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THE NUMBER OF GOLDBACH REPRESENTATIONS OF AN INTEGER

ALESSANDRO LANGUASCO and ALESSANDRO ZACCAGNINI

1. Introduction

Let Λ be the von Mangoldt function and

R(n) =
∑

h1+h2=n

Λ(h1)Λ(h2)

be the counting function for the Goldbach numbers. This paper is devoted to study the
behaviour of the average order of magnitude of R(n) for n ∈ [1, N ], where N is a large
integer. We have the following

Theorem 1. Let N ≥ 2 and assume the Riemann Hypothesis (RH) holds. Then

N∑

n=1

R(n) =
N2

2
− 2

∑

ρ

Nρ+1

ρ(ρ+ 1)
+O

(
N log3N

)
,

where ρ = 1/2 + iγ runs over the non-trivial zeros of the Riemann zeta function ζ(s).

The first result of this kind was proved in 1991 by Fujii who subsequently improved it
(see [4]-[5]-[6]) until reaching the error term O

(
(N logN)4/3

)
. Then Granville [8]-[9] gave

an alternative proof of the same result and, finally, Bhowmik and Schlage-Puchta [2] were
able to reach the error term O

(
N log5N

)
; in [2] they also proved that the error term is

Ω(N log logN).
Our result improves the upper bound in Bhowmik and Schlage-Puchta [2] by a factor

log2N . In fact, this seems to be the limit of the method in the current state of the circle-
method technology: see the remark after the proof.

If one admits the presence of some suitable weight in our average, this loss can be avoided.
For example, using the Fejér weight we could work with L(N ;α) =

∑N
n=−N(N−|n|)e(nα) =

|T (N ;α)|2 instead of T (N ;α) in (23). The key property is that, for 1/N < |α| ≤ 1/2, the
function L(N ;α) decays as α−2 instead of |α|−1 and so the dissection argument in (26) is
now more efficient and does not cause any loss of logs. Such a phenomenon is well-known
from the literature about the existence of Goldbach numbers in short intervals, see, e.g.,
Languasco and Perelli [12].

In fact we will obtain Theorem 1 as a consequence of a weighted result. Letting ψ(x) =∑
m≤x Λ(m), we have

Theorem 2. Let 2 ≤ y ≤ N and assume the Riemann Hypothesis (RH) holds. Then

max
y∈[2,N ]

∣∣∣∣∣

y∑

n=1

[
R(n)− (2ψ(n)− n)

]
e−n/N

∣∣∣∣∣≪ N log3N. (1)
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The key reason why we are able to derive Theorem 1 from Theorem 2 via partial summation
is that the exponential weight in (1) just varies in the range [e−1/N , e−1] and so it does not
change the order of magnitude of the functions involved.

We will use the original Hardy and Littlewood [10] circle method setting, i.e., the weighted
exponential sum

S̃(α) =

∞∑

n=1

Λ(n)e−n/Ne(nα), (2)

where e(x) = exp(2πix), since it lets us avoid the use of Gallagher’s Lemma (Lemma 1 of
[7]) and hence, in this conditional case, it gives slightly sharper results, see Lemma 1 below.
Such a function was also used by Linnik [13, 14]. The new ingredient in this paper is Lemma
5 below in which we unconditionally detect the existence of the term −2

∑
ρN

ρ+1/(ρ(ρ+1))

by solving an arithmetic problem connected with the original one (see eq. (11) below). In the
previously mentioned papers this is obtained applying the explicit formula for ψ(n) twice.

The ideas that lead to Theorem 1 and 2 work also for the sum of k ≥ 3 primes, i.e., for
the function

Rk(n) =
∑

h1+...+hk=n

Λ(h1) · · ·Λ(hk).

We can prove the following

Theorem 3. Let k ≥ 3 be an integer, N ≥ 2 and assume the Riemann Hypothesis (RH)
holds. Then

N∑

n=1

Rk(n) =
Nk

k!
− k

∑

ρ

Nρ+k−1

ρ(ρ+ 1) · · · (ρ+ k − 1)
+Ok

(
Nk−1 logkN

)
,

where ρ = 1/2 + iγ runs over the non-trivial zeros of ζ(s).

