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Abstract

This paper is an attempt to extend the notion of viscosity solution to nonlin-
ear stochastic partial differential integral equations with nonlinear Neumann bound-
ary condition. Using the recently developed theory on generalized backward doubly
stochastic differential equations driven by a Lévy process, we prove the existence of
the stochastic viscosity solution, and further extend the nonlinear Feynman-Kac for-
mula.
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1 Introduction

The notion of the viscosity solution for partial differential equations, first introduced by
Crandall and Lions [7], has an impact on the modern theoretical and applied mathematics.
Today the theory has become an indispensable tool in many applied fields, especially in
optimal control theory and numerous subjects related to it.We refer to the well-known
"User’s Guide" by Crandall et al. [8] and the books by Bardi etal. [1] and Fleming and
Soner [9] for a detailed account for the theory of (deterministic) viscosity solutions.

Since it is well known that almost all the deterministic problems in these applied fields
have their stochastic counterparts, many works have extended the notion of viscosity solu-
tion to stochastic partial differential equations (SPDEs,in short). The first among them is
done by Lions and Souganidis [12, 13]. They use the so-called"stochastic characteristic"
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to remove the SPDEs. Next, two other ways of defining a stochastic viscosity solution of
SPDEs is considered by Buckdahn and Ma respectively in [4, 5]and [6]. In the two first
paper, they used the "Doss-Sussman" transformation to connect the stochastic viscosity so-
lution of SPDEs with the solution of associated backward doubly stochastic differential
equations (BDSDEs, in short). In the second one, they introduced the stochastic viscosity
solution by using the notion of stochastic sub and super jets. Recently, based on both previ-
ous work, Boufoussi et al. introduced in [3], the notion of viscosity solution of SPDEs with
nonlinear Neumann boundary condition. The existence result is derived via the so-called
generalized BDSDEs and the "Doss-Sussman" transformation.

Inspired by the aforementioned works, especially [3] and [4, 5], this paper considers
the following nonlinear stochastic partial differential integral equations (SPDIEs, in short)
with nonlinear Neumann boundary condition





∂u
∂t (t,x)+Lu(t,x)+ f (t,x,u(t,x),(u1

k(t,x))
∞
k=1)+g(t,x,u(t,x))Ḃs = 0, (t,x) ∈ [0,T]×Θ,

∂u
∂n(t,x)+φ(t,x,u(t,x)) = 0, (t,x) ∈ [0,T]×∂Θ,

u(T,x) = u0(x), x∈ Θ,

(1.1)

whereḂ denotes white noise with respect to Brownian motionB; which Moreoverf , g, φ
andu0 are some measurable functions with appropriate dimensionsandL is the second-
order differential integral operator of the form:

Lϕ(t,x) = m1σ(x)
∂ϕ
∂x

(t,x)+
1
2

σ(x)2 ∂2ϕ
∂x2 (t,x)

+
∫
R

[
ϕ(t,x+σ(x)y)−ϕ(t,x)−

∂ϕ
∂x

(t,x)σ(x)y
]

ν(dy);

(1.2)

in which σ is a certain function andm1 = E(L1), which will be given in Section 3. We
denote

ϕ1
k(t,x) =

∫
R

[ϕ(t,x+σ(x)y)−ϕ(t,x)]pk(y)ν(dy), k≥ 1

and

∂ϕ
∂n

(t,x) =
d

∑
i=1

∂ψ
∂i

(x)
∂ϕ
∂xi

(t,x), ∀ x∈ ∂Θ,

where the functionψ ∈C2
b(R

n) is connected to the domainΘ by the following relation:

Θ = {x∈ R
n : ψ(x) > 0} and ∂Θ = {x∈R

n : ψ(x) = 0}.

The goal of this paper is to determine the definition and next naturally establish the ex-
istence of the stochastic viscosity solution to SPDIEs (1.1), which could be used for the pur-
pose of option pricing in a Lévy market. More precisely, we give some direct links between
this stochastic viscosity solution and the solution of the so-called generalized backward
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doubly stochastic differential equations driven by a Lévy process (BDSDELs, for short)
initiated by Hu and Ren [10]. Such a relation in a sense could be viewed as an extension
of the nonlinear Feynman-Kac formula to stochastic PDIEs, which, to our best knowledge,
is new. Note also that this work could be considered as a generalization for the updated
result obtained by Ren and Otmani [15], where the authors treat deterministic PDIEs with
nonlinear Neumann boundary conditions.

The rest of this paper is organized as follows. In Section 2, we introduced notion of
stochastic viscosity solutions and all details associated. In Section 3, we review the gen-
eralized backward doubly stochastic differential equations driven by a Lévy process and
its connection to stochastic PDIEs, from which the existence of the stochastic viscosity
solution will follow.

2 Notion of viscosity solution for SPDIE

2.1 Notations, assumptions and definitions

Let (Ω,F ;P) be a complete probability space on which ad-dimensional Brownian motion
B = (Bt)t≥0 is defined . LetFB = F B

t,T denote the natural filtration generated byB, aug-
mented by theP-null sets ofF . Further, letM B

0,T denote all theFB-stopping timesτ such
0 ≤ τ ≤ T, a.s. andM B

∞ be the set of all almost surely finiteFB-stopping times. Let us
introduce

ℓ2 =
{

x= (x(i))i≥1; ‖x‖ℓ2 = (
∞

∑
i=1

|x(i)|2)1/2 < ∞
}
.

For generic Euclidean spacesE,E1 = R
n or ℓ2 and we introduce the following:

1. The symbolC k,n([0,T]×E;E1) stands for the space of allE1-valued functions de-
fined on [0,T]×E which arek-times continuously differentiable int and n-times
continuously differentiable inx, and C k,n

b ([0,T]× E;E1) denotes the subspace of
C k,n([0,T]×E;E1) in which all functions have uniformly bounded partial deriva-
tives.

