Group Width

Michael H. Freedman

Abstract

There are many "minimax" complexity functions in mathematics: width of a tree or a link, Heegaard genus of a 3-manifold, the Cheeger constant of a Riemannian manifold. We define such a function w, "width", on countable (or finite) groups and show $w\left(\mathbb{Z}^{k}\right)=k-1$.

Let K be a countable (or finite) simplicial complex and give the real line \mathbb{R} the cell structure with the integers $\mathbb{Z} \subset \mathbb{R}$ the vertices. Abusing the usual terminology, we call any simplicial map $f: K \rightarrow \mathbb{R}$ "morse."

Definition 1. Connected width rank, $\operatorname{cwr}(K):=\min _{f}$, morse $\max _{i \in \mathbb{Z}} \operatorname{rank}\left(i n c_{\#}\left(\pi_{1} C\right)\right)$, where C is some connected component of $f^{-1}[i, i+1]$, and rank means the smallest number of generators of a given group. The inclusion is $C \subset K$, and $i n c_{\#}\left(\pi_{1} C\right)$ is a subgroup of $\pi_{1} K$.

Definition 2. Given a countable group G, its width, $w(G)$, is the minimum of $c w r(K)$ over all K with $\pi_{1}(K) \cong G$.

Clearly free groups and only free groups have width zero and surface groups width one. Let's work out $w\left(\mathbb{Z}^{k}\right)$, the width of the free abelian group. Consider $f: K \rightarrow \mathbb{R}$ with $\pi_{1}(K) \cong \mathbb{Z}^{k}$. Define the quotient (bipartite) graph Q_{f} by taking a blue vertex for each connected component of $f^{-1}(i)$ and a red vertex for each component of $f^{-1}[i, i+1], i \in \mathbb{Z}$, and drawing edges to indicate including the former into the latter.

There is an induced map $\theta: K \rightarrow Q_{f}$ and an epimorphism of groups:

$$
\pi_{1} K \rightarrow \pi_{1} Q_{f}
$$

so in our case: $\pi_{1} K \cong \mathbb{Z}_{1}^{k}$, and Q_{f} is either contractible (a tree) or $Q_{f} \simeq S^{1}$, the circle.
First consider the case $Q_{f} \simeq p t$. Take a minimal connected subgraph $p \subset Q_{f}$ so that $H_{1}\left(\theta^{-1}(p) ; Q\right) \rightarrow$ $H_{1}(K, Q)$ is onto, where Q denotes the rationals. To define "minimal" we order subgraphs by inclusion. We show that any such p is a single vertex. Suppose that p is minimal but larger than a single vertex. Cut p at the midpoint of some edge e to obtain the complementary subtrees $p_{1}, p_{2} \subset p$. Let the inverse images under α be $P_{1}, P_{2} \subset P$. Applying the Q-homology Mayer-Vietoris sequence to the inclusions (and using connectivity of $\left.P_{1} \cap P_{2}\right)$, we find that there are classes $b_{1} \in H_{1}\left(P_{1} ; Q\right)$ and $b_{2} \in H_{1}\left(P_{2} ; Q\right)$ so that image $\left(b_{1}\right)$ and image $\left(H_{1}\left(P_{2} ; Q\right)\right)$ are rationally independent in $H_{1}(K ; Q)$ and image $\left(b_{2}\right)$ and image $\left(H_{1}\left(P_{1} ; Q\right)\right)$ are also independent in $H_{1}(K ; Q)$. Let $\beta_{1}\left(\beta_{2}\right) \subset P_{1}\left(P_{2}\right)$ be corresponding loops carrying $b_{1}\left(b_{2}\right)$. The commutation of β_{1} and β_{2} in $\pi_{1}(K)$ conflicts usefully with the following lemma. Let T^{+}be the \mathbb{Z}-torus $S^{1} \times S^{1}$ with "flanges" glued to the factor circles:

$$
T^{+}=S^{1} \times S^{1} \bigcup_{x \times * \equiv x \times * \times 0} S^{1} \times * \times[0,1] \bigcup_{* \times x \equiv * \times x \times 0} * \times S^{1} \times[0,1]
$$

Denote $S^{1} \times * \times 1$ by α_{1} and $* \times S^{1} \times 1$ by α_{2}.

