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We extend the input-output formalism of quantum optics talyze few-photon transport in waveguides
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I. INTRODUCTION in a cavity and a continuous set of electromagnetic states ou
side of the atom-cavity system—to analyze the transport of

In the context of quantum information technology, includ-féw-photon states in a waveguide with an embedded qubit. In
ing quantum computing devices, understanding the interadb® input-output formalism one obtainsianlinearset of op-
tion between a few-photon state and a two-level atom play§rator equations based on the Hamiltonian of the system. For
an important role I-3]. The photons are a possible candi-a coherent or a squeezed state input, this formalism has been
date for the ‘flying qubit’ that carries the information, athet ~ €xtensively used to calculate various coherence progesfie
two-level atom constitutes the ‘stationary qubit where fly- ~ the output state of light. Here, we show that one can adapt thi
ing qubits are generated on demand and correlated with eadfrmalism to obtain exact results regarding one or two photo
other. properties. To do so, we establish a relationship between th
Recently, there has been an increased activity in analyzingpPut-output formalism and the scattering matrix elemerfits
the properties of photons propagating in a waveguide couplethe system. Our approach complements the existing theoreti
to a qubit—a two-level quantum mechanical system. Expeical literature and bridgesiierent analytical techniques.
imental demonstration of the control of single photons was The paper is organized as follows: In Sectibrwe intro-
made in a waveguide coupled to an optical cavity with anduce the Hamiltonian of the system. In Sectldnwe build
atom in its near field4]. Similar efects were observed in the the link between the scattering theory and the input-output
microwave domain’ when low frequency photons in a transmahsm and continue in SeCtIQW with the derivation of the
mission line were coupled to a superconducting quki6], = ©Ne-photon transport properties. In Sectibiwve show how
which later was shown to act as a photon amplifi@r [ to extend the calculat_|0ns to the two-.photon case. In Sectio
To theoretically model such systems one needs to considfl we make observatlons.on correlation fun_ctlon calculauqns
a continuous set of waveguide modes that are free to prop_aased on coherent state inputs and end with our conclusions
gate in one dimension, either directly coupled to a muitele N SectionVil.
system (referred to as an ‘atom’ in the paper), or indirectly
coupled through an optical cavity with a discrete set of nsode
Photon transport properties are non-trivial in these #iines
[8-11] which can be tailored to perform logic operatiodZ]
or form a diode 13]. Exact solutions of one and two-photon ~ We start by discussing the model Hamiltonian that we will
scattering have first been reported 9 1.1]. use in this paper. As an illustration of the formalism, we-con
The most widely used theoretical approach is to treat th&ider a two-level atom coupled to a single polarizationglgin
set of equations in the Schrodinger picture, and apply thénode waveguided], and treat the transport properties of few-
Lippmann-Schwinger formalism to calculate the reflectionphoton states in such a system (B)g The HamiltonianH,
and transmission properties of the single and multi-photors defined asi( = 1)
states 10, 14-17]. An alternative technique is to use the re- b= Ho+ 6
. . . = Ho 1.
duction formulas from field theory to calculate the scattgri .
matrix of the system18, 19]. Time-domain simulations that HereHp describes a chiral, i.e. one-way, waveguide where
take the waveguide dispersion into account are also pessiblphotons propagate in only one direction
and an interesting radiation trapping mechanism was rcent . o0
predicted 0. Ho = f dB &(B) &l
In this paper, we extend the input-output formalistt, [22] 0
of quantum optics—an Heisenberg picture approach origianddj, &' are the annihilation and creation operators for the
nally introduced to analyze the interaction between an atomynotons with a wavevectgrrespectively. In AppendiA we

calculate the reflection and transmission probabilitiepfoo-
' tons in a waveguide where the fields propagate in both direc-
* shanhui@stanford.edu tions and show that the results are straightforward extessi
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FIG. 1. (Color online) Schematic representation of two phetin a
waveguide, at frequenciésandp, moving to the right, towards a two
level atom with energy levelg) and|e). Q is the separation between
the energy levels. Coupling of the two level atom to the madéise
waveguide is proportional to. Long horizontal lines denote the
waveguide geometry.

of the chiral case. The operators obey the commutation rela-

all these changes, we have

Ho = f dwwal a, )
1 VA .

