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Group Width

Michael H. Freedman

Abstract

There are many “minimax” complexity functions in math-
ematics: width of a tree or a link, Heegaard genus of a
3-manifold, the Cheeger constant of a Riemannian mani-
fold. We define such a function w, “width”, on countable
(or finite) groups and show w(Zk) = k − 1.

Let K be a countable (or finite) simplicial complex and give the real line R the cell structure with the
integers Z ⊂ R the vertices. Abusing the usual terminology, we call any simplicial map f : K → R “morse.”

Definition 1. Connected width rank, cwr(K) := minf ,morse maxi∈Z rank(inc#(π1C)), where C is some
connected component of f−1[i, i + 1], and rank means the smallest number of generators of a given group.
The inclusion is C ⊂ K, and inc#(π1C) is a subgroup of π1K.

Definition 2. Given a countable group G, its width, w(G), is the minimum of cwr(K) over all K with
π1(K) ∼= G.

Clearly free groups and only free groups have width zero and surface groups width one. Let’s work out
w(Zk), the width of the free abelian group. Consider f : K → R with π1(K) ∼= Z

k. Define the quotient
(bipartite) graph Qf by taking a blue vertex for each connected component of f−1(i) and a red vertex for
each component of f−1[i, i+ 1], i ∈ Z, and drawing edges to indicate including the former into the latter.

There is an induced map θ : K → Qf and an epimorphism of groups:

π1K ։ π1Qf ,

so in our case: π1K ∼= Z
k
1 , and Qf is either contractible (a tree) or Qf ≃ S1, the circle.

First consider the case Qf ≃ pt. Take a minimal connected subgraph p ⊂ Qf so that H1(θ
−1(p);Q) →

H1(K,Q) is onto, where Q denotes the rationals. To define “minimal” we order subgraphs by inclusion. We
show that any such p is a single vertex. Suppose that p is minimal but larger than a single vertex. Cut p
at the midpoint of some edge e to obtain the complementary subtrees p1, p2 ⊂ p. Let the inverse images
under α be P1, P2 ⊂ P . Applying the Q-homology Mayer-Vietoris sequence to the inclusions (and using
connectivity of P1 ∩ P2), we find that there are classes b1 ∈ H1(P1;Q) and b2 ∈ H1(P2;Q) so that image(b1)
and image(H1(P2;Q)) are rationally independent in H1(K;Q) and image(b2) and image(H1(P1;Q)) are also
independent in H1(K;Q). Let β1(β2) ⊂ P1(P2) be corresponding loops carrying b1(b2). The commutation
of β1 and β2 in π1(K) conflicts usefully with the following lemma. Let T+ be the Z-torus S1 × S1 with
“flanges” glued to the factor circles:

T+ = S1 × S1
⋃

x×∗≡x×∗×0

S1 × ∗ × [0, 1]
⋃

∗×x≡∗×x×0

∗ × S1 × [0, 1],

Denote S1 × ∗ × 1 by α1 and ∗ × S1 × 1 by α2.
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Lemma 3. It is not possible to cover T+ by open sets U1 and U2 with α1 ∈ U1 and α2 ∈ U2 with
image(H1(U1, Q)) ⊂ H1(T

+, Q) and image(H1(U2, Q)) ⊂ H1(T
+, Q), each rank one.

Proof. This is an exercise in Lusternick-Shirleman category. Consider the cup-product diagram:

H1(T+, U1;Q)

i1

��

× H1(T+, U2;Q)

i2

��

// H2(T+, T+;Q) ∼= 0

��

H1(T+;Q) × H1(T+;Q) // H2(T+;Q)

∈ ∈ ∈

[a2]
∗ × [a1]

∗ � // 1

Let [αi]
∗([αj ]) = δij , i, j = 1 or 2. Image(i1) = Span([α2]

∗) and Image(i2) = Span([α1]
∗). The factoring of

the cup product through zero is a contradiction.

Since π1(K) is abelian, there is a map g : T+ → K carrying α1 to β1 and α2 to β2. Taking θ−1,
cutting the edge e divides K into K1 and K2, containing P1 and P2 (resp.). Let K+

1 and K+
2 be homotopy

equivalent open sets containing K1 and K2 (resp.), K+
1 ≃ K1 and K+

2 ≃ K2. Setting Ui = g−1(K+
i ), i = 1, 2,

contradicts the lemma, showing P consists of a single vertex v. Thus if Qf is a tree, a finite index sublattice
L of π1(K) ∼= Z

k must be generated by θ−1(v), and rank(L) = k − 1.
Next consider the case Qf ≃ S1. Again take a minimal p ⊂ Qf . p must contain the essential loop

γ ⊂ Qf , otherwise the epimorphism H1(K,Q)
θ∗
։ H1(Qf ;Q) would factor through a trivial H1(p;Q). By the

preceeding argument, p = γ; we may trim off leaves of Qf by arguing they cannot increase the image in the
rationalized fundamental group, H1(K;Q).

Let vn = v0, v1, ..., vn−1 be the vertices on p and Vn = V0, V1, ..., Vn−1 the θ-preimages. We claim that for
0 ≤ i, j ≤ n− 1, Image(H1(Vi;Z)) = image(H1(Vj ;Z)) ⊂ H1(K). To see this, note that for any loop δ ⊂ Vi,
there is a map of a torus h : S1 × S1 → K with θh(S1 × ∗) parameterizing γ and h(∗ × S1) parameterizing
δ. Using transversality, we may arrange that corresponding to the center point of each edge ê1, ..., ên in p,
h−1(êk) is a 1-manifold in S1 × S1 meeting S1 × ∗ transversely in a single point. These 1-manifolds all (up
to sign) represent the same class inc∗[δ] ∈ H1(K;Z) since they are homologous on S1 × S1.

