ON A CONJECTURE OF A BOUND FOR THE EXPONENT OF THE SCHUR MULTIPLIER OF A FINITE p-GROUP

B. MASHAYEKHY*, A. HOKMABADI AND F. MOHAMMADZADEH

Communicated by

Abstract

Let G be a p-group of nilpotency class k with finite $\operatorname{exponent} \exp (G)$ and let $m=\left\lfloor\log _{p} k\right\rfloor$. We show that $\exp \left(M^{(c)}(G)\right)$ divides $\exp (G) p^{m(k-1)}$, for all $c \geq 1$, where $M^{(c)}(G)$ denotes the cnilpotent multiplier of G. This implies that $\exp (M(G))$ divides $\exp (G)$ for all finite p-groups of class at most $p-1$. Moreover, we show that our result is an improvement of some previous bounds for the exponent of $M^{(c)}(G)$ given by M. R. Jones, G. Ellis and P. Moravec in some cases.

1. Introduction and Motivation

Let a group G be presented as a quotient of a free group F by a normal subgroup R. Then the c-nilpotent multiplier of G (the Baer invariant of G with respect to the variety of nilpotent group of class at most c) is defined to be

$$
M^{(c)}(G)=\frac{R \cap \gamma_{c+1}(F)}{\left[R,{ }_{c} F\right]},
$$

[^0]where $\left[R,{ }_{c} F\right]$ denotes the commutator subgroup $[R, \underbrace{F, \ldots, F}_{c-\text { times }}]$ and $c \geq 1$. The case $c=1$ which has been much studied is the Schur multiplier of G, denoted by $M(G)$. When G is finite, $M(G)$ is isomorphic to the second cohomology group $H^{2}\left(G, \mathbb{C}^{*}\right)$ (see G. Karpilovsky [6] and C. R. Leedham-Green and S. McKay [8] for further details).

It has been interested to finding a relation between the exponent of $M^{(c)}(G)$ and the exponent of G. Let G be a finite p-group of nilpotency class $k \geq 2$ with $\operatorname{exponent} \exp (G)$. M. R. Jones [5] proved that $\exp (M(G))$ divides $\exp (G)^{k-1}$. This has been improved by G. Ellis [3] who showed that $\exp \left(M^{(c)}(G)\right)$ divides $\exp (G)^{\lceil k / 2\rceil}$, where $\lceil k / 2\rceil$ denotes the smallest integer n such that $n \geq k / 2$. For $c=1$, P. Moravec [11] showed that $\lceil k / 2\rceil$ can be replaced by $2\left\lfloor\log _{2} k\right\rfloor$ which is an improvement if $k \geq 11$.

In this paper we will show that if G is a finite exponent p-group of class $k \geq 1$, then $\exp \left(M^{(c)}(G)\right)$ divides $\exp (G) p^{m(k-1)}$, for all $c \geq 1$, where $m=\left\lfloor\log _{p} k\right\rfloor$. Note that this result is an improvement of the results of Jones, Ellis and Moravec if $\left\lfloor\log _{p} k\right\rfloor(k-1) / k<e,\left\lfloor\log _{p} k\right\rfloor(k-$ 1) $/\lceil k / 2\rceil-1<e,\left\lfloor\log _{p} k\right\rfloor(k-1) / 2\left\lfloor\log _{2} k\right\rfloor-1<e$, respectively, where $\exp (G)=p^{e}$.

It was a longstanding open problem as to wether $\exp (M(G))$ divides $\exp (G)$ for every finite group G. In fact it was conjectured that the exponent of the Schur multiplier of a finite p-group is a divisor of the exponent of the group itself. I. D. Macdonld and J. W. Wamsley [1] constructed an example of a group of order 2^{21} which has exponent 4 , whereas its Schur multiplier has exponent 8, hence the conjecture is not true in general. Also Moravec [12] gave an example of a group of order 2048 and nilpotency class 6 which has exponent 4 and multiplier of exponent 8. He also proved that if G is a group of exponent 4, then $\exp (M(G))$ divides 8 . Nevertheless, Jones [5] has shown that the conjecture is true for p-groups of class 2 and emphasized that it is true for some p-groups of class 3. S. Kayvanfar and M. A. Sanati [7] have proved the conjecture for p-groups of class 4 and 5 , with some conditions. A. Lubotzky and A. Mann [9] showed that the conjecture is true for powerful p-groups. The first and the third authors [10] showed that the conjecture is true for nilpotent multipliers of powerful p-groups. Finally, Moravec [11, 12] showed that the conjecture is true for metabelian groups of exponent p, p-groups with potent filtration and p-groups of maximal
class. Note that a consequence of our result shows that the conjecture is true for all finite p-groups of class at most $p-1$.