Hy= ZQ — d fo_). 3

1= 5Q07+ gim w(o-+aw+amo-) (3)

Throughout the paper, the labels for photon degrees of free-
dom, for examplé, p, refer to photon frequency.

I11.  CONNECTION BETWEEN THE SCATTERING
THEORY AND THE INPUT-OUTPUT FORMALISM

In a typical scattering experiment, various input states ar

ot ot N - . .
tion [8,8;] = 6(8 - B'). H1 describes the atom as well as the prepared and sent towards a scattering region. After tte sca

atom-waveguide interaction
H —Ef!o- +V ood,B(O'N +~T0')
1= 2 z 0 +aﬁ BY )"

Here, Q is the atomic transition frequency.. are the rais-
ing and lowering operators for the two level atom and=

tering takes place, the outgoing states of the experiment ar
observed, and information about the interaction is deduced
The mathematical formulation of such a process is commonly
made using the scattering matrix with elements of the form

Splpz,k1k2 =(p1 p2|S|k1k2>

wherelkik;) denotes the input states—here given as a two par-

20,0 — 1. V denotes the coupling strength between theticle state with energies (frequencigs)andk,—and|p; p,)
atomic states and the waveguide modes. The derivation ghe outgoing states. These input and output states are agsum
the Hamiltonian is based on the dipole and the rotating wavey pe free states in the interaction picture that exist lczfote,

approximations23] as well as taking the continuum limit for

t » —oo, and long afterf — oo, the interaction takes place.

field Operators. The details of tak|ng the continuum lime ar TheS Operator, then, is equa| to the evolution Operator in the

discussed in AppendiB.

It will be useful to haveH in terms of the frequency of the
photons instead of their wavevector, therefore, we lirrari
the waveguide dispersion arourid,(wo) asw(B) = wo+Vy(B—
Bo) (see Fig2). Notice that the total excitation operator

« " 1
N =f &3+ =0
E o dIB ﬁaﬁ 2 z

commutes withH, i.e [H,Ng] = 0. We could thus equiva-
lently solve a system as described by
H =H - woNe = Ho + Hy (1)

where

Ho=£ d,BVg(ﬂ—ﬂO)a;aﬁ

Hy = %QO'Z+VIOOd,8 (o8 + 80 ).

00

interaction picturelJ;, from time —oo to +oo,

S=lim Ui(ts,to) = lim gHotgrHtito)gritobo
to——o0 ’ tg—o—0

t1 oo t;—o0

whereHjy is the non-interacting part of the Hamiltonian, and
H = Ho+Hj is the total Hamiltoniar.In order to have a more
compact notation, we will drop the limits and imgly— —co
andt; — oo.

An equivalent way to describe the scattering is in terms of
the scattering eigenstatggks ) that evolve in the interaction
picture from a free state either in the distant past or thidis
future

lkiks) =U; (0, to)lkikz) = €Pe ™Mbk ko) = Q, [kiko)
lkiky) =U; (0, th)lkikz) = €MeMolkgko) = Q_[kiko).

The interaction picture time evolution operators that tesla
scattering and free states are called lheller wave opera-
tors, Q.. The scattering operator can equivalently be written
asS = Q' Q, 2 Itis also possible to write the scattering matrix
elements as

(p1p2ISlkiko) = (p1p5lkik3).

HereQ = Q - wp, and we also extended the lower limit of
integration to—oo so that we can define the Fourier transform
of operators in the next section. Since we will be dealindpwit

states with wavevectors arougg, the extension of the inte-
gration limit is well justified P4, 25. Finally, we complete

our transition from wavevectors to frequencies by defining

w = VgB, and the operatos, = 8z.5,/ Vg, Which satisfies
the commutation relatiora],, aZ,] = §(w — w’). As a result of

1 See p6] for more information about stationary scattering thed®] pro-
vides a historical account of the developments relatedd&tmatrix.

