
Ab Initio Local Density Approximation Description of the Electronic 

Properties of zb-CdS 

 

1E. C. Ekuma, L. Franklin, G. L. Zhao, J. T. Wang, and D. Bagayoko 

Department of Physics 

Southern University and A&M College 

Baton Rouge, Louisiana 70813, USA 

 

Self-consistent ab- initio electronic energy band structure of zinc blende CdS are reported 

within the local density functional (LDF) formalism. Our first principle, non-relativistic and 

ground state calculations employed a local density functional approximation (LDFA) potential 

and the linear combination of atomic orbitals (LCAO). Within the framework of the 

Bagayoko, Zhao, and Williams (BZW) method, we solved self-consistently both the Kohn-

Sham equation and the equation giving the ground state density in terms of the wave functions 

of the occupied states. Our calculated, direct band gap of 2.39 eV, at the Γ point, is in accord 

with experiment. Our calculation reproduced the peaks in the conduction and valence bands 

density of states, within experimental uncertainties. So are the electron effective mass.  
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I. Introduction and Motivation 

Cadmium sulfide has long been the most studied of II-VI compounds of the 

chalcogenide family [1]. Its electronic properties have attracted intensive studies over the past 

three decades, owing to its great, potential applications. CdS is utilized in devices suitable for 

optoelectronics [2], piezo-electronics [3], thin film hetero-junction solar cells and 

semiconducting materials [3]. CdS has been used in making biological labels [4] and 

quantum-dot lasers [5]. CdS has a commercial use as a phosphor, in photovoltaic cell, a field 

effect transistor, a hetero-junction laser, beam splitters, photo-resistors and acoustic 

amplifiers. 

The theoretical studies of CdS have had difficulty in predicting some important 

parameters that generally could have improved the fabrication of devices based on CdS. For 

instance band structure calculations have had difficulty in locating precisely the Cd d state 

which is experimentally some 8-10 eV [6,7] below the Fermi energy. Also are the electronic 

band gaps and other related electronic properties.  

One of the earliest theoretical studies of the band structure of CdS (zb-CdS) was the 

local combination of atomic orbitals (LCAO) of Zunger and Freeman [8]. These authors 

found a room temperature band gap of 2.62 eV and valence band width of 2.75 eV. Their self-

consistent exchange correlation model at lattice constant of 5.818 Å gave a zero temperature 

band gap of 2.01 eV. Stukel et al. [9], employing the self-consistent orthogonalized plane 

wave (SCOPW) method, found a band gap of 2.72 eV, with the position of the Cd-4d state at -

16.6 eV. They also calculated empirical-OPW band gap of 2.5 eV, with the position of the Cd-

4d state at -5.7 eV.  



From the mid 1990s to present, several other theoretical reports followed the ones 

above. The LDA result of Hussain [10] employing FP-LAPW found a band gap of 1.45 eV for 

the cubic zinc-blende CdS. In their quasi-particle band structure calculation for zb-CdS using 

a fitting process, Rohlfing et al. [11] found band gaps of 3.70, 1.50, 1.60, 2.45 eV at 

calculated lattice constants of 5.05, 5.61, 5.72, 5.73 Å respectively. Their corresponding LDA 

results in the same order of lattice constants were 2.16, 0.78, 0.86, and 0.83 eV. 

Indeed, while the LDA calculations of Zakharov et al. [12] led to a band gap of 1.37 

eV for zb-CdS, their quasi-particle calculations reported 2.83 eV.  

In contrast to the wide range covered by the electronic band gap of zb-CdS as 

calculated by theory, basic electronic properties of zb-CdS have been experimentally 

established using different measurement techniques [3,13-16]. Photoluminescence 

measurements of Lozada-Morales et al. [16] found a band gap of 2.4 eV for zb-CdS. Davila-

Pintle et al. [17], in their characterization of films developed by chemical bath technique, 

found a band gap of 2.42 eV. Ates et al. [18], in their CdS films prepared by successive ionic 

layer adsorption and reaction (SILAR) method found a band gap of 2.42 eV. The 

spectroscopic ellipsometry study of zb-CdS by Rossow et al. [19], reported a band gap of 2.40 

eV and the photoluminescence measurement of Yu et al. [20], led to a band gap of 2.37 for 

zb-CdS. The Auger electron spectroscopy of Wilke et al. [21] reported a band gap of 2.42 eV. 

