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We use the macroscopic quantum electrodynamics approach suitable for ab-
sorbing and dispersing media to study the properties and role of collective
surface excitations — excitons and plasmons — in single-wall and double-
wall carbon nanotubes. We show that the interactions of excitonic states
with surface electromagnetic modes in individual small-diameter (. 1 nm)
single-walled carbon nanotubes can result in strong exciton-surface-plasmon
coupling. Optical response of individual nanotubes exhibits Rabi splitting
∼0.1 eV, both in the linear excitation regime and in the non-linear excitation
regime with the photoinduced biexcitonic states formation, as the exciton
energy is tuned to the nearest interband surface plasmon resonance of the
nanotube. An electrostatic field applied perpendicular to the nanotube axis
can be used to control the exciton-plasmon coupling. For double-wall carbon
nanotubes, we show that at tube separations similar to their equilibrium dis-
tances interband surface plasmons have a profound effect on the inter-tube
Casimir force. Strong overlapping plasmon resonances from both tubes war-
rant their stronger attraction. Nanotube chiralities possessing such collective
excitation features will result in forming the most favorable inner-outer tube
combination in double-wall carbon nanotubes. These results pave the way
for the development of new generation of tunable optoelectronic and nano-
electromechanical device applications with carbon nanotubes.
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1 Introduction

Single-walled carbon nanotubes (CNs) are quasi-one-dimensional (1D) cylindrical
wires consisting of graphene sheets rolled-up into cylinders with diameters ∼ 1 −
10 nm and lengths ∼ 1 − 104 µm [1, 2, 3, 4]. CNs are shown to be useful as
miniaturized electronic, electromechanical, and chemical devices [5], scanning probe
devices [6], and nanomaterials for macroscopic composites [7]. The area of their
potential applications was recently expanded to nanophotonics [8, 9, 10, 11, 12, 13]
after the demonstration of controllable single-atom incapsulation into CNs [14, 15,
16, 17], and even to quantum cryptography since the experimental evidence was
reported for quantum correlations in the photoluminescence spectra of individual
nanotubes [18].

For pristine (undoped) single-walled CNs, the numerical calculations predicting
large exciton binding energies (∼0.3−0.6 eV) in semiconducting CNs [19, 20, 21] and
even in some small-diameter (∼ 0.5 nm) metallic CNs [22], followed by the results
of various exciton photoluminescence measurements [18, 23, 24, 25, 26, 27], have
become available. These works, together with other reports investigating the role
of effects such as intrinsic defects [25, 28], exciton-phonon interactions [26, 28, 29,
30, 31], biexciton formation [32, 33], exciton-surface-plasmon coupling [34, 35, 36,
37], external magnetic [38, 39] and electric fields [37, 40], reveal the variety and
complexity of the intrinsic optical properties of CNs [41].

Carbon nanotubes combine advantages such as electrical conductivity, chemical
stability, high surface area, and unique optoelectronic properties that make them
excellent potential candidates for a variety of applications, including efficient solar
energy conversion [7], energy storage [14], optical nanobiosensorics [42]. However,
the quantum yield of individual CNs is normally very low. Nanotube composites
of CN bundles and/or films could surpass this difficulty, opening up new paths for
the development of high-yield, high-performance optoelectronics applications with
CNs [43, 44]. Understanding the inter-tube interactions is important in order to be
able to tailor properties of CN bundles and films, as well as properties of multi-wall
CNs. This is also important for experimental realization of new effects and devices
proposed recently, such as trapping of cold atoms [42, 45] and their entanglement [11]
near single-walled CNs, surface profiling [6] and nanolithography applications [46]
with double-wall CNs.

Here, we use the macroscopic Quantum ElectroDynamics (QED) formalism de-
veloped earlier for absorbing and dispersive media [47, 48, 49, 9] and then success-
fully employed to study near-field EM effects in hybrid CN systems [10, 11, 45],
to investigate the properties and role of collective surface excitations — excitons
and plasmons — in single-wall and double-wall CNs. First, we show that, due
to the presence of low-energy (∼ 0.5−2 eV) weakly-dispersive interband plasmon
modes [50] and large exciton excitation energies in the same energy domain [51, 52],
the excitons can form strongly coupled mixed exciton-plasmon excitations in indi-
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vidual small-diameter (. 1 nm) semiconducting single-walled CNs. The exciton-
plasmon coupling (and the exciton emission accordingly) can be controlled by an
external electrostatic field applied perpendicular to the CN axis (the quantum con-
fined Stark effect). The optical response of individual CNs exhibits the Rabi splitting
of ∼ 0.1 eV, both in the linear excitation regime and in the non-linear excitation
regime with the photoinduced biexcitonic states formation, as the exciton energy is
tuned to the nearest interband surface plasmon resonance of the CN. Previous stud-
ies of the exciton-plasmon coupling have been focused on artificially fabricated hy-

brid plasmonic nanostructures, such as dye molecules in organic polymers deposited
on metallic films [53], semiconductor quantum dots coupled to metallic nanoparti-
cles [54], or nanowires [55], where semiconductor material carries the exciton and
metal carries the plasmon. Our results are particularly interesting since they reveal
the fundamental electromagnetic (EM) phenomenon — the strong exciton-plasmon
coupling — in an individual quasi-1D nanostructure, a carbon nanotube, as well as
its tunability feature by means of the quantum confined Stark effect. We expect
these results to open up new paths for the development of tunable optoelectronic
device applications with optically excited carbon nanotubes, including the strong
excitation regime with optical non-linearities.

Next, we turn to the double-wall carbon nanotubes to investigate the effect of
collective surface excitations on the inter-tube Casimir interaction in these systems.
The Casimir interaction is a paradigm for a force induced by quantum EM fluctua-
tions. The fundamental nature of this force has been studied extensively ever since
the prediction of the existence of an attraction between neutral metallic mirrors in
vacuum [49, 56]. In recent years, the Casimir effect has acquired a much broader
impact due to its importance for nanostructured materials and devices. The de-
velopment and operation of micro- and nano-electromechanical systems are limited
due to unwanted effects, such as stiction, friction, and adhesion, originating from the
Casimir force [57]. This interaction is also an important component for the stability
of nanomaterials. Here, we show that at tube separations similar to their equilib-
rium distances interband surface plasmons have a profound effect on the inter-tube
Casimir force. Strong overlapping plasmon resonances from both tubes warrant
their stronger attraction. Nanotube chiralities possessing such collective excitation
features will result in forming the most favorable inner-outer tube combination in
double-wall carbon nanotubes. This theoretical understanding is important for the
development of nano-electromechanical devices with CNs.

This Chapter is organized as follows. Section 2 introduces the general Hamilto-
nian of the exciton interaction with vacuum-type quantized surface EM modes of
a single-walled CN. No external EM field is assumed to be applied. The vacuum–
type–field we consider is created by CN surface EM fluctuations. Section 3 explains
how the interaction introduced results in the coupling of the excitonic states to
the nanotube’s surface plasmon modes. Here we derive and discuss the character-
istics of the coupled exciton–plasmon excitations, such as the dispersion relation,
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Figure 1: The geometry of the problem.

the plasmon density of states (DOS), and the optical response functions, for par-
ticular semiconducting CNs of different diameters. We also analyze how the elec-
trostatic field applied perpendicular to the CN axis affects the CN band gap, the
exciton binding energy, and the surface plasmon energy, to explore the tunability
of the exciton-surface-plasmon coupling in CNs. Section 4 derives and analyzes the
Casimir interaction between two concentric cylindrical graphene sheets comprising
a double-wall CN. The summary and conclusions of the work are given in Sec. 5. All
the technical details about the construction and diagonalization of the exciton–field
Hamiltonian, the EM field Green tensor derivation, the perpendicular electrostatic
field effect, are presented in the Appendices in order not to interrupt the flow of the
arguments and results.

2 Exciton-electromagnetic-field interaction
on the nanotube surface

We consider the vacuum-type EM interaction of an exciton with the quantized
surface electromagnetic fluctuations of a single-walled semiconducting CN by using
our recently developed Green function formalism to quantize the EM field in the
presence of quasi-1D absorbing bodies [58, 59, 60, 61, 62, 9]. No external EM field
is assumed to be applied. The nanotube is modelled by an infinitely thin, infinitely
long, anisotropically conducting cylinder with its surface conductivity obtained from
the realistic band structure of a particular CN. Since the problem has the cylindrical
symmetry, the orthonormal cylindrical basis {er, eϕ, ez} is used with the vector ez
directed along the nanotube axis as shown in Fig. 1. Only the axial conductivity, σzz,
is taken into account, whereas the azimuthal one, σϕϕ, being strongly suppressed
by the transverse depolarization effect [63, 64, 65, 66, 67, 68], is neglected.
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The total Hamiltonian of the coupled exciton-photon system on the nanotube
surface is of the form

Ĥ = ĤF + Ĥex + Ĥint, (1)

where the three terms represent the free (medium-assisted) EM field, the free (non-
interacting) exciton, and their interaction, respectively. More explicitly, the second
quantized field Hamiltonian is

ĤF =
∑

n

∫ ∞

0
dω ~ωf̂ †(n, ω)f̂ (n, ω), (2)

where the scalar bosonic field operators f̂ †(n, ω) and f̂(n, ω) create and annihilate,
respectively, the surface EM excitation of frequency ω at an arbitrary point n =
Rn = {RCN , ϕn, zn} associated with a carbon atom (representing a lattice site –
Fig. 1) on the surface of the CN of radius RCN . The summation is made over all the
carbon atoms, and in the following it is replaced by the integration over the entire
nanotube surface according to the rule

∑

n

. . . =
1

S0

∫

dRn. . . =
1

S0

∫ 2π

0
dϕnRCN

∫ ∞

−∞
dzn. . . , (3)

where S0 = (3
√
3/4)b2 is the area of an elementary equilateral triangle selected

around each carbon atom in a way to cover the entire surface of the nanotube,
b=1.42 Å is the carbon-carbon interatomic distance.

The second quantized Hamiltonian of the free exciton (see, e.g., Ref. [69]) on the
CN surface is of the form

Ĥex=
∑

n,m,f

Ef (n)B
†
n+m,fBm,f =

∑

k,f

Ef (k)B
†
k,fBk,f , (4)

where the operators B†
n,f and Bn,f create and annihilate, respectively, an exciton

with the energy Ef (n) in the lattice site n of the CN surface. The index f (6= 0)
refers to the internal degrees of freedom of the exciton. Alternatively,

B†
k,f =

1√
N

∑

n

B†
n,fe

ik·n and Bk,f = (B†
k,f )

† (5)

create and annihilate the f -internal-state exciton with the quasi-momentum k =
{kϕ, kz}, where the azimuthal component is quantized due to the transverse con-
finement effect and the longitudinal one is continuous, N is the total number of the
lattice sites (carbon atoms) on the CN surface. The exciton total energy is then
written in the form

Ef (k) = E(f)
exc(kϕ) +

~
2k2z

2Mex(kϕ)
(6)
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Here, the first term represents the excitation energy

E(f)
exc(kϕ) = Eg(kϕ) + E

(f)
b (kϕ) (7)

of the f -internal-state exciton with the (negative) binding energy E
(f)
b , created via

the interband transition with the band gap

Eg(kϕ) = εe(kϕ) + εh(kϕ), (8)

where εe,h are transversely quantized azimuthal electron-hole subbands (see the
schematic in Fig. 2). The second term in Eq. (6) represents the kinetic energy of the
translational longitudinal movement of the exciton with the effective mass Mex =
me+mh, where me and mh are the (subband-dependent) electron and hole effective
masses, respectively. The two equivalent free-exciton Hamiltonian representations
are related to one another via the obvious orthogonality relationships

1

N

∑

n

e−i(k−k
′)·n = δkk′ ,

1

N

∑

k

e−i(n−m)·k = δnm (9)

with the k-summation running over the first Brillouin zone of the nanotube. The
bosonic field operators in ĤF are transformed to the k-representation in the same
way.

The most general (non-relativistic, electric dipole) exciton-photon interaction on
the nanotube surface can be written in the form (we use the Gaussian system of
units and the Coulomb gauge; see details in Appendix A)

Ĥint =
∑

n,m,f

∫ ∞

0
dω [ g

(+)
f (n,m, ω)B†

n,f − g
(−)
f (n,m, ω)Bn,f ] f̂(m, ω) + h.c., (10)

where
g
(±)
f (n,m, ω) = g⊥f (n,m, ω) ± ω

ωf
g
‖
f (n,m, ω) (11)

with

g
⊥(‖)
f (n,m, ω) = −i4ωf

c2

√

π~ωReσzz(RCN , ω) (d
f
n)z
⊥(‖)Gzz(n,m, ω) (12)

being the interaction matrix element where the exciton with the energy E
(f)
exc = ~ωf

is excited through the electric dipole transition (df
n)z=〈0|(d̂n)z|f〉 in the lattice site

n by the nanotube’s transversely (longitudinally) polarized surface EM modes. The
modes are represented in the matrix element by the transverse (longitudinal) part of
the Green tensor zz-component Gzz(n,m, ω) of the EM subsystem (Appendix B).
This is the only Green tensor component we have to take into account. All the other
components can be safely neglected as they are greatly suppressed by the strong
transverse depolarization effect in CNs [63, 64, 65, 66, 67, 68]. As a consequence,
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Figure 2: Schematic of the two transversely quantized azimuthal electron-hole sub-
bands (left), and the first-interband ground-internal-state exciton energy (right) in
a small-diameter semiconducting carbon nanotube. Subbands with indices j = 1
and 2 are shown, along with the optically allowed (exciton-related) interband tran-
sitions [67]. See text for notations.

only σzz(RCN , ω), the axial dynamic surface conductivity per unit length, is present
in Eq.(12).

Equations (1)–(12) form the complete set of equations describing the exciton-
photon coupled system on the CN surface in terms of the EM field Green tensor
and the CN surface axial conductivity.

3 Exciton-surface-plasmon coupling

For the following it is important to realize that the transversely polarized sur-
face EM mode contribution to the interaction (10)–(12) is negligible compared to
the longitudinally polarized surface EM mode contribution. As a matter of fact,
⊥Gzz(n,m, ω) ≡ 0 in the model of an infinitely thin cylinder we use here (Ap-
pendix B), thus yielding

g⊥f (n,m, ω)≡0, g
(±)
f (n,m, ω)=± ω

ωf
g
‖
f (n,m, ω) (13)

in Eqs. (10)–(12). The point is that, because of the nanotube quasi-one-dimen-
sionality, the exciton quasi-momentum vector and all the relevant vectorial matrix
elements of the momentum and dipole moment operators are directed predominantly
along the CN axis (the longitudinal exciton; see, however, Ref. [70]). This prevents
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the exciton from the electric dipole coupling to transversely polarized surface EM
modes as they propagate predominantly along the CN axis with their electric vectors
orthogonal to the propagation direction. The longitudinally polarized surface EM
modes are generated by the electronic Coulomb potential (see, e.g., Ref. [71]), and
therefore represent the CN surface plasmon excitations. These have their electric
vectors directed along the propagation direction. They do couple to the longitudi-
nal excitons on the CN surface. Such modes were observed in Ref. [50]. They occur
in CNs both at high energies (well-known π-plasmon at ∼ 6 eV) and at compara-
tively low energies of ∼ 0.5−2 eV. The latter ones are related to the transversely
quantized interband (inter-van Hove) electronic transitions. These weakly-dispersive
modes [50, 72] are similar to the intersubband plasmons in quantum wells [73]. They
occur in the same energy range of ∼1 eV where the exciton excitation energies are
located in small-diameter (. 1 nm) semiconducting CNs [51, 52]. In what follows
we focus our consideration on the exciton interactions with these particular surface
plasmon modes.