2 There is also an alternative definition of the scatteringappeS’ = .0f
which relates the incoming and outgoing scattering eigeéestlkt) =
S’lk™), such that(p|Sky = (p k") = (p7|S'lk") = (p*IS’k*). See
[28, 29 for details.



We should note that scattering eigenstates and the frassstat a(B)
with the same quantum numbers have the same energies, that
is Holkikz) = Ek,lkikz) andH[kik3) = Exk,lkik;) [26].

It is possible to denote the scattering matrix elements by an wo
appropriate definition of input and output operators sueh th

(P13 1kik}) = (Ol @ou(P1) @oulP2) &) (k1) @l (k2)0)  (4)

B
where Bo
an(k) = Q.aQ] = g Hog, gHdlogriHo (5)  FIG. 2. (Color online) Linearization of a surface plasmikewaveg-
aoui(K) = Q_aka _ ethle—iHotlakeiHotle—thl (6) uide dispersion relation(B) around a wavevectd, is shown. The

slope of the line is equal to the group velocity The photon states

have the property of creating input and output scatteriggrei in the text are assumed to have frequencies in the vicinitygfo
states that the linearization is justified.

a’ (KI0) = k")

alu(PI0) = p7) output operators were defined i8] with an aim to make a
connection to correlation functions. 187], a similar set of
input-output operators were defined in order to relate tvfo di
: i - ¥ — Sl _ ferent quantization schemes in dielectric media. To thé bes
[Bin(K). & (P)] = [Bou(K). Qou(P)] = ok = ). of our knowledge, the explicit link we provide above between
We now relate the scattering theory, as briefly sketchedhe input-output formalism and the scattering theory has no
above, to the input-output formalisr2], 22] of quantum op- been previously published in the literature.
tics. To do so, we start by recalling the definition of the ihpu
field operator 21]

and the commutation relations

IV. SINGLE-PHOTON TRANSPORT

an(®) = = [ dkadto)e ™ . |
Ver Now that we know the relationship between the input-
wherea(ty) = eHoae M is an operator in the Heisenberg Output formalis_m and the scattering theory, let us now calcu
picture. The relationship betwee,(t)—which is defined late theS-matrix elementgp|S|k) between two single pho-
in the input-output formalism—anal,(K)—which is defined ~ ton statesk) and|p). Following the standard procedure, (see
above in b) as a result of the scattering theory—can be deteAPpendixC), the input-output equations appropriate for the

mined by noting that Hamiltonian in () are
1 . K il
an(t) = = f dkeoge o) ‘fj—'? = —i \E(m 8 =&, 0) - %N 9)
— \/12_71- fdkeiHtoe—iHotoakeiHotoe—thoe—ikt % —ij \/?O_Z ain _1-0_7 _iQo. (10)
T T

1 f ikt 2

- L [k anme @) o \ﬁ
N Bout = @in =14/ 0 (11)

where in the second line we used the fact th&f Bu] = —ka«  \here all operators are in the Heisenberg picture and hence
to convert theye'® term into e'"eoae. Asaresultan(k)  they are all time-dependent-* = 7V2/yy is proportional to
provides the spectral representatioragft) in the limitto - he’spontaneous emission raté.= oo = (o + 1)/2 de-

—co. Similarly, the output field operator in the input-output scripes the probability of having the atom in the excitetesta
formalism The single-photon transport properties are describeddy th

1 _ single photors-matrix, which is related to the input and out-
_ ik(t-t)
Aou(t) = N dk a(t1)e put operator by

is related t K) in the scattering theory through - 1 '
@oulk) g theory throug (PISI) = (O 0u(p) 4, (910) = —= [ dt@anoire