Using the connectivity of θ−1(vk), k = 0, .., n− 1, and again, the Mayer-Vietoris sequence, we see that
inc∗H1(V0 ∪ γ̃;Q) = H1(K;Q) where γ̃ is some lift of γ, α(γ̃) = γ. Similarly, for all Vk, 1 ≤ k ≤ n− 1. It is
also clear that inc∗[γ̃] and inc∗H1(V0;Q) must be indepedent in H1(K;Q), otherwise a homotopy, in K, of
a multiple of γ̃ into V0, would, under θ, constitute a null homotopy in Qf of a multiple of the essential cycle
γ. Thus inc∗H1(V0;Q) has rank= k − 1 in H1(K;Q).

We have shown that if Qf ≃ ∗, then some component C carries all of π1(K) ⊗ Q ∼= H1(K;Q) and if
Qf ≃ S1 then some component C carries a rank k − 1 subgroup. Since the obvious Morse function on the
k-torus T k exhibits levels carrying a rank k− 1 subspace of H1(T

k,Z) (and has Qf ≡ S1), we conclude that
w(Zk) = k − 1.

Extensions

For a finite abelian group A, w(A) = rank(A). The proof is similar to the computation of w(Zk) except
for two modifications. First, Qf is now certainly a tree so only that case requires generalization. Second, in
all computations, the rationals Q should be replaced with the field Z/qZ, where q is a prime contained in
the factorization of order(A) at least as often as any other prime.

Combining the arguments for both free and torsion cases, one finds that for a finitely generated, but
infinite, abelian group B, that w(B) = rank(B)− 1.

It is easy to say a little more about finite groups: a finite group F of width one is cyclic. To prove this,
assume π1(K) ∼= F and f : K → R exhibits the width of F to be one. Choose a maximal subtree p ⊂ Qf

with respect to the property that π1(P ) has cyclic image X in π1(K), where P = θ−1(p). Let p+ be p
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union an adjacent 1-simplex e of Qf and let P+ = θ−1(p+). Write P+ = P ∪ C, where C = θ−1(e). Note
image(π1(P

+)) = H ⊂ π1(K) is not cyclic, but image(π1(C)) =: Y ⊂ F is cyclic. Let Z ⊂ F be the cyclic
group Z = X ∩ Y ⊂ F and let G := X ∗

Z
Y be the abstract free product with amalgamation. There is an

epimorphism γ : G ։ H . Since G is infinite and H is finite, there must be a nontrivial relation R ∈ kerγ.
Since Z ∩ kerγ = {id.}, R can be written as a cyclically reduced word alternating “letters” from X \ Z and
Y \Z. Think of R as a map R : D2 → K, which on the boundary maps to a wedge of circles S1

∨
S1, the first

summand lying in P and the second summand in C. Make R transverse to P ∩C and consider an innermost
arc ω ⊂ D2, ω ⊂ R−1(P ∩ C). The subdisk ∆ ⊂ D2 between ω and ∂D2 determines a (pointed) homotopy
of some “letter” of R into P ∩C. Since image(π1(P ∩C)) ⊂ Z ⊂ F , this contradicts the form of R, i.e. that
its “letters” lie in (X \ Z) ∐ (Y \ Z). It follows that p = Qf and F = π1(K) is cyclic.

Formal width properties include:

w(G1 ×G2) ≤ w(G1)× rank(G2)

and
w(G1 ∗G2) = max{w(G1), w(G2)}.

To prove the latter, given f : K → R with π1(K) ∼= G1 ∗G2, one may precompose with the covering
δj : Kj → K, π1(Kj) ∼= Gj , to obtain fj = f ◦ δj , j = 1 or 2. By Grushko’s decomposition theorem,
for any connected component Cj of f−1

j [i, i + 1], the image Hj of π1(Cj) in π1(K) is a free summand of
the corresponding image H of π1(C) in π1(K), where C = δj(Cj). Consequently, rank(Hj) ≤ rank(H),
establishing w(G1 ∗G2) ≥ max{w(G1), w(G2)}. The opposite inequality is immediate.

Applications

The computation w(Zk) = k − 1 immediately gives negative answers to two MathOverflow questions:
mathoverflow.net/questions/30567/ and mathoverflow.net/questions/42629/. More specifically, for dimen-
sion d ≥ consider a smooth closed d-manifold M with π1(M) = Z

k. Any Morse function on M must have
some connected component C of some level with first Betti number b1(C) ≥ k − 1. If one is interested in
generic levels, notice that any non-generic level is homotopy equivalent to a generic level union a single cell,
impying b1(C) ≥ k − 2 for some connected component of some generic level.

Secondly, if M is divided up into connected “blocks” along codimension= 1 manifold faces, at least one
block must have b1(block) ≥ k − 1 (blocks will map to red vertices, their faces to blue in our notation).
Product collars can be added along faces to build a simplicial Morse function M → R as in Definition 1,
with all blocks corresponding to components C. Thus general d manifolds cannot be cut into simple pieces,
comprising only a finite number nd of diffeomorphism types, with purely (d− 1)-manifold cuts, as was asked.
If the (second) question, instead, permitted gluing along codimension one and two faces, it would not be
touched by this group theoretic method and appears open. Also restricting the question to simply connected
manifolds would require some new method.
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