3.1 The dispersion relation

To obtain the dispersion relation of the coupled exciton-plasmon excitations, we
transfer the total Hamiltonian (1)–(10) and (13) to the k-representation using
Eqs. (5) and (9), and then diagonalize it exactly by means of Bogoliubov’s canonical
transformation technique (see, e.g., Ref. [74]). The details of the procedure are given
in Appendix C. The Hamiltonian takes the form

Ĥ =
∑

k, µ=1,2

~ωµ(k) ξ̂
†
µ(k)ξ̂µ(k) + E0 . (14)

Here, the new operator

ξ̂µ(k) =
∑

f

[

u∗µ(k, ωf )Bk,f − vµ(k, ωf )B
†
−k,f

]

(15)

+

∫ ∞

0
dω
[

uµ(k, ω)f̂ (k, ω)− v∗µ(k, ω)f̂
†(−k, ω)

]

annihilates and ξ̂†µ(k) = [ξ̂µ(k)]
† creates the exciton-plasmon excitation of branch

µ, the quantities uµ and vµ are appropriately chosen canonical transformation co-
efficients. The ”vacuum” energy E0 represents the state with no exciton-plasmons
excited in the system, and ~ωµ(k) is the exciton-plasmon energy given by the solu-
tion of the following (dimensionless) dispersion relation

x2µ − ε2f − εf
2

π

∫ ∞

0
dx

x Γ̄f
0(x)ρ(x)

x2µ − x2
= 0 . (16)

Here,

x =
~ω

2γ0
, xµ =

~ωµ(k)

2γ0
, εf =

Ef (k)

2γ0
(17)
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with γ0=2.7 eV being the carbon nearest neighbor overlap integral entering the CN
surface axial conductivity σzz(RCN , ω). The function

Γ̄f
0(x) =

4|dfz |2x3
3~c3

(

2γ0
~

)2

(18)

with dfz =
∑

n
〈0|(d̂n)z|f〉 represents the (dimensionless) spontaneous decay rate, and

ρ(x) =
3S0

16παR2
CN

Re
1

σ̄zz(x)
(19)

stands for the surface plasmon density of states (DOS) which is responsible for the
exciton decay rate variation due to its coupling to the plasmon modes. Here, α=
e2/~c=1/137 is the fine-structure constant and σ̄zz=2π~σzz/e

2 is the dimensionless
CN surface axial conductivity per unit length.

Note that the conductivity factor in Eq. (19) equals

Re
1

σ̄zz(x)
= − 4αc

RCN

(

~

2γ0x

)

Im
1

ǫzz(x)− 1
(20)

in view of Eq. (17) and equation

σzz(x) = − iω

4πSρT
[ǫzz(x)− 1] (21)

representing the Drude relation for CNs, where ǫzz is the longitudinal (along the
CN axis) dielectric function, S and ρT are the surface area of the tubule and the
number of tubules per unit volume, respectively [59, 62, 64]. This relates very closely
the surface plasmon DOS function (19) to the loss function −Im(1/ǫ) measured in
Electron Energy Loss Spectroscopy (EELS) experiments to determine the properties
of collective electronic excitations in solids [50].

Figure 3 shows the low-energy behaviors of σ̄zz(x) and Re[1/σ̄zz(x)] for the
(11,0) and (10,0) CNs (RCN = 0.43 nm and 0.39 nm, respectively) we study here.
We obtained them numerically as follows. First, we adapt the nearest-neighbor non-
orthogonal tight-binding approach [75] to determine the realistic band structure of
each CN. Then, the room-temperature longitudinal dielectric functions ǫzz are cal-
culated within the random-phase approximation [76, 77], which are then converted
into the conductivities σ̄zz by means of the Drude relation. Electronic dissipation
processes are included in our calculations within the relaxation-time approximation
(electron scattering length of 130RCN was used [30]). We did not include excitonic
many-electron correlations, however, as they mostly affect the real conductivity
Re(σ̄zz) which is responsible for the CN optical absorption [20, 22, 67], whereas we
are interested here in Re(1/σ̄zz) representing the surface plasmon DOS according to
Eq. (19). This function is only non-zero when the two conditions, Im[σ̄zz(x)] = 0
and Re[σ̄zz(x)] → 0, are fulfilled simultaneously [72, 73, 76]. These result in the
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Figure 3: (a),(b) Calculated dimensionless (see text) axial surface conductivities for
the (11,0) and (10,0) CNs. The dimensionless energy is defined as [Energy ]/2γ0,
according to Eq. (17).

peak structure of the function Re(1/σ̄zz) as is seen in Fig. 3. It is also seen from
the comparison of Fig. 3 (b) with Fig. 3 (a) that the peaks broaden as the CN
diameter decreases. This is consistent with the stronger hybridization effects in
smaller-diameter CNs [78].

Left panels in Figs. 4(a) and 4(b) show the lowest-energy plasmon DOS res-
onances calculated for the (11,0) and (10,0) CNs as given by the function ρ(x)
in Eq. (19). Also shown there are the corresponding fragments of the functions
Re[σ̄zz(x)] and Im[σ̄zz(x)]. In all graphs the lower dimensionless energy limits are

set up to be equal to the lowest bright exciton excitation energy [E
(11)
exc = 1.21 eV

(x = 0.224) and 1.00 eV (x = 0.185) for the (11,0) and (10,0) CN, respectively,
as reported in Ref.[51] by directly solving the Bethe-Salpeter equation]. Peaks in
ρ(x) are seen to coincide in energy with zeros of Im[σ̄zz(x)] {or zeros of Re[ǫzz(x)]},
clearly indicating the plasmonic nature of the CN surface excitations under con-
sideration [72, 79]. They describe the surface plasmon modes associated with the
transversely quantized interband electronic transitions in CNs [72]. As is seen in
Fig. 4 (and in Fig. 3), the interband plasmon excitations occur in CNs slightly above
the first bright exciton excitation energy [67], in the frequency domain where the
imaginary conductivity (or the real dielectric function) changes its sign. This is a
unique feature of the complex dielectric response function, the consequence of the
general Kramers-Krönig relation [47].

We further take advantage of the sharp peak structure of ρ(x) and solve the
dispersion equation (16) for xµ analytically using the Lorentzian approximation

ρ(x)≈
ρ(xp)∆x

2
p

(x− xp)2 +∆x2p
. (22)
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Figure 4: (a),(b) Surface plasmon DOS and conductivities (left panels), and lowest
bright exciton dispersion when coupled to plasmons (right panels) in (11,0) and
(10,0) CNs, respectively. The dimensionless energy is defined as [Energy ]/2γ0, ac-
cording to Eq. (17). See text for the dimensionless quasi-momentum.

Here, xp and ∆xp are, respectively, the position and the half-width-at-half-maximum
of the plasmon resonance closest to the lowest bright exciton excitation energy in
the same nanotube (as shown in the left panels of Fig. 4). The integral in Eq. (16)
then simplifies to the form

2

π

∫ ∞

0
dx

x Γ̄f
0(x)ρ(x)

x2µ − x2
≈
F (xp)∆x

2
p

x2µ − x2p

∫ ∞

0

dx

(x− xp)2 +∆x2p

=
F (xp)∆xp
x2µ − x2p

[

arctan

(

xp
∆xp

)

+
π

2

]

with F (xp) = 2xpΓ̄
f
0 (xp)ρ(xp)/π. This expression is valid for all xµ apart from those

located in the narrow interval (xp−∆xp, xp+∆xp) in the vicinity of the plasmon res-
onance, provided that the resonance is sharp enough. Then, the dispersion equation
becomes the biquadratic equation for xµ with the following two positive solutions
(the dispersion curves) of interest to us
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x1,2 =

√

ε2f + x2p

2
± 1

2

√

(ε2f− x2p)
2 + Fp εf . (23)

Here, Fp = 4F (xp)∆xp(π − ∆xp/xp) with the arctan-function expanded to linear
terms in ∆xp/xp ≪ 1.

The dispersion curves (23) are shown in the right panels in Figs. 4(a) and 4(b) as
functions of the dimensionless longitudinal quasi-momentum. In these calculations,
we estimated the interband transition matrix element in Γ̄f

0(xp) [Eq.(18)] from the
equation |df |2 = 3~λ3/4τ radex according to Hanamura’s general theory of the exciton
radiative decay in spatially confined systems [80], where τ radex is the exciton intrinsic
radiative lifetime, and λ = 2πc~/E with E being the exciton total energy given in
our case by Eq. (6). For zigzag-type CNs considered here, the first Brillouin zone of
the longitudinal quasi-momentum is given by −2π~/3b ≤ ~kz ≤ 2π~/3b [1, 2]. The
total energy of the ground-internal-state exciton can then be written as E = Eexc+
(2π~/3b)2t2/2Mex with −1 ≤ t ≤ 1 representing the dimensionless longitudinal
quasi-momentum. In our calculations we used the lowest bright exciton parameters

E
(11)
exc = 1.21 eV and 1.00 eV, τ radex = 14.3 ps and 19.1 ps, Mex = 0.44m0 and 0.19m0

(m0 is the free-electron mass) for the (11,0) CN and (10,0) CN, respectively, as
reported in Ref.[51] by directly solving the Bethe-Salpeter equation.

Both graphs in the right panels in Fig. 4 are seen to demonstrate a clear an-
ticrossing behavior with the (Rabi) energy splitting ∼ 0.1 eV. This indicates the
formation of the strongly coupled surface plasmon-exciton excitations in the nan-
otubes under consideration. It is important to realize that here we deal with the
strong exciton-plasmon interaction supported by an individual quasi-1D nanostruc-
ture — a single-walled (small-diameter) semiconducting carbon nanotube, as op-
posed to the artificially fabricated metal-semiconductor nanostructures studied pre-
viuosly [53, 54, 55] where the metallic component normally carries the plasmon and
the semiconducting one carries the exciton. It is also important that the effect comes
not only from the height but also from the width of the plasmon resonance as it
is seen from the definition of the Fp factor in Eq. (23). In other words, as long as
the plasmon resonance is sharp enough (which is always the case for interband plas-
mons), so that the Lorentzian approximation (22) applies, the effect is determined
by the area under the plasmon peak in the DOS function (19) rather than by the
peak height as one would expect.

However, the formation of the strongly coupled exciton-plasmon states is only
possible if the exciton total energy is in resonance with the energy of a surface plas-
mon mode. The exciton energy can be tuned to the nearest plasmon resonance in
ways used for excitons in semiconductor quantum microcavities — thermally [81,
82, 83] (by elevating sample temperature), or/and electrostatically [84, 85, 86, 87]
(via the quantum confined Stark effect with an external electrostatic field applied
perpendicular to the CN axis). As is seen from Eqs. (6) and (7), the two possibilities
influence the different degrees of freedom of the quasi-1D exciton — the (longitudi-
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nal) kinetic energy and the excitation energy, respectively. Below we study the (less
trivial) electrostatic field effect on the exciton excitation energy in CNs.

3.2 The perpendicular electrostatic field effect

The optical properties of semiconducting CNs in an external electrostatic field di-
rected along the nanotube axis were studied theoretically in Ref. [40]. Strong oscil-
lations in the band-to-band absorption and the quadratic Stark shift of the exciton
absorption peaks with the field increase, as well as the strong field dependence of the
exciton ionization rate, were predicted for CNs of different diameters and chiralities.
Here, we focus on the perpendicular electrostatic field orientation. We study how
the electrostatic field applied perpendicular to the CN axis affects the CN band gap,
the exciton binding/excitation energy, and the interband surface plasmon energy,
to explore the tunability of the strong exciton-plasmon coupling effect predicted
above. The problem is similar to the well-known quantum confined Stark effect first
observed for the excitons in semiconductor quantum wells [84, 85]. However, the
cylindrical surface symmetry of the excitonic states brings new peculiarities to the
quantum confined Stark effect in CNs. In what follows we will generally be inter-
ested only in the lowest internal energy (ground) excitonic state, and so the internal
state index f in Eqs. (6) and (7) will be omitted for brevity.

Because the nanotube is modelled by a continuous, infinitely thin, anisotropically
conducting cylinder in our macroscopic QED approach, the actual local symmetry
of the excitonic wave function resulted from the graphene Brillouin zone structure is
disregarded in our model (see, e.g., reviews [41, 67]). The local symmetry is implic-
itly present in the surface axial conductivity though, which we calculate beforehand
as described above.2

We start with the Schrödinger equation for the electron and hole on the CN
surface, located at re = {RCN , ϕe, ze} and rh = {RCN , ϕh, zh}, respectively. They
interact with each other through the Coulomb potential V (re, rh) = −e2/ǫ|re−
rh|, where ǫ = ǫzz(0). The external electrostatic field F = {F, 0, 0} is directed
perpendicular to the CN axis (along the x-axis in Fig. 1). The Schrödinger equation
is of the form

[

Ĥe(F) + Ĥh(F) + V (re, rh)
]

Ψ(re, rh) = EΨ(re, rh) (24)

2In real CNs, the existence of two equivalent energy valleys in the 1st Brillouin zone, the K-
and K′-valleys with opposite electron helicities about the CN axis, results into dark and bright
excitonic states in the lowest energy spin-singlet manifold [88]. Since the electric interaction does
not involve spin variables, both K- and K′-valleys are affected equally by the electrostatic field in
our case, and the detailed structure of the exciton wave function multiplet is not important. This
is opposite to the non-zero magnetostatic field case where the field affects the K- and K′-valleys
differently either to brighten the dark excitonic states [39], or to create Landau sublevels [67] for
longitudinal and perpendicular orientation, respectively.
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with

Ĥe,h(F) = − ~
2

2me,h

(

1

R2
CN

∂2

∂ϕ2
e,h

+
∂2

∂z2e,h

)

∓ ere,h · F (25)

We further separate out the translational and relative degrees of freedom of the
electron-hole pair by transforming the longitudinal (along the CN axis) motion of
the pair into its center-of-mass coordinates given by Z = (meze +mhzh)/Mex and
z = ze − zh. The exciton wave function is approximated as follows

Ψ(re, rh) = eikzZφex(z)ψe(ϕe)ψh(ϕh). (26)

The complex exponential describes the exciton center-of-mass motion with the lon-
gitudinal quasi-momentum kz along the CN axis. The function φex(z) represents
the longitudinal relative motion of the electron and the hole inside the exciton. The
functions ψe(ϕe) and ψh(ϕh) are the electron and hole subband wave functions,
respectively, which represent their confined motion along the circumference of the
cylindrical nanotube surface.