1 .
aou(t) = N f dk Bou(k)e™ (8)  where we usedg] to write agu(p) in terms ofagu(t). It is
therefore sfficient to first calculatg0] agy(t)|k*) and then
in the limitt; — oo. We have thus established a direct con-perform an inverse Fourier transformation to determine the
nection between the input-output formalism, and the seattesingle-photorS-matrix. In the calculations to follow in this
ing theory. We should note that afiirent set of input and and the next section, we will go back and forth between
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Fourier transforms of the operators, and we will explicitse  in many quantum optics calculatior2-34]. Typically, such
t, ' to imply time dependent operators aagd, p1» to denote  an approximation is justified by assuming a so-calleek ex-

the time independent Fourier transformed pairs. citation limit, where the atom is assumed to be mostly in the
The quantity0] agu(t)|k™) can be obtained by sandwiching ground state. Physically, in the case of single-photonstran
(10) and (L1) between the two stat€d| and|k™). We have port, the weak excitation limit is valid, when a single-ptiot

pulse has a duration that is much longer than the spontaneous
lifetime of the atom. However, we emphasize that the weak-

d 2
gt OloIk) =i \/;O"Tza'”'k > = Z{0o-fke+) (12)  excitation limit is not always valid in general even for agiie

—iQ(0|o_|k*) photon pulse. It has been shown that for the Hamiltonian in
5 (1), a single photon pulse with a duration comparable to the
(0] agudk™) =(0 @K — i \/;<0|(T—Ik+>- (13) Zgr?]tgrg]eous emission lifetime can in facmpletelynvert an

The formalism here removes the need for the assumption of
weak-excitation limit when calculating single-photon peo-
1 ties. In fact, we can directly calculate the excitation aoib
, — , i _ kt
(Ol ain(t)IK™) = (Ol ain(t) &, (K)I0) = \/Ze I (14) ity (k*|N|k*) for the scattering eigenstai€). N = 0.0 and
using (L6) we have

(K'INIK") = (k" |oro-|k") = (K"|o4|0)(0lo_|K™)
(Oloz ain(t)Ik™) = —(0l ain(t)K™) (15) 21 . 1 2/t
= Z|S<|

. . . . T 2n(k-Q)2 2
since|0) has an atomic part that is in the ground state. Using _ (k=) +(1/7)
(14)—(15) in (12—(13) results in a first order ordinaryfiieren-  Here, we again have taken advantage of the factkhais a

Note that

by the use of 7) and

tial equation. By solving it, we get single-excitation state whereas acting on any state except
|0) would result in a multi-excitation state leading to a zero
Olo_ [k = 1 i - \Q/Z/T. (16) overlap with(k*|. More generally, we have
Var &‘5“7 Ko01p*) = K'l(20 0 = 1)Ip*)
+y = ik A7 22 VT = 2(k*|o410)(0lo-|p*) = S(k - p)
(Ol aouik™) \/Ze k—Q) i/ 17) i +
: : . . = —e P s, — 5(k - p) (19)
After Fourier transformingX(7), we obtain the single-photon e
S-matrix which will be useful when deriving the two-phot@imatrix.
(PISIK) = ted(k - p) (18)
V. TWO-PHOTON TRANSPORT
where
_k-9Q)-i/t Our aim in this section is to calculate the two-pho®n
k= (k-Q)+i/t matrix based on the results we obtained for the single photon

case. We first introduced the two phot8rmatrix element in
(4). We will begin by inserting an identity operator in between
aout( pl) andaout(pZ)

q= YT (01 3ol P1) Bou(P2) a, (k1) &, (K2)I0)
(k-Q)+i/r ) .
— (0 30u(Py) ( [ o |k+><k+|) Bou(P2) & (k1) & (k2)[0)

is the single-photon transmission ¢oeent. For subsequent
calculations, we also define

that measures the excitation of the atom by the single-photo

wave when normalized against the incident wave amplitude. _ N
t, ands are related by and use the Fourier transform df4) to simplify the expres-

sion as
o1 \ESK — t (P} Bou(P2) & (K1) & ()10

These results for single-photon transport agree watre], ~ USing the Fourier transform ol () we get
where the scattering wavefunction was directly calculated

through a real space formalism. =t (p*l] a —i \/20- ) " (k) at (k)0

The crucial step in the derivation above 15) which takes p1<|01|(am(|02) 77 (Pa) | (a) 3 (2)10)
advantage of the single-excitation nature of the inputestat = t,6(p1 — k1)6(p2 — k2) + tp,6(p1 — k2)8(p2 — ki)
Formally, the same result can also be obtained by approxi-

