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Abstract

The macroscopic mechanical properties of colloidal particle gels strongly depend on

the local arrangement of the powder particles. Experiments have shown that more

heterogeneous microstructures exhibit up to one order of magnitude higher elastic prop-

erties than their more homogeneous counterparts at equal volume fraction. In this

paper, packings of spherical particles are used as model structures to computationally

investigate the elastic, rheological properties of coagulated particle gels as a function of

their degree of heterogeneity. The simulations are performed using the discrete element

method. The forces included in the model comprise a linear elastic contact law, particle

bonding and damping. The simulation parameters were calibrated using a homogeneous

and a heterogeneous microstructure originating from earlier Brownian dynamics simu-

lations. A quantitative agreement between the modelled and the experimental plateau

storage moduli was achieved. A systematic study of the elastic properties as a function

of the degree of heterogeneity was performed using two sets of microstructures obtained

from Brownian dynamics simulation and from the recently developed void expansion

method. In terms of degree of heterogeneity, both sets of microstructures cover a broad

and to a large extent overlapping range. The simulations have shown that the elastic

properties as a function of the degree of heterogeneity are independent of the structure

generation algorithm and that a power law relates the elastic plateau storage modulus to

the degree of heterogeneity. The presence of a critical degree of heterogeneity suggests a

phase transition between a phase with finite and one with zero elastic properties, which

is interpreted as microstructural percolation.

1 Introduction

Random sphere packings are ubiquitous model systems for the study of the structural and
mechanical properties of granular matter or colloids. Geomechanics [10], granular flow [20]
and mixing and segregation of granular materials [19] are but a few examples. The mechanical
properties of granular systems depend on various parameters such as the volume fraction [33],
the particle size distribution [11], material properties as, for example, the particles’ friction
coefficients [25] or adhesive forces [18]. Furthermore, as predicted in [8] and discussed in more
detail in the following, the mechanical properties strongly depend on the microstructure, i.e.,
the local arrangement of the particles.

The influence of the microstructure on the mechanical properties is often observed implic-
itly in experimental and computational mechanical tests on structures differing in preparation
history. Macroscopic stress profiles, for example, where found to strongly depend on the sam-
ple preparation procedure and thus its microstructure [2]. However, systematic investigations
of the mechanical properties as a function of the microstructure are scarce, for two reasons:
first, a systematic study requires the possibility of an unambiguous characterization of the mi-
crostructural arrangement of the particles in terms of the structure’s degree of heterogeneity
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(DOH). Such a quantification of the DOH by means of scalar measures has been introduced
in [22]. Three distinct structure characterization methods in conjunction with parameters in
fit functions or integrals were shown to allow for a clear quantification and thus classification
of the DOH of particle structures. Second, and equally important, a systematic study of the
microstructure-dependent mechanical properties relies on the possibility of a reproducible
generation of microstructures with distinct local arrangements of the particles at constant
volume fraction.
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Figure 1: Experimental elastic plateau storage modulus G′

p of alumina particle suspensions
(average particle diameter d0 = 0.4 µm) formed by the ∆pH- and the ∆I-method of the
direct coagulation casting process in dependence of the volume fraction [28].

Experimentally, the reproducible control of the DOH of colloidal microstructures with
volume fractions between 0.2 and 0.6 is achieved using direct coagulation casting [12, 26],
which is an in situ enzyme-catalyzed destabilization method. It allows for the coagulation
of electrostatically stabilized colloidal suspensions to stiff particle structures by either shift-
ing the pH of the suspension to the particles’ isoelectric point or by increasing the ionic
strength of the suspension without disturbing the particle system. Shifting the pH leads to
“more homogeneous” microstructure through diffusion-limited aggregation while increasing
the ionic strength results in “more heterogeneous” microstructures via reaction-rate-limited
aggregation. These differences in heterogeneity have been observed using various experi-
mental techniques such as diffusing wave spectroscopy [30], static light transmission [30] or
cryogenic scanning electron microscopy [29].