Each of the functions is assumed to be normalized to unity. Equations (24) and
(25) are then rewritten in view of Eqs. (6)–(8) to yield

[

− ~
2

2meR
2
CN

∂2

∂ϕ2
e

− eRCNF cos(ϕe)

]

ψe(ϕe) = εeψe(ϕe), (27)

[

− ~
2

2mhR
2
CN

∂2

∂ϕ2
h

+ eRCNF cos(ϕh)

]

ψh(ϕh)=εhψh(ϕh), (28)

[

− ~
2

2µ

∂2

∂z2
+ Veff(z)

]

φex(z) = Ebφex(z), (29)

where µ = memh/Mex is the exciton reduced mass, and Veff is the effective longitu-
dinal electron-hole Coulomb interaction potential given by

Veff(z) =−e
2

ǫ

∫ 2π

0
dϕe

∫ 2π

0
dϕh|ψe(ϕe)|2|ψh(ϕh)|2V (ϕe, ϕh, z) (30)

with V being the original electron-hole Coulomb potential written in the cylindrical
coordinates as

V (ϕe, ϕh, z) =
1

{z2 + 4R2
CN sin2[(ϕe− ϕh)/2]}1/2

. (31)

The exciton problem is now reduced to the 1D equation (29), where the exciton
binding energy does depend on the perpendicular electrostatic field through the
electron and hole subband functions ψe,h given by the solutions of Eqs. (27) and
(28) and entering the effective electron-hole Coulomb interaction potential (30).
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The set of Eqs. (27)-(31) is analyzed in Appendix D. One of the main results
obtained in there is that the effective Coulomb potential (30) can be approximated
by an attractive cusp-type cutoff potential of the form

Veff(z) ≈ − e2

ǫ[|z|+ z0(j, F )]
, (32)

where the cutoff parameter z0 depends on the perpendicular electrostatic field
strength and on the electron-hole azimuthal transverse quantization index j = 1, 2, ...
(excitons are created in interband transitions involving valence and conduction sub-
bands with the same quantization index [67] as shown in Fig. 2). Specifically,

z0(j, F ) ≈ 2RCN
π − 2 ln 2 [1−∆j(F )]

π + 2 ln 2 [1−∆j(F )]
(33)

with ∆j(F ) given to the second order approximation in the electric field by

∆j(F ) ≈ 2µMex

e2R6
CNw

2
j

~4
F 2, (34)

wj =
θ(j−2)

1− 2j
+

1

1 + 2j
,

where θ(x) is the unit step function. Approximation (32) is formally valid when
z0(j, F ) is much less than the exciton Bohr radius a∗B (= ǫ~2/µe2) which is estimated
to be ∼10RCN for the first (j=1 in our notations here) exciton in CNs [19]. As is
seen from Eqs. (33) and (34), this is always the case for the first exciton for those
fields where the perturbation theory applies, i. e. when ∆1(F ) < 1 in Eq. (34).

Equation (29) with the potential (32) formally coincides with the one studied by
Ogawa and Takagahara in their treatments of excitonic effects in 1D semiconductors
with no external electrostatic field applied [89]. The only difference in our case is
that our cutoff parameter (33) is field dependent. We therefore follow Ref. [89] and

find the ground-state binding energy E
(11)
b for the first exciton we are interested in

here from the transcendental equation

ln

[

2z0(1, F )

~

√

2µ|E(11)
b |

]

+
1

2

√

|E(11)
b |
Ry∗

= 0. (35)

In doing so, we first find the exciton Rydberg energy, Ry∗ (=µe4/2~2ǫ2), from this
equation at F =0. We use the diameter- and chirality-dependent electron and hole
effective masses from Ref. [90], and the first bright exciton binding energy of 0.76 eV
for both (11,0) and (10,0) CN as reported in Ref. [21] from ab initio calculations. We
obtain Ry∗ = 4.02 eV and 0.57 eV for the (11,0) tube and (10,0) tube, respectively.
The difference of about one order of magnitude reflects the fact that these are the
semiconducting CNs of different types — type-I and type-II, respectively, based on
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Figure 5: (a) Calculated binding energies of the first bright exciton in the (11,0) and
(10,0) CNs as functions of the perpendicular electrostatic field applied. Solid lines are
the numerical solutions to Eq. (35), dashed lines are the quadratic approximations
as given by Eq. (36). (b) Field dependence of the effective cutoff Coulomb potential
(32) in the (11,0) CN. The dimensionless energy is defined as [Energy ]/2γ0, according
to Eq. (17).

(2n + m) families [90]. The parameters Ry∗ thus obtained are then used to find

|E(11)
b | as functions of F by numerically solving Eq. (35) with z0(1, F ) given by

Eqs. (33) and (34).
The calculated (negative) binding energies are shown in Fig. 5(a) by the solid

lines. Also shown there by dashed lines are the functions

E
(11)
b (F ) ≈ E

(11)
b [1−∆1(F )] (36)

with ∆1(F ) given by Eq. (34). They are seen to be fairly good analytical (quadratic
in field) approximations to the numerical solutions of Eq. (35) in the range of not too
large fields. The exciton binding energy decreases very rapidly in its absolute value

as the field increases. Fields of only ∼0.1−0.2 V/µm are required to decrease |E(11)
b |

by a factor of ∼ 2 for the CNs considered here. The reason is the perpendicular
field shifts up the ”bottom” of the effective potential (32) as shown in Fig. 5(b)
for the (11,0) CN. This makes the potential shallower and pushes bound excitonic
levels up, thereby decreasing the exciton binding energy in its absolute value. As
this takes place, the shape of the potential does not change, and the longitudinal
relative electron-hole motion remains finite at all times. As a consequence, no tunnel
exciton ionization occurs in the perpendicular field, as opposed to the longitudinal
electrostatic field (Franz-Keldysh) effect studied in Ref. [40] where the non-zero field
creates the potential barrier separating out the regions of finite and infinite relative
motion and the exciton becomes ionized as the electron tunnels to infinity.

The binding energy is only the part of the exciton excitation energy (7). Another
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part comes from the band gap energy (8), where εe and εh are given by the solutions
of Eqs. (27) and (28), respectively. Solving them to the leading (second) order
perturbation theory approximation in the field (Appendix D), one obtains

E(jj)
g (F ) ≈ E(jj)

g

[

1− me∆j(F )

2Mexj2wj
− mh∆j(F )

2Mexj2wj

]

, (37)

where the electron and hole subband shifts are written separately. This, in view of
Eq. (34), yields the first band gap field dependence in the form

E(11)
g (F ) ≈ E(11)

g

[

1− 3

2
∆1(F )

]

, (38)

The bang gap decrease with the field in Eq. (38) is stronger than the opposite effect
in the negative exciton binding energy given (to the same order approximation in
field) by Eq. (36). Thus, the first exciton excitation energy (7) will be gradually
decreasing as the perpendicular field increases, shifting the exciton absorption peak
to the red. This is the basic feature of the quantum confined Stark effect observed
previously in semiconductor nanomaterials [84, 85, 86, 87]. The field dependences
of the higher interband transitions exciton excitation energies are suppressed by the
rapidly (quadratically) increasing azimuthal quantization numbers in the denomi-
nators of Eqs. (34) and (37).

Lastly, the perpendicular field dependence of the interband plasmon resonances
can be obtained from the frequency dependence of the axial surface conductivity
due to excitons (see Ref. [67] and refs. therein). One has

σexzz(ω) ∼
∑

j=1,2,...

−i~ωfj
[E

(jj)
exc ]2− (~ω)2− 2i~2ω/τ

, (39)

where fj and τ are the exciton oscillator strength and relaxation time, respectively.
The plasmon frequencies are those at which the function Re[1/σexzz (ω)] has max-

ima. Testing it for maximum in the domain E
(11)
exc < ~ω <E

(22)
exc , one finds the first

interband plasmon resonance energy to be (in the limit τ→∞)

E(11)
p =

√

[E
(11)
exc ]2 + [E

(22)
exc ]2

2
. (40)

Using the field dependent E
(11)
exc given by Eqs. (7), (36) and (38), and neglecting the

field dependence of E
(22)
exc , one obtains to the second order approximation in the field

E(11)
p (F ) ≈ E(11)

p

[

1− 1 +E
(11)
g /2E

(11)
exc

1 +E
(22)
exc /E

(11)
exc

∆1(F )

]

. (41)

Figure 6 shows the results of our calculations of the field dependences for the
first bright exciton parameters in the (11,0) and (10,0) CNs. The energy is measured
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Figure 6: (a),(b) Calculated dependences of the first bright exciton parameters in the
(11,0) and (10,0) CNs, respectively, on the electrostatic field applied perpendicular to
the nanotube axis. The dimensionless energy is defined as [Energy ]/2γ0, according
to Eq. (17). The energy is measured from the top of the first unperturbed hole
subband.

from the top of the first unperturbed hole subband (as shown in Fig. 2, right panel).
The binding energy field dependence was calculated numerically from Eq. (35) as
described above [shown in Fig. 5 (a)]. The band gap field dependence and the plas-
mon energy field dependence were calculated from Eqs. (37) and (41), respectively.
The zero-field excitation energies and zero-field binding energies were taken to be
those reported in Ref. [51] and in Ref. [21], respectively, and we used the diameter-
and chirality-dependent electron and hole effective masses from Ref. [90]. As is
seen in Fig. 6 (a) and (b), the exciton excitation energy and the interband plas-
mon energy experience red shift in both nanotubes as the field increases. However,
the excitation energy red shift is very small (barely seen in the figures) due to the

negative field dependent contribution from the exciton binding energy. So, E
(11)
exc (F )

and E
(11)
p (F ) approach each other as the field increases, thereby bringing the total

exciton energy (6) in resonance with the surface plasmon mode due to the non-zero
longitudinal kinetic energy term at finite temperature.3 Thus, the electrostatic field
applied perpendicular to the CN axis (the quantum confined Stark effect) may be
used to tune the exciton energy to the nearest interband plasmon resonance, to put
the exciton-surface plasmon interaction in small-diameter semiconducting CNs to
the strong-coupling regime.

3We are based on the zero-exciton-temperature approximation in here [91], which is well justified
because of the exciton excitation energies much larger than kBT in CNs. The exciton Hamiltonian
(4) does not require the thermal averaging over the exciton degrees of freedom then, yielding the
temperature independent total exciton energy (6). One has to keep in mind, however, that the
exciton excitation energy can be affected by the enviromental effect not under consideration in here
(see Ref. [92]).
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3.3 The optical absorption

Here, we analyze the longitudinal exciton absorption line shape as its energy is tuned
to the nearest interband surface plasmon resonance. Only longitudinal excitons (ex-
cited by light polarized along the CN axis) couple to the surface plasmon modes
as discussed at the very beginning of this section (see Ref. [70] for the perpendic-
ular light exciton absorption in CNs). We start with the linear (weak) excitation
regime where only single-exciton states are excited, and follow the optical absorp-
tion/emission lineshape theory developed recently for atomically doped CNs [10].
(Obviously, the absorption line shape coincides with the emission line shape if the
monochromatic incident light beam is used in the absorption experiment.) Then, the
non-linear (strong) excitation regime is considered with the photonduced excitation
of biexciton states.

When the f -internal state exciton is excited and the nanotube’s surface EM
field subsystem is in vacuum state, the time-dependent wave function of the whole
system ”exciton+field” is of the form4

|ψ(t)〉 =
∑

k,f

Cf (k, t) e
−iẼf (k)t/~|{1f (k)}〉ex|{0}〉 (42)

+
∑

k

∫ ∞

0
dω C(k, ω, t) e−iωt|{0}〉ex|{1(k, ω)}〉.

Here, |{1f (k)}〉ex is the excited single-quantum Fock state with one exciton and
|{1(k, ω)}〉 is that with one surface photon. The vacuum states are |{0}〉ex and |{0}〉
for the exciton subsystem and field subsystem, respectively. The coefficients Cf (k, t)
and C(k, ω, t) stand for the population probability amplitudes of the respective
states of the whole system. The exciton energy is of the form Ẽf (k)=Ef (k)− i~/τ
with Ef (k) given by Eq. (6) and τ being the phenomenological exciton relaxation
time constant [assumed to be such that ~/τ≪Ef (k)] to account for other possible
exciton relaxation processes. From the literature we have τph ∼ 30−100 fs for the
exciton-phonon scattering [40], τd ∼ 50 ps for the exciton scattering by defects [25,
28], and τrad ∼ 10 ps − 10 ns for the radiative decay of excitons [51]. Thus, the
scattering by phonons is the most likely exciton relaxation mechanism.

Using Eqs.(5) and (9), we transform the total Hamiltonian (1)–(10) to the k-
representation (see Appendix A), and apply it to the wave function in Eq. (42).
We obtain the following set of the two simultaneous differential equations for the
coefficients Cf (k, t) and C(k, ω, t) from the time dependent Schrödinger equation

Ċf (k, t) e
−iẼf (k)t/~ = − i

~

∑

k′

∫ ∞

0
dω g

(+)
f (k,k′, ω)C(k′, ω, t) e−iωt, (43)

Ċ (k′, ω, t) e−iωtδkk′ = − i

~

∑

f

[g
(+)
f (k,k′, ω)]∗Cf (k, t) e

−iẼf (k)t/~.

4See the footnote on page 12 above.
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The δ-symbol on the left in Eq. (44) ensures that the momentum conservation is
fulfilled in the exciton-photon transitions, so that the annihilating exciton creates the
surface photon with the same momentum and vice versa. In terms of the probability
amplitudes above, the exciton emission intensity distribution is given by the final
state probability at very long times corresponding to the complete decay of all
initially excited excitons,

I(ω) = |C(k, ω, t→∞)|2 =
1

~2

∑

f

|g(+)
f (k,k, ω)|2

×
∣

∣

∣

∣

∫ ∞

0
dt′Cf (k, t

′) e−i[Ẽf (k)−~ω]t′/~
∣

∣

∣

∣

2

. (44)

Here, the second equation is obtained by the formal integration of Eq. (44) over
time under the initial condition C (k, ω, 0)=0. The emission intensity distribution
is thus related to the exciton population probability amplitude Cf (k, t) to be found
from Eq. (43).