Lemma 3. It is not possible to cover T^{+}by open sets \mathcal{U}_{1} and \mathcal{U}_{2} with $\alpha_{1} \in \mathcal{U}_{1}$ and $\alpha_{2} \in \mathcal{U}_{2}$ with image $\left(H_{1}\left(\mathcal{U}_{1}, Q\right)\right) \subset H_{1}\left(T^{+}, Q\right)$ and image $\left(H_{1}\left(\mathcal{U}_{2}, Q\right)\right) \subset H_{1}\left(T^{+}, Q\right)$, each rank one.
Proof. This is an exercise in Lusternick-Shirleman category. Consider the cup-product diagram:

Ψ
$\left[a_{2}\right]^{*} \quad \times$

Let $\left[\alpha_{i}\right]^{*}\left(\left[\alpha_{j}\right]\right)=\delta_{i j}, i, j=1$ or 2 . Image $\left(i_{1}\right)=\operatorname{Span}\left(\left[\alpha_{2}\right]^{*}\right)$ and Image $\left(i_{2}\right)=\operatorname{Span}\left(\left[\alpha_{1}\right]^{*}\right)$. The factoring of the cup product through zero is a contradiction.

Since $\pi_{1}(K)$ is abelian, there is a map $g: T^{+} \rightarrow K$ carrying α_{1} to β_{1} and α_{2} to β_{2}. Taking θ^{-1}, cutting the edge e divides K into K_{1} and K_{2}, containing P_{1} and P_{2} (resp.). Let K_{1}^{+}and K_{2}^{+}be homotopy equivalent open sets containing K_{1} and K_{2} (resp.), $K_{1}^{+} \simeq K_{1}$ and $K_{2}^{+} \simeq K_{2}$. Setting $\mathcal{U}_{i}=g^{-1}\left(K_{i}^{+}\right), i=1,2$, contradicts the lemma, showing P consists of a single vertex v. Thus if Q_{f} is a tree, a finite index sublattice L of $\pi_{1}(K) \cong \mathbb{Z}^{k}$ must be generated by $\theta^{-1}(v)$, and $\operatorname{rank}(L)=k-1$.

Next consider the case $Q_{f} \simeq S^{1}$. Again take a minimal $p \subset Q_{f} . p$ must contain the essential loop $\gamma \subset Q_{f}$, otherwise the epimorphism $H_{1}(K, Q) \xrightarrow{\theta_{*}} H_{1}\left(Q_{f} ; Q\right)$ would factor through a trivial $H_{1}(p ; Q)$. By the preceeding argument, $p=\gamma$; we may trim off leaves of Q_{f} by arguing they cannot increase the image in the rationalized fundamental group, $H_{1}(K ; Q)$.

Let $v_{n}=v_{0}, v_{1}, \ldots, v_{n-1}$ be the vertices on p and $V_{n}=V_{0}, V_{1}, \ldots, V_{n-1}$ the θ-preimages. We claim that for $0 \leq i, j \leq n-1$, Image $\left(H_{1}\left(V_{i} ; \mathbb{Z}\right)\right)=\operatorname{image}\left(H_{1}\left(V_{j} ; \mathbb{Z}\right)\right) \subset H_{1}(K)$. To see this, note that for any loop $\delta \subset V_{i}$, there is a map of a torus $h: S^{1} \times S^{1} \rightarrow K$ with $\theta h\left(S^{1} \times *\right)$ parameterizing γ and $h\left(* \times S^{1}\right)$ parameterizing δ. Using transversality, we may arrange that corresponding to the center point of each edge $\widehat{e_{1}}, \ldots, \widehat{e_{n}}$ in p, $h^{-1}\left(\widehat{e_{k}}\right)$ is a 1-manifold in $S^{1} \times S^{1}$ meeting $S^{1} \times *$ transversely in a single point. These 1-manifolds all (up to sign) represent the same class $i n c_{*}[\delta] \in H_{1}(K ; \mathbb{Z})$ since they are homologous on $S^{1} \times S^{1}$.

