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Note and calculations concerning elastic dilatancy in 2D glass-glass liquid foams
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When deformed, liquid foams tend to raise their liquid contents like immersed granular materials,
a phenomenon called dilatancy. We have aready described a geometrical interpretation of elastic
dilatancy in 3D foams and in very dry foams squeezed between two solid plates (2D GG foams).
Here, we complement this work in the regime of less dry 2D GG foams. In particular, we highlight
the relatively strong dilatancy effects expected in the regime where we have predicted rapid Plateau
border variations.

PACS numbers: 47.20.Dr, 83.80.Iz, 47.57.Bc, 68.03.Cd

I. DILATANCY IN FOAMS

Liquid foams [1, 2] and granular materials both exhibit
“dilatancy”, described by Reynolds [3] in the context of
granular materials: upon deformation, because grains are
forced to move while avoiding each other, the medium
swells to some extent. In other words, the fluid volume
fraction φ is increased (see Fig. 1). This effect can remain
unnoticed in air. By contrast, a spectacular absorption
of liquid [4] is obtained upon deformation of an immersed
granular sample.

Because bubbles can deform individually, a foam might

liquid content liquid content

deformation deformation

dilatancy ?

FIG. 1: Dilatancy in granular media and in foams. When
a granular material (left), initially in a compact state, is de-
formed, the steric interactions between grains cause the liq-
uid content to rise. By contrast, in a foam (right), because
the bubbles are deformable, the liquid volume fraction may
remain constant. Static dilatancy means that if the liquid
fraction tends to increase due to the applied deformation.
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deform substantially without altering its liquid fraction
(see Fig. 1). Hence, there is a priori no reason why a foam
should display dilatancy. In fact, dilatancy does exist in
foams. This has been shown both experimentally [5] in
the case of “dynamic” dilatancy (caused by a continuous
foam deformation) and theoretically [6–8] in the case of
“elastic” dilatancy (caused by a constant deformation of
the foam).
Dilatancy can be defined [6] in terms of the osmotic

pressure of a foam confined in a container, which corre-
sponds to the force that must be applied externally to
one of the confining walls if the latter is permeable to
the liquid but not to the bubbles. The static dilatancy
coefficient χ reflects the fact that the foam osmotic pres-
sure varies with the deformation ǫ when the fluid volume
fraction φ is kept constant:

χ =
∂2πosm

∂ǫ2

∣

∣

∣

∣

φ

(1)

Surprisingly, this coefficient can be either positive like
in granular materials or negative [6]. In the case of a
negative dilatancy coefficient, deforming the foam results
in a tendency to expell liquid and make the foam dryer.
We have shown that the origin of this change in sign

can be traced back to two different physical contribu-
tions [8]. On the one hand, deforming the foam implies
an increase in the total of all Plateau border lengths in
the sample (in the case of a 2D GG foam [9], these are
the pseudo Plateau borders, i.e., those along the solid
plates). As a result of this increase in length, when the
total amount of liquid is kept constant, the Plateau bor-
ders shrink, which raises the pressure difference between
the gas and the liquid, resulting in an increase of the
osmotic pressure, hence a positive contribution to dila-
tancy. On the other hand, deforming the foam also im-
plies an increase in the total surface area of the gas-liquid
interfaces. Because the interfaces contribute negatively
to the stress tensor in the foam (tensile contribution),
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this has a negative contribution to the osmotic pressure,
and hence, to dilatancy. Because the increase in total
interfacial energy is directly related to the elasticity of
the foam, this negative contribution to dilatancy coeffi-
cient is proportional to the elastic modulus, as shown by
Weaire and Hutzler [6],
In the present work, with this geometrical interpreta-

tion in mind, we conduct the explicit calculation of the
elastic dilatancy of not too dry 2D GG foams (regimes
A, B, C and D). In particular, we highlight the relatively
strong dilatancy effects expected in the regime where we
have predicted rapid Plateau border variations.

II. GEOMETRY OF 2D GG FOAMS: FLOOR

TILE VERSUS PANCAKE REGIME

Let us first choose notations [8, 10] to describe the ge-
ometry of two-dimensional foams squeezed between two
glass plates, called “GG” foams.
We call L the perimeter of the bubble, defined as the

perimeter of the rounded polygon that constitutes the
bubble, as seen from above, and R the corresponding
radius of curvature of the Plateau border (see Fig. 2,
left). We call H the distance between both solid plates,
and Rps the radius of curvature of the pseudo Plateau
borders (see Fig. 2, bottom right). We also call Ω the
average bubble volume, and Ωliq the average volume of
liquid per bubble. The liquid volume fraction φ thus
verifies:

φ =
Ωliq

Ω+ Ωliq
, i.e. Ωliq = Ω

φ

1− φ
. (2)

We assume that Ω remains constant: the applied stresses
are not sufficient to compress the gas phase significantly
unless the bubble size is on the order of a micron.
The main contributions to the quantity of liquid per

bubble are pictured on Fig. 2 and can be calculated from
simple geometrical arguments:

Ωliq ≃ (2− π/2)LR2
ps + (2

√
3− π)R2H (3)

The first term corresponds to the pseudo Plateau bor-
ders, which make the junction between the interbubble
films and the solid plates. As seen from above, they cor-
respond to the light grey regions in Fig. 2. Each portion
of their interfaces has the shape of a quarter of a circu-
lar cylinder (see Fig. 2, bottom right). The second term
in Eq. (3) corresponds to the genuine Plateau borders
(black regions in Fig. 2), whose three contours span an
angle π/3 each.
Eq. (3) indicates that the squeezed 2D foam can be

found in two main regimes depending on volume fraction
and geometry. They are pictured on Fig. 3.