The set of simultaneous equations (43) and (44) [and Eq. (44), respectively]
contains no approximations except the (commonly used) neglect of many-particle
excitations in the wave function (42). We now apply these equations to the exciton-
surface-plasmon system in small-diameter semiconducting CNs. The interaction
matrix element in Eqs. (43) and (44) is then given by the k-transform of Eq. (13),
and has the following property (Appendix C)

1

2γ0~
|g(+)

f (k,k, ω)|2 =
1

2π
Γ̄f
0(x)ρ(x) (45)

with Γ̄f
0(x) and ρ(x) given by Eqs. (18) and (19), respectively. We further substitute

the result of the formal integration of Eq. (44) [with C (k, ω, 0)=0] into Eq. (43), use
Eq. (45) with ρ(x) approximated by the Lorentzian (22), calculate the integral over
frequency analytically, and differentiate the result over time to obtain the following
second order ordinary differential equation for the exciton probability amplitude
[dimensionless variables, Eq. (17)]

C̈f (β) + [∆xp −∆εf + i(xp − εf )]Ċf (β) + (Xf/2)
2Cf (β)=0,

where Xf =[2∆xpΓ̄f (xp)]
1/2 with Γ̄f (xp)=Γ̄f

0(xp)ρ(xp), ∆εf = ~/2γ0τ , β = 2γ0t/~
is the dimensionless time, and the k-dependence is omitted for brevity. When the
total exciton energy is close to a plasmon resonance, εf ≈ xp, the solution of this
equation is easily found to be

Cf (β) ≈ 1

2



1 +
δx

√

δx2 −X2
f



 e
−
(

δx−
√

δx2−X2
f

)

β/2
(46)

+
1

2



1− δx
√

δx2 −X2
f



 e
−
(

δx+
√

δx2−X2
f

)

β/2
,
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where δx = ∆xp −∆εf > 0 and Xf =[2∆xpΓ̄f (εf )]
1/2. This solution is valid when

εf ≈xp regardless of the strength of the exciton-surface-plasmon coupling. It yields
the exponential decay of the excitons into plasmons, |Cf (β)|2 ≈ exp[−Γ̄f (εf )β],
in the weak coupling regime where the coupling parameter (Xf/δx)

2 ≪ 1. If,
on the other hand, (Xf/δx)

2 ≫ 1, then the strong coupling regime occurs, and
the decay of the excitons into plasmons proceeds via damped Rabi oscillations,
|Cf (β)|2 ≈ exp(−δxβ) cos2(Xfβ/2). This is very similar to what was earlier re-
ported for an excited two-level atom near the nanotube surface [58, 59, 60, 9]. Note,
however, that here we have the exciton-phonon scattering as well, which facilitates
the strong exciton-plasmon coupling by decreasing δx in the coupling parameter. In
other words, the phonon scattering broadens the (longitudinal) exciton momentum
distribution [93], thus effectively increasing the fraction of the excitons with εf ≈xp.

In view of Eqs. (45) and (46), the exciton emission intensity (44) in the vicinity
of the plasmon resonance takes the following (dimensionless) form

Ī(x) ≈ Ī0(εf )
∑

f

∣

∣

∣

∣

∫ ∞

0
dβ Cf (β) e

i(x−εf+i∆εf )β

∣

∣

∣

∣

2

, (47)

where Ī(x)=2γ0I(ω)/~ and Ī0=Γ̄f (εf )/2π. After some algebra, this results in

Ī(x) ≈
Ī0(εf ) [(x − εf )

2 +∆x2p]

[(x− εf )2 −X2
f/4]

2 + (x− εf )2(∆x2p +∆ε2f )
, (48)

where ∆x2p > ∆ε2f . The summation sign over the exciton internal states is omitted
since only one internal state contributes to the emission intensity in the vicinity of
the sharp plasmon resonance.

The line shape in Eq. (48) is mainly determined by the coupling parameter
(Xf/∆xp)

2. It is clearly seen to be of a symmetric two-peak structure in the strong
coupling regime where (Xf/∆xp)

2 ≫ 1. Testing it for extremum, we obtain the
peak frequencies to be

x1,2 = εf ± Xf

2

√

√

√

√

√

1 + 8

(

∆xp
Xf

)2

− 4

(

∆xp
Xf

)2

[terms ∼(∆xp)
2(∆εf )

2/X4
f are neglected], with the Rabi splitting x1 − x2≈Xf . In

the weak coupling regime where (Xf/∆xp)
2 ≪ 1, the frequencies x1 and x2 become

complex, indicating that there are no longer peaks at these frequencies. As this
takes place, Eq. (48) is approximated with the weak coupling condition, the fact
that x∼εf , and X2

f = 2∆xpΓ̄f (εf ), to yield the Lorentzian

Ĩ(x) ≈ Ī0(εf )/[1 + (∆εf/∆xp)
2]

(x− εf )2 +
[

Γ̄f (εf )/2
√

1 + (∆εf/∆xp)
2
]2
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peaked at x = εf , whose half-width-at-half-maximum is slightly narrower, however,
than Γ̄f (εf )/2 it should be if the exciton-plasmon relaxation were the only relax-
ation mechanism in the system. The reason is the competing phonon scattering takes
excitons out of resonance with plasmons, thus decreasing the exciton-plasmon re-
laxation rate. We therefore conclude that the phonon scattering does not affect the
exciton emission/absorption line shape when the exciton-plasmon coupling is strong
(it facilitates the strong coupling regime to occur, however, as was noticed above),
and it narrows the (Lorentzian) emission/absorption line when the exciton-plasmon
coupling is weak.

The non-linear optical susceptibility is proportional to the linear optical response
function under resonant pumping conditions [94]. This allows us to use Eq. (48) to
investigate the non-linear excitation regime with the photoinduced biexciton for-
mation as the exciton energy is tuned to the nearest interband plasmon resonance.
Under these conditions, the third-order longitudinal CN susceptibility takes the
form [32, 94]

χ(3)(x) ≈ Ĩ(x)

[

1

x− εf + i(Γf/2 + ∆εf )
− 1

x− (εf − |εXX
f |) + i(Γf/2 + ∆εf )

]

,

(49)
where εXX

f is the (negative) dimensionless binding energy of the biexciton composed
of two f -internal state excitons, and χ0 is the frequency-independent constant. The
first and second terms in the brackets represent bleaching due to the depopula-
tion of the ground state and photoinduced absorption due to exciton-to-biexciton
transitions, respectively.

The binding energy of the biexciton in a small-diameter (∼ 1 nm) CN can be
evaluated by the method pioneered by Landau [95], Gor’kov and Pitaevski [96],
Holstein and Herring [97] — from the analysis of the asymptotic exchange coupling
by perturbation on the configuration space wave function of the two ground-state
one-dimensional (1D) excitons. Separating out circumferential and longitudinal de-
grees of freedom of each of the excitons by means of Eq. (26), one arrives at the
biexciton Hamiltonian of the form [see Fig. 7 (a)]

Ĥ(z1, z2,∆Z) = −1

2

(

∂2

∂z1
+

∂2

∂z2

)

(50)

− 1

2

[

1

|z1|+ z0
+

1

|z2 +∆Z|+ z0
+

1

|z2|+ z0
+

1

|z1 −∆Z|+ z0

]

− 1

|(z1 + z2)/2 + ∆Z|+ z0
− 1

|(z1 + z2)/2 −∆Z|+ z0

+
1

|(z1 − z2)/2 + ∆Z|+ z0
+

1

|(z1 − z2)/2 −∆Z|+ z0
.

Here, z1,2 = ze1,2 − zh1,2 is the electron-hole relative motion coordinates of the two
1D excitons, z0 is the cut-off parameter of the effective longitudinal electron-hole
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Figure 7: (a) Schematic (arbitrary units) of the exchange coupling of two ground-
state 1D excitons to form a biexcitonic state. (b) The coupling occurs in the con-
figuration space of the two independent longitudinal relative electron-hole motion
coordinates, z1 and z2, of each of the excitons, due to the tunneling of the system
through the potential barriers formed by the two single-exciton cusp-type poten-
tials [bottom, also in (a)], between equivalent states represented by the isolated
two-exciton wave functions shown on the top.

Coulomb potential (32), and ∆Z=Z2 − Z1 is the center-of-mass-to-center-of-mass
inter-exciton separation distance. Equal electron and hole effective masses me,h are
assumed [90] and ”atomic units” are used [95, 96, 97], whereby distance and energy
are measured in units of the exciton Bohr radius a∗B and in units of the doubled
ground-state-exciton binding energy 2Eb = −2Ry∗/ν20 , respectively. The first two
lines in Eq. (50) represent two isolated non-interacting 1D excitons [see Fig. 7 (a)].
The last two lines are their exchange Coulomb interactions — electron-hole and
electron-electron + hole-hole, respectively.

The Hamiltonian (50) is effectively two dimensional in the configuration space of
the two independent relative motion coordinates, z1 and z2. Figure 7 (b), bottom,
shows schematically the potential energy surface of the two closely spaced non-
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interacting 1D excitons [line two in Eq. (50)] in the (z1, z2) space. The surface has
four symmetrical minima [representing equivalent isolated two-exciton states shown
in Fig. 7 (b), top], separated by the potential barriers responsible for the tunnel
exchange coupling between the two-exciton states in the configuration space. The
coordinate transformation x = (z1 − z2 − ∆Z)/

√
2, y = (z1 + z2)/

√
2 places the

origin of the new coordinate system into the intersection of the two tunnel channels
between the respective potential minima [Fig. 7 (b)], whereby the exchange splitting
formula of Refs. [95, 96, 97] takes the form

Ug,u(∆Z)− 2Eb = ∓J(∆Z), (51)

where Ug,u are the ground and excited state energies, respectively, of the two cou-

pled excitons (the biexciton) as functions of their center-of-mass-to-center-of-mass
separation, and

J(∆Z) =
2

3!

∫ ∆Z/
√
2

−∆Z/
√
2
dy

[

ψ(x, y)
∂ψ(x, y)

∂x

]

x=0

(52)

is the tunnel exchange coupling integral, where ψ(x, y) is the solution to the Schrö-
dinger equation with the Hamiltonian (50) transformed to the (x, y) coordinates.
The factor 2/3! comes from the fact that there are two equivalent tunnel channels
in the problem, mixing three equivalent indistinguishable two-exciton states in the
configuration space [one state is given by the two minima on the y-axis, and two
more are represented by each of the minima on the x-axis — compare Figs. 7 (a)
and (b)].

The function ψ(x, y) in Eq. (52) is sought in the form

ψ(x, y) = ψ0(x, y) exp[−S(x, y)] , (53)

where ψ0 = ν−10 exp[−(|z1(x, y,∆Z)| + |z2(x, y,∆Z)|)/ν0] is the product of two
single-exciton wave functions5 representing the isolated two-exciton state centered
at the minimum z1 = z2 = 0 (or x = −∆Z/

√
2, y = 0) of the configuration space

potential [Fig. 7 (b)], and S(x, y) is a slowly varying function to take into account
the deviation of ψ from ψ0 due to the tunnel exchange coupling to another equiv-
alent isolated two-exciton state centered at z1 = ∆Z, z2 = −∆Z (or x =∆Z/

√
2,

y =0). Substituting Eq. (53) into the Schrödinger equation with the Hamiltonian
(50) pre-transformed to the (x, y) coordinates, one obtains in the region of interest

∂S

∂x
= ν0

(

1

x+ 3∆Z/
√
2
− 1

x−∆Z/
√
2
+

1

y −
√
2∆Z

− 1

y +
√
2∆Z

)

,

5This is an approximate solution to the Shrödinger equation with the Hamiltonin given by the
first two lines in Eq. (50), where the cut-off parameter z0 is neglected [89]. This approximation
greatly simplifies problem solving here, while still remaining adequate as only the long-distance tail
of ψ0 is important for the tunnel exchange coupling.
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up to (negligible) terms of the order of the inter-exciton van der Waals energy and
up to second derivatives of S. This equation is to be solved with the boundary condi-
tion S(−∆Z/

√
2, y)=0 originating from the natural requirement ψ(−∆Z/

√
2, y)=

ψ0(−∆Z/
√
2, y), to result in

S(x, y) = ν0

(

ln

∣

∣

∣

∣

∣

x+3∆Z/
√
2

x−∆Z/
√
2

∣

∣

∣

∣

∣

+
2
√
2∆Z(x+∆Z/

√
2)

y2 − 2∆Z2

)

. (54)

After plugging Eqs. (54) and (53) into Eq. (52), and retaining only the leading
term of the integral series expansion in powers of ν0 subject to ∆Z > 1, Eq. (51)
becomes

Ug,u(∆Z) ≈ 2Eb

[

1± 2

3ν20

(e

3

)2ν0
∆Z e−2∆Z/ν0

]

. (55)

The ground state energy Ug of two coupled 1D excitons is now seen to go through the
negative minimum (biexcitonic state) as the inter-exciton center-of-mass-to-center-
of-mass separation ∆Z increases (Fig. 8). The minimum occurs at ∆Z0 = ν0/2,
whereby the biexciton binding energy is EXX ≈ (2Eb/9ν0)(e/3)

2ν0−1, or, expressing
ν0 in terms of Eb and measuring the energy in units of Ry∗,

EXX [in Ry∗] ≈ −2

9
|Eb|3/2

(e

3

)2/
√
|Eb| − 1

. (56)

The energy EXX can be affected by the quantum confined Stark effect since |Eb|
decreases quadratically with the perpendicular electrostatic field applied as shown
in Fig. 5 (a). Since e/3 ∼ 1, the field dependence in Eq. (56) mainly comes from
the pre-exponential factor. So, |EXX | will be decreasing quadratically with the field
as well, for not too strong perpendicular fields. At the same time, the equilibrium
inter-exciton separation in the biexciton, ∆Z0 = ν0/2 ∼ |Eb|−1/2, will be slowly
increasing with the field consistently with the lowering of |EXX |. In the zero field,
one has roughly EXX ∼ |Eb|3/2 ∼R−0.9CN for the biexciton binding energy versus the
CN radius RCN (|Eb|∼R−0.6CN as reported in Ref. [19] from variational calculations),
pretty consistent with the R−1CN dependence obtained numerically [32]. Interestingly,
as RCN goes down, |EXX | goes up faster than |Eb| does. This is partly due to the
fact that ∆Z0 slowly decreases as RCN goes down, — a theoretical argument in
support of experimental evidence for increased exciton-exciton annihilation in small
diameter CNs [98, 99, 100].

Figure 8 shows the ground state energy Ug(∆Z) of the coupled pair of the first
bright excitons, calculated from Eq. (55) for the semiconducting (11,0) CN exposed
to different perpendicular electrostatic fields. The inset shows the field dependences
of EXX [as given by Eq. (56)] and of ∆Z0. All the curves are calculated using the
field dependence of Eb obtained as described in the previous subsection (Figs. 5
and 6). They exhibit typical behaviors discussed above.

Figure 9 compares the linear response lineshape (48) with the imaginary part
of Eq. (49) representing the non-linear optical response function under resonant
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Figure 8: Calculated ground state energy Ug of the coupled pair of the first bright
excitons in the (11,0) CN as a function of the center-of-mass-to-center-of-mass inter-
exciton distance ∆Z and perpendicular electrostatic field applied. Inset shows
the biexciton binding energy EXX and inter-exciton separation ∆Z0 (y- and x-
coordinates, respectively, of the minima in the main figure) as functions of the field.

pumping, both calculated for the 1st bright exciton in the (11,0) CN as its energy
is tuned (by means of the quantum confined Stark effect) to the nearest plasmon
resonance (vertical dashed line in the figure). The biexciton binding energy in
Eq. (49) was taken to be EXX ≈ 52 meV as given by Eq. (56) in the zero field.
[Weak field dependence of EXX (inset in Fig. 8) plays no essential role here as
|EXX | ≪ |Eb| ≈ 0.76 eV regardless of the field strength.] The phonon relaxation
time τph = 30 fs was used as reported in Ref. [29], since this is the shortest one
out of possible exciton relaxation processes, including exciton-exciton annihilation
(τee∼1 ps [98]). Clear line (Rabi) splitting effect ∼0.1 eV is seen both in the linear
and in non-linear excitation regime, indicating the strong exciton-plasmon coupling
both in the single-exciton states and in the biexciton states as the exciton energy is
tuned to the interband surface plasmon resonance. The splitting is not masked by
the exciton-phonon scattering.

