
ar
X

iv
:1

01
1.

10
02

v1
  [

co
nd

-m
at

.s
of

t]
  3

 N
ov

 2
01

0

Reentrant and Isostructural Transitions in a Cluster-Crystal

Former

Kai Zhang,1 Patrick Charbonneau,1, ∗ and Bianca M. Mladek2, †

1Department of Chemistry, Duke University,

Durham, North Carolina, 27708, USA

2Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK

(Dated: November 5, 2010)

Abstract

We study the low-temperature behavior of a simple cluster-crystal forming system through sim-

ulation. The phase behavior is found to be hybrid between the Gaussian core and penetrable

sphere models. The system additionally exhibits a series of reentrant crystallization and melting

loops as well as critical isostructural transitions between crystals of different occupancy. Due to

the creation and annihilation of lattice sites, the system further shows an unusual and intriguing

softening upon compression.
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Since van der Waals and Kirkwood, we better appreciate the fundamental role of harshly

repulsive interactions in the organization of matter [1]. But what happens when harshness

turns to softness? Core softened potentials can exhibit microphase separation [2], reentrant

melting, and isostructural phase transitions [3] in systems as diverse as Cerium metal [4], star

polymers [5], dipolar spheres [6], electron bubbles [7, 8], and rotating Bose gases [9]. Even

softer, coreless repulsive interactions are also found in complex systems. Nonlinear fields can

form particle-like structures governed by solitonlike interactions [10, 11]; and the centers of

mass of structures with low fractal dimension, such as polymers [12], dendrimers [13, 14], and

microgels [15], can be immaterial and thus overlap with only a finite free energy penalty. As a

result, materials governed by such interactions can exhibit quite an unusual phenomenology

compared to “simple” matter [16]. Soft core models are further used to study the difficult

glass [17, 18] and classical ground state determination problems [19, 20], highlighting the

broad interest in the phase behavior of systems with soft potentials.

A certain universality permeates the thermodynamic assembly of bounded, purely repul-

sive interactions. Two phenomenological categories have been identified. Systems with pair

interactions whose Fourier components are purely positive show reentrant melting, while

those with some negative Fourier components cluster and freeze into multiply occupied

crystals (MOC) [17, 21–27]. A continuous crossover between the two categories can be re-

alized via the tuneable generalized exponential model of index n (GEM-n) [23], whose pair

potential for particles a distance r apart is

φ(r) = ε exp [−(r/σ)n] , (1)

with ε and σ setting the units of energy and length, respectively [28]. Upon compression

at low temperatures, the n = 2 Gaussian core model (GCM) [29] forms cubic crystals that

eventually remelt [30, 31]; and all GEM-n of n > 2 are predicted to show MOC clustering [22],

including the n → ∞ limit, i.e., the penetrable sphere model (PSM) [21].

For strong interactions (or effective low temperatures), which may be the most experi-

mentally accessible and where coarse-grained pairwise interactions for complex systems are

most reasonable, the phase behavior of MOC-forming systems is not understood. Various

plausible ordering scenarios are suggested by theory and experiments: DFT predicts a con-

tinuous increase in clustering [22, 23]; the PSM limit presents a sequence of second-order

phase transitions between crystals of increasing occupancy [21]; and bubble solids alternate
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liquid and crystal phases of increasing lattice occupancy [7]. A cascade of pure first-order

isostructural solid-solid transitions between crystals of different occupancy is also plausible,

as theoretically predicted by [32]. Such isostructural transitions should terminate at critical

points, because the cluster occupancy of high-temperature MOC-formers increases contin-

uously with density [23, 24]. A rare example of this type of critical point is found in pure

Cerium, where a pressure-induced electronic promotion underlies the transition between two

isostructural solids with different lattice spacing. Cerium’s properties are, however, difficult

to study [4, 33]. Critical points involving volume collapse have also been predicted for a

variety of purely classical, effective interaction potentials [3, 34]. But the experimental col-

loidal systems in which they could be observed have an intrinsic size polydispersity [35] or an

effective interaction [16] that prevents phase separation. The relatively broad lattice spac-

ing of MOC suggests that crystal formation should be less sensitive to these experimental

constraints. In this manuscript, we present a computational study of the low-temperature

behavior of the MOC-forming GEM-4, whose behavior is shown to be a complex hybrid be-

tween the GCM and the PSM limits, and in which we find reentrant transitions and evidence

for a cascade of isostructural transitions.