2. Preliminaries

In this section, we are going to recall some notions we will use in the next section.

Definition 2.1. (M. Hall [4]). Let X be an independent subset of a free group, and select an arbitrary total order for X. We define the basic commutators on X, their weight wt, and the ordering among them as follows:
(1) The elements of X are basic commutators of weight one, ordered according to the total order previously chosen.
(2) Having defined the basic commutators of weight less than n, the basic commutators of weight n are the $c_{k}=\left[c_{i}, c_{j}\right]$, where:
(a) c_{i} and c_{j} are basic commutators and $w t\left(c_{i}\right)+w t\left(c_{j}\right)=n$, and
(b) $c_{i}>c_{j}$, and if $c_{i}=\left[c_{s}, c_{t}\right]$, then $c_{j} \geq c_{t}$.
(3) The basic commutators of weight n follow those of weight less than n. The basic commutators of weight n are ordered among themselves lexicographically; that is, if $\left[b_{1}, a_{1}\right]$ and $\left[b_{2}, a_{2}\right]$ are basic commutators of weight n, then $\left[b_{1}, a_{1}\right] \leq\left[b_{2}, a_{2}\right]$ if and only if $b_{1}<b_{2}$ or $b_{1}=b_{2}$ and $a_{1}<a_{2}$.

Lemma 2.2. (R. R. Struik [13]). Let $x_{1}, x_{2}, \ldots, x_{r}$ be any elements of a group and let v_{1}, v_{2}, \ldots be the sequence of basic commutators of weight at least two in the x_{i} 's, in ascending order. Then

$$
\left(x_{1} x_{2} \ldots x_{r}\right)^{\alpha}=x_{i_{1}}^{\alpha} x_{i_{2}}^{\alpha} \ldots x_{i_{r}}^{\alpha} v_{1}^{f_{1}(\alpha)} v_{2}^{f_{2}(\alpha)} \ldots v_{i}^{f_{i}(\alpha)} \ldots,
$$

where $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}=\{1,2, \ldots, r\}, \alpha$ is a nonnegative integer and

$$
\begin{equation*}
f_{i}(\alpha)=a_{1}\binom{\alpha}{1}+a_{2}\binom{\alpha}{2}+\ldots+a_{w_{i}}\binom{\alpha}{w_{i}}, \tag{I}
\end{equation*}
$$

with $a_{1}, \ldots, a_{w i} \in \mathbf{Z}$ and w_{i} is the weight of v_{i} in the x_{i} 's.

Lemma 2.3. (Struik [13]). Let α be a fixed integer and G be a nilpotent group of class at most k. If $b_{1}, \ldots, b_{r} \in G$ and $r<k$, then

$$
\left[b_{1}, \ldots, b_{i-1}, b_{i}^{\alpha}, b_{i+1}, \ldots, b_{r}\right]=\left[b_{1}, \ldots, b_{r}\right]^{\alpha} v_{1}^{f_{1}(\alpha)} v_{2}^{f_{2}(\alpha)} \ldots
$$

where v_{i} 's are commutators in b_{1}, \ldots, b_{r} of weight strictly greater than r, and every $b_{j}, 1 \leq j \leq r$, appears in each commutator v_{i}, the v_{i} 's listed in ascending order. The $f_{i}(\alpha)$'s are of the form (I), with $a_{1}, \ldots, a_{w_{i}} \in \mathbf{Z}$ and w_{i} is the weight of v_{i} (in the b_{j} 's) minus $(r-1)$.