Rheological and uniaxial compression experiments on coagulated colloidal particle struc-
tures obtained by direct coagulation casting have revealed that those with a more heteroge-
neous microstructure have significantly higher elastic moduli than their more homogeneous
counterparts [3, 28, 31]. The rheological properties, which are the subject of the computa-
tional part of this study, were investigated experimentally using a Bohlin rheometer (Model
CS-50, Bohlin Instruments, Sweden) equipped with a measuring tool of plate/plate geome-
try (rough surface, 25 mm plate diameter). Oscillatory measurements were performed at a
fixed frequency of 1 Hz with increasing strain amplitude. Figure 1 summarizes the measured
elastic plateau storage moduli G′

p of alumina particle suspensions (average particle diameter
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d0 = 0.4 µm) destabilized by the ∆pH- and the ∆I-method, respectively, as a function of
the volume fractions. For this system, approximately four times higher elastic properties are
measured for heterogeneous than for homogenous microstructures at corresponding volume
fractions [28, 4].

A variation of the ∆pH-method allowing for a controlled introduction of heterogeneities
is the use of alkali-swellable polymer particles. Small amounts of these particles, 80 nm
in diameter, are admixed to the suspended powder particles under acidic conditions. The
polymer particles swell upon changing pH during the internal gelling reaction of the direct
coagulation casting process and enfold to 0.7 µm in diameter, thereby rearranging the powder
particles and thus producing more heterogeneous microstructures. These more heterogeneous
samples exhibit much higher mechanical properties in comparison to samples without polymer
particles. In particular, they present comparably high mechanical properties as samples with
heterogeneous microstructures produced by the ∆I-method [14, 13].

In summary, strong evidence is given that the differences in macroscopic mechanical
properties of coagulated particle suspensions are controlled by the differences in heterogeneity.
A yet unanswered question is how these microstructural differences on the length scale of a
few particle diameters can have such a dramatic influence on the mechanical properties.

The aim of this study is to perform a systematic computational analysis of the elastic
rheological properties of particle packings at constant volume fraction of Φ = 0.4 and to
correlate these properties with the structures’ DOH.

2 Materials and Methods

In a first part of this section, the discrete element method, which is the simulation method
used throughout this study, is introduced. Second, the methods, by which the two sets of
initial microstructures are obtained are briefly presented. Then, the method and fit function
that is used in order to quantify the structures’ DOH is explained and finally, the simulation
setup is presented.

2.1 Discrete Element Method

The discrete element method [9] is an iterative simulation method, in which complex struc-
tures are built up from primary spherical particles. At each point in time, the total force on
each particle is calculated. The time step is chosen small enough to assume a constant force
during the time step, which allows linearizing the equations of motion, thereby enabling the
efficient calculation of the particles’ next positions and velocities. In particular, the simula-
tions presented in this paper are performed using the particle flow code in three dimensions
PFC3D [1], which is an implementation of the discrete element method and uses a central
difference scheme for the numerical integration of the equations of motion.

Our model comprises a linear elastic contact law between particles, particle bonding and
damping. The linear elastic contact law relates the contact forces acting on two particles in
contact linearly to the relative displacement between the particles. In PFC3D a soft-contact
approach is used, wherein the rigid particles are allowed to overlap at contact points. The
magnitude of the normal contact force Fn is given by

Fn = knUn, (1)

where kn denotes the normal stiffness and Un is the overlap. The shear stiffness ks relates
incremental displacements in shear direction ∆Us to the shear contact force ∆Fs via

∆Fs = ks∆Us. (2)

The linear elastic contact law is thus parameterized by the normal and shear stiffnesses.
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Parameter Symbol Value

Number of particles N 8 000
Particle radius r0 0.25 µm
Normal particle stiffness kn 50 – 150 N/m
Shear particle stiffness ks 5 – 15 N/m
Normal bond strength FB

n 10−4 N
Shear bond strength FB

s 10−6 N
Damping coefficient α 0.9
Friction coefficient µ 0.0
Volume fraction Φ 0.4
Particle density ρ 3 690 kg/m3

Table 1: Simulation parameters.