From the foregoing, it can be seen that previous electronic structure calculations for 

zinc blende cadmium sulfide have failed to reproduce the experimental value of the band gap 

and other related properties. The calculated electronic band gap and other related properties of 

zinc-blende cadmium sulfide cover a wide range of values. The theoretically calculated band 

gaps range from 1.58 (i.e., 1.14 to 2.72 eV) (for LDA) and 0.86 eV to 3.70 eV (for GGA, 

EXX, GW). The experimental band gaps range from 2.37 eV to 2.50 eV, depending on 

measuring temperature, with the highest value at very low temperature.  



While the above failure of previous calculations is a key motivation for this work, its 

purpose includes placing theoretical computation in a position for informing correctly and 

guiding practical design and fabrication of devices based on CdS. The shallow d bands and 

their higher ionicity make theoretical description quite difficult. The intrinsic and extrinsic 

states around the band gap (2.37-2.50 eV) have been extensively studied, but the basic 

questions about its extended band structure remain unanswered.  

This failure means that theory could not adequately guide in the design and fabrication 

of semiconductor; hence, the very expensive, time-consuming, experimental trials and errors 

approach had to continue to burden industries. The proliferation of schemes purporting to 

solve the problems, currently resembles that of the epicycles for the Ptolemaic model of the 

“Earth” system [22]; the different results of these schemes, most of which entail additional 

computational parameters unrelated to DFT further complicate the search for first principle 

solutions. In particular, it clouds the search for the actual limitations of DFT and of the 

schemes purporting to correct or to go entirely beyond DFT in studying semiconductor 

materials.  

II. Method 

Our calculations employed the local density functional potential of Ceperley and Alder 

[23], which they obtained by quantum Monte Carlo technique as parametrized by Vosko, 

Wilk, and Nusair [24] and the linear combination of atomic orbitals. The radial parts of these 

orbitals are Gaussian functions. We utilized a program package developed at Department of 

Energy, Ames Laboratory, Iowa [25]. Our calculations are non-relativistic, ground state, ab-

inito and are performed at zero temperature (0oK). The distinctive feature of our approach 

resides in our implementation of the Bagayoko, Zhao, and Williams (BZW) method 

consisting of concomitantly solving self-consistently two coupled equations. One of these 

equations is the Schrödinger type equation of Kohn and Sham [26], referred to as the Kohn-



Sham (KS) equation. The second equation, which can be thought of as a constraint on the KS 

equation, is the one giving the ground state charge density in terms of the wave functions of 

the occupied states. The essentials of the BZW method has been rigorously discussed in 

literature [22,28-30], but the essentials involves carrying out several self consistency 

calculations in search of the optimal basis set, contrary to the use of arbitrary chosen basis set, 

which may not be complete or unduly over-complete.  

In search of the BZW optimal basis set, the rigorous to replicate our results follows. 

Zinc Blende cadmium sulfide (zb-CdS) is a member of the II-VI family, possessing a face 

centered cubic structure in the space group 2 43d
T F m− , with space group number 216 and 

Patterson symmetry 3Fm m  [31]. The zb-CdS unit cell contains two atoms: one cation and one 

anion at positions as indicated between parentheses: ( ): 0,0,0Cd , ( ): 1 4,1 4,1 4S  [32]. 

We carried out six (6) different self-consistent calculations utilizing six (6) different 

basis sets. Table I contains the basis sets utilized for the different six (6) self-consistent 

calculations.  Methodical increase of the basis set shows that calculation V is the one with the 

optimal basis set.  Hence, the electronic structure and related properties presented here were 

obtained with basis set V, the optimal basis set.   

Our self-consistent computations were performed at the experimental lattice constants 

of 5.82 Å [32,33]. In order to know the exact charge transfer between Cd and S, we initially, 

carried out a neutral charge calculation (Cd0 and S0) and found their charges to be +2 for Cd 

and -2 for S. We then, performed ab initio calculation for Cd2+ and S2-. The wavefunctions 

from these calculations were inputs for the solid and band structure calculations. 

A mesh of 28 k points, with proper weights in the irreducible Brillouin zone, was 

employed in the self-consistent (atomic calculations) iterations. A total of 161 weighted k-

points were used in the self-consistent (solid) calculations and a total of 152 weighted k-points 

employed to generate the energy eigenvalues for the electronic density of states, and the k 



points were chosen along the high symmetry points in the Brillouin zone of zb-CdS. The 

electron mass and other related electronic properties were calculated and compared to 

experimental values. 