Remark 2.4. Outer commutators on the letters $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ are defined inductively as follows:

The letter x_{i} is an outer commutator word of weight one. If $u=$ $u\left(x_{1}, \ldots, x_{s}\right)$ and $v=v\left(x_{s+1}, \ldots, x_{s+t}\right)$ are outer commutator words of weights s and t, then $w\left(x_{1}, \ldots, x_{s+t}\right)=\left[u\left(x_{1}, \ldots, x_{s}\right), v\left(x_{s+1}, \ldots, x_{s+t}\right)\right]$ is an outer commutator word of weight $s+t$ and will be written $w=[u, v]$.

It is noted by Struik [13] that Lemma 2.3 can be proved by a similar method if $\left[b_{1}, . ., b_{i-1}, b_{i}^{\alpha}, b_{i+1}, \ldots, b_{r}\right]$ and $\left[b_{1}, \ldots, b_{r}\right]$ are replaced with outer commutators.

By a routine calculation we have the following useful fact.
Lemma 2.5. Let p be a prime number and k be a nonnegative integer. If $m=\left\lfloor\log _{p} k\right\rfloor$, then p^{t} divides $\binom{p_{k}^{m+t}}{k}$, for all integers $t \geq 1$.

3. Main Results

In order to prove the main result we need the following lemma.
Lemma 3.1. Let G be a p-group of class k and exponent p^{e} with a free presentation F / R. Then for any $c \geq 1$, every outer commutator of weight $w>c$ in $F /\left[R,{ }_{c} F\right]$ has an order dividing $p^{e+m(c+k-w)}$, where $m=\left\lfloor\log _{p} k\right\rfloor$.

Proof. Since $\gamma_{k+1}(F) \subseteq R$, we have $\gamma_{c+k+1}(F) \subseteq\left[R,{ }_{c} F\right]$. Also, for all x in F and $t \geq 0$ we have $x^{p^{e+t}} \in R$ and hence every outer commutator of weight $w>c$ in F, in which $x^{p^{e+t}}$ appears, belongs to $\left[R,{ }_{c} F\right]$. Now we use inverse induction on w to prove the lemma. For the first step, $w=c+k$, the result follows by the above argument and Lemma 2.3. Now assume that the result is true for all $l>w$. Put $\alpha=p^{e+m(c+k-w)}$ and let $u=\left[x_{1}, \ldots, x_{w}\right]$ be an outer commutator of weight w. Then by Lemma 2.3 and Remark 2.4 we have

$$
\left[x_{1}^{\alpha}, \ldots, x_{w}\right]=\left[x_{1}, \ldots, x_{w}\right]^{\alpha} v_{1}^{f_{1}(\alpha)} v_{2}^{f_{2}(\alpha)} \ldots
$$

where the $v_{i}^{f_{i}(\alpha)}$ are as in Lemma 2.3. Note that $w<w_{i}=w t\left(v_{i}\right) \leq c+k$ modulo $\left[R,{ }_{c} F\right]$ and hence $f_{i}(\alpha)=a_{1}\binom{\alpha}{1}+a_{2}\binom{\alpha}{2}+\ldots+a_{w_{i}}\binom{\alpha}{k_{i}}$, where $k_{i}=w_{i}-w+1 \leq c+k-w+1 \leq k$, for all $i \geq 1$. Thus Lemma 2.5 implies that $p^{e+m(c+k-w-1)}$ divides the $f_{i}(\alpha)$'s. Now by induction hypothesis $v_{i}^{f_{i}(\alpha)} \in\left[R,{ }_{c} F\right]$, for all $i \geq 1$. On the other hand, since $x_{1}^{\alpha} \in R$ and $w>c,\left[x_{1}^{\alpha}, \ldots, x_{w}\right] \in\left[R,{ }_{c} F\right]$. Therefore $u^{\alpha} \in\left[R,{ }_{c} F\right]$ and this completes the proof.

Theorem 3.2. Let G be a p-group of class k and exponent p^{e}. Let $G=$ F / R be any free presentation of G. Then the exponent of $\gamma_{c+1}(F) /\left[R,{ }_{c} F\right]$ divides $p^{e+m(k-1)}$, where $m=\left\lfloor\log _{p} k\right\rfloor$, for all $c \geq 1$.