The proof of Theorem 3 is completely similar to the one of Theorems 1 and 2. We just
remark that the main differences are in the use of the explicit formula for

ψj(t) :=
1

j!

∑

n≤t

(t− n)jΛ(n)

where j is a non-negative integer, and of the following version of Lemma 1 of [11]:

Lemma. Assume the Riemann Hypothesis (RH) holds. Let N ≥ 2, z = 1/N − 2πiα and
α ∈ [−1/2, 1/2]. Then

∣∣∣S̃(α)−
1

z

∣∣∣≪ N1/2
(
1 + (N |α|)1/2

)
logN.

Another connected problem we can address with this technique is a short-interval version
of Theorem 1. We can prove the following

Theorem 4. Let 2 ≤ H ≤ N and assume the Riemann Hypothesis (RH) holds. Then

N+H∑

n=N

R(n) = HN +
H2

2
− 2

∑

ρ

(N +H)ρ+1 −Nρ+1

ρ(ρ+ 1)
+O

(
N log2N logH

)
,

where ρ = 1/2 + iγ runs over the non-trivial zeros of ζ(s).
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Also in this case we do not give a proof of Theorem 4; we just remark that the main
difference is in the use of the exponential sum

∑N+H
n=N e(nα) instead of

∑N
n=1 e(nα).

Acknowledgments. We would like to thank Alberto Perelli for a discussion.

2. Setting of the circle method

For brevity, throughout the paper we write

z =
1

N
− 2πiα where N is a large integer and α ∈ [−1/2, 1/2]. (3)

The first lemma is a L2-estimate for the difference S̃(α)− 1/z.

Lemma 1 (Languasco and Perelli [12]). Assume RH. Let N be a sufficiently large integer
and z be as in (3). For 0 ≤ ξ ≤ 1/2, we have

∫ ξ

−ξ

∣∣∣S̃(α)−
1

z

∣∣∣
2

dα≪ Nξ log2N.

This follows immediately from the proof of Theorem 1 of [12] since the quantity we would

like to estimate here is R̃1 + R̃3 + R̃5 there.
Lemma 1 is the main reason why we use S̃(α) instead of its truncated form S(α) =∑N
n=1 Λ(n)e(nα) as in Bhowmik and Schlage-Puchta [2]. In fact Lemma 1 lets us avoid the

use of Gallagher’s Lemma [7] which leads to a loss of a factor log2N in the final estimate
(compare Lemma 1 with Lemma 4 of [2]). For a similar phenomenon in a slightly different
situation see also Languasco [11].

The next four lemmas do not depend on RH. By the residue theorem one can obtain

Lemma 2 (Eq. (29) of [12]). Let N ≥ 2, 1 ≤ n ≤ N and z be as in (3). We have
∫ 1

2

− 1

2

e(−nα)

z2
dα = ne−n/N +O(1)

uniformly for every n ≤ N .

Lemma 3. Let N be a sufficiently large integer and z be as in (3). We have
∫ 1

2

− 1

2

∣∣∣S̃(α)−
1

z

∣∣∣
2

dα =
N

2
logN +O

(
N(logN)1/2

)
.

Proof. By the Parseval theorem and the Prime Number Theorem we have
∫ 1

2

− 1

2

|S̃(α)|2 dα =
∞∑

m=1

Λ2(m)e−2m/N =
N

2
logN +O(N).

Recalling that the equation at the beginning of page 318 of [12] implies
∫ 1

2

− 1

2

dα

|z|2
=
N

π
arctan(πN),

the Lemma immediately follows using the relation |a − b|2 = |a|2 + |b|2 − 2ℜ(ab) and the
Cauchy-Schwarz inequality. �
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Let

V (α) =

∞∑

m=1

e−m/Ne(mα) =

∞∑

m=1

e−mz =
1

ez − 1
. (4)

Lemma 4. If z satisfies (3) then V (α) = z−1 +O(1).