This effect can be used for the development of new tunable optoelectronic de-
vice applications of optically excited small-diameter semiconducting CNs in areas
such as nanophotonics, nanoplasmonics, and cavity quantum electrodynamics, in-
cluding the strong excitation regime with optical non-linearities. In the latter case,
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Figure 9: [(a), (b), and (c)] Linear (top) and non-linear (bottom) response functions
as given by Eq. (48) and by the imaginary part of Eq. (49), respectively, for the
first bright exciton in the (11,0) CN as the exciton energy is tuned to the nearest
interband plasmon resonance (vertical dashed line). Vertical lines marked as X
and XX show the exciton energy and biexciton binding energy, respectively. The
dimensionless energy is defined as [Energy ]/2γ0, according to Eq. (17).

the experimental observation of the non-linear absorption line splitting predicted
here would help identify the presence and study the properties of biexcitonic states
(including biexcitons formed by excitons of different subbands [33]) in individual
single-walled CNs, due to the fact that when tuned close to a plasmon resonance
the exciton relaxes into plasmons at a rate much greater than τ−1ph (≫τ−1ee ), totally
ruling out the role of the competing exciton-exciton annihilation process.

4 Casimir Interaction in Double-Wall

Carbon Nanotubes

Here, we consider the Casimir interaction between two concentric cylindrical gra-
phene sheets comprising a double-wall CN, using the macroscopic QED approach
employed above to study the exciton-surface-plasmon interactions in single wall
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nanotubes.6 The method is fully adequate in this case as the Casimir force is
known to originate from quantum EM field fluctuations. The fundamental nature
of this force has been studied for many years since the prediction of the attraction
force between two neutral metallic plates in vacuum (see, Refs. [49, 56]). After the
first report of observation of this spectacular effect [101], new measurements with
improved accuracy have been done involving different geometries [102, 103, 104].
The Casimir force has also been considered theoretically with methods primarily
based on the zero-point summation approach and Lifshitz theory [105, 106].

The Casimir effect has acquired a much broader impact recently due to its im-
portance for nanostructured materials, including graphite and graphitic nanostruc-
tures [56] which can exist in different geometries and with various unique electronic
properties. Moreover, the efficient development and operation of modern micro- and
nano-electromechanical devices are limited due to effects such as stiction, friction,
and adhesion, originating from or closely related to the Casimir effect [57].

The mechanisms governing the CN interactions still remain elusive. It is known
that the system geometry [107, 108] and dielectric response [45, 62] have a profound
effect on the interaction, in general, but their specific functionalities have not been
qualitatively and quantitatively understood. Since CNs of virtually the same radial
size can possess different electronic properties, investigating their Casimir interac-
tions presents a unique opportunity to obtain insight into specific dielectric response
features affecting the Casimir force between metallic and semiconducting cylindri-
cal surfaces. This can also unveil the role of collective surface excitations in the
energetic stability of multi-wall CNs of various chiral combinations.

Since Lifshitz theory cannot be easily applied to geometries other than parallel
plates, researchers have used the Proximity Force Approximation (PFA) to calculate
the Casimir interaction between CNs [107, 109] (see also Ref. [56] for the latest
review). The method is based on approximating the curved surfaces at very close
distances by a series of parallel plates and summing their energies using the Lifshitz
result. Thus, the PFA is inherently an additive approach, applicable to objects at
very close separations (still to be greater than objects inter-atomic distances) under
the assumption that the CN dielectric response is the same as the one for the plates.
This last assumption is very questionable as the quasi-1D character of the electronic
motion in CNTs is known to be of principal importance for the correct description
of their electronic and optical properties [1, 59, 64].

We model the double-wall CN by two infinitely long, infinitely thin, continu-
ous concentric cylinders with radii R1,2, immersed in vacuum. Each cylinder is
characterized by the complex dynamic axial dielectric function ǫzz(R1,2, ω) with the
z -direction along the CN axis as shown in Fig. 10. The azimuthal and radial com-
ponents of the complete CN dielectric tensor are neglected as they are known to be
much less than ǫzz for most CNs [64]. The QED quantization scheme in the presence

6In this Section only, the International System of units is used to make the comparison easier of
our theory with other authors’ results.
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Figure 10: Schematic of the two concentric CNs in vacuum. The CN radii are R1

and R2. The regions between the CN surfaces are denoted as (1), (2), and (3).

of CNs [49, 62] generates the second-quantized Hamiltonian

Ĥ =
∑

i=1,2

∫ ∞

0
dω~ω

∫

dRif̂
†(Ri, ω)f̂(Ri, ω)

of the vacuum-type medium assisted EM field, with the bosonic operators f̂ † and
f̂ creating and annihilating, respectively, surface EM excitations of frequency ω at
points R1,2 = {R1,2, ϕ1,2, z1,2} of the double-wall CN system. The Fourier-domain
electric field operator at an arbitrary point r = (r, ϕ, z) is given by

Ê(r, ω) = iωµ0
∑

i=1,2

∫

dRiG(r,Ri, ω) · Ĵ(Ri, ω),

where G(r,Ri, ω) is the dyadic EM field Green’s function (GF), and

Ĵ(Ri, ω) =
ω

µ0c2

√

~ Im ǫzz(Ri, ω)

πε0
f̂(Ri, ω)ez

is the surface current density operator selected in such a way as to ensure the
correct QED equal-time commutation relations for the electric and magnetic field
operators [49, 62]. Here, ez is the unit vector along the CN axis, ε0, µ0, and c are the
dielectric constant, magnetic permeability, and vacuum speed of light, respectively.

The dyadic GF satisfies the wave equation

∇×∇×G(r, r′, ω)− ω2

c2
G(r, r′, ω) = δ(r − r′) I (57)

with I being the unit tensor. The GF can further be decomposed as follows

G(s,f) = G(0)δsf +G
(s,f)
scatt
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where G(0) and G
(s,f)
scatt represent the contributions of the direct and scattered waves,

respectively [110, 111], with a point-like field source located in region s and the
field registered in region f (see Fig. 10). The boundary conditions for Eq. (57)
are obtained from those for the electric and magnetic field components on the CN
surfaces [45, 59], which result in

er ×
[

G(r, r′, ω)
∣

∣

R+

1,2
− G(r, r′, ω)

∣

∣

R−

1,2

]

= 0, (58)

er×∇×
[

G(r, r′, ω)
∣

∣

R+

1,2
− G(r, r′, ω)

∣

∣

R−

1,2

]

= iωµ0σ
(1,2)(r, ω)·G(r, r′, ω)

∣

∣

R1,2
(59)

where er is the unit vector along the radial direction. The discontinuity in Eq. (59)
results from the full account of the finite absorption and dispersion for both CNs by
means of their conductivity tensors σ(1,2) approximated by their largest components

σ(1,2)zz (R1,2, ω) = − iωε0
SρT

[ǫ(1,2)zz (R1,2, ω)− 1] (60)

[compare with Eq. (21)].

Following the procedure described in Refs. [110, 111], we expand G(0) and G
(s,f)
scatt

into series of even and odd vector cylindrical functions with unknown coefficients to
be found from Eqs. (58) and (59). This splits the EM modes in the system into TE
and TM polarizations, with Eqs. (58) and (59) yielding a set of 32 equations (16
for each polarization) with 32 unknown coefficients. The unknown coefficients are
found determining the dyadic GF in each region.7

Using the expressions for the electric and magnetic fields, the electromagnetic
stress tensor is constructed [49, 112]

T(r, r′) = T1(r, r
′) +T2(r, r

′)− 1

2
ITr

[

T1(r, r
′) +T2(r, r

′)
]

(61)

T1(r, r
′) =

~

π

∫ ∞

0
dω
ω2

c2
Im
[

G(r, r′, ω)
]

(62)

T2(r, r
′) = −~

π

∫ ∞

0
dω Im

[

∇×G(r, r′, ω)×
←
∇ ′
]

(63)

We are interested in the radial component Trr which describes the radiation pressure
of the virtual EM field on each CN surface in the system. The Casimir force per
unit area exerted on the surfaces is then given by [49]

Fi = lim
r→Ri

{

lim
r′→r

[

T (i)
rr (r, r

′)− T (i+1)
rr (r, r′)

]

}

, i = 1, 2 (64)

7Due to the lengthy and tedious algebra, this derivation will be presented in a separate longer
communication.
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The forces F1,2 calculated from Eq. (64) are of equal magnitude and opposite di-
rection, indicating the attraction between the cylindrical surfaces. The Casimir force
thus obtained accounts simultaneously for the geometrical curvature effects (through
the GF tensor) and the finite absorption and dissipation of each CN [through their
dielectric response functions (60)]. The dielectric response functions of particu-
lar CNs were calculated from the CN realistic band structure as described above,
in Section 3. We decomposed them into the Drude contribution and the contri-
bution originating from (transversely quantized) interband electronic transitions,
ǫzz = ǫDzz + ǫinterzz , in order to be able to see how much each individual contribution
affects the inter-tube Casimir attraction.

It is interesting to consider the case of infinitely conducting parallel plates first

using Eq. (64). This is obtaned by taking the limits σ
(1,2)
zz → ∞ and R1,2 → ∞

while keeping constant the inter-tube distance, R1−R2 = d. We find

F = − ~c

16π2R4
1

∫ ∞

0
dx1x1

∞
∑

n=0

(2− δ0n)

In(x1)Kn(x2)− In(x2)Kn(x1)

×
{[

x21K
′ 2
n (x1) +

(

n2 + x21
)

K2
n(x1)

] [

I2n(x1)Kn(x2)/Kn(x1)− 2In(x1)In(x2)
]

−
[

x21I
′ 2
n (x1) +

(

n2 + x21
)

I2n(x1)
]

Kn(x1)Kn(x2)

− 2
[

x21I
′
n(x1)K

′
n(x1) +

(

n2 + x21
)

In(x1)Kn(x1)
]

In(x2)Kn(x1)
}

where x1,2 = xR1,2, In(x) and Kn(x) are the modified Bessel functions of the first
and second kind, respectively. The above expression is obtained by making the tran-
sition to imaginary frequencies ω → iω, and using the Euclidean rotation technique
as described in Refs. [112, 113]. This can further be evaluated by summing up the
series over n using the large-order Bessel function expansions [114]. This results
in F ∼ (−1/3)(~cπ2/240d4) which is 1/3 of the well-known result for two paral-
lel plates [49, 56]. This deviation originates from ǫzz 6= 0 only and the remaining
dielectric tensor components being zero in our model.

Figure 11 presents results from the numerical calculations of F as a function of
the inter-tube surface-to-surface distance for various pairs of CNs with their realistic
chirality dependent dielectric responses taken into account. We have chosen the
inner CN to be the achiral (12, 12) metallic nanotube, and to change the outer
tubes. As R2 is varied, one can envision double wall CNs consisting of metal/metal
or metal/semiconductor combinations of different chiralities but of similar radial
dimensions.

Figure 11 shows that F decreases in strength as the surface-to-surface distance
increases. This dependence is monotonic for the zigzag (m, 0) and armchair (n, n)
outer tubes, but it happens at different rates. The attraction is stronger if the outer
CN is an armchair (n, n) one as compared to the attraction for the outer (m, 0)
nanotubes. At the same time, for chiral tubes the Casimir force decreases as a
function of d in a rather irregular fashion. It is seen that for relatively small d,



Exciton-Plasmon Interactions in Individual Carbon Nanotubes 31

Figure 11: The Casimir force per unit area as a function of the inter-tube separation
d, for different pairs of CNs. The inset shows force found with the full dielectric
function and the Drude contribution only for the same CN pairs indicated in the
figure.

the interaction force can be quite different. For example, the attraction between
(27, 4)@(12, 12) and (21, 13)@(12, 12) differ by ∼ 20 % in favor of the second pair,
even though the radial difference is only 0.2 Å. The differences between the different
CNs become smaller as their separation becomes larger, and they eventually become
negligible as the Casimir force diminishes at large distances.

We also calculate the Casimir force using the ǫDzz(ω) contribution alone in each
dielectric function. The inset in Fig. 11 indicates that the attraction is stronger
when the interband transitions are neglected. The decay of F as a function of
d is monotonic. Including the ǫinterzz (ω) term not only reduces the force, but also
introduces non-linearities due to the chirality dependent optical excitations. At large
surface-to-surface separations, the discrepancies between the force calculated with
the full dielectric response, and those obtained with the Drude term only become
less significant. We find that for d∼15 Å, this difference is less than 10 %.

To investigate further the important functionalities originating from the cylindri-
cal geometry and the CN dielectric response properties, F is calculated for different
achiral inner/outer nanotube pairs. Studying zigzag and armchair CNs allows track-
ing generalities from ǫ(ω) in a more controlled manner. The results are presented in
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Figure 12: The Casimir force per unit area as a function of the inter-tube separation
d for selected CN pairs. The insets show the EELS spectra for several CNs.

Fig. 12. We have chosen representatives of three inner CN types – metallic (12, 12),
semi-metallic (21, 0), and semiconducting (20, 0) tubules. They are of similar radii,
8.14 Å, 8.22 Å, and 7.83 Å, respectively. We see that depending on the outer nan-
otube types, the F versus d curves are positioned in three groups. The weakest
interaction is found when there are two zigzag concentric CNs (top two curves).
The fact that some of these are semi-metallic and others are semiconducting does
not seem to influence the magnitude and monotonic decrease of the Casimir force.

The attraction is stronger when there is a combination of an armchair and a
zigzag CNT as compared to the previous case. The curves for (m, 0)@(12, 12),
(n, n)@(21, 0), and (n, n)@(20, 0) are practically overlapping, meaning that the spe-
cific location of the zigzag and armchair tubes (inner or outer) is of no significance
to the force. The small deviations can be attributed to the small differences in the
inner CN radii. Finally, we see that the strongest interaction occurs between two
armchair CNs (red curve). These functionalities are not unique just for the con-
sidered CNs. We have performed the same calculations for many different achiral
tubes, and we always find that the strongest interaction occurs between two arm-
chair CNs and the weakest — between two zigzag CNs (provided that their radial
dimensions are similar).
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The results from these calculations are strongly suggestive that the CN collec-
tive excitation properties have a strong effect on their mutual interaction. This is
particularly true for the relatively small distances of interest here, for which the
dominant contribution of plasmonic modes to the Casimir interactions has been
realized for planar [115] and linear [117] metallic systems. To elucidate this issue
here, we calculate the EELS spectra, given by −Im[1/ǫ(ω)], and compare them for
various inner and outer CNs combinations — Fig. 12 (inset).

Considering F as a function of d and the specific form of the EELS spectra, it
becomes clear from the inset in Fig. 12 that the low frequency plasmon excitations,
given by peaks in −Im[1/ǫ(ω)], are key to the strength of the Casimir force. We
always find that the strongest force is between the tubules with well pronounced over-
lapping low frequency plasmon excitations. This is consistent with the conclusion
of Ref. [117] for generic 1D-plasmonic structures. However, in our case we deal with
the interband plasmons originating from the space quantization of the transverse
electronic motion, and, therefore, having quite a different frequency-momentum
dispersion law (constant) as compared to that normally assumed (linear) for plas-
mons [50]. A weaker force is obtained if only one of the CNs supports strong low
frequency interband plasmon modes. The weakest interaction happens when neither
CN has strong low frequency plasmons. For the cases shown in Fig 12, one finds
well pronounced overlapping plasmon transitions in the (12, 12) CN at ω1 = 2.18 eV
and ω2 = 3.27 eV, and at ω1 = 1.63 eV and ω2 = 2.45 eV in the (17, 17) CN. At
the same time, no such well defined strong low frequency excitations in the (21, 0)
and (30, 0) CNs are found. Figure 12 shows that the attraction in (17, 17)@(12, 12)
is much stronger than the attraction in (30, 0)@(21, 0), even though the radial sizes
of the involved CNs are approximately the same. One also notes that for the case
of (17, 17)@(21, 0) there is only one such low frequency excitation coming from the
armchair tube and, consequently, the Casimir force has an intermediate value as
compared to the above discussed two cases.