1. When the Plateau border radius R is much larger
than the sample thickness H (regimes A-D of
Fig. 3), each bubble takes the form of a thick “pan-
cake”, and its edge is like a half cylinder with radius
H/2.

R

H

Plateau border

Rps

Rps

R

DR

r1

2R

ε = H − 2Rps

pseudo Plateau border

FIG. 2: Pancake conformation of a bubble squeezed between
two solid plates (distance H): approximate geometry. Left:
top view. The variable L denotes the average perimeter of the
bubbles in such a top view (outer perimeter of the light grey
region). The variable Ω is the volume of the bubble gas (full
thickness of the white region and part of the thickness of the
light grey region), and A is defined as A = Ω/H . The variable
Atot is the total (gas and liquid) projected surface area per
bubble (white and light grey and black regions). The Plateau
rules imply that the angle of the medium grey sector is π/3.
Right: two different cross-sections (side views) with matching
greyscale. As seen from above, the cont act between two
bubbles is typically along a straight line (left). The pseudo
Plateau borders then have a uniform curvature in this region
(radius Rps, see bottom right drawing). By contrast, in the
Plateau border region, the section of the gas-liquid interface
is approximately elliptical in shape (top right drawing), with
radii of curvature r1 at mid-height in the vertical direction
and Rps at the plates, while the radius of curvature at mid-
height in the horizontal direction is R. The width DR of the
curved region is intermediate between Rps and H/2 while r1
is larger than H/2.

φ < φc R < L A R3 > L2 H -

- R3 < L2 H B R2 > LH ΩPb > ΩpPb

ΩPb < ΩpPb R2 < LH C R3 > LH2 -

- R3 < LH2 D R > H pancake

floor tile R < H E L > H 2D

stretched 2D L < H F L2 > H R -

- L2 < H R G L > R φ < φc

TABLE I: Seven regimes for a 2D glass-glass foam. Regimes
A-D correspond to pancake-shaped bubbles, while regime E
corresponds to a foam made of floor tile shaped bubbles.
In regimes C-E, most of the liquid is located in the pseudo
Plateau borders, whereas in regime A and B, the Plateau
borders themselves have a greater volume. The transitions
between regimes A and B, and that between C and D (which
are meaningful as far as dilatancy is concerned) have no sim-
ple geometrical interpretation. Note that regimes F and G,
where the height is larger than the perimeter, do not always
correspond to stable 2D GG foams, as shown in Ref. [11].
But the limit H → ∞ in regime G corresponds to an ideal 2D
foam.



3

Pancake

L/R

L/H

D
C

E

2
D

fo
a
m

Rps ≃ H/2 ≪ R

L
≪

H

D
ry

st
re

tc
h
ed

bubbly liquid

u
n
st

a
b
le

2
D

fo
a
m

G

F

A

B

foam

Floor tile

R = Rps ≪ H

FIG. 3: Regimes of a glass-glass 2D foam with low liquid frac-
tion foam (φ ≪ 1), in terms of the bubble perimeter L, the
Plateau border radius R and the cell height H . The bubble
perimeter L is measured at mid-height of the cell: it is the
outer perimeter of the light grey ribbon in Fig. 2. Such a
foam can be found in two main configurations. In the floor
tile situation (regimes E-G) the pseudo Plateau borders are
much thinner than the cell height (R = Rps ≪ H). By con-
trast, in the pancake regime, although the overall liquid vol-
ume fraction φ is still much smaller than 1, facing pseudo
Plateau borders almost join (H − 2Rps ≪ H ≪ R), and each
bubble has a pancake-like shape. More precisely, when con-
sidering properties such as dilatancy, it is useful to subdivide
the pancake situation into regimes A-D defined by Table I.
The corresponding expressions for the liquid volume fraction
and for dilatancy are indicated on Tables II and III. Note
that regimes F and G, where the height is larger than the
perimeter, do not always correspond to stable 2D GG foams,
as shown in Ref. [11]. The limit of a truly two-dimensional
foam is obtained in regime G with H → ∞.

2. In the reverse limit, the bubbles are shaped more
like “floor tile”, with sharp edges (regime E of
Fig. 3): this time, the Plateau borders are like
fine threads pinned on both solid plates, and each
pseudo Plateau borders resembles a stretched, fine
thread, glued on one of the solid plate and joining
the attachment points of two Plateau borders.

In Fig. 3, we have also pictured regimes F and G: they
are useful to obtain the limit of ideal 2D foams, for
which the solid plates are so far apart that the volume
of the pseudo Plateau borders can be entirely neglected.
Regime G is useful in particular for dilatancy [8] as it
reproduces the negative dilatancy result obtained in the
very dry limit [6]. Note that as shown by Cox, Weaire
and Vaz both analytically and numerically [11], any bub-
bles with less than six neighbours will tend to gather on
one of the solid plates for large separations, thus turn-
ing the foam into a three-dimensional rather than two-
dimensional foam. As a result, in the case where all
bubbles inside the foam have exactly six or more (hence
exactly six) neighbours, the plates can be separated in-
definitely without triggering any rearrangements.
In the pancake regime (A-D), one has Rps ≃ H/2.