We perform lattice Monte Carlo simulations [37] of the GEM-4 model, whose high-

temperature behavior was previously determined [24], for N = 1000-5000 particles at con-

stant N , volume V , and temperature T . The pressure P is obtained from the virial and the

Helmholtz free energy F of the different phases is calculated via thermodynamic integration.

The reference system is the ideal gas [36], and for the body-centered cubic (bcc) and face-

centered cubic (fcc) crystal phases, potential wells centered around the Nc lattice sites of

the corresponding crystal symmetry are included [27]. This crystal reference, which allows

for the characteristic multiple occupation of lattice sites and for particle hopping between

those sites, permits a reversible integration path. For a fixed number density ρ, the lattice

site occupancy nc = N/Nc at equilibrium is identified for every state point by simulating

a crystal phase at various fixed nc then minimizing the resulting constrained free energy

F (nc), i.e., identifying the loci (Fig. 1)

F (neq
c ) =

[

∂F (nc)

∂nc

]

ρ,T

= 0, (2)

similarly to what was done for identifying the equilibrium phase in a modulation-forming

spin system [38]. This scheme is also related to that used for GEM-4’s high-T phase dia-
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FIG. 1: (Color online) T -ρ (left) and P − T (right) low- and high-T (left insets [24]) simulation

phase diagrams. The isostructural critical point (�) is extrapolated from the law of rectilinear

diameters [36] and the T = 0 results (•) come from phonon theory [32]. Left: The coexistence

regions (shaded) are delimited by simulation results for liquid (△), bcc (▽), and fcc (⊙) phases.

The free energy per particle for the bcc (▽) and fcc (⊙) phases at T = 0.03 and ρ = 0.85 shows

that a fcc with n
eq
c = 1.94(1) is the ground state (right inset). Right: The phase boundaries (solid

lines) are guides for the eye that are consistent with the Gibbs-Duhem slopes (not shown) at the

coexistence points (·). The triple points (△) are numbered. The right inset enlarges the liquid

reentrance region.

gram determination, where nc was iterated until the (unphysical) field conjugate to nc had

vanished [24, 39]. The earlier approach allows for a gradient-based minimization of the free

energy, but relies on an additional independent calculation of the chemical potential at fixed

nc. It breaks down at low T , where its numerical determination cannot be efficiently resolved

by Widom’s particle insertion [36].

The low-T phase diagram shown in Fig. 1 is determined through common tangent con-

struction of the free energy data. A linear transformation with parameter κ of the free energy

βF̃ρ/N = βFρ/N − κρ, where β is the inverse temperature, enhances the visibility of the

coexistence regime (Fig. 2). As anticipated from the high-T extrapolation, the cluster bcc

phase vanishes at a triple point T
(1)
t = 0.078(1), but surprisingly the transition is preceded

by a reentrance crystallization loop. Because the tail of the GEM-4 decays faster than any

inverse power, the liquid freezes into a single-occupancy fcc (fcc1) that reaches vanishingly

small densities at low T , in agreement with predictions from genetic algorithms [40, 41] and
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phonon theory [32].

Upon increasing the density below T
(1)
t the phase diagram exhibits a rich and interesting

behavior. GCM-like phase behavior [29–31] is followed by a clustering regime. First, the

fcc1 phase gives way to a single-occupancy bcc (bcc1) phase at a second triple point T
(2)
t =

0.031(1). For a narrow temperature range above T
(2)
t , a bcc1 wedge between the liquid and

the fcc1 phase leads to reentrant freezing of bcc1 upon compression. At T = 0.039(1) a

maximum freezing temperature for bcc1 is observed, which leads to reentrant melting upon

compression and a sigmoidal coexistence line on the P -T phase diagram, as observed in the

soft core model [3, 4]. Here the reentrant liquid range spreads only over a finite density regime

0.59 . ρ . 0.68 and over a much smaller temperature range 0.0385 . T . 0.039 than in the

canonical GCM [29–31]. The intermediate nature of the GEM-4 suggests that this behavior

might become more pronounced as the GCM is approached, i.e., n → 2+, and should

disappear before the PSM limit n → ∞, where reentrance is not expected. The connection

to the high-temperature regime occurs through a third triple point T
(3)
t = 0.040(1). A prior,

coarser study of the liquid-crystal transition in this regime missed both presence of fcc1

and of the reentrant melting [42]. It also assigned the unusual shape of the liquid-crystal

coexistence curve to the onset of clustering, which is not quite accurate. It is rather the

presence of reentrant melting that changes the coexistence behavior.