mately settingr, = —1 in (10), and thus linearizing the oper- _i \/?t (ptlo—(p2)lkaks)

ator equation. Such a procedure has been commonly adopted 7 Pt 2
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where we used the orthogonality of the scattering eigessstat the algebraic Bethe ansatz4], and the LSZ formalism in
Thus, to determine the two-phot@&imatrix, we will need to  quantum field theory18, 19]. The derivation here, however,

calculate(p; o (t)|kik3 ) and take its Fourier transform. is perhaps more elementary, and thus may serve to make such
Using (L0), we obtain the dferential equation that de- results more accessible. In addition, the results rela&gtas-
scribes(p;|o_(t)|kik3) ence of the background fluorescence, to the excitation of the
atoms.

d
a(p1r|0'—(t)|klk§>
(20)

(2 1 . VI. COHERENT STATE COMPUTATION
=i 2P0 an(Olele) - (2 + 10 (p kel

o A traditional use of the input-output formalism is to calcu-
If we can simplify the part that depends opain, we canthen  |ate the correlation function when the input is in a coherent
solve the diferential equation. Sincay, is an annihilation  state. Here we briefly outline such a calculation for our sys-
operator for scattering states, by usifiy\e can write tem in order to contrast it with the single and two-photon cal
1om (1) an (D) ke K culat!ons of the previous two sections. For this purpose, we
(Prioa(t) an(Olkukz) consider a coherent input statg), such that

1 : :
- = < +|O_ t|k+>eflk1t +< +|O_ t |k+>eflkzt .
Vo (POl Pilo(Olkd)e ] an(la) = e af)
and then usingl(9) results in and calculate, as an example, 8@ correlation function
1 1 . +1 4T (¢ +
= —— g lrkeplig (g +5,) W ol Bou(t) Bout(B)lerg
Nt Sp 2 GY(t', 1) = (@)
1 ikt 1 kst
- \/Z(S(kz - pl)e fat _ \/Z(S(kl - pl)e e USing (11)’ we have
which is what we were after. We can now solve the first order W 4 2 ikEt) L ikt |2 ,
ordinary diferential equation0) in a way very similar to the GH(tt) =lal€ +liae ~(o ()
derivation that led toX8). After some algebra and rearrange- 5 ) (22)
ment we get e \E«r_(t» + —(o (O)o-()
(pilo—(t)Ikik3)
1 1 _ where for any operatdd, (O) = (o |Olay).
= TS ik-p Sy (S + S)e (kutkept Each of the expectation values 22 can be calculated us-
Nt P2 Sp,
21” L ing the input-output formalism. Taking the expectatiorues
" @5(k2 _ pl)skle—lklt " @60(1 _ pl)&ze—lkzt. in (9) and (@0) results in
Taking the Fourier transform of the expression above giges u %(a-z(t» =—i2 \/g(a/e_ikt(a:r(t)) - a/*eik‘(o-_(t)))
+ +
<pl|oi*(p2)|klk2> _ %(O’Z(t) + 1>
= ——0(ky + k2 = P1 = P2)Sp, S, (S + ko) d 1 3
g (o () = (10 = = (o) + iae™ | =(oo(t))
+ S46(ko — p1)S(ke — P2) + S,0(ky — P1)d(ke — P2). gl = 2]t —(oz
i i = i d _ 1 ikt 2
Lastly, using the relatioty, s;, = sp,, we obtain oty = (|Q ~ ;) (o (1) — i \/;(az(t».
(0l 3oul 1) Boul P2) &y, (ki) &, (k2)[0)
— t o [0(ka — P)S(Ke — P2) + 6(Ke — P1)6(Ka — Pa)] Directly solving the equations above provides the values of
— HKLTK2