Taking into account the elliptical shape of the Plateau
border cross-section taken perpendicularly to the plates
(see Ref. [10] for details), the volume of liquid per bubble
can be expressed as:

ΩABCD
liq ≃ 4− π

8
H2L

[

1− 2H

3R

]

+ (2
√
3− π)R2H (4)

In regimes A and B, the Plateau border contribution
dominates: Ωliq ≃ (2

√
3−π)R2H . Conversely, in regimes

C and D, the pseudo Plateau borders contain most of the
liquid: Ωliq ≃ (1/2− π/8)LH2.
In all three regimes E-G (R ≪ H , floor tile regime),

the radius of curvature Rps of the pseudo Plateau borders
is equal to that of the Plateau borders REFG

ps = R and
Eq. (3) reduces to:

ΩEFG
liq ≃ [(2− π/2)L+ (2

√
3− π)H ]R2 (5)

III. DILATANCY IN THE CD REGIME

In this Section, we focus on regimes C and D, see Fig.3
They are defined by the following conditions:

R2 < LH C R3 > LH2

R3 < LH2 D R > H

Indeed, we have shown that in these regimes, the size of
the Plateau borders change in a particularly rapid man-
ner [10] as a function of volume fraction φ, inter-plate
distance H or bubble size L. We thus expect stronger di-
latancy effects in these two regimes. We will demonstrate
below that it is indeed the case.
In order to conduct the corresponding calculation, our

first aim is to obtain an expression relating the variation
δφ of the liquid volume fraction, the variation δπosm of
the osmotic pressure and the variation δL of the perime-
ter (related to the foam deformation ǫ).
We start from

φCD ≃ 4− π

8

H2L

Ω
(6)

πCD
zz ≃ 2γ

H

πCD
pl ≃ 2

3

γ

R
(7)

which are obtained (in regimes C and D) from Eqs. (A3)
and (C24-C25).
Differentiating Eqs. (A3) and (C24-C25), we obtain:

δ φC =
4− π

8

H2

Ω
δL + (4

√
3− 2π)

RH

Ω
δR, (8)

δ φD =
4− π

8

H2

Ω
δL +

4− π

12

H3L

ΩR2
δR, (9)
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δπzz +
2γ

H
δ φ = −2

3

γ

R2
δR − π

4

γH

Ω
δL,

δπpl +
2γ

R
δ φ = −2

3

γ

R2
δR − π

8

γH

Ω
δL. (10)

Eliminating δR between the equations for δφ and δφ,
we obtain:

δπC
zz,pl +

2

3(4
√
3− 2π)

γΩ

R3H
δφ =

4− π

12(4
√
3− 2π)

γH

R3
δL,

(11)

δπD
zz,pl = − 8

4− π

γΩ

H3L
δφ +

γ

HL
δL. (12)

As shown in Ref. [8], the variation of the perimeter is
related to the foam deformation in the following way, see
Appendix B:

δL

L
=

ǫ2

2
(13)

Then, using

Ω = L2H, (14)

LH2

Ω
=

H

L
≪ 1, (15)

and

LHR

Ω
=

R

L
≪ 1, (16)

we get:

δπC
zz,pl +

2

3(4
√
3− 2π)

γΩ

R3H
δφ =

4− π

24(4
√
3− 2π)

γHL

R3
ǫ2

(17)

δπD
zz,pl +

8

4− π

γΩ

H3L
δφ =

1

2

γ

H
ǫ2 (18)

Setting δφ = 0, we obtain the dilatancy coefficients
defined by Eq. (1), which characterize the immediate
change in osmotic pressure due to the foam deformation:

χC =
4− π

12(4
√
3− 2π)

γHL

R3
, (19)

χD =
γ

H
. (20)

Conversely, setting δπ = 0, we obtain the eventual change
in liquid fraction that results from a deformation ǫ:

δφCD =
4− π

16

H2L

Ω
ǫ2. (21)

Using

φC = φD =
4− π

8

H2L

Ω
, (22)

we get the relative change in liquide volume fraction:

δφ

φ
=

1

2
ǫ2 =

δL

L
. (23)

Quantity Eqs. Value Regimes

pseudo Plateau Rps
H
2

(

1− H
3R

)

ABCD

border radius Ref. [10] R EFG

volume (2
√
3− π)R2 H ABFG

of liquid Ωliq
4−π
8

LH2 CD

per bubble (4, 5) 4−π
2

LR2 E

liquid (2
√
3− π) R2

Atot
ABFG

volume fraction φ 4−π
8

LH
Atot

CD

(φ =
Ωliq

Atot H
) (A1-A4) 4−π

2
R2 L

Atot H
E

2
H

− (4
√

3−2π)R2

Atot H
AB

specific Σ 2
H

+ π−2
2

L
Atot

CD

surface area Ref. [10] 2
H

+ L
Atot

E
L

Atot
FG

normal πzz
osm 2 γ

H
+ 2

3
γ
R
− π

4
γ LH

Ω
ABCD

osmotic pressure (C24,C26) γ
R
− γ LH

Ω
EFG

in-plane πpl
osm

2
3

γ
R
− π

8
γ LH

Ω
ABCD

osmotic pressure (C25,C27) γ
R
− 2 γ

H
− 1

2
γ LH

Ω
EFG

shear G π
16

γ LH
Ω

ABCD

modulus (D17-D18) 1
4

γ LH
Ω

EFG

TABLE II: Geometrical and stress properties of a two-
dimensional glass-glass foam. The numbers refer to the rele-
vant series of equations and the letters to the regimes of Fig. 3:
pancake regime (A-D) and floor tile regime (E-G).

IV. CONCLUSION

In the present follow-up to References [8, 10], we de-
rived detailed mechanical properties of two-dimensional
foams squeezed between parallel solid surfaces.

The main geometrical and mechanical properties of
such foams are summarized in Tables II and III and in
the corresponding equations indicated therein.

After recalling our geometrical interpretation of elastic
dilatancy in very dry 2D GG and 3D foams [8], we derived
the expected magnitude of such effects for less dry 2D GG
foams.

It must be recalled, at this stage, that the calculations
were carried out in some asymptotic limits defined by
Table I. Some of these regimes (particularly A-D) are
rather narrow: for comparison with a real situation, it
will be more advisable to use the full equations cited in
Table III than each asymptotic expression listed within
the table. To get more accurate results, in particular in
regimes C and D, Surface Evolver simulations would be
required as in Refs. [10, 12].