Proof. We recall the that the function w/(ew − 1) has a power-series expansion with radius
of convergence 2π (see for example Apostol [1], page 264). In particular, uniformly for
|w| ≤ 4 < 2π we have w/(ew− 1) = 1+O(|w|). Since z satisfies (3) we have |z| ≤ 4 and the
result follows. �

Let now

T (y;α) =

y∑

n=1

e(nα) ≪ min

(
y;

1

‖α‖

)
. (5)

Lemma 5. Let N be a large integer, 2 ≤ y ≤ N and z be as in (3). We have
∫ 1/2

−1/2

T (y;−α)
(S̃(α)− 1/z)

z
dα =

y∑

n=1

e−n/N(ψ(n)− n) +O
(
(yN logN)1/2

)
. (6)

We remark that Lemma 5 is unconditional and hence it implies, using also Lemma 6,
that the ability of detecting the term depending on the zeros of the Riemann ζ-function in
Theorem 1 does not depend on RH.

Proof. Writing R̃(α) = S̃(α)− 1/z, by Lemma 4 we have
∫ 1/2

−1/2

T (y;−α)
R̃(α)

z
dα =

∫ 1/2

−1/2

T (y;−α)R̃(α)V (α) dα+O

(∫ 1/2

−1/2

|T (y;−α)| |R̃(α)| dα

)

=

∫ 1/2

−1/2

T (y;−α)R̃(α)V (α) dα+O
(
(yN logN)1/2

)
, (7)

since, by the Parseval theorem and Lemma 3, the error term above is

≪
(∫ 1/2

−1/2

|T (y;−α)|2 dα
)1/2(∫ 1/2

−1/2

|R̃(α)|2 dα
)1/2

≪ (yN logN)1/2.

Again by Lemma 4, we have

R̃(α) = S̃(α)−
1

z
= S̃(α)− V (α) +O(1)

and hence (7) implies
∫ 1/2

−1/2

T (y;−α)
R̃(α)

z
dα =

∫ 1/2

−1/2

T (y;−α)
(
S̃(α)− V (α)

)
V (α) dα

+O

(∫ 1/2

−1/2

|T (y;−α)| |V (α)| dα

)
+O

(
(yN logN)1/2

)
. (8)

The Cauchy-Schwarz inequality and the Parseval theorem imply that
∫ 1/2

−1/2

|T (y;−α)| |V (α)| dα ≤
(∫ 1/2

−1/2

|T (y;−α)|2 dα
)1/2(∫ 1/2

−1/2

|V (α)|2 dα
)1/2
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≪
(
y

∞∑

m=1

e−2m/N
)1/2

≪ (yN)1/2. (9)

By (8)-(9), we have

∫ 1/2

−1/2

T (y;−α)
R̃(α)

z
dα =

∫ 1/2

−1/2

T (y;−α)
(
S̃(α)− V (α)

)
V (α) dα+O

(
(yN logN)1/2

)
. (10)

Now, by (2) and (4), we can write

S̃(α)− V (α) =

∞∑

m=1

(Λ(m)− 1)e−m/Ne(mα)

so that
∫ 1/2

−1/2

T (y;−α)
(
S̃(α)− V (α)

)
V (α) dα

=

y∑

n=1

∞∑

m1=1

(Λ(m1)− 1)e−m1/N

∞∑

m2=1

e−m2/N

∫ 1/2

−1/2

e((m1 +m2 − n)α) dα

=

y∑

n=1

∞∑

m1=1

(Λ(m1)− 1)e−m1/N
∞∑

m2=1

e−m2/N

{
1 if m1 +m2 = n

0 otherwise

=

y∑

n=1

e−n/N
n−1∑

m1=1

(Λ(m1)− 1) =

y∑

n=1

e−n/N(ψ(n− 1)− (n− 1)), (11)

since the condition m1 +m2 = n implies that both variables are < n. Now ψ(n) = ψ(n −
1) + Λ(n), so that

y∑

n=1

e−n/N(ψ(n− 1)− (n− 1)) =

y∑

n=1

e−n/N(ψ(n)− n) +O(y).