(o+(t")) and{o_(t)) in (22), while the{o . (t")o_(t)) term can
1 26 K+ k 21)  pe computed using the quantum regression theorem. These
L (ko +ka = P1 = P2)Sp; Sp, (S + Sio). calculations can be found in standard textbodg R3], in

i . . . . sections related to the properties of resonance fluorescenc
This final result agrees with previous calculations using ad prop ¢

d techni h as the Bethe ahiateal and we will not repeat them here. Instead, based on the out-
vanced techniques such as the Bethe ansateal spaceld), line above, we make a few observations about the coherent

state computations, as commonly done, and the one and two-
photon computations as carried out in this paper.
3 Equations (118)-(119) irlf] and equationZ1) in this paper are the same 1. The input-output formalism provides a setrainlinear
with the following notational correspondende:= 2/7, A1 = (ki - k2)/2,  operator equations. Therefore, all computations, by nreces
A2 =(p1-p2)/2,Er = ki + ke, E2 = p1+ P2 sity, involve the conversion of such operator equations int



ordinary diferential equations for various operator matrix el- Appendix A: Two Mode M odel
ements. While the coherent state computations typically in

volve taking expectation values in terms of the input states |, this section we will write the Hamiltonian for the case
the one and two-photon computations involve matrix elesientyyhen photons are allowed to propagate in both directions
that have dferent photon numbers. within the waveguide. We will refer to this case as the two

2. It is certainly reasonable to expect that the one or twomode model. After introducing the Hamiltonian, we will use
photonS matrices can be obtained by analyzing various corthe results of Sectiond/ andV to calculate one and two
relation functions for a weak coherent state input. Indésel, photon reflection and transmission éoeents for right to left
connection between the two-photon out wavefunction, aad thmoving fields.
g®@ correlation function, has been pointed out if][and it When photons propagate to ttight and to thefeft, we will
is likely that stronger connections exist. This will be éadr need to add extra terms to the Hamiltonian. We begin as we
out in future work. However, if the aim is to determine the did in Sectionll and write
S-matrix in the few-photon Fock state Hilbert space, the com- - 0
putation as dlscus_sed here should be far more dlre(?t. | Ho = f dB w; (B) r;rﬁ + f dB we(B) g};gﬁ

3. We emphasize that the few-photon computations yield 0 -
the S-matrix in the few-photon Hilbert space, and thus profor the waveguide part of the Hamiltonian. The dispersion
vide acompletedescription of all physical processes in the relation for the left moving modes,(8) is the mirror image
few-photon Fock state Hilbert space. In contrast, compuiof the one for the right moving modes. We linearize the left
ing G or G@ correlation functions alone do not completely and right branches of the dispersion relationshjp at+3, to
specify the out state for a given incident coherent stat@m g getw, ~ wp + Vg(B — Bo) andw;, ~ wo — Vg(B + Bo). Follow-
eral. Certainly, in the majority of quantum optics expenmt®e ing linearization, we extend the limits of integration oo,
at present, one probes a quantum system with a coherentinpgake a change of variablgs— 8 S, for the right and left

state, and obtains information about the system by measurinvaveguides respectively and define= VB, T = Tgi0/ Vg,
different correlation functions. The coherent state computg; = Cspo/ Vg tO get

tions, as briefly reproduced above, are adequate to describe
these experiments. However, these quantum systems are be- 0
ginning to be considered as prospective devices which will Ho = j:
eventually process quantum stat8§,[37]. In such an engi-

neering context, one ultimately has to be able to completelyhe interaction part of the Hamiltonian is given by
specify the output quantum states. Itis in this respectuleat 1 Vv o

hope the few-photon transport computations will prove to beH; = ZQ¢, + — f dw [o-+(rm +0,)+ (rl') + 51,)0'—]~
valuable for future engineering applications. 2 Wo Joo (A2)

dww(rir, - £t (A1)

o

Since the total excitation operator

=~ 0
1
:
NEzfo dﬁr;rﬁ+j:mdﬁ£ﬁ£ﬁ+§o—z

In this paper, we extend the input-output formalism of o mytes with the Hamiltonian, we subtracted the tegNg
quantum optics to analyze one and two photon scattering ifom the Hamiltonian and s& = Q — wy in the derivation,
waveguides with a two-level atom inside. We develop themimickingthe steps in Sectidh.