The high symmetry points utilized in the Brillouin zone are: Σ, Γ and Λ, with the positions for 

the high symmetry points as: 
1 1 1
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2 2 2a
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computational error for the valence charge was about 0.0002177 for 44 electrons, a little greater than 

10-6 per electron. The self-consistent potentials converged to a difference around  

10-5 after about 60 iterations.   

III. Results 

A total of six (6) different basis sets for zb-CdS were employed in the search of the 

optimal basis set. These calculations are merely intended to show that a single trial basis set 

does not generally lead to a correct DFT description of the properties of non-metallic 

materials. Our calculated, ab-initio, self-consistent bands for zb-CdS (Calculation V) are as 

shown in Fig. 1. As per the comparison with experiment, these bands reproduced most 

experimental results both in the valence and conduction band. The calculated width of the 

group of upper valence p bands is 4.31 eV, in basic agreement with the experimentally 

reported value of 4.2 eV [34]. The reported, experimental width [34] of the low laying 

cadmium 4d valence bands of 1.6 0.1± eV is some-what larger than the calculated value of 1.3 

eV. Experiment [6] place these 4d bands between 8-10 eV, our calculated minimum of these 

bands, at Gamma, is 8.39 eV. We also calculated the minimum of the Cd-4d bands at the Γ  

point to be -12.17 eV. Table II shows a detailed comparison between some measured valence 

band eigenvalues [34] and results from our work.  

The comparison plot of the electron energy bands for basis set V (solid lines) and basis 

set VI (dashed lines) is shown in Fig. 2. As can be seen, the eigenvalues of the occupied states 



totally converged within computational error, showing clearly that Calculation V is that with 

the optimal basis set.  

Figs. 3 and 4 show the calculated, total (DOS) and partial (pDOS) density of states.  

We found a peak at 1.61 0.1− ± eV in the valence bands DOS. It is in excellent agreement with 

the experimental value of -1.5 measured by et al [34].  

We predict two other peaks at 2.3 0.1− ±  eV and -3.80 eV for which we could not find 

an experimental value. Our work located peaks for the conduction bands at 5.1 ±  0.1 eV, 

6.5 0.1±  eV, and 8.6 eV. Note that the observed very small differences between our 

calculated eigenvalue energies in the DOS and bands, and that measured by Stampfl et al [33]. 

may be due to the low electron concentration of their samples which ( ( ) 17 35 7 10 cm−
− × , they 

used sample thickness of 100 Å) are known to be a major determinant of electronic properties 

of materials [30]. The calculated electron effective masses in the Γ-Σ, Γ–Λ, and Γ-∆ directions 

are 0.24, 0.27, and 0.27 mo, respectively. The effective mass is a measure of the curvature of 

the calculated bands. The agreement between calculated and measured electronic effective 

masses indicates an accurate determination of the shape of the bands.  We thus, find an 

excellent agreement between our calculated values and measured ones.  

IV. Discussion 

Our calculated electronic properties of zb-CdS provide far better agreement with 

experiment than any other non-BZW theoretical calculations known to us. The above 

agreements between our LDA-BZW results and experimental ones indicate the accurate density 

functional theory description of zb-CdS, provided that one looks for and obtains an optimal basis set 

that is verifiably complete for the description of the ground state, on the one hand, and that is not 

unduly large on the other hand.  



The pseudopotential calculation of Vogel et al. [35] placed the d -band at -6.8 eV,  -

10.5 eV, -9.7 eV with LDA, self-interaction corrected, and self-interaction corrected with 

relaxation calculations respectively. Our calculated position of the d-band below the Fermi 

level is 8.39 eV in basic agreement with experimental values of range 8-10 eV. 

The partial density of states gives the true picture of the various orbitals used in the 

formation of the bands. From Fig. 3, it can be seen that both the valence and conduction bands 

are formed basically by the hybridization between the various cadmium orbitals with almost 

no contribution from the sulfur atom. This shows that the density of states for zb-CdS is 

formed by complex cationic states. The other non-BZW theoretical calculations reported 

energy band gaps in the range of 0.78 eV to as high as 3.70 eV. Our calculated band gap is 

2.39 eV in excellent agreement with experiment.  