Proof. It is easy to see that every element g of $\gamma_{c+1}(F)$ can be expressed as $g=y_{1} y_{2} \ldots y_{n}$, where y_{i} 's are commutators of weight at least $c+1$. Put $\alpha=p^{e+m(k-1)}$. Now Lemma 2.2 implies the identity

$$
g^{\alpha}=y_{i_{1}}^{\alpha} y_{i_{2}}^{\alpha} \ldots y_{i_{n}}^{\alpha} v_{1}^{f_{1}(\alpha)} v_{2}^{f_{2}(\alpha)} \ldots,
$$

where $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}=\{1,2, \ldots, n\}$ and $v_{i}^{f_{i}(\alpha)}$,s are as in Lemma 2.2. Then the v_{i} 's are basic commutators of weight at least two and at most k in the y_{i} 's modulo $\left[R,{ }_{c} F\right]$ (note that $\gamma_{c+k+1}(F) \subseteq\left[R,{ }_{c} F\right]$). Thus Lemma 2.5 yields that $p^{e+m(k-2)}$ divides the $f_{i}(\alpha)$'s. Hence $v_{i}^{f_{i}(\alpha)} \in$ $\left[R,{ }_{c} F\right]$, for all $i \geq 1$ and $y_{j}^{\alpha} \in\left[R,{ }_{c} F\right]$, for all $1 \leq j \leq n$, by Lemma 3.1. Therefore we have $g^{\alpha} \in\left[R,{ }_{c} F\right]$ and the desired result now follows.

Now, we are in a position to state and prove the main result of the paper.

Theorem 3.3. Let G be a p-group of class k and exponent p^{e}. Then $\exp \left(M^{(c)}(G)\right)$ divides $\exp (G) p^{m(k-1)}$, where $m=\left\lfloor\log _{p} k\right\rfloor$, for all $c \geq 1$.

Proof. Let $G=F / R$ be any free presentation of G. Then $M^{(c)}(G) \leq$ $\gamma_{c+1}(F) /\left[R,{ }_{c} F\right]$. Therefore $\exp \left(M^{(c)}(G)\right)$ divides $\exp \left(\gamma_{c+1}(F) /\left[R,{ }_{c} F\right]\right)$. Now the result follows by Theorem 2.3.

Note that the above result improves some previous bounds for the exponent of $M(G)$ and $M^{(c)}(G)$ as follows.
Let G be a p-group of class k and exponent p^{e}, then we have the following improvements.
(i) If $\left\lfloor\log _{p} k\right\rfloor(k-1) / k<e$, then $\exp (G) p^{\left\lfloor\log _{p} k\right\rfloor(k-1)}<\exp (G)^{k-1}$. Hence in this case our result is an improvement of Jones's result [5]. In particular our result improves the Jones's one for every p-group of exponent p^{e} and of class at most $p^{e}-1$.
(ii) If $\left\lfloor\log _{p} k\right\rfloor(k-1) /\lceil k / 2\rceil-1<e$, then $\exp (G) p^{\left\lfloor\log _{p} k\right\rfloor(k-1)}<$ $\exp (G)^{\lceil k / 2\rceil}$ which shows that in this case our result is an improvement of Ellis's result [3]. In particular our result improves the Ellis's one for every p-group of exponent p^{e} and of class $k<p^{e / 3}$, for all $k \geq 3$, or of class $k<p^{e / 4}$, for all $k \geq 4$.
(iii) If $\left\lfloor\log _{p} k\right\rfloor(k-1) / 2\left\lfloor\log _{2} k\right\rfloor-1<e$, then $\exp (G) p^{\left\lfloor\log _{p} k\right\rfloor(k-1)}<$ $\exp (G)^{2\left\lfloor\log _{2} k\right\rfloor}$. Thus in this case our result is an improvement of Moravec's result [11]. In particular our result improves the Moravec's one for every p-group of exponent p^{e} and of class $k<e$, for all $k \geq 2$.

Corollary 3.4. Let G be a finite p-group of class at most $p-1$, then $\exp \left(M^{(c)}(G)\right)$ divides $\exp (G)$, for all $c \geq 1$. In particular $\exp (M(G))$ divides $\exp (G)$.

Note that the above corollary shows that the mentioned conjecture on the exponent of the Schur multiplier of a finite p-group holds for all finite p-group of class at most $p-1$.