2. For any sub-σ-field G ⊆ F B
T , C k,n(G , [0,T ]×E;E1) (resp. C k,n

b (G , [0,T ]×E;E1))

denotes the space of allC k,n([0,T]×E;E1) (resp. C k,n
b ([0,T]×E;E1))-valued ran-

dom variable that areG ⊗B ([0,T]×E)-measurable;

3. C k,n(FB, [0,T]×E;E1) (resp.C k,n
b (FB, [0,T ]×E;E1)) is the space of all random fields

φ ∈ C k,n(FT , [0,T]×E;E1 (resp. C k,n(FT , [0,T]×E;E1), such that for fixedx ∈ E
andt ∈ [0,T], the mappingω 7→ α(t,ω,x) is FB-progressively measurable.

4. For any sub-σ-field G ⊆ F B and a real numberp≥ 0, Lp(G ;E) to be allE-valued
G -measurable random variableξ such thatE|ξ|p < ∞.

Furthermore, regardless of their dimensions we denote by〈·, ·〉 and| · | the inner product and
norm inE andE1, respectively. For(t,x,y) ∈ [0,T]×R

d×R, we denoteDx= ( ∂
∂x1

, ...., ∂
∂xd

),

Dxx = (∂2
xixj

)d
i, j=1, Dy =

∂
∂y, Dt =

∂
∂t . The meaning ofDxy andDyy is then self-explanatory.

Let Θ be an open connected and smooth bounded domain ofR
n(d ≥ 1) such that for a
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function ψ ∈ C 2
b (R

n), Θ and its boundary∂Θ are characterized byΘ = {ψ > 0}, ∂Θ =
{ψ = 0} and, for anyx∈ ∂Θ, ∇ψ(x) is the unit normal vector pointing towards the interior
of Θ.
Throughout this paper, we shall make use of the following standing assumptions:

(A1) The functionσ : Rn → R
n is uniformly Lipschitz continuous, with a Lipschitz

constantK > 0.

(A2) The function f : Ω× [0,T]×Θ×R× ℓ2 →R is a continuous random field such that
for fixed ,(x,y,q), f (·, ·,x,y,σ∗q) is a F B

t,T -measurable; and there exists a constant
K > 0, for all (t,x,y,z), (t ′,x′,y′,z′) ∈ [0,T]×R

n×R× ℓ2, such that forP-a.e.ω,

| f (ω,0,0,0,0)| ≤ K

| f (ω, t,x,y,z)− f (ω, t ′ ,x′,y′,z′)| ≤ K(|t − t ′|+ |x−x′|+ |y−y′|+ |z−z′|).

(A3) The functionφ : Ω× [0,T]×Θ×R→ R is a continuous random field such that, for
fixed (x,y),φ(·, ·,x,y) is aF B

t,T -measurable; and there exists a constantK > 0, for all
(t,x,y), (t ′,x′,y′) ∈ [0,T]×R

n×R, such that forP-a.e.ω,

|φ(ω,0,0,0)| ≤ K

|φ(ω, t,x,y)−φ(ω, t ′ ,x′,y′)| ≤ K(|t − t ′|+ |x−x′|+ |y−y′|).

(A4) The functionu0 : Rn → R is continuous, for allx∈ R
n, such that for some positive

constantsK, p> 0,

|u0(x)| ≤ K(1+ |x|p).

(A5) The functiong∈C0,2,3
b ([0,T]×Θ×R;Rd).

As shown by the work of Buckdahn and Ma [4, 5], our definition ofstochastic viscos-
ity solution will depend heavily on the following stochastic flow η ∈ C(FB, [0,T]×R

n×
R), defined as the unique solution of the following stochastic differential equation in the
Stratonovich sense:

η(t,x,y) = y+
∫ T

t
〈g(s,x,η(s,x,y)),◦dBs〉. (2.1)

We refer the reader to [4] for a lucid discussion on this topic. Under the assumption(A5),
the mappingy 7→ η(t,x,y) defines a diffeomorphism for all(t,x), P-a.s. (see Protter [16]).
Let us denote itsy-inverse byε(t,x,y). Then, one can show thatε(t,x,y) is the solution to
the following first-order SPDE:

ε(t,x,y) = y−
∫ T

t
〈Dyε(s,x,y), g(s,x,η(s,x,y))◦dBs〉.

We now define the notion of stochastic viscosity solution forSPDIEs (1.1). In order to
simply the notation, we denote:

Af ,g(ϕ(t,x)) = Lϕ(t,x)+ f (t,x,ϕ(t,x),(ϕ1
k(t,x))

∞
k=1)−

1
2
〈g,Dyg〉(t,x,ϕ(t,x))
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andΨ(t,x) = η(t,x,ϕ(t,x))

Definition 2.1. (1) A random fieldu ∈ C(FB, [0,T]×Θ) is called a stochastic viscosity
subsolution of the SPDIEs (1.1) ifu(T,x) ≤ u0(x), for all x ∈ Θ and if for any stop-
ping timeτ ∈ M B

0,T , any state variableξ ∈ L0(F B
τ , [0,T ]×Θ), and any random fieldϕ ∈

C1,2(F Bτ, [0,T]×R
n) satisfying that

u(t,x)−Ψ(t,x) ≤ 0= u(τ(ω),ξ(ω))−Ψ(τ(ω),ξ(ω))

for all (t,x) in a neighborhood of(ξ,τ), P-a.e. on the set{0< τ < T}, it holds that

(a) on the event{0< τ < T},

A f ,g (Ψ(τ,ξ))−DyΨ(τ,ξ)Dtϕ(τ,ξ)≤ 0, P-a.e.;

(b) on the event{0< τ < T}∩{ξ ∈ ∂Θ},

min

{
A f ,g (Ψ(τ,ξ))−DyΨ(τ,ξ)Dtϕ(τ,ξ) ,−

∂Ψ
∂n

(τ,ξ)−φ(τ,ξ,Ψ(τ,ξ))
}
≤ 0, P-a.e.