A bond between particles can be envisioned as a pair of elastic springs with constant
normal and shear stiffness acting at the contact point. These two springs have specified
normal and shear strengths, FB

n and FB
s , respectively. A bond breaks if either the normal

or the shear bond strength is exceeded in normal and shear direction, respectively.
Energy dissipation is simulated via a local damping term added to the equations of mo-

tion [7]. This damping force, characterized by the damping coefficient α, is proportional
to the force acting on the particle and is opposed to the particle’s velocity. Thereby, only
accelerating motion is damped [1].

In conclusion, the simulation model is characterized by five microscopic parameters: the
stiffness of the particles and the bond strength both for normal and shear direction, and the
damping coefficient. These parameters, in the following referred to as microparameters, are
compiled in Table 1. In particular, the normal to shear particle stiffness ratio kn/ks = 10 is
kept constant and a value of 0.9 is chosen for the damping coefficient, which corresponds to
the values used in previous studies [22, 23].

2.2 Initial Microstructures

Two sets of microstructures are used as initial particle configurations for the simulation of
the elastic properties. A first set originates from previous Brownian dynamics (BD) simu-
lations [16, 15] where the coagulation of electrostatically stabilized colloidal suspensions to
stiff particle structures was simulated. The presence and depth of a secondary minimum in
the inter-particle potential, described by the Derjaguin-Landau-Verwey-Overbeek theory [21],
was shown to account for the variations in the DOH of the resulting particle structures and
is adjusted via the surface potential Ψ0. For Ψ0 = 0 mV, the electrostatic double layer
repulsion is zero and the inter-particle potential is only given by the attractive van der Waals
potential. For the set of simulation parameters used in [16, 15], a secondary minimum ap-
pears for Ψ0 ≥ 12 mV and an energy barrier between the local maximum and the secondary
minimum emerges. For Ψ0 = 15 mV, a repulsive barrier of 5.65 kBT is present. The model
further contains the frictional Stokes’ drag force and a random Brownian force caused by the
suspending liquid. In this paper, BD-microstructures generated with Ψ0 = 0, 12, 13, 14 and
15 mV are used, exhibiting an increasing DOH with increasing Ψ0 [22].

In particular, the most and least heterogeneous BD-microstructures have been shown to
nicely correspond to experimental silica structures using the pair correlation function [29].
These two structures are thus used here to calibrate the microparameters in order for the
simulations to reproduce the experimental values given in Fig. 1.

The second set of initial microstructures is obtained using the void expansion method
(VEM) presented in [24]. In contrast to BD, which simulates the physical processes during co-
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agulation according to established laws and methods, VEM is a purely stochastic method in-
spired by the experimental generation of heterogeneous microstructures using alkali-swellable
polymer particles. This method employs so-called void-particles that mimic the polymer par-
ticles. The void-particles, having a small initial diameter, are randomly placed into the simu-
lation box containing the structure-particles. The core part of VEM is the repeated increase
in the void-particles’ diameter. During this procedure, the structure-particles are rearranged
and finally pushed into contact. As shown in [23], VEM allows generating microstructures
presenting a broad range of DOH, which is controlled by the void- to structure-particle num-
ber ratio. In particular, VEM-microstructures cover an approximately 20% larger range of
DOH, slightly shifted to higher values than the BD-microstructures. In this study, the num-
ber of void-particles NV ranges between 1 000 and 16 000. The void-particles’ normal and
shear stiffness are kn,V = 102 N/m and ks,V = 10−2 N/m, respectively.

All structures are submitted to the same relaxation procedure before undergoing the
simulated mechanical testing. Bonds between neighboring particles having an inter-particle
separation distance smaller than dǫ = (1 + ǫ)2r0 with ǫ = 0.01 are installed. Then, several
calculation steps are performed, where, after each step, the translational and rotational ve-
locities are set to zero. This allows for an efficient reduction of particle overlaps and thus of
the internal strain energy in the structures without significant changes in the particle posi-
tions. In particular, the bonds between the particles prevent these particles from separating
and consequently the coordination number distribution is conserved.