V. Conclusion 

We have performed a first principle computational study of the electronic and related 

properties of zb-CdS within density functional theory (DFT). We utilized the local 

combination of atomic orbitals (LCAO) as implemented within the Bagayoko Zhao Williams 

(BZW) formalism to avoid the spurious effect associated with basis sets in calculations 

involving the variational method of the Rayleigh-Ritz type. The electronic band structures, 

effective masses, total and partial densities of states have been calculated from the self-

consistent potentials. The almost perfect agreement between our results and experimental data 

further underscores the high quality of our method.  

Our ab-initio, self-consistent, non-relativistic, ground state LDA-BZW calculations led 

to electronic and related properties that mostly agree with experiment. Specifically, the 

calculated band gap of 2.39 eV is in accord with experiment. Our calculations reproduced 

measured peaks in the conduction band density of state.  These agreements point to the 



accuracy of the density functional description of zb-CdS, provided one utilizes a basis set that 

is complete for the description of the ground state and that is not over-complete.  

The need for the BZW method in self-consistent calculations of electronic properties 

follows from the Rayleigh theorem, particularly for materials where an energy or band gap 

exists between occupied and empty states.  With the method, the prospects seem great for 

DFT to inform and to guide the design and fabrication of semiconductor based devices. 

Further, theory could aid in the search for novel materials with desired properties, including 

binary to quaternary systems.    
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Table I.  Search for the optimal basis sets (Orbital added is in bold), as per the BZW method, for the description 
of the valence states of zinc blende cadmium sulfide (zb-CdS). The optimal basis set is that from Calculation V.  

 
 

Basis 

Set 

Cadmium 

Core 

Sulfur 

Core 

Cadmium Valence Sulfur 

Valence 

Total No. of 

Valence orbitals   

Band Gap 

(eV) 

I 1s2s2p3s3p 1s 3d4s4p4d5s 2s2p3s3p 23 3.06812 

II 1s2s2p3s3p 1s 3d4s4p4d5s5p 2s2p3s3p 26 3.31029 

III 1s2s2p3s3p 1s 3d4s4p4d5s5p6s 2s2p3s3p 27 2.62036 

IV 1s2s2p3s3p 1s 3d4s4p4d5s5p6s5d 2s2p3s3p 32 2.53041 

V 1s2s2p3s3p 1s 3d4s4p4d5s5p6s5d 2s2p3s3p4p 35 2.39026 

VI 1s2s2p3s3p 1s 3d4s4p4d5s5p6s5d 2s2p3s3p4p4s 36 1.78835 

 

 

Table II.  Selected, calculated valence band eigenvalues [E(k) in eV] of zb-CdS as compared to experimental 
data of Stampfl et al. [34]  

Symmetr
y Label  

Level Experiment 
E(k) 

Calculated 
E(k) 

Symmet
ry Label 

Level  Experiment 
E(k) 

Calculated 
E(k) 

Γ  
15Γ  0.00 0.00 W W1 -3.76 

-3.77 

( )12 4dΓ  -9.00 -7.92 W  (4d) -8.9 
-8.08 

( )12 4dΓ  -9.50 -8.39 W  (4d) -9.3 
-8.16 

X X5 -1.54 -1.88 K K3 ?? -1.52 

X3 -3.70 -3.80 K1 -3.76 -3.73 

X12 (4d) -8.86 -8.06 K  (4d) -8.90 -8.12 

X12 (4d) -9.30 -8.15 K  (4d) -9.30 -8.20 

X1 -13.85 -11.70 

L L3 -0.62 -0.73 

L1 -4.20 -4.31 

L (4d) -9.25 -7.89 

L (4d) -9.85 -8.27 

 



 

Fig. 1.  The calculated electronic energy bands of zb-CdS, from Calculation V. 

 

 

 

Fig. 2.  The calculated electronic energy bands of zb-CdS from Calculations V (full lines) and VI (dashed lines). 
The occupied energies from Calculations V and VI are equal for any k-point. 



 

Fig. 3. The calculated density of states (DOS) of zb-CdS, obtained with the BZW optimal basis set (i.e. 

Calculation V).  

 

 

Fig. 14. The calculated partial density of states (pDOS) of zb-CdS, obtained with the BZW optimal basis set (i.e. 

Calculation V).  