We performed calculations of the Casimir force between many CN pairs and
made comparisons between the relevant regions of the EELS spectra. It is found
that, in general, armchair tubes always have strong, well pronounced interband
plasmon excitations in the low frequency range. Zigzag and most chiral CNs have
low frequency interband plasmons [37], too, but they are not as near as well pro-
nounced as those in armchair tubes; their stronger plasmon modes are found at
higher frequencies.

These studies are indicative of the significance of the collective response prop-
erties of the involved CNs. Specifically, the collective low energy plasmon excita-
tions and their relative location can result in nanotube attraction with different
strengths. We further investigate this point by considering a double wall CN with
radii R1 = 11.63 Åand R2 = 8.22 Å. The dielectric function of each tube is taken
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Figure 13: The Casimir force per unit area as a function of the outer CN plasmon
frequency, while the inner CN plasmon peak ω2 is constant. Results are shown for
four values of ω2. The dielectric functions are modeled by a generic Lorentzian as
given by Eq. (65).

to be of the generic Lorentzian form

ǫzz(R1,2, ω) = 1− Ω2

ω2 − ω2
1,2 + iωΓ

(65)

with the typical for nanotubes values Ω = 2.7 eV and Γ = 0.03 eV [45]. Then, the
EELS spectrum has only one plasmon resonance at ω1,2 for each tube. This generic
form allows us to change the relative position and strength of the plasmon peaks
and uncover more characteristic features originating from the EELS spectra.

In Fig. 13, the force as a function of plasmon frequency resonances of the outer
CN is shown when the plasmon transition for the inner CNT is kept constant (four
values are chosen for ω2). One sees that the local minima in F versus ω occur
when ω1 and ω2 coincide. In fact, the strongest attraction happens when both CNs
have the lowest plasmon excitations at the same frequency ω1 = ω2 = 0.81 eV. It
is evident that the existence of relatively strong low frequency EELS spectrum and

an overlap between the relevant plasmon peaks of the two structures is necessary to
achieve a strong interaction.
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This study clearly demonstrates the crucial importance of the collective low en-
ergy surface plasmon excitations at relatively close surface-to-surface separations
along with the cylindrical circular geometry of the double-wall CN system. The
QED approach we used provides the unique opportunity to investigate these fea-
tures together, or separately, and to uncover underlying mechanisms of the energetic
stability of different double-wall CN combinations. An additional advantage here is
that we can calculate the dielectric function explicitly for each chirality. Thus, we
can determine unambiguously how the semiconducting or metallic nature of each
CN contributes to their mutual interaction.

5 Conclusion

We have shown that the strong exciton-surface-plasmon coupling effect with char-
acteristic exciton absorption line (Rabi) splitting ∼0.1 eV exists in small-diameter
(. 1 nm) semiconducting CNs. The splitting is almost as large as the typical exci-
ton binding energies in such CNs (∼0.3 − 0.8 eV [19, 20, 24, 21]), and of the same
order of magnitude as the exciton-plasmon Rabi splitting in organic semiconductors
(∼ 180 meV [53]). It is much larger than the exciton-polariton Rabi splitting in
semiconductor microcavities (∼140 − 400µeV [81, 82, 83]), or the exciton-plasmon
Rabi splitting in hybrid semiconductor-metal nanoparticle molecules [54].

Since the formation of the strongly coupled mixed exciton-plasmon excitations
is only possible if the exciton total energy is in resonance with the energy of an
interband surface plasmon mode, we have analyzed possible ways to tune the ex-
citon energy to the nearest surface plasmon resonance. Specifically, the exciton
energy may be tuned to the nearest plasmon resonance in ways used for the ex-
citons in semiconductor quantum microcavities — thermally (by elevating sample
temperature) [81, 82, 83], and/or electrostatically [84, 85, 86, 87] (via the quan-
tum confined Stark effect with an external electrostatic field applied perpendicular
to the CN axis). The two possibilities influence the different degrees of freedom of
the quasi-1D exciton — the (longitudinal) kinetic energy and the excitation energy,
respectively.

We have studied how the perpendicular electrostatic field affects the exciton
excitation energy and interband plasmon resonance energy (the quantum confined
Stark effect). Both of them are shown to shift to the red due to the decrease in
the CN band gap as the field increases. However, the exciton red shift is much
less than the plasmon one because of the decrease in the absolute value of the
negative binding energy, which contributes largely to the exciton excitation energy.
The exciton excitation energy and interband plasmon energy approach as the field
increases, thereby bringing the total exciton energy in resonance with the plasmon
mode due to the non-zero longitudinal kinetic energy term at finite temperature.

The noteworthy point is that the strong exciton-surface-plasmon coupling we
predict here occurs in an individual CN as opposed to various artificially fabricated
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hybrid plasmonic nanostructures mentioned above. We strongly believe this phe-
nomenon, along with its tunability feature via the quantum confined Stark effect we
have demonstrated, opens up new paths for the development of CN based tunable
optoelectronic device applications in areas such as nanophotonics, nanoplasmonics,
and cavity QED. One straightforward application like this is the CN photolumi-
nescence control by means of the exciton-plasmon coupling tuned electrostatically
via the quantum confined Stark effect. This complements the microcavity controlled
CN infrared emitter application reported recently[27], offering the advantage of less
stringent fabrication requirements at the same time since the planar photonic micro-
cavity is no longer required. Electrostatically controlled coupling of two spatially
separated (weakly localized) excitons to the same nanotube’s plasmon resonance
would result in their entanglement [11, 12, 13], the phenomenon that paves the way
for CN based solid-state quantum information applications. Moreover, CNs com-
bine advantages such as electrical conductivity, chemical stability, and high surface
area that make them excellent potential candidates for a variety of more practical
applications, including efficient solar energy conversion [7], energy storage [14], and
optical nanobiosensorics [42]. However, the photoluminescence quantum yield of
individual CNs is relatively low, and this hinders their uses in the aforementioned
applications. CN bundles and films are proposed to be used to surpass the poor per-
formance of individual tubes. The theory of the exciton-plasmon coupling we have
developed here, being extended to include the inter-tube interaction, complements
currently available ’weak-coupling’ theories of the exciton-plasmon interactions in
low-dimensional nanostructures [54, 121] with the very important case of the strong
coupling regime. Such an extended theory (subject of our future publication) will
lay the foundation for understanding inter-tube energy transfer mechanisms that
affect the efficiency of optoelectronic devices made of CN bundles and films, as well
as it will shed more light on the recent photoluminescence experiments with CN
bundles [43, 44] and multi-walled CNs [122], revealing their potentialities for the
development of high-yield, high-performance optoelectronics applications with CNs.

In addition, we have first applied the macroscopic QED approach suitable for
dispersing and absorbing media to study the Casimir interaction in a double-wall
carbon nanotube systems with the realistic dielectric response taken into account.
We found that at distances similar to the equilibrium separations between graphitic
surfaces (∼3 Å), the attraction is dominated by the low energy (interband) plasmon
excitations of both CNs. The key attributes of the EELS spectra are the existence of
low frequency plasmons, their strong and well pronounced nature, and the overlap
between the low frequency plasmon peaks belonging to the two CNTs. Thus, the
chiralities of concentric graphene sheets with similar radial sizes exhibiting these fea-
tures will be responsible for forming the most preferred CN pairs. As the inter-tube
separation increases, the plasmon effect diminishes and the collective excitations
originating from the nanotube metallic or semiconducting nature do not influence
the interaction in a profound way.
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We expect our results to pave the way for the development of new generation of
tunable optoelectronic and nano-electromechanical device applications with single-
wall and multi-wall carbon nanotubes.
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Appendix A

Exciton interaction with the surface EM field

We follow our recently developed QED formalism to describe vacuum-type EM
effects in the presence of quasi-1D absorbing and dispersive bodies [58, 59, 60, 61,
62, 9]. The treatment begins with the most general EM interaction of the surface
charge fluctuations with the quantized surface EM field of a single-walled CN. No
external field is assumed to be applied. The CN is modelled by a neutral, infinitely
long, infinitely thin, anisotropically conducting cylinder. Only the axial conductivity
of the CN, σzz, is taken into account, whereas the azimuthal one, σϕϕ, is neglected
being strongly suppressed by the transverse depolarization effect [63, 64, 65, 66, 67,
68]. Since the problem has the cylindrical symmetry, the orthonormal cylindrical
basis {er, eϕ, ez} is used with the vector ez directed along the nanotube axis as
shown in Fig. 1. The interaction has the following form (Gaussian system of units)

Ĥint = Ĥ
(1)
int + Ĥ

(2)
int (66)

= −
∑

n,i

qi
mic

Â(n+ r̂
(i)
n )·

[

p̂
(i)
n − qi

2c
Â(n+ r̂

(i)
n )
]

+
∑

n,i

qiϕ̂(n+ r̂
(i)
n ),

where c is the speed of light, mi, qi, r̂
(i)
n , and p̂

(i)
n are, respectively, the masses,

charges, coordinate operators and momenta operators of the particles (electrons
and nucleus) residing at the lattice site n=Rn = {RCN , ϕn, zn} associated with a
carbon atom (see Fig. 1) on the surface of the CN of radius RCN . The summation
is taken over the lattice sites, and may be substituted with the integration over the
CN surface using Eq. (3). The vector potential operator Â and the scalar potential
operator ϕ̂ represent the nanotube’s transversely polarized and longitudinally po-
larized surface EM modes, respectively. They are written in the Schrödinger picture
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as follows

Â(n) =

∫ ∞

0
dω

c

iω
Ê
⊥
(n, ω) + h.c., (67)

−∇n ϕ̂(n) =

∫ ∞

0
dω Ê

‖
(n, ω) + h.c.. (68)

We use the Coulomb gauge whereby ∇n · Â(n) = 0, or [p̂
(i)
n , Â(n+ r̂

(i)
n )] = 0.

The total electric field operator of the CN-modified EM field is given for an
arbitrary r in the Schrödinger picture by

Ê(r) =

∫ ∞

0
dω Ê(r, ω) + h.c. =

∫ ∞

0
dω [Ê

⊥
(r, ω) + Ê

‖
(r, ω)] + h.c. (69)

with the transversely (longitudinally) polarized Fourier-domain field components
defined as

Ê
⊥(‖)

(r, ω) =

∫

dr′ δ⊥(‖)(r− r′) · Ê(r′, ω), (70)

where

δ
‖
αβ(r) = −∇α∇β

1

4πr
, (71)

δ⊥αβ(r) = δαβ δ(r) − δ
‖
αβ(r)

are the longitudinal and transverse dyadic δ-functions, respectively. The total field
operator (69) satisfies the set of the Fourier-domain Maxwell equations

∇× Ê(r, ω) = ik Ĥ(r, ω), (72)

∇× Ĥ(r, ω) = −ik Ê(r, ω) +
4π

c
Î(r, ω), (73)

where Ĥ = (ik)−1∇× Ê is the magnetic field operator, k = ω/c, and

Î(r, ω) =
∑

n

δ(r− n) Ĵ(n, ω), (74)

is the exterior current operator with the current density defined as follows

Ĵ(n, ω)=

√

~ωReσzz(RCN , ω)

π
f̂(n, ω)ez (75)

to ensure preservation of the fundamental QED equal-time commutation relations
(see, e.g., [47]) for the EM field components in the presence of a CN. Here, σzz is the
CN surface axial conductivity per unit length, and f̂(n, ω) along with its counter-
part f̂ †(n, ω) are the scalar bosonic field operators which annihilate and create,



Exciton-Plasmon Interactions in Individual Carbon Nanotubes 39

respectively, single-quantum EM field excitations of frequency ω at the lattice site
n of the CN surface. They satisfy the standard bosonic commutation relations

[f̂(n, ω), f̂ †(m, ω′)] = δnm δ(ω − ω′), (76)

[f̂(n, ω), f̂(m, ω′)] = [f̂ †(n, ω), f̂ †(m, ω′)] = 0.

One further obtains from Eqs. (72)–(75) that

Ê(r, ω) = ik
4π

c

∑

n

G(r,n, ω)·Ĵ(n, ω), (77)

and, according to Eqs. (69) and (70),

Ê
⊥(‖)

(r, ω) = ik
4π

c

∑

n

⊥(‖)G(r,n, ω)·Ĵ(n, ω), (78)

where ⊥G and ‖G are the transverse part and the longitudinal part, respectively,
of the total Green tensor G = ⊥G+ ‖G of the classical EM field in the presence of
the CN. This tensor satisfies the equation

∑

α=r,ϕ,z

(

∇×∇×− k2
)

zα
Gαz(r,n, ω) = δ(r − n) (79)

together with the radiation conditions at infinity and the boundary conditions on
the CN surface.

All the ’discrete’ quantities in Eqs. (74)–(79) may be equivalently rewritten in
continuous variables in view of Eq. (3). Being applied to the identity 1 =

∑

m
δnm,

Eq. (3) yields
δnm = S0 δ(Rn−Rm). (80)

This requires to redefine

f̂(n, ω) =
√

S0 f̂(Rn, ω), f̂
†(n, ω) =

√

S0 f̂
†(Rn, ω) (81)

in the commutation relations (76). Similarly, from Eq. (77), in view of Eqs. (3), (75)
and (81), one obtains

G(r,n, ω) =
√

S0G(r,Rn, ω), (82)

which is also valid for the transverse and longitudinal Green tensors in Eq. (78).