Concerning dilatancy, the main result of our calcu-
lations is that the expected effect is positive in most
regimes (B-F): deforming the foam will induce an in-

crease in the osmotic pressure if the volume is kept con-
stant, or conversely it will induce an increase in the liquid
volume fraction if the osmotic pressure is kept constant.
Only regimes A and G display negative dilatancy [6]: in
these regimes, among both contributions to the osmotic
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Quantity Eqs. Value Regimes

Plateau − 4−π

32
√

3−16π

LH
R2 ABC

border δR/R
δL/L

∣

∣

∣

φ
− 3

2
R
H

D

variation (D8, D10) − 1
2

E

− 4−π

8
√

3−4π

L
H

FG

−π
4

γ LH
Ω

= −4GABCD A

Normal 4−π

12(4
√

3−2π)

γ H L
R3 BC

elongational
δπzz

osm
δL/L

∣

∣

∣

φ

γ
H

D

dilatancy (D23,D25) 1
2

γ
R

E

χel
zz

4−π

8
√

3−4π

γ L
RH

F

− γ H P
Ω

= −4GEFG G

−π
8

γ LH
Ω

= −2GABCD A

In-plane 4−π

12(4
√

3−2π)

γ H L
R3 BC

elongational
δπpl

osm
δL/L

∣

∣

∣

φ

γ
H

D

dilatancy (D24,D26) 1
2

γ
R

E

χel
pl

4−π

8
√

3−4π

γ L
RH

F

− 1
2

γ H L
Ω

= −2GEFG G

Liq. fraction − π

4(4
√

3−2π)

LH
R2 A

variation 4−π

4(4
√

3−2π)

LH
R2 B

at constant δφ/φ
δL/L

∣

∣

∣

πzz
osm

1 CDE

normal (D38, D40) 4−π

4
√

3−2π

L
H

F

πzz
osm −2 LH R

Ω
G

Liq. fraction − 3π
8

LH R
Ω

A

variation 4−π

4(4
√

3−2π)

LH
R2 B

at constant δφ/φ
δL/L

∣

∣

∣

π
pl
osm

1 CDE

in-plane (D39, D41) 4−π

4
√

3−2π

L
H

F

πpl
osm −LH R

Ω
G

TABLE III: Predictions for dilatancy. The variation of the
Plateau border radius is taken at constant volume fraction.
The elongational dilatancy coefficient is related to the shear
coefficient through Eq. (D33). For both the variation of the
liquid fraction at constant osmotic pressure and the elonga-
tional dilatancy coefficient, the normal mode as well as the
in-plane mode are provided. The numbers refer to the rel-
evant series of equations and the letters to the regimes of
Fig. 3.

pressure discussed in Ref. [8] and recalled in the Intro-
duction, the effect of the increase in total surface area
dominates over the effect of the increase in total pseudo
Plateau border length.
As we mentioned in the Introduction, the Plateau bor-

ders vary rapidly in size in regimes C and D [10]. Let us
now discuss how that affects dilatancy.
As can be seen in Table III, the relative change in vol-

ume fraction at constant in-plane osmotic pressure πpl
osm,

divided by the square of the deformation, ǫ2 = 2δL/L
(see Appendix B), is of order unity in regimes C, D and
E. It can be checked, using Table I, that the same quan-
tity is much smaller in neighbouring asymptotic regimes

B and F . The same observation holds at constant normal
osmotic pressure πzz

osm.
Regarding both the in-plane and the normal dila-

tancy coefficients χel
pl and χel

zz, the same is true. In-
deed, taking their expressions in regime E as a reference,
χel(E) ≃ γ/R, one can check, again using Table I, that
they become bigger in regimes C and D and smaller in
B and F .
We believe that regimes S and D should therefore a

priori constitute the more promising target for experi-
mental investigations.
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Appendix A: Liquid volume fraction

From Eqs. (4) and (5), we derive the liquid volume
fraction φ = Ωliq/(Atot H) in the foam, both in the pan-
cake regime and in the floor tile regime:

φABCD ≃ 4− π

8

H L

Atot

[

1− 2H

3R

]

+(2
√
3− π)

R2

Atot
(A1)

φEFG ≃ 4− π

2

R2L

Atot H
+ (2

√
3− π)

R2

Atot
(A2)

The corresponding values of φ in all sub-regimes are indi-
cated in Table II. Because the total volume of the bubble
and liquid, Atot H = Ω+Ωliq, is not constant, it is useful
to express the liquid fraction in terms of the volume Ω
of the bubble itself. Using φ/(1 − φ) = Atot H φ/Ω, the
above equations become:

φABCD

1− φABCD
≃ 4− π

8

H2 L

Ω

[

1− 2H

3R

]

+(2
√
3− π)

R2 H

Ω
(A3)

φEFG

1− φEFG
≃ 4− π

2

R2 L

Ω
+ (2

√
3− π)

R2H

Ω
(A4)

Appendix B: Bubble perimeter in a crystalline 2D

foam

Let us consider a crystalline foam subjected to an arbi-
trary elastic, homogeneous deformation. Up to a global
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FIG. 4: One hexagonal bubble in a crystalline, two-
dimensional foam at rest (left) and after deformation (right).
Center-to-center vectors ~u0, ~v0 and ~w0 are transported affinely
according to the macroscopic deformation, see Eqs. (B7-B9).