(2.2)

(2) A random fieldu∈C(FB, [0,T]×Θ) is called a stochastic viscosity subsolution of the
SPDIE( f ,g) (1.1) if u(T,x) ≥ u0(x), for all x∈ Θ and if for any stopping timeτ ∈ M B

0,T ,
any state variableξ ∈ L0(F B

τ , [0,T]×Θ), and any random fieldϕ ∈C1,2(F Bτ, [0,T]×R
n)

satisfying that

u(t,x)−Ψ(t,x) ≥ 0= u(τ(ω),ξ(ω))−Ψ(τ(ω),ξ(ω))

for all (t,x) in a neighborhood of(ξ,τ), P-a.e. on the set{0< τ < T}, it holds that

(a) on the event{0< τ < T},

A f ,g (Ψ(τ,ξ))−DyΨ(τ,ξ)Dtϕ(τ,ξ)≥ 0, P-a.e.;

(b) on the event{0< τ < T}∩{ξ ∈ ∂Θ},

max

{
A f ,g (Ψ(τ,ξ))−DyΨ(τ,ξ)Dtϕ(τ,ξ) ,−

∂Ψ
∂n

(τ,ξ)−φ(τ,ξ,Ψ(τ,ξ))
}
≥ 0,P-a.e.

(2.3)

(3) A random fieldu∈ C
(
FB, [0,T ]×Θ

)
is called a stochastic viscosity solution of SPDIE

( f ,g) (1.1) if it is both a stochastic viscosity subsolution and a astochastic viscosity super-
solution.

Remark2.2. We remark that if f , φ are deterministic andg ≡ 0, the flow η becomes
η(t,x,y) = y and Ψ(t,x) = ϕ(t,x), ∀ (t,x,y) ∈ [0,T]×R

n ×R. Thus, definition 2.1 co-
incides with the definition of (deterministic) viscosity solution of PDIE ( f ,0,φ) given in
[15].

Next, the following notion of a random viscosity solution will be a bridge linking the
stochastic viscosity solution and its deterministic counterpart.

Definition 2.3. A random fieldu∈C(FB, [0,T]×Θ) is called anω-wise viscosity solution
if for P-almost allω ∈ Ω, u(ω, ·, ·) is a deterministic viscosity solution of SPDIE( f ,0,φ).
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2.2 Doss-Sussmann transformation

In this subsection, we study the Doss-Sussmann transformation. It enables us to convert
SPDIE( f ,g,φ) to an SPDIE( f̃ ,0, φ̃), where f̃ andφ̃ are well-defined random field depend-
ing on f , g andφ respectively. We get the following important result.

Proposition 2.4. Assume(A1)–(A5) hold. A random field u is a stochastic viscosity sub-
(resp. super)-solution to SPDIE( f ,g,φ) (1.1) if and only if v(·, ·) = ε(·, ·,u(·, ·)) is a
stochastic viscosity sub-(resp. super)-solution to SPDIE( f̃ ,0, φ̃), with

f̃ (t,x,y,(z(k))∞
k=1)

=
1

Dyη(t,x,y)

[
f

(
t,x,η(t,x,y),

(
Dyη(t,x,y)z(k) +σ(x)Dxη(t,x,y)1{k=1} +

∫
R

θk(t,x,y,u)ν(du)

)∞

k=1

)

−
1
2

gDyg(t,x,η(t,x,y))+Lxη(t,x,y)+σ(x)Dxyη(t,x,y)
(

z(1)+
∫
R

θ1(t,x,y,u)ν(du)

)

+
1
2

Dyyη(t,x,y)
∞

∑
k=1

∣∣∣∣z
(k)+

∫
R

θk(t,x,y,u)ν(du)

∣∣∣∣
2
]

(2.4)

and

φ̃(t,x,y) =
1

Dyη(t,x,y)
[h(t,x,η(t,x,y))+Dxη(t,x,y)∇ψ(x)] . (2.5)

The processθ is defined by

θk(t,x,y,u) = [η(t,x+σ(x)u,y)−η(t,x,y)]pk(u). (2.6)

Remark2.5. Let us recall that under the assumption(A5) the random fieldη belongs to
C0,2,2(FB, [0,T]×R

n ×R), and hence that the same is true forε. Then, considering the
transformationΨ(t,x) = η(t,x,ϕ(t,x)), we obtain

DxΨ = Dxη+DyηDxϕ,
DxxΨ = Dxxη+2(Dxyη)(Dxϕ)∗+(Dyyη)(Dxϕ)(Dxϕ)∗+(Dyη)(Dxxϕ).

Moreover, since for all(t,x,y) ∈ [0,T]×R
n ×R the equalityε(t,x,η(t,x,y)) = y holds

P-almost surely, we also have

Dxε+DyεDxη = 0,

DyεDyη = 1,

Dxxε+2(Dxyε(Dxη)∗+(Dyyε)(Dxη)(Dxη)∗+(Dyε)(Dxxη) = 0,

(Dxyε)(Dyη)+ (Dyyε)(Dxη)(Dyη)+ (Dyε)(Dxyη) = 0,

(Dyyε)(Dyη)2+(Dyε)(Dyyη) = 0,

where all the derivatives of the random fieldε(·, ·, ·) are evaluated at(t,x,η(t,x,y)), and all
those ofη(·, ·, ·) are evaluated at(t,x,y).