The structures investigated in this study have equal volume fraction of Φ = 0.4, consist of
N = 8 000 monodispersed spherical particles having a radius r0 = 0.25 µm and are contained
in a cubic simulation box with periodic boundaries and edge length Lbox given by

Lbox = r0

(

4Nπ

3Φ

)1/3

. (3)

2.3 Degree of Heterogeneity

In [22], three distinct methods allowing for a quantification of the degree of heterogene-
ity using scalar measures were introduced. Here, the DOH is characterized by means of
the cumulative pore size distribution P (rP > r) estimated using the exclusion probabil-
ity [27]. Equation (4) was shown to nicely fit P (rP > r) of both the VEM- and the BD-
microstructures [22, 23].

P (rP > r) = 1− erf

(

r/r0 − b

a
√
2

)

. (4)

The DOH is quantified by the width of the error function measured by parameter a. The
values of a for the various microstructures are summarized in Table 2. Parameter b represents
the location of the maximum of the underlying Gaussian distribution, i.e., the most probable
pore to particle radius ratio.

2.4 Simulation Setup

The simulation setup is schematically shown in Fig. 2. The structure (white particles) is
placed between periodic boundaries in x- and y-direction. In z-direction, the boundary con-
ditions are imposed via three additional particle layers (gray), obtained from the periodic
repetition of the structure. The lower layers, representing the lower plate in the shear ex-
periment, are immobile whereas the upper layers shear the sample periodically along the
x-axis with a fixed frequency of 1 Hz (ω = 2 π). The shear amplitude is increased after each
oscillation. In particular, ten oscillations with a linearly increasing deflection of the upper
plate up to a maximum deflection of 0.1% Lbox are performed. Spherical regions, so-called
measurement spheres [1], are defined in different heights monitoring the mean stress tensor in
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their respective region. The absolute value of the complex modulus G is obtained by dividing
the peak shear stress value with the actual strain of each oscillation. G′ is then calculated
by multiplication with the cosine of the phase angle between excitation and response, which
corresponds to the evaluation of G′ according to [32].

Figure 2: Rheological simulation setup.

3 Results and Discussion

The particle stiffness has been calibrated using the most homogeneous and the most het-
erogeneous BD-microstructures (Ψ0 = 0 mV and Ψ0 = 15 mV, respectively). Its influence
on the mechanical properties of these two structures is shown in Fig. 3 (left graph). The
experimental values are shown on the right.

The simulated values for G′

p quantitatively agree with the experimental values within the
experimental error for normal stiffness values ranging between 50 and 150 N/m. For both
microstructures, a linear dependency is found between G′

p and kn, which is expressed in a
constant ratio between the G′

p-values for the heterogeneous and homogeneous microstructure

as a function of kn: G′HE
p /G′HO

p ≈ 3.4. This is in good agreement with the average experi-
mental G′

p-ratio of 3.6 at Φ = 0.4. For all further simulations the particle normal stiffness is
fixed to 100 N/m.

The inter-particle bond strength was strictly speaking not part of the calibration process.
In order to focus on the initial elastic properties, its value was chosen high enough to prevent
any bond breakage for the deformations considered in this study. The chosen normal bond
strength FB

n = 10−4 N, in conjunction with the particle normal stiffness kn = 100 N/m allows
for a maximum particle separation distance of 10−6 m, which corresponds to two particle
diameters. Given the maximum shear displacement of 0.001Lbox, where Lbox is of the order
of roughly 20 particle diameters, this value is never exceeded. Typical stress and strain curves
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Figure 3: Simulated plateau storage moduli G′

p of the most and least heterogeneous BD-
microstructure as a function of the particle normal stiffness kn. Right: Experimental G′

p-
values for alumina particle structures (cf. Fig. 1). Φ = 0.4 for all microstructures.