By contrast, bubble edges (vectors ~a0, ~b0 and ~c0) rearrange

after deformation (vectors ~a, ~b and ~c), in order to meet at
angle 2π/3.

rotation, it can be expressed as an elongation:
(

λ 0

0 1/λ

)

(B1)

The perimeter of such a hexagonal foam increases upon
deformation in the following way [16] :

Ldry = Ldry
0

[

λ

2
+

1

2λ

]

(B2)

δL

Ldry
0

=
(λ− 1)2

2λ
(B3)

To show it, we consider a crystalline, two-dimensional
foam in the dry limit, and derive the total interface con-
tour length in the foam as a function of the applied de-
formation.
Let us start with an undeformed foam. The initial

bubble edges ~a0, ~b0 and ~c0 meet at angle 2π/3 according
to Plateau’s rule, and they have identical lengths (hence,

~a0+~b0+~c0 = ~0), see Fig. 4a. The center-to-center vectors

~u0 = ~c0 −~b0 (B4)

~v0 = ~a0 − ~c0 (B5)

~w0 = ~b0 − ~a0, (B6)

which coincide with the principal crystalline axes, then
also meet at angle 2π/3. When the foam is deformed
(transformation F ), these vectors are deformed according
to:

~u = F · ~u0 (B7)

~v = F · ~v0 (B8)

~w = F · ~w0 (B9)

Correspondingly, the bubble edges ~a, ~b and ~c reorganize
so as to not only verify

~u = ~c−~b (B10)

~v = ~a− ~c (B11)

~w = ~b− ~a, (B12)

but also maintain the 2π/3 angle condition. This gen-
erally implies evolving towards unequal lengths (see
Fig. 4b).
For simplicity, we restrict ourselves to a deformation

that conserves the bubble volume (i.e., surface area as
seen from above):

S =

√
3

2
(a0b0 + b0c0 + c0a0) =

3
√
3

2
a20

=

√
3

2
(ab+ bc+ ca) (B13)

where a, b and c are the new edge lengths. Such a de-
formation consists in an elongation by a factor λ in one
direction and by a factor 1/λ in the perpendicular direc-
tion. If we fix the direction of vectors ~a0 and ~a as on
Fig. 4 for convenience, the most general such transfor-
mation can be represented by a matrix of the form:

F = R2 ·
(

λ 0

0 1/λ

)

·R1 (B14)

where R1 and R2 are two rotation matrices.
From Eqs. (B7) to (B9) and (B14), the center-to-center

version [13] of the texture tensor [14, 15] can be expressed
in matrix form:

M =
1

3
[~u · ~uT + ~v · ~vT + ~w · ~wT ] (B15)

=
1

3
R2 ·

(

λ 0

0 1/λ

)

· R1

·[~u0 · ~uT
0 + ~v0 · ~vT0 + ~w0 · ~wT

0 ]

·R−1
1 ·

(

λ 0

0 1/λ

)

· R−1
2 (B16)

=
3

2
a20 R2 ·

(

λ2 0

0 1/λ2

)

·R−1
2 (B17)

From Eq. (B17), we obtain:

tr(M) =
3

2
a20

(

λ2 +
1

λ2

)

(B18)

From Eq. (B15) and Eqs. (B10-B12), using the fact that

vectors ~a, ~b and ~c meet at angle 2π/3, we obtain another
expression for tr(M):

tr(M) =
1

6
(Ldry)2 − 3a20 (B19)

where Ldry = 2(a + b + c) is the bubble perimeter and
where the last term is proportional to the (fixed) bubble

surface area 3
√
3a20/2, see Eq. (B13).

These two expressions for tr(M) yield Eq. (B2) for the

bubble perimeter Ldry in terms of its initial value Ldry
0 =

6a0.
The maximum elongation is λ =

√
3 for a few, spe-

cific orientations of the crystalline network with respect
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FIG. 5: Bubble perimeter in a crystalline 2D-GG-foam, as a
function of elongation λ. The first T1 processes occur when
λ =

√
3 for specific orientations of the foam. The correspond-

ing bubble perimeter is then about 15% longer than at rest.

to the direction of elongation (it is larger for all other ori-
entations), and this value decreases as the foam becomes
wetter as described already long ago [1].

Appendix C: Calculation of the asmotic pressure

In the present paragraph, we will calculate the osmotic
pressure of a 2D GG foam. As mentioned in the Introduc-
tion, it will later be useful to estimate the foam dilatancy.
When the foam is confined in a container, the osmotic

pressure πosm corresponds to the force that must be ap-
plied externally to one of the confining walls if the latter
is permeable to the liquid but not to the bubbles. The
osmotic pressure (which is in fact a symmetric tensor and
not just a scalar quantity [6, 7]) is thus the difference be-
tween the stress in the foam and the pressure applied by
the pure liquid on the other side of the semi-permeable
wall:

πosm = −pl − σ (C1)

(where tensile stresses and pressures are both counted
positively). The stress in the foam includes a pressure
contribution from the liquid (pl) and from the gas (pg),
as well as a tensile contribution from the interfaces:

σ = −φplI − (1− φ)pgI + σinterf . (C2)

Hence,

πosm = (1− φ) (pg − pl)− σinterf

= (1− φ)
γ

Rps
− σinterf (C3)

1. Stress due to the interfaces

Together with the liquid and gas pressures, the inter-
faces in a foam contribute to the stress in the foam, as

they carry surface tension. In the present appendix, we
derive a simple expression for this contribution in the
situation of interest.
Each element of interface in the foam, whose normal

is oriented along some vector ~n, has a stress contribu-
tion that is in the plane perpendicular to ~n, hence it is
proportional to [I − ~n⊗ ~n].
In general terms, let us decompose the specific sur-

face area Σ in the foam (surface area per unit volume)
according to its orientation:

Σ =

∫∫

Σ(Ω) dΩ, (C4)

where dΩ represents an element of solid angle. The stress
contribution from the interfaces can then be expressed as:

σinterf = γ

∫∫

[I − ~n(Ω)⊗ ~n(Ω)] Σ(Ω) dΩ (C5)

where γ is the surface tension.
This implies, in particular, that the orientational aver-

age of the interface stress contribution is simply related
to the specific surface:

< σinterf >3D =
1

3
tr(σinterf) I

=
2

3
γ Σ I (C6)

as already mentioned through Eq. (C17).
We restrict our calculation to the vertical component

σinterf
zz and to the in-plane averaged component σinterf

pl of
the interfacial stress.
Consider a surface element dS whose normal ~n makes

an angle θ with the vertical direction. If θ = 0, the sur-
face element is horizontal and it contributes γ dS towards
σinterf
pl and zero towards σinterf

zz By contrast, if θ = 0,

the surface element is vertical and it contributes 1
2γ dS

towards σinterf
pl (where the factor 1/2 comes from the in-

plane orientation average) and γ dS towards σinterf
zz . More

generally, it contributes 1+cos2 θ
2 γ dS towards σinterf

pl and

sin2 θ γ dS towards σinterf
zz .

