
ar
X

iv
:1

01
1.

12
39

v1
  [

ph
ys

ic
s.

op
tic

s]
  3

 N
ov

 2
01

0

Noname manuscript No.

(will be inserted by the editor)

Coupled-resonator optical waveguides: Q-factor and

disorder influence
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Abstract Coupled resonator optical waveguides (CROW) can significantly reduce

light propagation pulse velocity due to pronounced dispersion properties. A number

of interesting applications have been proposed to benefit from such slow-light propa-

gation. Unfortunately, the inevitable presence of disorder, imperfections, and a finite

Q value may heavily affect the otherwise attractive properties of CROWs. We show

how finite a Q factor limits the maximum attainable group delay time; the group index

is limited by Q, but equally important the feasible device length is itself also limited

by damping resulting from a finite Q. Adding the additional effects of disorder to this

picture, limitations become even more severe due to destructive interference phenom-

ena, eventually in the form of Anderson localization. Simple analytical considerations

demonstrate that the maximum attainable delay time in CROWs is limited by the

intrinsic photon lifetime of a single resonator.

1 Introduction

Slowing down the speed of light enhance phenomena like nonlinearities [1], gain/ab-

sorption [2],[3], and phase sensitivity [4]. It can be also useful for practical applications

like delay lines, optical memories, and low threshold lasers [5]. CROW structures offer

particular ways of slow light guiding, with photons hopping sequentially from one

resonator to the next. The concept and proposal of CROWs were introduced in 1999

by Yariv et al. [6]. At that point it was obvious that such structures would yield big

interest in the optical community due to the potential application possibilities [7,8,9,

10]. In particular, it is clear that near the band edge the group velocity is significantly

reduced in the ideal and lossless structure. Unfortunately, a certain level of damping

will always be present due to radiation losses, intrinsic losses of materials, and any
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other mechanism that may dissipate or scatter part of the electromagnetic energy. Any

fabrication processes will introduce some variations in the properties of the individual

resonators that will serve to dissipate and scatter light propagating in the CROW.

Such non-uniformities can indeed seriously affect slow light propagation [11,12,7,13],

emphasizing the importance of quantifying their effect and unavoidable consequences.

When discussing the potential of slow-light waveguides the emphasis is often on the

attainable group index ng = c/vg or the group velocity vg . However, in applications

involving delay lines and buffers, the group delay τ = L/vg is the key parameter.

Obviously, the longer the waveguide the longer the group delay! However, this trivial

statement implicitly neglects the decay of the pulse as it propagates down the waveguide

and eventually the pulse has lost its initial strength and intensity. In this paper, we

treat the issues of delay and decay on an equal footing by emphasizing that the decay

length ξ serves as an effective cut off for L (section 2), leaving us with a maximal

attainable group delay τmax of the order ξ/vg [14,15].

The manuscript is organized as follows. From coupled-mode theory (section 3),

our key observation is that the maximum attainable delay time in CROWs is limited

by the intrinsic photon lifetime of a single resonator (section 3.1). The presence of

disorder and scattering will further serve to reduce this bound (section 3.2), as shown

numerically with the aid of a Green function method (details given in appendix).

Finally, conclusions are given (section 4).

2 Delay versus decay

To facilitate quantitative predictions of τmax we imagine a CROW of length L and the

transmission T through this segment is then conveniently parameterized by

T (ω) = exp

(

− ξ(ω)
L

)

. (1)

Obviously, this parametrization excellently represents the exponential decay of the

power associated with absorption and other loss mechanisms captured by the finite Q

factors of the resonators. Likewise, in the presence of localization, the average trans-

mission also has an exponential distribution with the scale given by the localization

length. Thus, the length scale ξ(ω) = −L lnT (ω) captures the combined effects of

disorder-induced localization and other loss accounted for by the finite Q-factor.

In the context of pulse delay, ξ represents an estimate of the maximal length of

the CROW that we could imagine in any practical application. Extending the length

L of CROW beyond ξ would effectively suppress the output power, thus jeopardizing

any benefits of slowing down a wave package. The maximal group delay is thus a

balance between a slow group velocity and a long propagation length, i.e. τmax(ω) =

ξ(ω)/vg(ω). Since the group velocity is also inversely proportional to the density-of-

states we may conveniently rewrite this expression as

τmax(ω) = −πρ(ω) lnT (ω). (2)

The key result of this paper is that τmax is always limited by the single-resonator

photon lifetime, i.e.

τmax(ω) ≤ τp (3)

where the equality applies to the situation with absence of disorder.
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In the following we outline our account for this result by coupled-mode theory

and in particular, we study first the limit of ideal CROWs (but with finite Q) and

subsequently we address the effects of disorder.

3 Coupled-mode theory

We consider a chain of coupled optical resonators, where the jth resonator, if left

isolated from the other resonators, is characterized by a resonant field

Ej(r, t) = Ej(r) exp
[

i(Ωj + iΓj/2)t
]

, (4)

where Ωj is the resonance frequency and Γj represents the resonance line width. The

energy in the resonator
∣

∣Ej(ω)
∣

∣

2
then has a Lorentzian frequency distribution corre-

sponding to the density-of-states

ρj(ω) =
1

π

Γj/2

(ω −Ωj)2 + (Γj/2)2
. (5)

The associated quality factor Qj = Ωj/Γj may conveniently be parametrized as a

photon life time τp = Q/Ω.

