptigAl), we know from

[11] that for every(t,x) € [0,T] x © there exists a unique pair of progressively measurable
procesg Xs™, At )i<s<T, Which is a solution to the following reflected SDE:

P(X*c©,s>t)=1
3.1)
tX X+/ tX dLr+/ Dlp tX)dAtSX S>t

whereAL—’x = tsl{xrt,xeae}dﬁﬁ’x, A is an increasing process with bounded variation on
[0,T],0< T < o, Ag =0. Furthermore, we have the following proposition.
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Proposition 3.1. There exists a constant € 0 such that for all xx' € ©,

E[ sup |><§—x§|4] <Clx—x/*

0<s<T

and

E[ sup A~ A \4} <Clx—x*

0<s<T

The main subject in this section is the following GBDSDEIgs, (t,x) € [0;T] x R",

.
(VE| sup M7+ [ 122 <o
t<s<T t

T T
(i) Y = w0+ [ FEXNEXZdr+ [ o XX dAY  (3.2)
S S

T o T o
+ [ g XY dBy 21/ (2 VdH", t<s<T.
s i=1vS

Remark3.2 In what follows, we will assum& = 1. The multidimensional case can be
completed without major difficulties.

Let us recall an existence and uniqueness result appedd]iaftl a generalized version
of the It6-Ventzell formula whose proof is analogous to theresponding one in Buckdahn-
Ma [4] replacing the Brownian motiow by the Teugels martingalgd V), .

Theorem 3.3. Assume thatA1)—(A5) hold. For each(t,x) € [0,T] x R, GBDSDEL(3.2)
has a unique solutioY'*,z"*) € £2.

Theorem 3.4. Suppose that M: C%2(F, [0, T] x R) is a semimartingale in the sense that
for every spatial parameter ® R the process t» M(t,x), t € [0,T], is of the form:

M(t,X) = M(O,x)+/otG(s,x)ds+/ot<N(s,x),st>+_i/ot|<(i)(s,x)st(i)7

where Ge C%2(FB,[0,T] x R), N € C®?(FB,[0,T] x R;RY), and the process K belongs to
C%2(FL,[0,T] x R;£?). We also consider the processz C(F, [0, T]) of the form

t t t 00 t . .
ai—ao+ [ Pudst [ BdAt [ ydBy+ > [ &any
0 0 0 &J/o

whereB,8 € s2(R), y € m 2(RY), and & € a1 2(¢?). Then the following equality holds

10



P-almost surely foralD <t < T:
t t e t . ()
M(t,a) — M(O,ao)+/ G(s,cxs)ds+/(N(S,O(s),dBSH—Zl/ KO (s, ais)dHY
0 0 5 Jo
t t t
+/0 DxM(S>as)Bst+/O DxM(S>Gs)esdAs+/O (DxM(s, as), YsdBs)
LS /tD M(sagldH® LS /tD M(s, as) Vi 2ds
X y US)Ys S T A XX h US
i;l 0 221 0 °
+} S /t DXXI\/I(S,GS)Iég)\ZdS—l— S /t DXK(D(S,GS)ég)dS
2;1 0 i; 0

- -i/ot DyN'(s, as)y.ds

3.2 Existence of stochastic viscosity solution

In this section we prove the existence of the stochasticogise solution to the SPDIEs
(f,0,0). Our main idea is to apply the Doss transformation to the GBBEIS(3.2) to obtain
resulting GBDSDEL without the stochastic integral agaaiBt which naturally become a
GBSDEL with new generators being exacfiyand@. For this, for eacht,x) € [0,T] x
R,t <s<T,letus define the following processes,

U = g(s X%, Y8,
(VI = Dye(s, X5 V) (2L + o(XE*) Dye(s, X%, Y2 ™)

+ [ o8 X%+ 000, Y4%) — (5 XX YE¥) — Dyl XX YEX)0 (X ulpa(W)v(du),

(VI = Dye(s XY (W) (3.3)
+ [ [els X%+ 00U, YE%) — (5 X, YE¥) — Dyl X% V)0 (X (v (),
ke{2,---}.