6



Proof of Proposition 2.4.We shall only prove that ifu∈C(FB; [0,T ]×R
n) is a stochastic

viscosity subsolution to SPDIEs( f ,g,φ), thenv(·, ·) = ε(·, ·,u(·, ·)) ∈ C(FB, [0,T ]×R
n)

is a stochastic viscosity subsolution to SPDIE( f̃ ,0, φ̃). The remaining part can be proved
without enough difficulties in the similar way.

To this end, letu∈C(FB; [0,T]×R
n) be a stochastic viscosity subsolution to SPDIEs

( f ,g,φ) and letv(t,x) = ε(t,x,u(t,x)). Let us takeτ ∈M B
0,T ,ξ ∈ L2(F B

τ ,Rn) arbitrarily, and
let ϕ ∈C1,2(F B

τ ,Rn) be such that

v(ω, t,x)−ϕ(ω, t,x) ≤ 0= v(ω,τ(ω),ξ(ω))−ϕ(ω,τ(ω),ξ(ω))

for all (t,x) in a neighborhood of(ξ,τ), P-a.e. on the set{0< τ < T}.
SettingΨ(t,x) = η(t,x,ϕ(t,x)) and since mappingy 7→ η(t,x,ϕ(t,x,y)) is strictly in-

creasing, we have

u(t,x)−Ψ(t,x) = η(t,x,v(t,x))−η(t,x,ϕ(t,x))
≤ 0= η(τ,ξ,v(τ,ξ))−η(τ,ξ,ϕ(τ,ξ)) = u(τ,ξ)−Ψ(τ,ξ),

for all (t,x) in a neighborhood of(ξ,τ), P-a.e. on the set{0< τ < T}. Therefore, sinceu is
a stochastic viscosity subsolution to SPDIE( f ,g,φ), it follows thatP-a.e. on{0< τ < T},

A f ,g (Ψ(τ,ξ))−DyΨ(τ,ξ)Dtϕ(τ,ξ)≥ 0. (2.7)

On the other hand, we have

LΨ(t,x) = Lxη(t,x,ϕ(t,x))+Dyη(t,x,ϕ(t,x))Lϕ(t,x)
+σ(x)Dxyη(t,x,ϕ(t,x))(Dxϕ(t,x))

+
1
2

Dyyη(t,x,ϕ(t,x))(Dxϕ(t,x))2,

whereLx is the same as the operatorL, with all the derivatives taken with respect to the
second variablex from which together with (2.4), we obtain

Dyε(t,x,Ψ(t,x))Af ,g(Ψ(t,x)) = A f̃ ,0(ϕ(t,x)).

Finally, in virtue of (2.7), we get

A f̃ ,0(ϕ(τ,ξ))≥ Dtε(τ,ξ).

That is, part (a) of Definition 2.1. is established. To derivepart (b), noting that for all
(t,x) ∈ [0,T]×∂Θ, we have

∂Ψ
∂n

(t,x) = DxΨ(t,x) ·∇ψ(x)

= Dxη(t,x,ϕ(t,x)) ·∇ψ(x)+Dyη(t,x,ϕ(t,x))Dxϕ(t,x) ·∇ψ(x)

= Dxη(t,x,ϕ(t,x)) ·∇ψ(x)+Dyη(t,x,ϕ(t,x))
∂ϕ
∂n

(t,x).

This shows that

∂Ψ
∂n

(τ,ξ)+φ(τ,ξ,Ψ(τ,ξ)) = Dxη(τ,ξ,ϕ(t,x))
(

∂ϕ
∂n

(τ,ξ)+ φ̃(τ,ξ,ϕ(τ,ξ))
)

7



where φ̃ is defined by (2.5). BecauseDyη(t,x,y) is strictly positive, we haveP-a.s. on
{0< τ < T}∩{ξ ∈ ∂Θ}

min

{
A f̃ ,0(ϕ(τ,ξ))−Dtε(τ,ξ),−

∂ϕ
∂n

(τ,ξ)− φ̃(τ,ξ,ϕ(τ,ξ))
}
≥ 0.

That is,v is a stochastic viscosity subsolution of SPDIE( f̃ ,0, φ̃).

3 Generalized BDSDELs and SPDIEs with Neumann boundary
condition

The main object of this section is to show how a semi-linear SPDIE ( f ,g,φ) (1.1) is re-
lated to the so-called generalized BDSDELs (GBDSDELs, for short) initiated by Hu and
Ren[10], in the Markovian case. To begin with, let us introduce another complete probabil-
ity space(Ω′,F ′,P′) on which we define a Lévy processL characterized by the following
famous Lévy-Khintchine formula

E(eiuLt ) = e−tΦ(u) with Φ(u) =−ibu+
σ2

2
u2−

∫
R

(
eiuy−1− iuy1{|y|≤1}

)
ν(dy).

ThusL is characterized by its Lévy triplet(b,σ,ν) whereb∈ R,σ2 ≥ 0 andν is a measure
defined inR\{0} which satisfies that
(i)

∫
R
(1∧y2)ν(dy) <+∞,

(ii) ∃ ε > 0andλ > 0such that
∫
(−ε,ε)c eλ|y|ν(dy) <+∞.

This implies that the random variableLt have moment of all orders, i.em1 = E(L1) = b+∫
|y|≥1 yν(dy) and mi =

∫ +∞
−∞ yiν(dy)< ∞, ∀ i ≥ 2. For the background on Lévy processes,

we refer the reader to [2, 17].
We define the following family ofσ-fields:

F L
t = σ(Lr −Ls,s≤ r ≤ t)∨N ′,

whereN ′ denotes all theP′-null sets inF ′. DenoteFL = (F L
t )0≤t≤T .