By (10)-(11) and the previous equation, we have

∫ 1/2

−1/2

T (y;−α)
R̃(α)

z
dα =

y∑

n=1

e−n/N(ψ(n)− n) +O
(
y + (yN logN)1/2

)

=

y∑

n=1

e−n/N(ψ(n)− n) +O
(
(yN logN)1/2

)

since y ≤ N , and hence (6) is proved. �

Lemma 6. Let M > 1 be an integer. We have that

M∑

n=1

(ψ(n)− n) = −
∑

ρ

Mρ+1

ρ(ρ+ 1)
+O(M).
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Proof. We recall the definition of ψ0(t) as ψ(t) − Λ(t)/2 if t is an integer and as ψ(t)
otherwise. Hence

M∑

n=1

ψ(n) =

M∑

n=1

ψ0(n) +
1

2

M∑

n=1

Λ(n) =

M∑

n=1

ψ0(n) +O(M)

by the Prime Number Theorem. Using the fact that ψ0(n) = ψ0(t) for every t ∈ (n, n + 1),
we also get

M∑

n=1

ψ0(n) =

M∑

n=1

∫ n+1

n

ψ0(t) dt =

∫ M

0

ψ0(t) dt +O(M).

Remarking that
M∑

n=1

n =

∫ M

0

t dt +O(M),

we can write
M∑

n=1

(ψ(n)− n) =

∫ M

0

(ψ0(t)− t) dt+O(M)=

∫ M

2

(ψ0(t)− t) dt +O(M), (12)

since the integral on (0, 2] gives a contribution O(1). For t ≥ 2 we will use the explicit
formula (see eq. (9)-(10) of §17 of Davenport [3])

ψ0(t) = t−
∑

|γ|≤Z

tρ

ρ
−
ζ ′

ζ
(0)−

1

2
log

(
1−

1

t2

)
+Rψ(t, Z), (13)

where

Rψ(t, Z) ≪
t

Z
log2(tZ) + (log t)min

(
1;

t

Z‖t‖

)
. (14)

The term − ζ′

ζ
(0) − 1

2
log
(
1− 1

t2

)
gives a contribution O(M) to the integral over [2,M ] in

(12). We need now a L1 estimate of the error term defined in (14). Let

E(M,Z) :=

∫ M

2

|Rψ(t, Z)|dt. (15)

The first term in (14) gives a total contribution to E(M,Z) which is

≪
M2

Z
log2(MZ). (16)

The second term in (14) gives a total contribution to E(M,Z) which is

≪ logM
M∑

n=2

[∫ n+1/2

n

min
(
1;

t

Z(t− n)

)
dt +

∫ n+1

n+1/2

min
(
1;

t

Z(n+ 1− t)

)
dt
]

≪ logM
M∑

n=2

(∫ n+1/Z

n

dt+

∫ n+1/2

n+1/Z

t dt

Z(t− n)
+

∫ n+1

n+1−1/Z

dt+

∫ n+1−1/Z

n+1/2

t dt

Z(n + 1− t)

)

≪ logM

M∑

n=2

( 3

Z
+

2n + 1

Z
log(

Z

2
)
)
≪

M2

Z
logM logZ. (17)

6



Combining (15)-(17), for Z =M log2M we have that

E(M,Z) ≪M. (18)

Inserting now (13) and (18) into (12) we obtain

M∑

n=1

(ψ(n)− n) = −
∑

|γ|≤Z

Mρ+1

ρ(ρ+ 1)
+O(M). (19)

The lemma follows from (19), by remarking that

∑

|γ|>Z

Mρ+1

ρ(ρ+ 1)
≪M2

∫ +∞

Z

log t

t2
dt ≪

M2 logZ

Z
≪

M

logM

since Z =M log2M . �

3. Proof of Theorem 1

We will get Theorem 1 as a consequence of Theorem 2. By partial summation we have

N∑

n=1

[
R(n)− (2ψ(n)− n)

]
=

N∑

n=1

en/N
{[
R(n)− (2ψ(n)− n)

]
e−n/N

}

= e

N∑

n=1

[
R(n)− (2ψ(n)− n)

]
e−n/N

−
1

N

∫ N

0

{ y∑

n=1

[
R(n)− (2ψ(n)− n)

]
e−n/N

}
ey/N dy +O(1).

(20)

Inserting (1) in (20) we get

N∑

n=1

[
R(n)− (2ψ(n)− n)

]
≪ N log3N

and hence
N∑

n=1

R(n) =
N∑

n=1

n+ 2
N∑

n=1

(ψ(n)− n) +O
(
N log3N

)
. (21)

Theorem 1 now follows inserting Lemma 6 and the identity
∑N

n=1 n = N2/2+O(N) in (21).