From Proposition 3.4 appeared iin [4], the procf&st™ Va™), se [t, T]} belongs tor for
each(t,x) € [0,T] x ©.
Now we are ready to give the following result.

Theorem 3.5. For each(t,x) € [0, T] x ©, the pair(U'*,V'X) is the unique solution of the
following GBSDEL.:

T _ T
UY = (X + /t F(r, X U V) dr + / Or, X, Up ) d A
o T
-2 / V) RdHY, t<s<T,
k=173
(3.4)

wheref and @ are given by(Z.4) and (2.5) respectively.
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Proof. For clarity, (XtX, Yt ZtX Ut vtX) will be replaced by(X,Y,Z,U,V) throughout
this proof. As it is shown in[4], the mapping,Y,Z) — (X,U,V) is one-to-one, with the
inverse transformation:

YS = n (87 XS7 US)7

Zél) = Dyn(sXs, Us)vs(l) +0(Xs)Dyn (s, Xs,Us)
+ /R[n (8, Xs+ 0(Xs)u,Us) — N (s, Xs,Us) — DxN (S, Xs,Us) 0 (Xs)u] p(u)v(duy,
70 = Dyn(s Xs, UV (3.5)

+/R[r](s, Xs+ 0(Xs)u,Us) — n(s, Xs,Us) — Dxn (s, Xs,Us)a(Xs)u] px(u)v(du),k € {2,---}.

Thanks to[(3.B) and (3.5), the uniqueness of GBSDEL (3.49va from GBDSDELI(3.R).
Thus, the proof reduces to show th&t,V) is a solution of the GBSDELL(3/4). To this
end, let us remark thatr = Yr = up(Xt). Moreover, applying the generalized I1t6-Ventzell
formula (see Theorem 4.2) &9s, X, Ys), and after a little calculation we obtain

T T
U = uo(Xr)+ /t DyE(S X, Yo) F (S, Xs, Yo, Zs)dS + /t DyE(S, X, Y )9S, Xs, Ye)dAs
o [T (K) 414 (K) T
_ z/ Dye(S, Xs,Ys)Zs 'dHs —ml/ Dye(s, Xs, Ys)0(Xs)ds
k=17t t

T (1)
_/ DxE(S, Xs, Ys)0(Xs)dHs
t

- / T Dt (s X6, Yo (X dA — % ¥ 5(X0) D (5 X, Yo 0(Xe)dis
t t

_i/T/[E(&X +0(Xs)U, Ys) — (S, Xs, Yo) — DyE(S, Xs, Yo)(Xs) U] p(U)v(du)dH
2 e s s)U, Ys , Xs, Ys <E(8,%s, Ys s I
+/tT/R[8(S’XS+O-(XS)u’YS)_S(S’XS’YS)_DXS(S7XSaYS)O-(Xs)u]V(dU)dS

- W24 [ o @
+5 > | Dyye(s, Xs, Ys)|Zs ' |“ds— o (Xs)Dxy€(S, Xs, Ys)Zs "ds
k=1

1 rT
5/ Dye(s.%¥5)(0.Dy0) (8 % Ye)ds (3.6)

T T © T
U = uo(xT)+/t F(s,XS,YS,Zs)dSJr/t CD(S,XS,Ys)dAS—Z/t VICKTCS
k=1

where
1
F(sxY,2 = Dyef(sxy,2) —mDyea(X)+ EDyys||z||2 — 0% (x)DyyezV

1 1
—509 (X)Do€d(x) — 5Dye(g, Dyg) (s, x.Y)