Next, we consider the product space(Ω̄, F̄ , P̄) where

Ω̄ = Ω⊗Ω′; F̄ = F ⊗F ′, ; P̄= P⊗P
′,

and defineF t = F
B

t,T ⊗F L
t for all t ∈ [0,T]. We remark thatF = {F t , t ∈ [0,T]} is neither

increasing nor decreasing so that it does not a filtration. Further, we assume that random
variablesξ(ω), ω ∈ Ω andζ(ω′), ω′ ∈ Ω′ are considered as random variables onΩ̄ via the
following identifications:

ξ(ω,ω′) = ξ(ω); ζ(ω,ω′) = ζ(ω′).

We denote by(H(i))i≥1 the Teugels Martingale associated with the Lévy process{Lt :
t ∈ [0,T]}. More precisely

H(i) = ci,iY
(i)+ci,i−1Y

(i−1)+ · · ·+ci,1Y
(1)

8



whereY(i)
t = Li

t − mi for all i ≥ 1 with Li
t a power-jump process. That isL1

t = Lt and
Li

t = ∑0<s<t(∆Ls)
i for all i ≥ 2, whereXt− = limsրt Xs and∆Xt = Xt −Xt−. It was shown in

Nualart and Schoutens [14] that the coefficientsci,k correspond to the orthonormalization
of the polynomials 1,x,x2, ... with respect to the measureµ(dx) = x2dν(x)+σ2δ0(dx):

qi−1(x) = ci,ix
i−1+ci,i−1xi−2+ · · ·+ci,1.

We set

pi(x) = xqi−1(x) = ci,ix
i +ci,i−1xi−1+ · · ·+ci,1x

1.

The martingale(H(i))∞
i=1 can be chosen to be pairwise strongly orthonormal martingale.

We consider the following spaces of processes:

1. M 2(ℓ2) denotes the space ofℓ2-valued, square integrable andF t -measurable pro-
cessesϕ = {ϕt : t ∈ [0,T]} such that

‖ϕ‖2
M 2 = E

∫ T

0
‖ϕt‖

2dt < ∞.

2. S 2(R) is the subspace ofM 2(R) formed by theF t-measurable, right continuous with
left limit (rcll) processesϕ = {ϕt : t ∈ [0,T]} such that

‖ϕ‖2
S 2 = E

(
sup

0≤t≤T
|ϕt |

2
)
< ∞.

Finally, letE 2 = S 2(R)×M 2(ℓ2) be endowed with the norm

‖(Y,Z)‖2
E 2 = E

(
sup

0≤t≤T
|Yt |

2+
∫ T

0
‖Zt‖

2dt

)
.

3.1 A class of reflected diffusion process and GBDSDELs

We now introduce a class of reflected diffusion process. LetΘ be a regular convex and
bounded subsect ofRn , which is such that for a functionψ ∈ C2

b(R
n), Θ = {x ∈ R

n :
ψ(x) > 0}, ∂Θ = {x ∈ R

n : ψ(x) = 0} and for allx ∈ ∂Θ, ∇ψ(x) coincides with the unit
normal pointing towards the interior ofΘ (see [11]). Under assumption(A1), we know from
[11] that for every(t,x) ∈ [0,T]×Θ there exists a unique pair of progressively measurable
process(Xt,x

s ,At,x
s )t≤s≤T , which is a solution to the following reflected SDE:





P(Xt,x
s ∈ Θ, s≥ t) = 1

Xt,x
s = x+

∫ s

t
σ(Xt,x

r− )dLr +
∫ s

t
∇ψ(Xt,x

s )dAt,x
s , s≥ t,

(3.1)

whereAt,x
s =

∫ s
t 1{Xt,x

r ∈∂Θ}dAt,x
r , At,x is an increasing process with bounded variation on

[0,T], 0< T < ∞, A0 = 0. Furthermore, we have the following proposition.
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Proposition 3.1. There exists a constant C> 0 such that for all x, x′ ∈ Θ,

E

[
sup

0≤s≤T
|Xx

s −Xx′
s |

4
]
≤C|x−x′|4

and

E

[
sup

0≤s≤T
|Ax

s−Ax′
s |

4
]
≤C|x−x′|4.

The main subject in this section is the following GBDSDELs, for (t,x) ∈ [0;T]×R
n,





(i) E

[
sup

t≤s≤T
|Yt,x

s |2+

∫ T

t
‖Zt,x

s ‖2ds

]
< ∞;

(ii)Yt,x
s = u0(X

t,x
T )+

∫ T

s
f (r,Xt,x

r ,Yt,x
r ,Zt,x

r )dr+
∫ T

s
φ(r,Xt,x

r ,Yt,x
r )dAt,x

r

+

∫ T

s
g(r,Xt,x

r ,Yt,x
r )dBr −

∞

∑
i=1

∫ T

s
(Zt,x

r )(i)dH(i)
r , t ≤ s≤ T.

(3.2)

Remark3.2. In what follows, we will assumen = 1. The multidimensional case can be
completed without major difficulties.

Let us recall an existence and uniqueness result appear in [10] and a generalized version
of the Itô-Ventzell formula whose proof is analogous to the corresponding one in Buckdahn-
Ma [4] replacing the Brownian motionW by the Teugels martingale(H(i))i≥1.

Theorem 3.3. Assume that(A1)–(A5) hold. For each(t,x) ∈ [0,T]×R, GBDSDEL(3.2)
has a unique solution(Yt,x,Zt,x) ∈ E 2.