relationship between the input-output operators and the SC Ny that we have the Hamiltonian, we can write down the
tering theory which in turn enables us to analytically cal-yeisenperg equations of motion and define the input-output
culate the photon scattering matrix elements with minimumyperat0rs for the fields as illustrated in detail for a chinaldel

amount of algebra. We also contrast our calculations fof fewiy ApnendixC. The equations for the annihilation operators
photon Fock state transport with the conventional apptcat ¢

of input-output formalism for coherent-state transporhisT

VIl. CONCLUSION

work helps us go beyond the correlation function analysis in dro(t) _ . _ o
X ) . —= = —i[ry,H] = —iwr, —iVo_
input-output formalism, and leads to exact solutions f@ th dt

i [ . de,(t . _ -
scattering matrix elements dt() _ ity H] = +iwt, - Vo

whereV = V/ \Vg. The definitions for the input and output

operators for right going fields are the same as in Appe@dix
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wherer is defined in C6). Left going modes have a group Here we usedA4) and (8) to get the one photon reflection
velocity which is negative that of the right going modes andcodficientry. Similarly, the one photon transmission fioe
that leads to a negative sign iAY). As a result, starting from cientty is given by

the the definition of the input and output operatorsip-(6),

the input and output operators for left going modes have the (Ol foulp) - (K)I0) = E(tk +1)5(p—K) = Go(p—K)
n 2 - .

form
1 - _ | . _
Lou(t) = — f dw £, ()t Two photon calculations require adding another input-
Vor output pair. For instance, the scattering matrix element as
fn(t) = 1 fdwf (t )eim(t—to) sociated with one photon scattering to the right, anoth#érdo
" \2r “ro left when two photons initially propagate to the right iseyiv
by
. [2
fout(t) = f,n(t) — 1 \/;O' (t) : :
(O rout(P1) Cout(P2) 1y, (K1) 1y, (k2)10)
where we note the change of sign in the frequency variable. - . . meen
Using these results we can show that = Zr[(O| aoul(P1) @oul(—P2) & (K1) &l (k2)|0)
° + o
- \ﬁaz o+l \ﬁ(,z -2 g ~ (01 B0u(P1) o~ P2) &) (k1) &), (<2)I0)
T T T

= (0l ou(P1) Boul~P2) &), (k1) &, (k2)I0)
which is in a form similar to those that we get in temporal AP Bout™ Pa) e Ta) &2

coupled mode theonBp). + (0] Boul(P1) Boul— P2) &), (ke) & (k2)I0)
We now have all the tools to solve for the scattering that + (0] &out( P1) @out(—P2) é{;(kl) a;(kz)|0)
takes place in the two mode model. Let us define even and . . o o
odd combinations of the operators for the right and left prop ~ (Ol Bour(P1) Boul—P2) 8, (k) &, (k2)I0)
gating modes as = fiuTio0(ka = Pr)d(kz + P2) + i fiod(ka + P2)o(kz = pi)
lo+ 4o o Ty—10_ 1
8, =———(even) a,= (odd). (A3) + ZBO(ky + ko — p1 +
Nz N 750k +ke =~ pr+ p)
Using these definitions irX1)—(A2) we can show where from 1)
Ho = fdw aLaw + éléw = He,O + HO,() 1 2
1 \/iv . B= I; V ;Sp:l&pz(a(l + Sﬂz)~
H; = on'Z + _\/V_g fda) (maw + awOZ) = Hes

We note that’ = 7/2 due to an extra factor of2 beforeV in

where we see that the interaction part of the Hamiltonian dehe definition ofH;. These results agree with equations (52)
pends only on the even combination of modes. In Sectiéns and (130) in 1.0].

andV we solved folH = Hep + He1 for a rescaled value of.
The odd parH, is interaction free and hence is also solved.

From (A3) we get Appendix B: Hamiltonian in the continuum limit

ainjout(w) + éin/out(w)

Finjout(w) =
ivou®) V2 Al This section will summarize the steps taken to obtain the
Aout(—w) — Bou(—w) (A4) continuum form of the Hamiltonian from its discrete version
Loul(w) = NG We will follow the approach inZ4, 25).