+ /R[s(s, X+ 0(X)u,y) — £(S, X, Y) — Dxeo(x)ujv(du) (3.7)
and
qD(S, X, y) = DVS(p(S> Xs, Y, Z) - DXSDLIJ(X)> (38)
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replaceck(s,x,y) by . Comparing[(3.6) with[(314), it suffices to show that
F(s,Xs,Ys, Zs) = f(5,Xs,Us, V), Vse [0,T], P-ass. (3.9)
and
®(s,Xs,Ys) = P(S, Xs,Us), Vs€ [0,T], P-as (3.10)

To this end, if we writeo(Xs) = 0s and recall[(2.6) together with Remark 2.5 we obtain the
following equalities:

Dye(s,Xs,Y5)0(Xs) = —Dye(s,Xs, Ys)a(Xs)Dxn (S, Xs,Us) (3.11)

(Dye) f (57 Xs, Ys, (Zék))iozo) = (Dye)f (37 Xs,N (8, Xs,Us), (Dynvs(k) +0g(DxN)Ljk=1}
k 0
+ [ #(s X Usuv(an) )
0L(Dyyg)ZY = 0%(Dyye)DyN (S Xs,Us)V Y + 0% (Dyy€) 02 DxN
+04(Dye) [ 8%(s X Us,u)v(d (3.12)
R

(Dye)(Dyyn) 3 Ve 2+ (Dy)2(Dyyn Ve Vos(Dn)
k=1

1 oe]
+5(Dy2)(Dy)[0s(Dun) (Dye) -+ (Dye) Doy 3 VA [ 8( 6. Us.upv(cy
k=1

2

NI =

1 > K
- E(Dyys) > 8P =
k=1

Dye / 8%(s, Xs,Us, u)v(du)
R

#5090 5

+(Dy€) (Dyyn ) (Dy€)?0sDyn /R 81(s, Xs,Us, u)v(du).
(3.13)

Hence plugging[(3.11)-(3.13) in (3.7), we get

F(sXs,Ys,Zs) = Dyt [f <S> Xs,N, <Dynvs(k) +0§(Dxn)l{k:1} ‘1'/Rek(s> Xs,Us, U)V(du)> >
k=0

2 1
- §<g, Dyg) (s, Xs, n)]

+Dys/6 (s, Xs,Us,u)v(du)

+mosDxn + 5 Dyyrli
K=1
Vg | (Da)(Dye)(Dyyn) — Dyn(Dye)|

+( [ 86 X Us (e ) o3 (D) (04 2D ~ Dy (Do)

1
é(Dyyrl)(Dy€|0s(Dxrl)(Dy5)|2 — 04(Dxy€)0sDxn (3.14)

1
_ 50* (X)Dyx€0s+ /R [€(s, Xs+ 05U, Ys) — (S, Xs, Ys) — (Dx€)asujv(d u)] ,
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where all the derivatives of the random field, -, -) are to be evaluated at the poistx,n(s,x,y)),
and all those ofy(-,-,-) at(s,x,y). On other hand, using again Remark 2.5, we have

1
_EO*(X)(DXXE)GS = (Gs) DyyeDyn — (Dys)DyymosDanyE’Z

1
+§(Dy5)(05) (Dx) (3.15)
and
Dy (Dy€)?(DyyN) — Dyy€DyN = DyeDyyn. (3.16)

The equalities in(3.15) and(3116)), together vidkE(s, Xs, Ys) = (Dyn) ~(s, Xs,Us), imply
that

F(sXs,Ys,Zs) = Dys[f <S> Xs,N, <Dynvs(k) +0§(Dxn)l{k:1} —|—/Rek(s, Xs,Us, U)V(du)> >
k=

2

l 1
+m105DXr] + Dyyr] Z + Dys/ e S XS7US7 ) (du) - §<g7 Dyg> (57 X57 n)]

1
+5(Dy)0Z(Dsn) + (Dy2)0sDg (v_e,(1> + /]R B%(s, X5, Us, U)v(d u)>
+ /R[s(s, Xs+ 05U, Ys) — €(S, Xs, Ys) — (Dx€)osulv(du).