Theorem 3.4. Suppose that M∈ C0,2(F, [0,T]×R) is a semimartingale in the sense that
for every spatial parameter x∈ R the process t7→ M(t,x), t ∈ [0,T ], is of the form:

M(t,x) = M(0,x)+
∫ t

0
G(s,x)ds+

∫ t

0
〈N(s,x),dBs〉+

∞

∑
i=1

∫ t

0
K(i)(s,x)dH(i)

s ,

where G∈C0,2(FB, [0,T]×R), N ∈C0,2(FB, [0,T]×R;Rd), and the process K belongs to
C0,2(FL, [0,T]×R;ℓ2). We also consider the processα ∈C(F, [0,T]) of the form

αt = α0+
∫ t

0
βsds+

∫ t

0
θsdAs+

∫ t

0
γsdBs+

∞

∑
i=1

∫ t

0
δ(i)s dH(i)

s

whereβ,θ ∈ S 2(R), γ ∈ M 2(Rd), and δ ∈ M 2(ℓ2). Then the following equality holds
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P-almost surely for all0≤ t ≤ T:

M(t,αt) = M(0,α0)+

∫ t

0
G(s,αs)ds+

∫ t

0
〈N(s,αs),dBs〉+

∞

∑
i=1

∫ t

0
K(i)(s,αs)dH(i)

s

+

∫ t

0
DxM(s,αs)βsds+

∫ t

0
DxM(s,αs)θsdAs+

∫ t

0
〈DxM(s,αs),γsdBs〉

+
∞

∑
i=1

∫ t

0
DxM(s,αs)δ

(i)
s dH(i)

s −
1
2

d

∑
i=1

∫ t

0
DxxM(s,αs)|γi

s|
2ds

+
1
2

∞

∑
i=1

∫ t

0
DxxM(s,αs)|δ

(i)
s |2ds+

∞

∑
i=1

∫ t

0
DxK

(i)(s,αs)δ
(i)
s ds

−
d

∑
i=1

∫ t

0
DxN

i(s,αs)γi
sds.

3.2 Existence of stochastic viscosity solution

In this section we prove the existence of the stochastic viscosity solution to the SPDIEs
( f ,g,φ). Our main idea is to apply the Doss transformation to the GBDSDEL (3.2) to obtain
resulting GBDSDEL without the stochastic integral againstdB, which naturally become a
GBSDEL with new generators being exactlỹf and φ̃. For this, for each(t,x) ∈ [0,T]×
R, t ≤ s≤ T, let us define the following processes,

U t,x
s = ε(s,Xt,x

s ,Yt,x
s ),

(V(1))t,xs = Dyε(s,Xt,x
s ,Yt,x

s )(Z(1))t,xs +σ(Xt,x
s )Dxε(s,Xt,x

s ,Yt,x
s )

+
∫
R

[ε(s,Xt,x
s +σ(Xt,x

s )u,Yt,x
s )− ε(s,Xt,x

s ,Yt,x
s )−Dxε(s,Xt,x

s ,Yt,x
s )σ(Xt,x

s )u]p1(u)ν(du),

(V(k))t,xs = Dyε(s,Xt,x
s ,Yt,x

s )(Z(k))t,xs (3.3)

+
∫
R

[ε(s,Xt,x
s +σ(Xt,x

s )u,Yt,x
s )− ε(s,Xt,x

s ,Yt,x
s )−Dxε(s,Xt,x

s ,Yt,x
s )σ(Xt,x

s )u]pk(u)ν(du),

k∈ {2, · · ·}.

From Proposition 3.4 appeared in [4], the process{(U t,x
s ,Vt,x

s ), s∈ [t,T]} belongs toE for
each(t,x) ∈ [0,T]×Θ.

Now we are ready to give the following result.

Theorem 3.5. For each(t,x) ∈ [0,T]×Θ, the pair(U t,x,Vt,x) is the unique solution of the
following GBSDEL:

U t,x
s = u0(X

t,x
T )+

∫ T

t
f̃ (r,Xt,x

r ,U t,x
r ,Vt,x

r )dr+
∫ T

s
φ̃(r,Xt,x

r ,U t,x
r )dAt,x

r

−
∞

∑
k=1

∫ T

s
(Vt,x

r )(k)dH(k)
r , t ≤ s≤ T,

(3.4)

where f̃ and φ̃ are given by(2.4)and (2.5) respectively.
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Proof. For clarity, (Xt,x,Yt,x,Zt,x,U t,x,Vt,x) will be replaced by(X,Y,Z,U,V) throughout
this proof. As it is shown in [4], the mapping(X,Y,Z) 7→ (X,U,V) is one-to-one, with the
inverse transformation:

Ys = η(s,Xs,Us),

Z(1)
s = Dyη(s,Xs,Us)V

(1)
s +σ(Xs)Dxη(s,Xs,Us)

+

∫
R

[η(s,Xs+σ(Xs)u,Us)−η(s,Xs,Us)−Dxη(s,Xs,Us)σ(Xs)u]p1(u)ν(du),

Z(k)
s = Dyη(s,Xs,Us)V

(k)
s (3.5)

+

∫
R

[η(s,Xs+σ(Xs)u,Us)−η(s,Xs,Us)−Dxη(s,Xs,Us)σ(Xs)u]pk(u)ν(du),k ∈ {2, · · ·}.

Thanks to (3.3) and (3.5), the uniqueness of GBSDEL (3.4) follows from GBDSDEL (3.2).
Thus, the proof reduces to show that(U,V) is a solution of the GBSDEL (3.4). To this
end, let us remark thatUT =YT = u0(XT). Moreover, applying the generalized Itô-Ventzell
formula (see Theorem 4.2) toε(s,Xs,Ys), and after a little calculation we obtain

Ut = u0(XT)+
∫ T

t
Dyε(s,Xs,Ys) f (s,Xs,Ys,Zs)ds+

∫ T

t
Dyε(s,Xs,Ys)φ(s,Xs,Ys)dAs

−
∞

∑
k=1

∫ T

t
Dyε(s,Xs,Ys)Z

(k)
s dH(k)

s −m1

∫ T

t
Dxε(s,Xs,Ys)σ(Xs)ds

−
∫ T

t
Dxε(s,Xs,Ys)σ(Xs)dH(1)

s

−

∫ T

t
Dxε(s,Xs,Ys)∇ψ(Xs)dAs−

1
2

∫ T

t
σ(Xs)