Next, we make the series expansions of the interactions Ĥ
(1)
int and Ĥ

(2)
int in Eq. (66)

about the lattice site n to the first non-vanishing terms,

Ĥ
(1)
int ≈ −

∑

n,i

qi
mic

Â(n) · p̂(i)
n +

∑

n,i

q2i
2mic2

Â2(n), (83)

Ĥ
(2)
int ≈

∑

n,i

qi∇n ϕ̂(n) · r̂(i)n , (84)
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and introduce the single-lattice-site Hamiltonian

Ĥn = ε0|0〉〈0| +
∑

f

(ε0 + ~ωf )|f〉〈f | (85)

with the completeness relation

|0〉〈0| +
∑

f

|f〉〈f | = Î . (86)

Here, ε0 is the energy of the ground state |0〉 (no exciton excited) of the carbon atom
associated with the lattice site n, ε0 + ~ωf is the energy of the excited carbon atom
in the quantum state |f〉 with one f -internal-state exciton formed of the energy

E
(f)
exc = ~ωf . In view of Eqs. (85) and (86), one has

p̂
(i)
n = mi

d r̂
(i)
n

dt
=
mi

i~
[r̂

(i)
n , Ĥn] =

mi

i~
Î [r̂

(i)
n , Ĥn] Î

≈ mi

i~

∑

f

~ωf

(

〈0|r̂(i)n |f〉Bn,f− 〈f |r̂(i)n |0〉B†
n,f

)

(87)

and

r̂
(i)
n = Î r̂

(i)
n Î ≈

∑

f

(

〈0|r̂(i)n |f〉Bn,f + 〈f |r̂(i)n |0〉B†
n,f

)

, (88)

where 〈0|r̂(i)n |f〉 = 〈f |r̂(i)n |0〉 in view of the hermitian and real character of the coor-

dinate operator. The operators Bn,f = |0〉〈f | and B†
n,f = |f〉〈0| create and annihilate,

respectively, the f -internal-state exciton at the lattice site n, and exciton-to-exciton
transitions are neglected. In addition, we also have

δijδαβ =
i

~
[(p̂

(i)
n )α, (r̂

(j)
n )β], (89)

where α, β = r, ϕ, z. Substituting these into Eqs. (83) and (84) [commutator (89)
goes into the second term of Eq. (83) which is to be pre-transformed as follows
∑

i,j,α,β qiqjÂ(n)αÂ(n)βδijδαβ/2mic
2], one arrives at the following (electric dipole)

approximation of Eq. (66)

Ĥint = Ĥ
(1)
int + Ĥ

(2)
int (90)

= −
∑

n,f

iωf

c
df
n · Â(n)

[

B†
n,f−Bn,f +

i

~c
df
n · Â(n)

]

+
∑

n,f

df
n ·∇n ϕ̂(n)

(

B†
n,f +Bn,f

)
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with df
n = 〈0|d̂n|f〉 = 〈f |d̂n|0〉, where d̂n =

∑

i qir̂
(i)
n is the total electric dipole

moment operator of the particles residing at the lattice site n.
The Hamiltonian (90) is seen to describe the vacuum-type exciton interaction

with the surface EM field (created by the charge fluctuations on the nanotube sur-
face). The last term in the square brackets does not depend on the exciton operators,
and therefore results in the constant energy shift which can be safely neglected. We
then arrive, after using Eqs. (67), (68), (75), and (78), at the following second
quantized interaction Hamiltonian

Ĥint =
∑

n,m,f

∫ ∞

0
dω [ g

(+)
f (n,m, ω)B†

n,f − g
(−)
f (n,m, ω)Bn,f ] f̂(m, ω) + h.c., (91)

where
g
(±)
f (n,m, ω) = g⊥f (n,m, ω) ± ω

ωf
g
‖
f (n,m, ω) (92)

with

g
⊥(‖)
f (n,m, ω) = −i4ωf

c2

√

π~ωRe σzz(RCN , ω)
∑

α=r,ϕ,z

(df
n)α

⊥(‖)Gαz(n,m, ω), (93)

and
⊥(‖)Gαz(n,m, ω) =

∫

dr δ
⊥(‖)
αβ (n− r) Gβz(r,m, ω). (94)

This yields Eqs. (10)–(12) after the strong transverse depolarization effect in CNs
is taken into account whereby df

n ≈ (df
n)zez.

Appendix B

Green tensor of the surface EM field

Within the model of an infinitely thin, infinitely long, anisotropically conducting
cylinder we utilize here, the classical EM field Green tensor is found by expanding
the solution to the Green equation (79) in series in cylindrical coordinates, and
then imposing the appropriately chosen boundary conditions on the CN surface to
determine the Wronskian normalization constant (see, e.g., Ref. [118]).

After the EM field is divided into the transversely and longitudinally polarized
components according to Eqs. (69)–(71), the Green equation (79) takes the form

∑

α=r,ϕ,z

(

∇×∇×− k2
)

zα

[

⊥Gαz(r,n, ω) +
‖Gαz(r,n, ω)

]

= δ(r − n) (95)

with the two additional constraints,

∑

α=r,ϕ,z

∇α
⊥Gαz(r,n, ω) = 0 (96)
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and
∑

β,γ=r,ϕ,z

ǫαβγ∇β
‖Gγz(r,n, ω) = 0 , (97)

where ǫαβγ is the totally antisymmetric unit tensor of rank 3. Equations (96) and
(97) originate from the divergence-less character (Coulomb gauge) of the transverse
EM component and the curl-less character of the longitudinal EM component, re-
spectively. The transverse ⊥Gαz and longitudinal ‖Gαz Green tensor components
are defined by Eq. (94) which is the corollary of Eq. (70) using the Eqs. (77) and
(78). Equation (95) is further rewritten in view of Eqs. (96) and (97), to give the
following two independent equations for ⊥Gzz and ‖Gzz we need

(

∆+ k2
)⊥Gzz(r,n, ω) = −δ⊥zz(r− n) , (98)

k2 ‖Gzz(r,n, ω) = −δ‖zz(r− n) (99)

with the transverse and longitudinal delta-functions defined by Eq. (71).

We use the differential representations for the transverse ⊥Gzz and longitudinal
‖Gzz Green functions of the following form [consistent with Eq. (94)]

⊥Gzz(r,n, ω) =

(

1

k2
∇z∇z + 1

)

g(r,n, ω), (100)

‖Gzz(r,n, ω) = − 1

k2
∇z∇z g(r,n, ω), (101)

where g(r,n, ω) is the scalar Green function of the Helmholtz equation (98), satis-
fying the radiation condition at infinity and the finiteness condition on the axis of
the cylinder. Such a function is known to be given by the following series expansion

g(r,n, ω) =

√
S0
4π

eik|r−Rn|

|r−Rn|
=

√
S0

(2π)2

∞
∑

p=−∞
eip(ϕ−ϕn) (102)

×
∫

C
dh Ip(vr)Kp(vRCN ) eih(z−zn), r ≤ RCN ,

where Ip andKp are the modified cylindric Bessel functions, v = v(h, ω) =
√
h2 − k2,

and we used the property (82) to go from the discrete variable n to the corresponding
continuous variable. The integration contour C goes along the real axis of the
complex plane and envelopes the branch points ±k of the integrand from below and
from above, respectively. For r ≥ RCN , the function g(r,n, ω) is obtained from
Eq. (102) by means of a simple symbol replacement Ip ↔ Kp in the integrand.

The scalar function (102) is to be imposed the boundary conditions on the CN
surface. To derive them, we represent the classical electric and magnetic field com-



Exciton-Plasmon Interactions in Individual Carbon Nanotubes 43

ponents in terms of the EM field Green tensor as follows

Eα(r, ω) = ik⊥Gαz(r,n, ω), (103)

Hα(r, ω) = − i

k

∑

β,γ=r,ϕ,z

ǫαβγ∇βEγ(r, ω). (104)

These are valid for r 6= n under the Coulomb-gauge condition. The boundary condi-
tions are then obtained from the standard requirements that the tangential electric
field components be continuous across the surface, and the tangential magnetic
field components be discontinuous by an amount proportional to the free surface
current density, which we approximate here by the (strongest) axial component,
σzz(RCN , ω), of the nanotube’s surface conductivity. Under this approximation,
one has

Ez|+ −Ez|− = Eϕ|+ − Eϕ|− = 0, (105)

Hz|+ −Hz|− = 0, (106)

Hϕ|+ −Hϕ|− =
4π

c
σzz(ω)Ez|RCN

, (107)

where± stand for r = RCN±εwith the positive infinitesimal ε. In view of Eqs. (103),
(104) and (100), the boundary conditions above result in the following two boundary
conditions for the function (102)

g|+ − g|− = 0, (108)

∂g

∂r

∣

∣

∣

∣

+

− ∂g

∂r

∣

∣

∣

∣

−
= −4πi σzz(ω)

ω

(

∂2

∂z2
+k2

)

g|RCN
. (109)

We see that Eq. (108) is satisfied identically. Eq. (109) yields the Wronskian of
modified Bessel functions on the left, W [Ip(x),Kp(x)]= Ip(x)K

′
p(x)−Kp(x)I

′
p(x)=

−1/x, which brings us to the equation

− 1

RCN
=

4πi σzz(ω)

ω
v2Ip(vRCN )Kp(vRCN ). (110)

This is nothing but the dispersion relation which determines the radial wave num-
bers, h, of the CN surface EM modes with given p and ω. Since we are interested
here in the EM field Green tensor on the CN surface [see Eq. (93)], not in particular
surface EM modes, we substitute Ip(vRCN )Kp(vRCN ) from Eq. (110) into Eq. (102)
with r = RCN . This allows us to obtain the scalar Green function of interest with
the boundary conditions (108) and (109) taken into account. We have

g(R,n, ω) = − iω
√
S0 δ(ϕ − ϕn)

8π2σzz(ω)RCN

∫

C
dh
eih(z−zn)

k2 − h2
, (111)
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where R = {RCN , ϕ, z} is an arbitrary point of the cylindrical surface. Using
further the residue theorem to calculate the contour integral, we arrive at the final
expression of the form

g(R,n, ω) = −c
√
S0 δ(ϕ− ϕn)

8πσzz(ω)RCN
eiω|z−zn|/c, (112)

which yields

⊥Gzz(R,n, ω) ≡ 0, (113)

‖Gzz(R,n, ω) = g(R,n, ω), (114)

in view of Eqs. (100) and (101).
The fact that the transverse Green function (113) identically equals zero on the

CN surface is related to the absence of the skin layer in the model of the infinitely
thin cylinder (see, e.g., Ref. [118]). In this model, the transverse Green function
is only non-zero in the near-surface area where the exciton wave function goes to
zero. Thus, only longitudinally polarized EM modes with the Green function (114)
contribute to the exciton surface EM field interaction on the nanotube surface.

Appendix C

Diagonalization of the Hamiltonian (1)–(13)

We start with the transformation of the total Hamiltonian (1)–(13) to the k-repre-
sentation using Eqs. (5) and (9). The unperturbed part presents no difficulties. Spe-

cial care should be given to the interaction matrix element g
(±)
f (n,m, ω) in Eq. (13).

In view of Eqs. (114), (112) and (3), one has explicitly

g
(±)
f (k,k′, ω) =

1

N

∑

n,m

g
(±)
f (n,m, ω) e−ik·n+ik′·m (115)

= ± iω
√

π~ωReσzz(ω)

2πc σzz(ω)RCN

dfz
N

√

S0
R2

CN

NS2
0

×
∫ 2π

0
dϕndϕmδ(ϕn− ϕm) e−ikϕϕn+ik′ϕϕm

∫ ∞

−∞
dzndzm eiω|zn−zm|/c−ikzzn+ik′zzm ,

where we have also taken into account the fact that the dipole matrix element
(df

n)z=〈0|(d̂n)z|f〉 is the same for all the lattice sites on the CN surface in view of

their equivalence. As a consequence, (df
n)z = dfz/N with dfz =

∑

n
〈0|(d̂n)z|f〉.

The integral over ϕ in Eq. (115) is taken in a standard way to yield

∫ 2π

0
dϕndϕmδ(ϕn− ϕm) e−ikϕϕn+ik′ϕϕm = 2πδkϕk′ϕ . (116)
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The integration over z is performed by first writing the integral in the form

∫ ∞

−∞
dzndzm... = lim

L→∞

∫ L/2

−L/2
dzn

∫ L/2

−L/2
dzm...

(L being the CN length), then dividing it into two parts by means of the equation

eiω|zn−zm|/c = θ(zn− zm) eiω(zn−zm)/c + θ(zm− zn) e
−iω(zn−zm)/c,

and finally by taking simple exponential integrals with allowance made for the for-
mula

δkzk′z = lim
L→∞

2 sin[L(kz− k′z)/2]
L(kz− k′z)

.

After some simple algebra we obtain the result

∫ ∞

−∞
dzndzm e

iω|zn−zm|/c−ikzzn+ik′zzm = lim
L→∞

L2

{

1− 2iω/c

L [k2z− (ω/c)2]

}

δkzk′z . (117)

In view of Eqs. (116) and (117), the function (115) takes the form

g
(±)
f (k,k′, ω) = ± iω d

f
z

√

πS0~ωRe σzz(ω)

(2π)2c σzz(ω)RCN
lim
L→∞

{

1− 2iω/c

L [k2z− (ω/c)2]

}

δkk′ . (118)

We have taken into account here that δkϕk′ϕδkzk′z = δkk′ , as well as the fact that

(RCNL/NS0)
2 = 1/(2π)2. This can be further simplified by noticing that only

absolute value squared of the interaction matrix element matters in calculations of
observables. We then have

∣

∣

∣

∣

1− 2iω/c

L [k2z− (ω/c)2]

∣

∣

∣

∣

2

= 1 +
α

u2
≈ 1 +

α

u2 + α2

with u = (ckz/ω)
2− 1, and α = (2c/Lω)2 being the small parameter which tends to

zero as L→ ∞. Using further the formula (see, e.g., Ref. [74])

δ(u) =
1

π
lim
α→0

α

u2 + α2
,

and the basic properties of the δ-function, we arrive at

lim
L→∞

∣

∣

∣

∣

1− 2iω/c

L [k2z− (ω/c)2]

∣

∣

∣

∣

2

= 1 +
πc|kz |

2
[ δ(ω + ckz) + δ(ω − ckz)] (119)

We also have
∣

∣

∣

∣

∣

√

Reσzz(ω)

σzz(ω)

∣

∣

∣

∣

∣

2

= Re
1

σzz(ω)
. (120)



46 I.V.Bondarev, L.M.Woods, and A.Popescu

Equation (118), in view of Eqs. (119) and (120), is rewritten effectively as follows

g
(±)
f (k,k′, ω) = ±iDf (ω) δkk′ (121)

with

Df (ω) =
ω dfz

√

πS0~ωRe[1/σzz(ω)]

(2π)2cRCN

√

1 +
πc|kz |

2
[δ(ω + ckz) + δ(ω − ckz)] . (122)

In terms of the simplified interaction matrix element (121), the k-representation
of the Hamiltonian (1)–(13) takes the following (symmetrized) form

Ĥ =
1

2

∑

k

Ĥk, (123)

where

Ĥk =
∑

f

Ef (k)
(

B†
k,fBk,f +B†−k,fB−k,f

)

(124)

+

∫ ∞

0
dω ~ω

[

f̂ †(k, ω)f̂ (k, ω) + f̂ †(−k, ω)f̂(−k, ω)
]

+
∑

f

∫ ∞

0
dω iDf (ω)

(

B†
k,f +B−k,f

) [

f̂(k, ω)− f̂ †(−k, ω)
]

+ h.c.

with Df (ω) given by Eq. (122). To diagonalize this Hamiltonian, we follow Bo-
goliubov’s canonical transformation technique (see, e.g., Ref. [74]). The canonical
transformation of the exciton and photon operators is of the form

Bk,f =
∑

µ=1,2

[

uµ(k, ωf )ξ̂µ(k) + vµ(k, ωf )ξ̂
†
µ(−k)

]

, (125)

f̂(k, ω) =
∑

µ=1,2

[

u∗µ(k, ω)ξ̂µ(k) + v∗µ(k, ω)ξ̂
†
µ(−k)

]

, (126)

where the new operators, ξ̂µ(k) and ξ̂
†
µ(k)= [ξ̂µ(k)]

†, annihilate and create, respec-
tively, the coupled exciton-photon excitations of branch µ on the nanotube surface.
They satisfy the bosonic commutation relations of the form

[

ξ̂µ(k), ξ̂
†
µ′(k

′)
]

= δµµ′δkk′ , (127)

which, along with the reversibility requirement of Eqs. (125) and (126), impose the
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following constraints on the transformation functions uµ and vµ

∑

f

[

u∗µ(k, ωf )uµ′(k, ωf )− vµ(k, ωf )v
∗
µ′(k, ωf )

]

+

∫ ∞

0
dω
[

uµ(k, ω)u
∗
µ′ (k, ω)− v∗µ(k, ω)vµ′ (k, ω)

]

= δµµ′ ,

∑

µ

[

u∗µ(k, ωf )uµ(k, ωf ′)− v∗µ(k, ωf )vµ(k, ωf ′)
]

= δff ′ ,

∑

µ

[

u∗µ(k, ω)uµ(k, ω
′)− v∗µ(k, ω)vµ(k, ω

′)
]

= δ(ω − ω′).