Remark 3.5. Let G be a finite nilpotent group of class k. Then G is the direct product of its Sylow subgroups, $G=S_{p_{1}} \times \cdots \times S_{p_{n}}$. Clearly

$$
\exp (G)=\prod_{i=1}^{n} \exp \left(S_{p_{i}}\right)
$$

By a result of G. Ellis [2, Theorem 5] we have

$$
M^{(c)}(G)=M^{(c)}\left(S_{p_{1}}\right) \times \cdots \times M^{(c)}\left(S_{p_{n}}\right)
$$

For all $1 \leq i \leq n$, put $m_{i}=\left\lfloor\log _{p_{i}} k\right\rfloor$. Then by Theorem 3.3 we have

$$
\exp \left(M^{(c)}(G)\right) \mid \exp (G) \prod_{i=1}^{n} p_{i}^{m_{i}(k-1)}
$$

Hence the conjecture on the exponent of the Schur multiplier holds for all finite nilpotent group G of class at $\operatorname{most} \operatorname{Max}\left\{p_{1}-1, \ldots, p_{n}-1\right\}$, where p_{1}, \ldots, p_{n} are all the distinct prime divisors of the order of G.

Acknowledgments

The authors would like to thank the referee for useful comments.

References

[1] A. J. Bayes, J. Kautsky and J. W. Wamsley, Computation in nilpotent groups (application), in: Proc. 2nd Internat. Conf. Theory of Groups, in: Lecture Notes in Math. Vol. 372, Springer-Verlag (1973) 82-89.
[2] G. Ellis, On groups with a finite nilpotent central quotient, Arch. der Math. 70 (1998) 89-96.
[3] G. Ellis, On the relation between upper central quotients and lower central series of a group, Trans. Amer. Soc. 353 (2001) 4219-4234.
[4] M. Hall, The Theory of Groups, Macmillian Company, New York, 1959.
[5] M. R. Jones, Some inequalities for the multiplicator of finite group II, Proc. Amer. Math. Soc. 45 (1974) 167-172.
[6] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs, New Series 2, Oxford University Press, Oxford, 1987.
[7] S. Kayvanfar and M. A. Sanati, A bound for the exponent of the Schur multiplier of some finite p-groups, Bull. Iranian Math. Soc. 26 (2) (2000) 89-95.
[8] C. R. Leedham-Green and S. McKay, Baer-invariant, Isologism, varietal laws and homology, Acta Math. 137 (1976) 99-150.
[9] A. Lubotzky and A. Mann, Powerful p-groups. I. Finite Groups., J. Algebra 105 (1987) 484-505.
[10] B. Mashayekhy and F. Mohammadzadeh, Some inequalities for nilpotent multipliers of powerful p-groups, Bull. Iranian Math. Soc. 33 (2) (2007) 61-71.
[11] P. Moravec, Schur multipliers and power endomorphisms of groups, J. Algebra 308 (2007) 12-25.
[12] P. Moravec, On pro p-groups with potent filtrations, J. Algebra 322 (2009) 254258.
[13] R. R. Struik, On nilpotent product of cyclic groups, Canada. J. Math. 12 (1960) 447-462.

Behrooz Mashayekhy

Center of Excellence in Analysis on Algebraic Structures,
Department of Pure Mathematics, Ferdowsi University of Mashhad,
P. O. Box 1159-91775, Mashhad, Iran.

Email: mashaf@math.um.ac.ir

Azam Hokmabadi

Department of Mathematics, Payame Noor University, Iran.
Email: hokmabadi-ah@yahoo.com

Fahimeh Mohammadzadeh
Department of Mathematics, Payame Noor University, Ahvaz, Iran.
Email: fa36407@yahoo.com

[^0]: This research was supported by a grant from Ferdowsi University of Mashhad; (No. MP87150MSH).
 MSC(2000): Primary: 20C25, 20D15; Secondary: 20E10, 20F12.
 Keywords: Schur multiplier, Nilpotent multiplier, Exponent, Finite p-groups.
 Received: April 17, 2009, Accepted: August 1, 2010.
 *Corresponding author
 (C) 2010 Iranian Mathematical Society.