∗Dxxε(s,Xs,Ys)σ(Xs)ds

−
∞

∑
k=1

∫ T

t

∫
R

[ε(s,Xs+σ(Xs)u,Ys)− ε(s,Xs,Ys)−Dxε(s,Xs,Ys)σ(Xs)u]pk(u)ν(du)dH(k)
s

+

∫ T

t

∫
R

[ε(s,Xs+σ(Xs)u,Ys)− ε(s,Xs,Ys)−Dxε(s,Xs,Ys)σ(Xs)u]ν(du)ds

+
1
2

∞

∑
k=1

∫ T

t
Dyyε(s,Xs,Ys)|Z

(k)
s |2ds−

∫ T

t
σ∗(Xs)Dxyε(s,Xs,Ys)Z

(1)
s ds

−
1
2

∫ T

t
Dyε(s,Xs,Ys)〈g,Dyg〉(s,Xs,Ys)ds. (3.6)

Ut = u0(XT)+

∫ T

t
F(s,Xs,Ys,Zs)ds+

∫ T

t
Φ(s,Xs,Ys)dAs−

∞

∑
k=1

∫ T

t
V(k)dH(k)

s ,

where

F(s,x,y,z) = Dyε f (s,x,y,z)−m1Dxεσ(x)+
1
2

Dyyε‖z‖2−σ∗(x)Dxyεz(1)

−
1
2

σ∗(x)Dxxεσ(x)−
1
2

Dyε〈g,Dyg〉(s,x,y)

+

∫
R

[ε(s,x+σ(x)u,y)− ε(s,x,y)−Dxεσ(x)u]ν(du) (3.7)

and

Φ(s,x,y) = Dyεφ(s,xs,y,z)−Dxε∇ψ(x), (3.8)
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replacedε(s,x,y) by ε. Comparing (3.6) with (3.4), it suffices to show that

F(s,Xs,Ys,Zs) = f̃ (s,Xs,Us,Vs), ∀s∈ [0,T], P-a.s. (3.9)

and

Φ(s,Xs,Ys) = φ̃(s,Xs,Us), ∀s∈ [0,T], P-a.s. (3.10)

To this end, if we writeσ(Xs) = σs and recall (2.6) together with Remark 2.5 we obtain the
following equalities:

Dxε(s,Xs,Ys)σ(Xs) = −Dyε(s,Xs,Ys)σ(Xs)Dxη(s,Xs,Us) (3.11)

(Dyε) f
(

s,Xs,Ys,(Z
(k)
s )∞

k=0

)
= (Dyε) f

(
s,Xs,η(s,Xs,Us),

(
DyηV(k)

s +σ∗
s(Dxη)1{k=1}

+
∫
R

θk(s,Xs,Us,u)ν(du)
)∞

k=1

)

σ∗
s(Dxyε)Z

(1)
s = σ∗

s(Dxyε)Dyη(s,Xs,Us)V
(1)+σ∗

s(Dxyε)σ∗
sDxη

+σ∗
s(Dxyε)

∫
R

θ1(s,Xs,Us,u)ν(du) (3.12)

−
1
2
(Dyyε)

∞

∑
k=1

|Z(k)
s |2 =

1
2
(Dyε)(Dyyη)

∞

∑
k=1

|V(k)
s |2+(Dyε)2(Dyyη)V

(1)
s σs(Dxη)

+
1
2
(Dyε)(Dyyη)|σs(Dxη)(Dyε)|2+(Dyε)2Dyyη

∞

∑
k=1

V(k)
s

∫
R

θk(s,Xs,Us,u)ν(du)

+
1
2
(Dyε)(Dyyη)

∞

∑
k=1

∣∣∣∣Dyε
∫
R

θk(s,Xs,Us,u)ν(du)

∣∣∣∣
2

+(Dyε)(Dyyη)(Dyε)2σsDxη
∫
R

θ1(s,Xs,Us,u)ν(du).

(3.13)

Hence plugging (3.11)-(3.13) in (3.7), we get

F(s,Xs,Ys,Zs) = Dyε

[
f

(
s,Xs,η,

(
DyηV(k)

s +σ∗
s(Dxη)1{k=1}+

∫
R

θk(s,Xs,Us,u)ν(du)

)∞

k=0

)

+m1σsDxη+
1
2
(Dyyη)

∞

∑
k=1

∣∣∣∣V
(k)
s +Dyε

∫
R

θk(s,Xs,Us,u)ν(du)

∣∣∣∣
2

−
1
2
〈g,Dyg〉(s,Xs,η)

]

+V(1)σ∗
s

[
(Dxη)(Dyε)2(Dyyη)−Dyη(Dxyε)

]

+

(∫
R

θ1(s,Xs,Us,u)ν(du)

)
σ∗

s

[
(Dxη)(Dyε)2(Dyyη)−Dyη(Dxyε)

]

[
1
2
(Dyyη)(Dyε|σs(Dxη)(Dyε)|2−σ∗

s(Dxyε)σ∗
sDxη (3.14)

−
1
2

σ∗(x)Dxxεσs+
∫
R

[ε(s,Xs+σsu,Ys)− ε(s,Xs,Ys)− (Dxε)σsu]ν(du)

]
,
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where all the derivatives of the random fieldε(·, ·, ·) are to be evaluated at the point(s,x,η(s,x,y)),
and all those ofη(·, ·, ·) at (s,x,y). On other hand, using again Remark 2.5, we have

−
1
2

σ∗(x)(Dxxε)σs = (σs)
2DxyεDxη−

1
2
(Dyε)Dyyη|σsDxηDyε|2

+
1
2
(Dyε)(σs)

2(Dxxη) (3.15)

and

Dxη(Dyε)2(Dyyη)−DxyεDyη = DyεDxyη. (3.16)