Here, the first equation guarantees the fulfilment of the commutation relations (127),
whereas the second and the third ensure that Eqs. (125) and (126) are inverted to
yield ξ̂µ(k) as given by Eq. (15). Other possible combinations of the transformation
functions are identically equal to zero.

The proper transformation functions that diagonalize the Hamiltonian (124) to
bring it to the form (14), are determined by the identity

~ωµ(k) ξ̂µ(k) =
[

ξ̂µ(k), Ĥk

]

. (128)

Putting Eqs. (15) and (124) into Eq. (128) and using the bosonic commutation
relations for the exciton and photon operators on the right, one obtains (k-argument
is omitted for brevity)

(~ωµ − Ef ) u
∗
µ(ωf ) = −i

∫ ∞

0
dω Df (ω)

[

uµ(ω)− v∗µ(ω)
]

,

(~ωµ + Ef ) vµ(ωf ) = i

∫ ∞

0
dωDf (ω)

[

uµ(ω)− v∗µ(ω)
]

,

~ (ωµ − ω)uµ(ω) = i
∑

f

Df (ω)
[

u∗µ(ωf ) + vµ(ωf )
]

,

~ (ωµ + ω) v∗µ(ω) = i
∑

f

Df (ω)
[

u∗µ(ωf ) + vµ(ωf )
]

.

These simultaneous equations define the complex transformation functions uµ and
vµ uniquely. They also define the dispersion relation (the energies ~ωµ, µ = 1, 2)
of the coupled exciton-photon (or exciton-plasmon, to be exact) excitations on the
nanotube surface. Substituting uµ and v∗µ from the third and forth equations into
the first one, one has

[

~ωµ − Ef − 4Ef

~ωµ + Ef

∫ ∞

0
dω

ω|Df (ω)|2
~(ω2

µ − ω2)

]

u∗µ(ωf ) = 0,
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whereby, since the functions u∗µ are non-zero, the dispersion relation we are interested
in becomes

(~ωµ)
2 − E2

f − 4Ef

∫ ∞

0
dω

ω|Df (ω)|2
~(ω2

µ − ω2)
= 0 . (129)

The energy E0 of the ground state of the coupled exciton-plasmon excitations is
found by plugging Eq. (15) into Eq. (14) and comparing the result with Eqs. (123)
and (124). This yields

E0 = −
∑

k, µ=1,2

~ωµ(k)





∑

f

|vµ(k, ωf )|2 +
∫ ∞

0
dω |vµ(k, ω)|2



.

Using further Df (ω) as explicitly given by Eq. (122), the dispersion relation
(129) is rewritten as follows

(~ωµ)
2 − E2

f =
EfS0 |dfz |2
4π3c2R2

CN

{∫ ∞

0
dω
ω4Re[1/σzz(ω)]

ω2
µ − ω2

+
π(c|kz |)5Re[1/σzz(c|kz |)]

ω2
µ − (c|kz |)2

}

.

Here we have taken into account the general property σzz(ω) = σ∗zz(−ω), which
originates from the time-reversal symmetry requirement, in the second term on the
right hand side. This term comes from the two delta functions in |Df (ω)|2, and
describes the contribution of the spatial dispersion (wave-vector dependence) to the
formation of the exciton-plasmons. We neglect this term in what follows because
the spatial dispersion is neglected in the nanotube’s axial surface conductivity in our
model, and, secondly, because it is seen to be very small for not too large excitonic
wave vectors. Thus, converting to the dimensionless variables (17), we arrive at the
dispersion relation (16) with the exciton spontaneous decay (recombination) rate
and the plasmon DOS given by Eqs. (18) and (19), respectively.

Lastly, bearing in mind that the delta functions in |Df (ω)|2 are responsible
for the spatial dispersion which we neglect in our model, and therefore dropping
them out from the squared interaction matrix element (121), we arrive at the prop-
erty (45).

Appendix D

Effective longitudinal potential in the presence

of the perpendicular electrostatic field

Here we analyze the set of equations (27)–(29), and show that the attractive cusp-
type cutoff potential (32) with the field dependent cutoff parameter (33) is a uni-
formly valid approximation for the effective electron-hole Coulomb interaction po-
tential (30) in the exciton binding energy equation (29).
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We rewrite Eqs. (27) and (28) in the form of a single equation as follows

(

d2

dϕ2
+ q2 + p cosϕ

)

ψ(ϕ) = 0 . (130)

Here, ϕ = ϕe,h, ψ = ψe,h, q = RCN

√

2me,hεe,h/~, and p = ±2eme,hR
3
CNF/~

2 with
the (+)-sign to be taken for the electron and the (–)-sign to be taken for the hole. We
are interested in the solutions to Eq. (130) which satisfy the 2π-periodicity condition
ψ(ϕ) = ψ(ϕ + 2π). The change of variable ϕ = 2t transfers this equation to the
well known Mathieu’s equation (see, e.g., Refs. [119, 114]), reducing the solution’s
period by the factor of two. The exact solutions of interest are, therefore, given
by the odd Mathieu functions se2m+2(t = ϕ/2) with the eigen values b2m+2, where
m is a nonnegative integer (notations of Ref. [119]). These are the solutions to
the Sturm-Liouville problem with boundary conditions on functions, not on their
derivatives.

It is easier to estimate the z-dependence of the potential (30) if the functions
ψe,h(ϕe,h) are known explicitly. So, we do solve Eq. (130) using the second order
perturbation theory in the external field (the term p cosϕ). The second order field
corrections are also of practical importance in the most of experimental applications.

The unperturbed problem yields the two linearly independent normalized eigen
functions and the eigen values as follows

ψ
(0)
j (ϕ) =

exp(±ijϕ)√
2π

, q = j =
RCN

~

√

2me,hε
(0)
e,h (131)

with j being a nonnegative integer. The energies ε
(0)
e,h(j) are doubly degenerate

with the exception of ε
(0)
e,h(0) = 0, which we will discard since it results in the

zero unperturbed band gap according to Eq. (8). The perturbation p cosϕ does
not lift the degeneracy of the unperturbed states. Therefore, we use the standard
nondegenerate perturbation theory with the basis wave functions set above (plus
sign selected for definiteness) to calculate the energies and the wave functions to the
second order in perturbation. The standard procedure (see, e.g., Ref. [95]) yields

ψj e,h(ϕe,h) =

(

1−
{

ϑ(j − 2)

[(j − 1)2 − j2]2
+

1

[(j + 1)2 − j2]2

}

m2
e,he

2R6
CN

2~4
F 2

)

ψ
(0)
j e,h(ϕe,h)

±





ϑ(j − 2)ψ
(0)
j−1 e,h(ϕe,h)

(j − 1)2 − j2
+
ψ
(0)
j+1 e,h(ϕe,h)

(j + 1)2 − j2





me,heR
3
CN

~2
F (132)

+







ϑ(j − 2)ϑ(j − 3)ψ
(0)
j−2 e,h(ϕe,h)

[(j − 1)2 − j2][(j − 2)2 − j2]
+

ψ
(0)
j+2 e,h(ϕe,h)

[(j + 1)2 − j2][(j + 2)2 − j2]







m2
e,he

2R6
CN

~4
F 2 .
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Here, j is a positive integer, and the theta-functions ensure that j = 1 is the ground
state of the system. The corresponding energies are as follows

εe,h =
~
2j2

2me,hR
2
CN

− me,he
2R4

CNwj

2~2
F 2 (133)

with wj given by Eq. (34), thus, according to Eq. (8), resulting in the nanotube’s
band gap as given by Eq. (37).

From Eq. (132), in view of Eq. (131), we have the following to the second order
in the field

|ψe(ϕe)|2|ψh(ϕh)|2 ≈
1

4π2

[

1− 2 (mh cosϕh −me cosϕe)
eR3

CNwj

~2
F (134)

+2
(

m2
h cos 2ϕh +m2

e cos 2ϕe

) e2R6
CNvj
~4

F 2 − 4µMex cosϕe cosϕh

e2R6
CNw

2
j

~4
F 2

]

,

where

vj =
ϑ(j − 2)

(j − 1)2− j2

{

ϑ(j − 3)

(j − 2)2− j2
+

1

(j + 1)2− j2

}

+
1

[(j + 1)2 − j2][(j + 2)2 − j2]
.

Plugging Eqs. (134) and (31) into Eq. (30) and noticing that the integrals involv-
ing linear combinations of the cosine-functions are strongly suppressed due to the
integration over the cosine period, and are therefore negligible compared to the one
involving the quadratic cosine-combination, we obtain

Veff(z) = − e2

4π2ǫ

∫ 2π

0
dϕe

∫ 2π

0
dϕh

1− 2 cosϕe cosϕh∆j(F )

{z2 + 4R2
CN sin2[(ϕe− ϕh)/2]}1/2

(135)

with ∆j(F ) given by Eq. (34).

The next step is to perform the double integration in Eq. (135). We have to
evaluate the two double integrals. They are

I1 =

∫ 2π

0
dϕe

∫ 2π

0

dϕh

{z2 + 4R2
CN sin2[(ϕe− ϕh)/2]}1/2

(136)

and

I2 =

∫ 2π

0
dϕe

∫ 2π

0

dϕh cosϕe cosϕh

{z2 + 4R2
CN sin2[(ϕe− ϕh)/2]}1/2

. (137)

We first notice that both I1 and I2 can be equivalently rewritten as follows

∫ 2π

0
dϕe

∫ 2π

0
dϕh... = 2

∫ 2π

0
dϕe

∫ ϕe

0
dϕh... (138)
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due to the symmetry of the integrands with respect to the (ϕe=ϕh)-line. Using this
property, we substitute ϕh with the new variable t = sin[(ϕe − ϕh)/2] in Eqs. (136)
and (137). This, after simplifications, yields

I1 = 4

∫ 2π

0
dϕe

∫ sin(ϕe/2)

0

dt

[(1 − t2)(z2 + 4R2
CN t

2)]1/2
(139)

and

I2 = 4

∫ 2π

0
dϕe cos

2 ϕe

∫ sin(ϕe/2)

0

dt (1 − 2t2)

[(1− t2)(z2 + 4R2
CN t

2)]1/2
. (140)

Here, the inner integrals are reduced to the incomplete elliptical integrals of the first
and second kinds (see, e.g., Ref. [114]).

We continue the evaluation of Eqs. (139) and (140) by expanding the denom-
inators of the integrands in series at large and small |z| as compared to the CN
diameter 2RCN . One has

1

(z2 + 4R2
CN t

2)1/2
≈ 1

|z|

[

1− 1

2

(

2RCN t

|z|

)2

+
3

8

(

2RCN t

|z|

)4

− 5

16

(

2RCN t

|z|

)6

+ ...

]

for |z|/2RCN ≫ 1, and
∫ sin(ϕe/2)

0

dt f(t)

[(1− t2)(z2 + 4R2
CN t

2)]1/2
=

1

2RCN
lim

(|z|/2RCN )→0

∫ sin(ϕe/2)

|z|/2RCN

dt
f(t)

t
√
1− t2

for |z|/2RCN ≪ 1 [f(t) is a polynomial function]. Using these in Eqs. (139) and
(140), we arrive at

I1 ≈























4π
RCN

[

ln

(

4RCN
|z|

)

− 1
4

(

|z|
2RCN

)2
]

,
|z|

2RCN
≪ 1

4π2

|z|

[

1− 1
4

(

2RCN
|z|

)2

+ 9
64

(

2RCN
|z|

)4
]

,
|z|

2RCN
≫ 1

and

I2 ≈























4π
RCN

[

1
2 ln

(

4RCN
|z|

)

− 1 + 3
8

(

|z|
2RCN

)2
]

,
|z|

2RCN
≪ 1

π2

4|z|

(

2RCN
|z|

)2
[

1− 3
4

(

2RCN
|z|

)2
]

,
|z|

2RCN
≫ 1

Plugging these I1 and I2 into Eq. (135) and retaining only leading expansion terms
yields

Veff(z) ≈



















−e
2 [1−∆j(F )]
πǫRCN

ln

(

4RCN
|z|

)

,
|z|

2RCN
≪ 1

− e2

ǫ|z| ,
|z|

2RCN
≫ 1

(141)
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Figure 14: The dimensionless function (142) with the zero-field cutoff parameter
(143). See text for details.

We see from Eq. (141) that, to the leading order in the series expansion parame-
ter, the perpendicular electrostatic field does not affect the longitudinal electron-hole
Coulomb potential at large distances |z| ≫ 2RCN , as one would expect. At short
distances |z| ≪ 2RCN the situation is different, however. The potential decreases
logarithmically with the field dependent amplitude as |z| goes down. The amplitude
of the potential decreases quadratically as the field increases [see Eq. (34)], thereby
slowing down the potential fall-off with decreasing |z|, or, in other words, making the
potential shallower as the field increases. Such a behavior can be uniformly approx-
imated for all |z| by an appropriately chosen attractive cusp-type cutoff potential
with the field dependent cutoff parameter. Indeed, consider the dimensionless func-
tion f(y) = −2RCNǫ Veff/e

2 of the dimensionless variable y = |z|/2RCN . Then,
according to Eq. (141), one has

f(y) =







Φ1(y) =
2
π [1−∆j(F )] ln

(

2
y

)

, 0 < y ≪ 1

Φ2(y) =
1
y , y ≫ 1

Now introduce the function

Φ(y) =
1

y + y0
(142)

with the cutoff parameter y0 selected in such a way as to satisfy the condition
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Φ(1) = [Φ1(1) + Φ2(1)]/2. This yields

y0 =
π − 2 ln 2 [1−∆j(F )]

π + 2 ln 2 [1−∆j(F )]
. (143)

Figure 14 shows the zero-field behavior of the Φ(y) function as compared to the
corresponding Φ1(y) and Φ2(y) functions. We see that Φ(y) gradually approaches
Φ2(y) = 1/y for increasing y > 1. For decreasing y < 1, on the other hand, Φ(y)
is very close to the logarithmic behavior as given by Φ1(y), with the exception
that there is no divergence at y ∼ 0 due to the presence of the cutoff. The cutoff
parameter (143) is field dependent, decreasing as the field grows, which is consistent
with the behavior of the original potential (141). Multiplying Eq. (142) by the
dimensional factor −e2/2RCN ǫ and putting y = |z|/2RCN , we obtain the attractive
longitudinal cusp-type cutoff potential (32) we build our analysis on in this paper.
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