Using the connectivity of $\theta^{-1}\left(v_{k}\right), k=0, . ., n-1$, and again, the Mayer-Vietoris sequence, we see that $i n c_{*} H_{1}\left(V_{0} \cup \tilde{\gamma} ; Q\right)=H_{1}(K ; Q)$ where $\tilde{\gamma}$ is some lift of $\gamma, \alpha(\tilde{\gamma})=\gamma$. Similarly, for all $V_{k}, 1 \leq k \leq n-1$. It is also clear that $i n c_{*}[\tilde{\gamma}]$ and $i n c_{*} H_{1}\left(V_{0} ; Q\right)$ must be indepedent in $H_{1}(K ; Q)$, otherwise a homotopy, in K, of a multiple of $\tilde{\gamma}$ into V_{0}, would, under θ, constitute a null homotopy in Q_{f} of a multiple of the essential cycle γ. Thus inc $_{*} H_{1}\left(V_{0} ; Q\right)$ has rank $=k-1$ in $H_{1}(K ; Q)$.

We have shown that if $Q_{f} \simeq *$, then some component C carries all of $\pi_{1}(K) \otimes Q \cong H_{1}(K ; Q)$ and if $Q_{f} \simeq S^{1}$ then some component C carries a rank $k-1$ subgroup. Since the obvious Morse function on the k-torus T^{k} exhibits levels carrying a rank $k-1$ subspace of $H_{1}\left(T^{k}, \mathbb{Z}\right)$ (and has $Q_{f} \equiv S^{1}$), we conclude that $w\left(\mathbb{Z}^{k}\right)=k-1$.

Extensions

For a finite abelian group $A, w(A)=\operatorname{rank}(A)$. The proof is similar to the computation of $w\left(\mathbb{Z}^{k}\right)$ except for two modifications. First, Q_{f} is now certainly a tree so only that case requires generalization. Second, in all computations, the rationals Q should be replaced with the field $\mathbb{Z} / q \mathbb{Z}$, where q is a prime contained in the factorization of $\operatorname{order}(A)$ at least as often as any other prime.

Combining the arguments for both free and torsion cases, one finds that for a finitely generated, but infinite, abelian group B, that $w(B)=\operatorname{rank}(B)-1$.

It is easy to say a little more about finite groups: a finite group F of width one is cyclic. To prove this, assume $\pi_{1}(K) \cong F$ and $f: K \rightarrow \mathbb{R}$ exhibits the width of F to be one. Choose a maximal subtree $p \subset Q_{f}$ with respect to the property that $\pi_{1}(P)$ has cyclic image X in $\pi_{1}(K)$, where $P=\theta^{-1}(p)$. Let p^{+}be p
union an adjacent 1-simplex e of Q_{f} and let $P^{+}=\theta^{-1}\left(p^{+}\right)$. Write $P^{+}=P \cup C$, where $C=\theta^{-1}(e)$. Note image $\left(\pi_{1}\left(P^{+}\right)\right)=H \subset \pi_{1}(K)$ is not cyclic, but image $\left(\pi_{1}(C)\right)=: Y \subset F$ is cyclic. Let $Z \subset F$ be the cyclic group $Z=X \cap Y \subset F$ and let $G:=X{ }_{Z}^{*} Y$ be the abstract free product with amalgamation. There is an epimorphism $\gamma: G \rightarrow H$. Since G is infinite and H is finite, there must be a nontrivial relation $R \in \operatorname{ker} \gamma$. Since $Z \cap \operatorname{ker} \gamma=\{i d\},$.$R can be written as a cyclically reduced word alternating "letters" from X \backslash Z$ and $Y \backslash Z$. Think of R as a map $R: D^{2} \rightarrow K$, which on the boundary maps to a wedge of circles $S^{1} \bigvee S^{1}$, the first summand lying in P and the second summand in C. Make R transverse to $P \cap C$ and consider an innermost arc $\omega \subset D^{2}, \omega \subset R^{-1}(P \cap C)$. The subdisk $\Delta \subset D^{2}$ between ω and ∂D^{2} determines a (pointed) homotopy of some "letter" of R into $P \cap C$. Since image $\left(\pi_{1}(P \cap C)\right) \subset Z \subset F$, this contradicts the form of R, i.e. that its "letters" lie in $(X \backslash Z) \amalg(Y \backslash Z)$. It follows that $p=Q_{f}$ and $F=\pi_{1}(K)$ is cyclic.