Next, using again Remark 2.5 together with changing vagiébt —u), we have

/R[s(s, Xs+ 0sU, Ys) — €(S, Xs, Ys) — (Dx€)osulv(du)
= —Dya/R[n (8, Xs+ 0su,Us) —n(s, Xs,Us) — (Dxn)0osujv(du)

= Dys/R[r](s,Xercsu,Us)—r](s,Xs,Us)—(Dxn)osu]v(du).

Finally, we obtain

F(s,Xs,Ys,Zs) = Dye[f <S,Xs,r],<Dynvs(k)+0§(Dxn)1{k_l}+/Rek(s,xs,us,u)v(du)> >
k=0
2

& 1
+m105Dxr]+ (Dyyn) Z "‘/GK (8, Xs,Us, u)v(du) _§<g7 Dyg>(37X57n)}

1
+§(Dys)0§(Dxxr]) + (Dy€)TsDxyN (vé” n /R B(s, X, Us, )V (d u)> (3.17)
+Dy8/R[n (8, Xs+ 0su,Us) — (S, Xs,Us) — (Dxn)osujv(du).
Since the expressions in (3114) ahd (3.17) are equal, thissthe equality inN(319).
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Next, we show the equality ih (3.110). In fact,

CD(S, Xs,Ys) = DyS(p(S, Xs,Ys) — DXsDLIJ(Xs)
= Dys(sv XS>YS) [DXn (57 st US) DqJ(XS) + (p(sv XSa n (Sv XSa US)]

1
= ——— D Xs,Us) OP(Xs) + (S, Xs, Xs,U
Dyn (37 X57Us) [ Xn (37 S S) L|‘J( S) (p( S n(s7 s S)]
= (5 Xs,Us). (3.18)
This ends the proof of theorem. -

We are now ready to prove the existence of the stochastiositycsolutions of SPDIE
(f,0,9). Let us define for eacft,x) € [0;T] x © two random fields

u(t,x) = Y%, v(t,x) = U~ (3.19)

Theorem 3.6. Assume thatA1)—(A5) hold. Then, the random field v is a stochastic vis-
cosity solution of SPDIEf,0, ) and hence u is a stochastic viscosity solution to SPDIE

(f,0,0).

Proof. Let us definau(t,x) = Y andv(t,x) = U, whereY andU are given as above. We
have

u(t,w,x) =n(t,w,v(t,w,x)) and v(t,w,Xx) = &(t, w,v(t,w,X)). (3.20)

SinceY¢" is 7,5 ® & -measurable, it follows that* is 7,5 -measurable. Thereforeit,x)

is ft%— measurable and so it is independentt Q. Consequently, according to propo-
sition 1.7 in [10], we haves € C(FB,[0,T] x ©). Moreover, [3.20) implies that belongs
to C(FB,[0,T] x ©). We emphasis that as &f-progressively measurabiewise viscosity
solution is automatically a stochastic viscosity solut(gee Definition 2.3), it suffice to
show thatv is anw-wise viscosity solution to SPDIE,0,¢). To do it, let us denote, for a
fixedw e Q,

U%w) =U(w,w), V() =V (wu).

Then,(U” V®) is the unique solution of the GBDSDELSs with coeffici¢ftw, -, -,-), P(w,-,)),
and as it is shown by Ren and Otmani [in|[18]w,t,x) = U{*’ is a viscosity solution to
SPDIE f(w,-,-,-),®(w,,-)) with nonlinear Neumann boundary condition. By Blumen-
thal’s 0-1 law it folows thatP”(U{"(w’) =Ui(w, &) = 1. Hence we get(f, x) = v(t,x) P-
almost surely for al(t,x) € [0, T]©. Therefore, for everwfixed the functionve C(FB, [0, T] x
) is a viscosity solution to the SPDE (w,-,-,-),®(w,-,-)). Hence, by definition it is an
w-wise viscosity solution and hence a stochastic viscosityton to SPDIET,0,). The
conclusion of the theorem now follows from Theorem 3.5. O
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