are shown in Fig. 4, presenting the shear stress σ12 (open squares, left scale) and the applied
shear deflection γ12 (full circles, right scale) as a function of the shear oscillation cycle. σ12

increases linearly with γ12 and no phase shift between excitation and response is observed,
which confirms that these simulations present a purely elastic behavior.
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Figure 4: Stress σ12 (open squares, left scale) and strain γ12 (full circles, right scale) as a
function of shear oscillation cycle.
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Structure a G′

p in MPa

VEM

NV = 1 000 0.605 1.73± 0.383
NV = 2 000 0.530 1.83± 0.136
NV = 4 000 0.472 1.62± 0.190
NV = 8 000 0.431 1.32± 0.237
NV = 13 000 0.411 1.32± 0.267
NV = 16 000 0.401 1.17± 0.231

BD

Ψ0 = 0 mV 0.375 0.480± 0.049
Ψ0 = 12 mV 0.405 1.19± 0.141
Ψ0 = 13 mV 0.413 1.05± 0.124
Ψ0 = 14 mV 0.474 1.46± 0.120
Ψ0 = 15 mV 0.538 1.62± 0.213

Table 2: DOH-parameter a [22, 23] and simulated plateau storage moduli of the various
VEM- and BD-microstructures.

3.1 Elastic Properties as a Function of the DOH

Using a particle normal stiffness of 100 N/m, the plateau storage moduli of the various VEM-
and BD-microstructure were simulated. The resulting G′

p-values are summarized in Table 2
and are shown in Fig. 5 as a function of the structures’ DOH expressed by parameter a.
Triangles and circles correspond to BD- and VEM-microstructures, respectively.

Two conclusions can be drawn from Fig. 5: first, the elastic properties present a clear
dependence on the microstructure’s heterogeneity such that G′

p increases for increasing DOH-
parameter a. Second, the behavior is independent of the structure generation algorithm.
Indeed, the elastic moduli of the VEM- and the BD-microstructures agree within the error
bars for microstructures with comparable DOH.

The solid line in Fig. 5 represents a power law fit given by

G′

p ∝ (a− a0)
β , a ≥ a0, (5)

with a0 = 0.373± 0.001 (shown as dashed line in Fig. 5) and β = 0.207± 0.033. The use of
this fit function is inspired by percolation theory where a power law scaling is found for the
elastic properties as a function of the volume fraction [5, 6]. In view of this analogy, this fit
function suggests a phase transition with a0 the critical DOH. Below this value, the elastic
properties are zero; above this value, they increase for increasing a. A DOH-value a = 0.265
below a0 was found for the stabilized colloidal microstructures with repulsive inter-particle
potentials [22]. In the model used in this work, this microstructure would indeed present
negligible elastic properties since there would be no bonds between the particles.

4 Summary and Conclusions

In this paper, the relation between the microstructure and the elastic properties of packings of
spherical particles was investigated computationally using the discrete element method. Two
distinct sets of initial microstructures were subjected to strain-controlled oscillatory shear
simulations. The first set originated from Brownian dynamics simulations [16, 15] where the
physical processes during coagulation were simulated. The second set was obtained using the
void expansion method [24]. In contrast to Brownian dynamics simulations, the latter is a
purely stochastic method. Both sets cover a broad range of degrees of heterogeneity, which,
in this work, was characterized using the width of the pore size distribution.
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Figure 5: Simulated plateau storage moduli G′

p of the various microstructures (Φ = 0.4,
r0 = 0.25 µm) as a function of the DOH in terms of parameter a and power law fit (solid
line).