4. Proof of Theorem 2

Let 2 ≤ y ≤ N . We first recall the definition of the singular series of the Goldbach
problem: S(k) = 0 for k odd and

S(k) = 2
∏

p>2

(
1−

1

(p− 1)2

)∏

p|k
p>2

p− 1

p− 2

7



for k even. Hence, using the well known estimate R(n) ≪ nS(n) ≪ n log logn, we remark
that

y∑

n=1

[
R(n)− (2ψ(n)− n)

]
e−n/N ≪

y∑

n=1

n log logn≪ y2 log log y. (22)

So it is clear that (1) holds for every y ∈ [2, N1/2].

Assume now that y ∈ [N1/2, N ] and let α ∈ [−1/2, 1/2]. Writing R̃(α) = S̃(α) − 1/z,
recalling (5) we have

y∑

n=1

e−n/NR(n) =

y∑

n=1

∫ 1

2

− 1

2

S̃(α)2e(−nα) dα =

∫ 1

2

− 1

2

S̃(α)2T (y;−α) dα

=

∫ 1

2

− 1

2

T (y;−α)

z2
dα + 2

∫ 1

2

− 1

2

T (y;−α)R̃(α)

z
dα +

∫ 1

2

− 1

2

T (y;−α)R̃(α)2 dα

= I1(y) + I2(y) + I3(y), (23)

say.
Evaluation of I1(y). By Lemma 2 we obtain

I1(y) =

∫ 1

2

− 1

2

T (y;−α)

z2
dα =

y∑

n=1

∫ 1

2

− 1

2

e(−nα)

z2
dα =

y∑

n=1

(
ne−n/N +O(1)

)

=

y∑

n=1

ne−n/N +O(y). (24)

Estimation of I2(y). By (6) of Lemma 5 we obtain

I2(y) = 2

y∑

n=1

e−n/N (ψ(n)− n) +O
(
(yN logN)1/2

)
. (25)

Estimation of I3(y). Using (5) and Lemma 1 we have that

I3(y) ≪

∫ 1

2

− 1

2

|T (y;−α)||R̃(α)|2 dα≪ y

∫ 1

y

− 1

y

|R̃(α)|2 dα +

∫ 1

2

1

y

|R̃(α)|2

α
dα +

∫ − 1

y

− 1

2

|R̃(α)|2

|α|
dα

≪ N log2N +

O(log y)∑

k=1

y

2k

∫ 2
k+1

y

2k

y

|R̃(α)|2 dα ≪ N log2N +

O(log y)∑

k=1

y

2k
N
2k+1

y
log2N

≪ N log2N log y. (26)

End of the proof . Inserting (24) and (25)-(26) into (23) we immediately have

y∑

n=1

e−n/NR(n) =

y∑

n=1

ne−n/N + 2

y∑

n=1

e−n/N (ψ(n)− n) +O
(
N log2N log y

)
.

Hence
y∑

n=1

e−n/N
[
R(n)− (2ψ(n)− n)

]
≪ N log2N log y

8



and the maximum of the right hand side is attained at y = N . Thus we can write

max
y∈[N1/2,N ]

∣∣∣∣∣

y∑

n=1

[
R(n)− (2ψ(n)− n)

]
e−n/N

∣∣∣∣∣≪ N log3N. (27)

Combining (22) and (27) we get that Theorem 2 is proved.
Remark. Let

f(α) = fN(α) =

{
1
2
N1/2 logN if ‖α‖ ≤ (logN)−1,

0 if ‖α‖ > (logN)−1.

Then f satisfies both Lemma 1 and Lemma 3 in the sense that
∫ ξ

−ξ

|f(α)|2 dα≪ Nξ(logN)2

for all ξ ∈ [0, 1/2], and ∫ 1/2

−1/2

|f(α)|2 dα =
1

2
N logN,

but
∫ 1/2

1/y

|f(α)|2

α
dα =

1

4
N(logN)2

∫ 1/ logN

1/y

dα

α
=

1

4
N(logN)2 log(y/ logN) ≍ N(logN)3

for y = N1/2 and sufficiently large N . This means that the crucial bound for I3(y) in (26)
is essentially optimal in the present state of knowledge, and that it can not be improved

without deeper information on S̃(α)− z−1, such as the stronger analogue of Lemma 1 that
follows from a suitable form of Montgomery’s Pair-Correlation Conjecture.
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