Formal width properties include:

$$
w\left(G_{1} \times G_{2}\right) \leq w\left(G_{1}\right) \times \operatorname{rank}\left(G_{2}\right)
$$

and

$$
w\left(G_{1} * G_{2}\right)=\max \left\{w\left(G_{1}\right), w\left(G_{2}\right)\right\}
$$

To prove the latter, given $f: K \rightarrow \mathbb{R}$ with $\pi_{1}(K) \cong G_{1} * G_{2}$, one may precompose with the covering $\delta_{j}: K_{j} \rightarrow K, \pi_{1}\left(K_{j}\right) \cong G_{j}$, to obtain $f_{j}=f \circ \delta_{j}, j=1$ or 2 . By Grushko's decomposition theorem, for any connected component C_{j} of $f_{j}^{-1}[i, i+1]$, the image H_{j} of $\pi_{1}\left(C_{j}\right)$ in $\pi_{1}(K)$ is a free summand of the corresponding image H of $\pi_{1}(C)$ in $\pi_{1}(K)$, where $C=\delta_{j}\left(C_{j}\right)$. Consequently, $\operatorname{rank}\left(H_{j}\right) \leq \operatorname{rank}(H)$, establishing $w\left(G_{1} * G_{2}\right) \geq \max \left\{w\left(G_{1}\right), w\left(G_{2}\right)\right\}$. The opposite inequality is immediate.

Applications

The computation $w\left(\mathbb{Z}^{k}\right)=k-1$ immediately gives negative answers to two MathOverflow questions: mathoverflow.net/questions/30567/ and mathoverflow.net/questions/42629/. More specifically, for dimension $d \geq$ consider a smooth closed d-manifold M with $\pi_{1}(M)=\mathbb{Z}^{k}$. Any Morse function on M must have some connected component C of some level with first Betti number $b_{1}(C) \geq k-1$. If one is interested in generic levels, notice that any non-generic level is homotopy equivalent to a generic level union a single cell, impying $b_{1}(C) \geq k-2$ for some connected component of some generic level.

Secondly, if M is divided up into connected "blocks" along codimension= 1 manifold faces, at least one block must have b_{1} (block) $\geq k-1$ (blocks will map to red vertices, their faces to blue in our notation). Product collars can be added along faces to build a simplicial Morse function $M \rightarrow \mathbb{R}$ as in Definition 1, with all blocks corresponding to components C. Thus general d manifolds cannot be cut into simple pieces, comprising only a finite number n_{d} of diffeomorphism types, with purely $(d-1)$-manifold cuts, as was asked. If the (second) question, instead, permitted gluing along codimension one and two faces, it would not be touched by this group theoretic method and appears open. Also restricting the question to simply connected manifolds would require some new method.

Acknowledgements

I would like to thank Ian Agol for discussions and the references to MathOverflow.

Microsoft Station Q, University of California, Santa Barbara, CA 93106
Email address: michaelf@microsoft.com