The contribution from the top and the bottom of a
bubble to the in-plane component is:

2 γ

H Atot

{

Atot − [2
√
3R2 − π (R−DR)

2]

−(L− 2π R)Rps}

Making the approximationDR ≃ Rps in the Plateau bor-
der region [10] and using Rps ≪ L, this becomes:

2 γ

H Atot

{

Atot − (2
√
3− π)R2 − LRps

}

(C7)

The contribution from the vertical films towards σinterf
zz

is:

γ

H Atot
L (H − 2Rps) (C8)
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Their contribution to σinterf
pl is twice as less due to the

orientation average.
The contribution to σinterf

zz from the menisci, consid-
ered as circular quarter cylinders with radius Rps, can be
written as:

γ

H Atot
2L

∫ π
2

0

sin2 θ Rps dθ =
γ

H Atot

π

2
LRps (C9)

Their contribution to σinterf
pl is very similar:

γ

H Atot
2L

∫ π
2

0

1 + cos2 θ

2
Rps dθ

=
γ

H Atot

3π

4
LRps (C10)

The in-plane interface stress component thus includes
contributions from Eqs. (C7), (C8) and (C10):

H Atot

γ
σinterf
pl ≃ 2

[

Atot − (2
√
3− π)R2 − LRps

]

+
1

2
L (H − 2Rps)

+
3π

4
LRps (C11)

As for the vertical interface stress component, it includes
contributions from Eqs. (C8) and (C9):

H Atot

γ
σinterf
zz ≃ L (H − 2Rps)

+
π

2
LRps (C12)

From these two equations, we obtain the final results
both in the pancake regime where RABCD

ps ≃ H
2 [1 −

H/(3R)] (see Ref. [8]) and where Rps ≪ R (regimes A-D
of Fig. 3) and in the floor tile regime where Rps = R
(E-G):

σinterf
zzABCD ≃ π

4

γ L

Atot
+

4− π

12

γ LH

Atot R
(C13)

σinterf
plABCD ≃ 2

γ

H
− (4

√
3− 2π)

γ R2

Atot H

+
3π − 8

8

γ L

Atot
+

4− π

8

γ LH

Atot R
(C14)

σinterf
zz EFG ≃ γ L

Atot
− 4− π

2

γ LR

Atot H
(C15)

σinterf
plEFG ≃ 2

γ

H
+

1

2

γ L

Atot
− 3(4− π)

4

γ LR

Atot H

−(4
√
3− 2π)

γ R2

Atot H
(C16)

Note that as expected from the discussion at the be-
ginning of the present Appendix and as can be checked
from the corresponding expressions of the specific surface

area [10], the average of all three components is simply
related to the total specific surface area Σ:

2σinterf
pl + σinterf

zz

3
=

2

3
γ Σ (C17)

where the numerical factor 2/3 simply reflects the fact
that each surface element contributes tensile stress in two
out of three directions of space.

2. Expression of the osmotic pressure

The interfacial contribution σinterf to the stress is cal-
culated in Appendix C 1 with the same geometrical ap-
proximations as the liquid volume given by Eq. (4). The
value is averaged over the sample thickness. For sim-
plicity, we also average in-plane contributions over their
orientations. We thus have one value for the vertical
component and one value for the in-plane averaged com-
ponent. The vertical films in the foam contribute plainly
to the vertical component and partly (due to the orien-
tation average) to the in-plane component. The interface
in the Plateau and pseudo Plateau borders make an an-
gle with the vertical direction: they contribute partly to
both components. As for the top and bottom interfaces
of the bubbles, they contribute plainly to the in-plane
components.

The results from Appendix C 1 are as follows:

σinterf
zzABCD ≃ π

4

γ L

Atot
+

4− π

12

γ LH

Atot R
(C18)

σinterf
plABCD ≃ 2

γ

H
− (4

√
3− 2π)

γ R2

Atot H

+
3π − 8

8

γ L

Atot
+

4− π

8

γ LH

Atot R
(C19)

σinterf
zz EFG ≃ γ L

Atot
− 4− π

2

γ LR

Atot H
(C20)

σinterf
plEFG ≃ 2

γ

H
+

1

2

γ L

Atot
− 3(4− π)

4

γ LR

Atot H

−(4
√
3− 2π)

γ R2

Atot H
(C21)

In regimes A-D, the first term in Eq. (C3) can be writ-
ten as:

(1− φ)
γ

Rps
≃ (1− φ)

[

2
γ

H
+

2

3

γ

R

]

(C22)

In regimes E-G, it reduces to:

(1− φ)
γ

Rps
≃ (1− φ)

γ

R
(C23)

From Eqs. (A3-A4), (C3), (C13-C16) and (C22-C23)
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and using 1
1−φ = Atot H

Ω , we derive the osmotic pressure:

πzzABCD
osm

1− φ
≃ 2

γ

H
+

2

3

γ

R
− π

4

γ LH

Ω
(C24)

πplABCD
osm

1− φ
≃ 2

3

γ

R
− π

8

γ LH

Ω
(C25)

πzz EFG
osm

1− φ
≃ γ

R
− γ LH

Ω
+

4− π

2

γ LR

Ω
(C26)

πplEFG
osm

1− φ
≃ γ

R
− 2

γ

H
− 1

2

γ LH

Ω
(C27)

Note that in regime E, Eq. (C27) yields the expression

πplD
osm ≃ (1− φ)

[

γ
R − γ LH

2Ω

]

− 2γ
H announced earlier [8].