The equalities in (3.15) and (3.16)), together withDyε(s,Xs,Ys) = (Dyη)−1(s,Xs,Us), imply
that

F(s,Xs,Ys,Zs) = Dyε
[

f

(
s,Xs,η,

(
DyηV(k)

s +σ∗
s(Dxη)1{k=1}+

∫
R

θk(s,Xs,Us,u)ν(du)

)∞

k=0

)

+m1σsDxη+
1
2
(Dyyη)

∞

∑
k=1

∣∣∣∣V
(k)
s +Dyε

∫
R

θk(s,Xs,Us,u)ν(du)

∣∣∣∣
2

−
1
2
〈g,Dyg〉(s,Xs,η)

]

+
1
2
(Dyε)σ2

s(Dxxη)+ (Dyε)σsDxyη
(

V(1)
s +

∫
R

θ1(s,Xs,Us,u)ν(du)

)

+

∫
R

[ε(s,Xs+σsu,Ys)− ε(s,Xs,Ys)− (Dxε)σsu]ν(du).

Next, using again Remark 2.5 together with changing variable (t =−u), we have

∫
R

[ε(s,Xs+σsu,Ys)− ε(s,Xs,Ys)− (Dxε)σsu]ν(du)

= −Dyε
∫
R

[η(s,Xs+σsu,Us)−η(s,Xs,Us)− (Dxη)σsu]ν(du)

= Dyε
∫
R

[η(s,Xs+σsu,Us)−η(s,Xs,Us)− (Dxη)σsu]ν(du).

Finally, we obtain

F(s,Xs,Ys,Zs) = Dyε
[

f

(
s,Xs,η,

(
DyηV(k)

s +σ∗
s(Dxη)1{k=1}+

∫
R

θk(s,Xs,Us,u)ν(du)

)∞

k=0

)

+m1σsDxη+
1
2
(Dyyη)

∞

∑
k=1

∣∣∣∣V
(k)
s +

∫
R

θk(s,Xs,Us,u)ν(du)

∣∣∣∣
2

−
1
2
〈g,Dyg〉(s,Xs,η)

]

+
1
2
(Dyε)σ2

s(Dxxη)+ (Dyε)σsDxyη
(

V(1)
s +

∫
R

θ1(s,Xs,Us,u)ν(du)

)
(3.17)

+Dyε
∫
R

[η(s,Xs+σsu,Us)−η(s,Xs,Us)− (Dxη)σsu]ν(du).

Since the expressions in (3.14) and (3.17) are equal, this shows the equality in (3.9).
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Next, we show the equality in (3.10). In fact,

Φ(s,Xs,Ys) = Dyεφ(s,Xs,Ys)−Dxε∇ψ(Xs)

= Dyε(s,Xs,Ys)[Dxη(s,Xs,Us)∇ψ(Xs)+φ(s,Xs,η(s,Xs,Us)]

=
1

Dyη(s,Xs,Us)
[Dxη(s,Xs,Us)∇ψ(Xs)+φ(s,Xs,η(s,Xs,Us)]

= φ̃(s,Xs,Us). (3.18)

This ends the proof of theorem.

We are now ready to prove the existence of the stochastic viscosity solutions of SPDIE
( f ,g,φ). Let us define for each(t,x) ∈ [0;T]×Θ two random fields

u(t,x) =Yt,x
t , v(t,x) =U t,x

t . (3.19)

Theorem 3.6. Assume that(A1)–(A5) hold. Then, the random field v is a stochastic vis-
cosity solution of SPDIE( f̃ ,0, φ̃) and hence u is a stochastic viscosity solution to SPDIE
( f ,g,φ).

Proof. Let us defineu(t,x) =Yt,x
t andv(t,x) =U t,x

t , whereY andU are given as above. We
have

u(t,ω,x) = η(t,ω,v(t,ω,x)) and v(t,ω,x) = ε(t,ω,v(t,ω,x)). (3.20)

SinceYx,t
s isF L

t,s⊗F
B

s,T -measurable, it follows thatYx,t
t isF B

t,T -measurable. Therefore,u(t,x)
is F B

t,T - measurable and so it is independent ofω′ ∈ Ω′. Consequently, according to propo-
sition 1.7 in [10], we haveu∈ C(FB, [0,T ]×Θ). Moreover, (3.20) implies thatv belongs
toC(FB, [0,T]×Θ). We emphasis that as anFB-progressively measurableω-wise viscosity
solution is automatically a stochastic viscosity solution(see Definition 2.3), it suffice to
show thatv is anω-wise viscosity solution to SPDIE( f̃ ,0, φ̃). To do it, let us denote, for a
fixed ω ∈ Ω,

U
ω
(ω′) =U(ω,ω′), V

ω
(ω′) =V(ω,ω′).

Then,(U
ω
,V

ω
) is the unique solution of the GBDSDELs with coefficient( f̃ (ω, ·, ·, ·), φ̃(ω, ·, ·)),

and as it is shown by Ren and Otmani in [15], ¯v(ω, t,x) = U
ω
t is a viscosity solution to

SPDIE( f̃ (ω, ·, ·, ·), φ̃(ω, ·, ·)) with nonlinear Neumann boundary condition. By Blumen-
thal’s 0-1 law it folows thatP′(U

ω
t (ω

′) =Ut(ω,ω′)) = 1. Hence we get ¯v(t,x) = v(t,x) P-
almost surely for all(t,x)∈ [0,T ]Θ. Therefore, for everyω fixed the functionv∈C(FB, [0,T]×
Θ) is a viscosity solution to the SPDE( f̃ (ω, ·, ·, ·), φ̃(ω, ·, ·)). Hence, by definition it is an
ω-wise viscosity solution and hence a stochastic viscosity solution to SPDIE( f̃ ,0, φ̃). The
conclusion of the theorem now follows from Theorem 3.5.
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