The simulations of the mechanical properties have been performed using a discrete ele-
ment model with five microparameters: the particle stiffness and the bond strength in normal
and shear direction, respectively and damping. The inter-particle normal and shear bond
strengths were set to a high value in order to prevent any bond breaking for the deforma-
tions applied during the shear simulations. This allowed focussing on the initial, purely
elastic behavior found in experiment [31]. The particle stiffness was calibrated using the
microstructures generated using Brownian dynamics and, in particular, those presenting the
highest and lowest degree of heterogeneity. A quantitative agreement with experiment was
achieved. For particle normal stiffnesses ranging between 50 and 150 N/m, the absolute
values of the experimental elastic moduli are reproduced, as shown in Fig. 3. In particular,
the ratio between the elastic moduli of the heterogeneous and the homogeneous microstruc-
tures is in good agreement with the experimental value. This latter result is particulary
remarkable, since the model used in this study constitutes an important simplification with
respect to theoretical models such as the Derjaguin-Landau-Verwey-Overbeek theory [21],
giving the inter-particle potential as the sum of the van der Waals attraction and the elec-
trostatic repulsion or the Johnson-Kendall-Roberts theory [17], describing the adhesive force
between particles. It emphasizes the strong influence of the differences in microstructure
independently of the interaction potential.

Using the calibrated model, the elastic properties of all microstructures generated using
the void expansion method and Brownian dynamics were simulated. This investigation has
revealed a correlation between the elastic properties and the structures’ degree of heterogene-
ity. It was also shown, that the elastic properties are independent of the structure generation
algorithm. Indeed, for structures with comparable degrees of heterogeneity, comparable
plateau storage moduli were found. The simulation results suggest a power law relation be-
tween the plateau storage modulus and the degree of heterogeneity above a critical value.
This indicates a phase transition between a phase with finite and a phase with zero elastic
properties. This result is in nice analogy to earlier findings [5, 6], where the elastic properties
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were shown to exhibit a power law dependence as a function of the volume fraction. This
study thus suggests an extension to percolation theory, where usually the volume fraction
constitutes the continuous variable presenting a critical value. Here, the degree of hetero-
geneity, possessing the same critical behavior as the volume fraction has been identified as
an additional variable. This shows that the degree of heterogeneity is particularly useful in
order to quantify and characterize the heterogeneity of particle packings since it allows for
an unprecedented theoretical description of their elastic properties.
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Géotechnique, 29:47–65, 1979.

[10] A. Fakhimi and T. Villegas. Application of dimensional analysis in calibration of a
discrete element model for rock deformation and fracture. Rock Mech. Rock Engng.,
40:193–211, 2007.

[11] B. S. Gardiner and A. Tordesillas. Effect of particle size distribution in a three-
dimensional micropolar continuum model of granular media. Powder Technol., 161:110–
121, 2006.

[12] L. J. Gauckler, Th. Graule, and F. Baader. Ceramic forming using enzyme catalyzed
reactions. Mater. Chem. Phys., 61:78–102, 1999.

10



[13] D. Hesselbarth. Quellfähige Polymerbinder in Aluminiumoxid-Suspensionen. Ph.D. the-
sis no. 13404, ETH Zurich, Switzerland, 2000.

[14] D. Hesselbarth, E. Tervoort, C. Urban, and L. J. Gauckler. Mechanical properties of
coagulated wet particle networks with alkali-swellable thickeners. J. Am. Ceram. Soc.,
84:1689–1695, 2001.

[15] M. Hütter. Brownian Dynamics Simulation of Stable and of Coagulating Colloids in

Aqueous Suspension. Ph.D. thesis no. 13107, ETH Zurich, Switzerland, 1999.

[16] M. Hütter. Local structure evolution in particle network formation studied by brownian
dynamics simulation. J. Colloid Interface Sci., 231:337–150, 2000.

[17] K. L. Johnson, K. Kendall, and A. D. Roberts. Surface energy and the contact of elastic
solids. Proc. R. Soc. Lond. A, 324:301–313, 1971.

[18] C. L. Martin and R. K. Bordia. Influence of adhesion and friction on the geometry of
packings of spherical particles. Phys. Rev. E, 77:031307, 2008.

[19] J. M. Ottino and D. V. Khakhar. Mixing and segregation of granular materials. Annu.
Rev. Fluid Mech., 32:55–91, 2000.

[20] P. G. Rognon, J.-N. Roux, D. Wolf, M. Naäım, and F. Chevoir. Rheophysics of cohesive
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