Appendix D: Calculation of the dilatancy and

change in volume fraction

1. Remark on the calculations

In the following paragraphs, in order to derive such
quantities as the elastic modulus, the dilatancy coeffi-
cient or the change in volume fraction upon deformation,
we will need to differentiate several equations such as
Eqs. (A3-A4) and (C24-C27) and the expressions for the
specific surface area [10].
When conducting such calculations, we consider that

the gas volume Ω as well as the distance H between the
solid plates remain constant.
Once the differentiation is performed, we determine

the relative orders of magnitudes of the different terms
by using such estimates as:

Ω ∝ L2 H (D1)

R ≪ L (or φ ≪ 1) (D2)

H ≪ R (ABCD) (D3)

R ≪ H (EFG) (D4)

(D5)

and simplify the results accordingly. Performing such
simplifications prior to differentiation would erroneously
suppress some relevant terms.
We also assimilate the true perimeter L of the bubble

and the “dry” perimeter Ldry used to derive Eqs. (B2)
and (B3). The former is the perimeter of the light grey
region in Fig. 2, while the latter is the perimeter that
includes the black regions. Because the Plateau border
regions (medium grey sector in Fig. 2) correspond to an
angle π/3, they are related through:

Ldry − L = (4
√
3− 2π)R (D6)

Hence, their relative difference is of order R/L, which is
small in all regimes A-G (φ ≪ 1).

2. Change in the Plateau border radius

The foam deformation, which generates an increase in
the bubble perimeter given by Eq. (B3), causes a change
in the radius of curvature of the Plateau borders.
From Eq. (A3):

δφABCD

(1− φABCD)2
≃ 4− π

8

H2

Ω
δL

+

[

(4
√
3− 2π)

RH

Ω
+

4− π

12

H3 L

ΩR2

]

δR (D7)

Hence, with δφABCD = 0 and φABCD ≪ 1:

δRABCD|δφ=0 ≃ − 3
2

R2

LH

1 + 12(4
√
3−2π)

4−π
R3

LH2

δL (D8)

From Eq. (A4):

δφEFG

(1− φEFG)2
≃ 4− π

2

R2

Ω
δL

+

[

(4− π)
RL

Ω
+ (4

√
3− 2π)

RH

Ω

]

δR (D9)

Hence, with δφEFG = 0 and φEFG ≪ 1:

δREFG|δφ=0 ≃ − 1
2

R
L

1 + 4
√
3−2π
4−π

H
L

δL (D10)

The results of Eqs. (D8) and (D10) above are reported
in Table III.

3. Shear modulus

The average bubble surface area, and hence the foam
interfacial energy, also change as a consequence of the in-
crease in the bubble perimeter given by Eq. (B3). When
taken at constant liquid fraction φ (or equivalently at
constantAtot), this change is directly related to the shear
modulus of the foam. From the expressions of the specific
surface area obtained in Ref. [10], we obtain:

δΣABCD|φ
1− φ

≃ −
[

(8
√
3− 4π)

R

Ω
+

4− π

6

LH2

ΩR2

]

δR

+

[

π − 2

2

H

Ω
+

4− π

6

H2

ΩR

]

δL (D11)

δΣEFG|φ
1− φ

≃ −
[

(4− π)
L

Ω
+ (8

√
3− 4π)

R

Ω

]

δR

+

[

H

Ω
− (4− π)

R

Ω

]

δL (D12)

These equations, taken at constant volume fraction
(δφ = 0) and with φ ≪ 1, together with Eqs. (D8)
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and (D10), yield:

δΣABCD|φ
δL/L

≃ π

4

LH

Ω
(D13)

δΣEFG|φ
δL/L

≃ LH

Ω
(D14)

where it turns out that Eq. (D14) for regimes E-G re-
sults just from the change in perimeter, i.e., the δL term
in Eq. (D12). By contrast, for regimes A-D, the result
of Eq. (D13) depends partly on the reduction in Plateau
border radius (δR term) in Eq. (D11) caused by the de-
formation.

Let us now derive the shear modulus G from the above
equations. In the case of a foam, the elastic energy per
unit volume in the material is given by the change in
specific surface area caused by some (small) shear strain
Γ, multiplied by surface tension:

1

2
GΓ2 = γ δΣ(Γ) (D15)

Now, because shear causes both deformation and rota-
tion, the effect of a strain Γ on elongation is halved:
λ = 1 + Γ/2. Hence, Eq. (B3) yields:

δL

L

∣

∣

∣

∣

φ

≃ Γ2

8
(D16)

Using Eqs. (D15) and (D16), the shear modulus in the
pancake and in the floor tile regimes can now be derived
from Eqs. (D13) and (D14):

GABCD ≃ π

16

γ LH

Ω
(D17)

GEFG ≃ 1

4

γ LH

Ω
(D18)

The results of Eqs. (D17) and (D18) above are reported
in Table II.

4. Change in osmotic pressure

The change in bubble perimeter also causes a change
in osmotic pressure.