. . The discrete variables are assumed to be for those in a one
where we wrote the Fourier transforms of two-mode inputyimensional cavity of length. The mode spacing in the cav-

output operators in terms of the combinations of even and odpﬂy is given byA8 = 2z/L. In this 1D cavity, the free space

fields. _ - electromagnetic Hamiltoniaio, is given by
The get the one photon reflection probability, we look at the

scattering matrix element which corresponds to a right @arop _ Ata
terl ! Ho = E W g
gating input photon and a left propagating output photon 5 B

(0l Cou(P) 17, (KIO) .
1 . : ot with the commutator relationshimi{,“é[‘;,] = dgp. Now,
= 5{0l[Bou(—~P) — dou(—~P)I 8, (K) + &, (K)T10) we will convert the sum into an integral by the equivalence

= 201 au(~P) @ (KI0) ~ 301 () 8, (910 (8925) = (o) o get

1 _ L Ata
= i(tk -1é(p+ k) =ré(p+K). Ho = o fdﬁwﬁa;aﬁ.



The continuous mode operatag iS related to the discrete Heisenberg equations of motion for the operators are
modedy by

|ddi}[k = ka + Vo_ (C1)
. L. . . aix
8 = ,/Zaﬁ which results in Hg = fdﬁwﬁa;aﬁ. i% Qo —Vfdkvzak (C2)
.d ~ .
The commutator relationshi@fa}] = %dss in the limit I% = 2Vfdk(—a1‘<o: + o). (C3)
L — oo becomes
[3s, é;,] =6(8-p). After multiplying (C1) by the integration factor expi), we
integrate it from an initial timeyp < t to get
To see this result, definB(8) = L 6z0. Integratingf (8) will
give = at) = ato)e ™ - i f dto_ (). (ca)
2n _2nL We define the input operator as
[wte- T 1e-T5 -1

an(t) = \/% fdk a((to)e—ik(t—to)

As a result, the correct Hamiltonian in the continuum lirsit i ] o ) ]
which satisfies the commutation relation

Ho = f 48 w(6) 33 [ain(). & ()] = 5t ).
We further introduce a field operator
with [85,a" ] = 6(8 — B). Itis then easy to show that
i o= — [a@
1= f ds 18>l and integrate@4) with respect tdk to get
where|B) = é;|0>, since O(t) = an(t) - I— \/_U (t) = an(t) —i \/ o_(t). (C5)
Here, notice that we integrate over half the deIta—func[tRﬂt]n
67 fdﬂWXﬂI{) = fdﬁ5(7 =B)o(B—¢) =y - 9). which results in a factor of /2 andr is defined as
1_ o
In the discreet case - =ave (C6)

Furthermore, pluggingdb) into (C2) and C3), results in

do—__i\/EO'Zam—EO'_ iQo_

whereV’ is the physical coupling constant. The factor/?
arises because the photon as createagtbyaé a normalization — =i \/7(£T+ an — a,n o) - —N

constanL~%2. In the continuum case we get

1~ Y4
Hy= ZQ - 3 +ao.
1 > oz + \/Ezﬁ:(0'+aﬁ+aﬁo-)

HereN = (o-Z + 1)/2. Thus the spontaneous emission rate
v’ is 2/r. We could have also directly calculated\ (it from

1 .
Hy ==Qo, + fdﬁ(o' + a o) do_/dt, sinceN = o,0_.

Pk \/_27T & Similarly, we integrate©1) up to a final timet; > t, and
1
2

~ . define an output operator
:—QO’Z \/—Efdﬂ(0'+aﬁ+a)30') p p
Boull) = f dka(ty)e )

Thus, the coupling constants in the discrété) @nd the con-
tinuum (V) cases dfer by a factor of (2)~%/2. which results in

B0 = 20ul) 1 - ()

Appendix C: Derivation of the input-output formalism o ]
Combining C5) and C7), we finally obtain

Here we provide a derivation of the input-output equations
(9)-(11). This derivation closely followsZ1, 22]. Based on Aou(t) = an(t) —i4/ o).
the Hamiltonian 2)—(3), and the definitiorvV = V/ /g, the
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