Clustering does lead to a qualitatively different phase diagram topology, but at densities

well away from the liquid phase. At low T the nature of clustering is unlike what is seen

at higher T , where nc changes linearly with ρ resulting in a lattice constant that is nearly

density independent [24]. Here, the lattice occupancy is quasi-quantized, and at very low

T the lattice constant changes discontinuously through isostructural transitions between fcc

lattices of nearly perfect integer occupancy nc ↔ nc+1 (Fig. 2). The first occurrence of these

transitions, fcc1 ↔ fcc2, is partially obscured by the bcc1 phase, down to the fourth triple

point T
(4)
t = 0.012(1) (Fig. 1). At higher densities, the fcc2 ↔ fcc3 coexistence is fully devel-

oped and no other liquid or crystal phases are found to interfere. Genetic algorithm results

further suggest that no other crystal symmetry should be stable at higher densities [40, 41].

It is at the moment computationally difficult to go beyond fcc3, but both a zero tempera-

ture treatment paired with phonon theory [32] and a simple mean-field cell theory predict a

cascade of isostructural transitions to carry on ad infinitum, slightly broadening the finite T

coexistence regime between two integer occupancies. As previously argued the topology of
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FIG. 2: Free energy curves of the stable fcc (⊙) and, for comparison, the metastable bcc (▽)

structures at T = 0.01 with κ = 142.7. Both curves show the van der Waals loop characteristic of

a system whose limited size inhibits phase separation. The coexistence densities of the fcc1 (left

inset)-fcc2 (right inset) isostructrual transition are determined by the common tangent construction

(dashed line). The equilibrium lattice occupancy n
eq
c (•) plateaus near integer values for the

thermodynamically stable phases.

the phase diagram demands that each isotructural transition terminate at a critical point,

the first one of which is T
(2,3)
c = 0.049(3). The critical exponents are expected to be of

mean-field character [22, 43]. Hopping between lattice sites should eventually depress the

critical temperature with increasing nc. The series of first-order isostructural transitions

contrasts with the continuous second-order clustering transitions for the PSM predicted by

cell theory [21]. This last result suggests that the behavior of the PSM might be singular,

but further studies are necessary to clarify the nature of the phase behavior of the GEM-n

family as n → ∞.

One of the key material properties of MOC is the presence of two distinct microscopic

mechanisms for responding to compression. Like any other crystal, MOC can affinely reduce

their lattice constant, but additionally they can eliminate lattice sites by increasing the mean

lattice occupancy. We can decompose the bulk modulus

B ≡ V

(

∂2F

∂V 2

)

N,T

= Bvir − Bcorr (3)

into a virial contribution at constant lattice occupancy Bvir and a “softening” correction

Bcorr that map directly onto the two microscopic mechanisms [24, 45]. At high T , the
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FIG. 3: (Color online) Isothermal (T = 0.03) bulk modulus B (⊙), its virial contribution (•) and

softening correction (shaded), and n
eq
c (▽) [44]. The solid vertical lines indicate phase boundaries.

additional softening contribution can be as high as half the virial component [24]. In low T

crystals, the quasi-quantized jumps in lattice occupation lead to quite a different behavior.

Away from the coexistence regions, where the lattice occupancy is nearly constant, the

system responds only affinely to isothermal compression. The virial contribution to the

bulk modulus captures the full response of the system, that is, Bcorr ∼ 0, as observed in

Fig. 3 [44]. The quantization is, however, not perfect, which leads to interesting mechanical

properties in the softening regions that precede and follow the phase transitions, where the

lattice occupancy deviates slightly from integer values. Near the bcc1-fcc2 transition, for

instance, Bcorr is nearly equal to the virial contribution, which means the system exerts no

resistance to compression. This very rapid change in mechanical properties with compression

is uncommon, and may lead to interesting novel material behavior. The different physical

nature of the virial and softening contributions suggest that there might be a separation

of time scales for the microscopic relaxation. Hardening or softening of the material upon

compression might thus depend on the deformation rate.

We have presented the intriguing low-temperature phase behavior of the MOC-forming

GEM-4 through a computational method specially designed for this class of systems. The

complexity of the phase behavior is particularly noteworthy considering the simplicity of

the model, which is free of competing length scales. Experimental soft matter realizations

of cluster crystals are still lacking, but large-scale, monomer-resolved simulations of am-
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phiphilic dendrimers that show clustering are currently under way [46]. Importantly, the

approach outlined in the present work should be directly applicable to phenomena of re-

versible clustering in other branches of physics. Examples are: the structures formed by the

soft solitons of Refs. [10, 11], the quasi-2d electron bubbles in the quantum-Hall regime [7, 8]

and the predicted clustering of vortex lines in rotating Bose gases [9].
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