From Eqs. (C24-C27), we obtain:

δπzzABCD
osm

1− φ
+

πzzABCD
osm δφ

(1− φ)2

≃ −2

3

γ

R2
δR− π

4

γ H

Ω
δL (D19)

δπplABCD
osm

1− φ
+

πplABCD
osm δφ

(1− φ)2

≃ −2

3

γ

R2
δR− π

8

γ H

Ω
δL (D20)

δπzz EFG
osm

1− φ
+

πzz EFG
osm δφ

(1− φ)2

≃ − γ

R2
δR− γ H

Ω
δL (D21)

δπplEFG
osm

1− φ
+

πplEFG
osm δφ

(1− φ)2

≃ − γ

R2
δR− γ H

2Ω
δL (D22)

where some terms have been neglected as explained in
Paragraph D1.

At constant volume fraction (δφ = 0) and with
φ ≪ 1, the above equations now yield, using Eqs. (D8)
and (D10):

δπzzABCD
osm

δL/L
≃

γ
H − 3π(4

√
3−2π)

(4−π)
γ R3

ΩH

1 + 12(4
√
3−2π)

4−π
R3

H2 L

(D23)

δπplABCD
osm

δL/L
≃

γ
H − 3π(4

√
3−2π)

2(4−π)
γ R3

ΩH

1 + 12(4
√
3−2π)

4−π
R3

H2 L

(D24)

δπzz EFG
osm

δL/L
≃ −γ H L

Ω
+

γ
2R

1 + 4
√
3−2π
4−π

H
L

(D25)

δπplEFG
osm

δL/L
≃ −γ H L

2Ω
+

γ
2R

1 + 4
√
3−2π
4−π

H
L

(D26)

where, again, some terms have been neglected. These re-
sults are reported in Table III in each asymptotic regime,
using the relations of Table I. Note that both normal and
in-plane dilatancy are negative not only in regime G as
mentioned in ref. [8], but also in regime A.

5. Elastic dilatancy in GG foams: shear or

elongation, in-plane or normal

There are of course two versions of dilatancy, depend-
ing on whether the osmotic pressure is measured in the
plane of deformation or in the normal direction. But the
value of the coefficient defined by Eq. (1) depends on the
deformation mode that is considered. Hence, for an elon-
gation by a factor λ = 1 + ǫ or for a shear strain Γ, the
variation of the osmotic pressure and the definition of the
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dilatancy coefficient will be:

πosm ≃ π0
osm +

ǫ2

2

∂2πosm

∂ǫ2

∣

∣

∣

∣

φ

χel =
∂2πosm

∂ǫ2

∣

∣

∣

∣

φ

(D27)

πosm ≃ π0
osm +

Γ2

2

∂2πosm

∂Γ2

∣

∣

∣

∣

φ

χsh =
∂2πosm

∂Γ2

∣

∣

∣

∣

φ

(D28)

The dilatancy coefficient can thus be expressed as:

χel =
δπosm(ǫ)|φ

ǫ2/2
(D29)

χsh =
δπosm(Γ)|φ

Γ2/2
(D30)

Now, for elongation, the usual definition of a deformation
ǫ is that the material is elongated by a factor λ = 1 + ǫ.
Hence, Eq. (B3) yields:

δL

L

∣

∣

∣

∣

φ

≃ ǫ2

2
(D31)

As a result of Eqs. (D16) and (D31), the dilatancy coef-
ficients for elongation and shear deformation modes can
be expressed as:

χel ≃
δπosm|φ
(δL/L)|φ

(D32)

χsh =
1

4
χel (D33)

From Eq. (D32 ) and Eqs. (D23-D26), the elongation
normal and in-plane dilatancies are indicated in Table III
for each regime specified in Table I.

6. Change in volume fraction

We shall now calculate the change in liquid volume
fraction φ that results from the foam deformation (change

in perimeter) under constant (normal or in-plane) os-
motic pressure.

To do this, we set δπosm = 0 in Eqs. (D19-D22) and
we eliminate δR between each of these equations and
Eq. (D7) or (D9). We thus obtain:

δφABCD

δL/L

∣

∣

∣

∣

πzz
osm

≃
4−π
8

H2 L
Ω − 3π(4

√
3−2π)
8

R3 H2 L
Ω2

1 + 3(4
√
3− 2π) R3

Ω

(D34)

δφABCD

δL/L

∣

∣

∣

∣

πpl
osm

≃ 4− π

8

H2 L

Ω

−3π(4
√
3− 2π)

16

R3 H2 L

Ω2
(D35)

δφEFG

δL/L

∣

∣

∣

∣

πzz
osm

≃ 4− π

2

R2 L

Ω

−(4
√
3− 2π)

R3H2 L

Ω2
(D36)

δφEFG

δL/L

∣

∣

∣

∣

πpl
osm

≃ 4− π

2

R2 L

Ω

−(2
√
3− π)

R3 H2 L

Ω2
(D37)

The relative change in liquid volume fraction can then
be obtained from Eqs. (A3-A4):

δφ/φ
δL/L

∣

∣

∣

ABCD

πzz
osm

≃ 1− 3π(4
√

3−2π)
4−π

R3

Ω
[

1+3(4
√
3−2π) R3

Ω

] [

1+ 4(4
√

3−2π)
4−π

R2

LH

](D38)

δφ/φ
δL/L

∣

∣

∣

ABCD

πpl
osm

≃ 1− 3π(4
√

3−2π)
2(4−π)

R3

Ω

1+ 4(4
√

3−2π)
4−π

R2

LH

(D39)

δφ/φ
δL/L

∣

∣

∣

EFG

πzz
osm

≃ 1− 2(4
√

3−2π)
4−π

RH2

Ω

1+ 4
√

3−2π
4−π

H
L

(D40)

δφ/φ
δL/L

∣

∣

∣

EFG

πpl
osm

≃ 1− 4
√

3−2π
4−π

RH2

Ω

1+ 4
√

3−2π
4−π

H
L

(D41)
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