Next, imagine a chain of coupled resonators of the above kind. We follow the work

of Yariv and co-workers [6] and write the electrical field as a linear combination of

the isolated resonator fields, i.e. Ej(r) =
∑

j ψjEj(r), where the expansion coefficients

are denoted by ψ to emphasize the similarities with the notation in Ref. [16,17] for

the associated problem of electrons in a quantum wire. In the regime of weak nearest-

neighbor coupling the equations linearize to

(Ωj + iΓj/2)ψj − γj+1,jψj+1 − γj−1,jψj−1 = ωψj (6)

which has a form resembling the tight-binding chain in condensed matter physics [18,

16]. To further emphasize this connection we write the coupled equations in a matrix

form, i.e. Hψ = ωψ, where the ’Hamiltonian’ matrix H has elements

Hlj = (Ωj + iΓj/2)δlj − γljδl±1,j (7)

with γlj = γ∗jl so that the off-diagonal part of H is Hermitian.

3.1 The influence of finite Q factor

In the case where the resonators are all identical and arranged in a fully periodic se-

quence, we may without loss of generality suppress all indices, thus making further

analytical progress possible. The electromagnetic states now form a continuous fre-

quency band and the problem is easily diagonalized by the Ansatz ψj+1 = exp(iκa)ψj .

The resulting dispersion relation is of the form

ω(κ) = Ω

(

1 + i
1

2Q

)

− 2γ cos(κa) (8)

where κ = κ′+iκ′′ is the complex valued Bloch wave vector and a is the lattice constant

of the periodic arrangement of resonators. Eq. (8) corresponds to the theory by Yariv et

al. [6] to also include resonators with a finite Q-factor.1

1 To ease the comparison to our previous work in Ref. [14] we note that ω(κ) =

Ω
(

1 + i 1

2Q

)

[1− γ̃ cos(κa)] where γ̃ is for simplicity considered real and given by γ̃ = 2γ/Ω.
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The group velocity may formally be calculated from the dispersion relation in

Eq. (8). We imagine the situation where the CROW is excited by a monochromatic

laser with a well-defined frequency of the light. Care should thus be taken that ω is

to be considered real while κ may be complex, and the group velocity is then formally

given by

vg =
1

Re {∂κ/∂ω} . (9)

Along the same lines, we may also calculate the density-of-states from the dispersion

relation in Eq. (8). We emphasize, that for the particular case of a one-dimensional

chain, the density-of-states is inversely proportional to the group velocity,

ρ(ω) =
a

π
Re

{

∂κ

∂ω

}

. (10)

Clearly, a vanishing group velocity will be associated with a diverging density-of-

states and vice versa. This also explains why a light pulse can not completely come to

stop in a real system, since no real system will exhibit a true singular density-of-states

the inevitable presence of absorption, radiation, and imperfections will serve as effective

broadening mechanisms. Nevertheless, to illustrate the basic physics, it is common to

consider lossless structures and only focus on the real part of the dispersion properties,

since the damping is anyway assumed to be modest. However, in the present context of

slow-light propagation the two issues are not easily separable and care must be taken.

Figure 1 illustrates the contrast between a CROW made from lossless resonators

(dashed lines) and finite-Q resonators (solid lines), respectively. The left panel illus-

trates the usual cosine-band dispersion relation, i.e. the relation between the frequency

ω and the real part κ′ of the complex-valued Bloch wave vector κ = κ′+ iκ′′. Likewise,

the middle panel illustrates the corresponding damping, i.e. the relation between fre-

quency ω and the imaginary part κ′′ of the Bloch wave vector. Finally, the right panel

shows the density-of-states associated with the dispersion diagram in the left panel.

The difference between the ideal structure (Q → ∞) and one employing resonators of

finite Q is easily contrasted by comparing the dashed and solid lines, respectively. We

emphasize that the main cause of a finite Q factor is to smear out van Hove singular-

ities in the density-of-states and to weaken the slow down of light pulses propagating

near the band-edges of the CROW. Of course, the finite Q also introduces damping

throughout the entire band, though be most pronounced near the band edges due to

slow-light enhanced absorption [19]. Finally, we note that quite steep bands appear

outside the traditional band of extended states, though of course with a significant

attenuation as evident from the middle plot illustrating the κ′′ dependence.

In our previous work we have carefully discussed the influence of the finite Q factor

on the saturation of the group index [14,15]. The main conclusion is that in the center

of the band the group velocity is (to lowest order in 1/Q) insensitive to the finite photon

life time. On the other hand, at the band edges, initially supporting pronounced slow

down, the group velocity scales quite unfavorably with the Q factor, making the slow-

light regime challenging to explore.

Here, we focus on the attainable group delay when the slow down and the damping

is treated on an equal footing. For the ideal CROW, the group delay is given by

τ = L/vg . However, in the presence of a finite Q, the length L is effectively cut off by
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the damping length ξ = 1/2κ′′ associated with the exponential decay in Eq. (1). This

gives an upper bound and Eq. (2) may in this case formally be rewritten as

τmax(ω) =
1

2κ′′
∂κ′

∂ω
. (11)

Combining the full results for κ′ and κ′′ and expanding in 1/Q we get [14]

τmax(ω) = τp +O(Q−1). (12)

The main conclusion from this analytical exercise is that the maximal group delay is

limited by the photon life time τp = Q/Ω of the individual resonators, independently

on the actual frequency. While being a quite intuitive results, it has important and

overlooked consequences with respect to how much delay one may envision in future

designs of optical buffers and delay-line architectures. Despite the reduced group veloc-

ity near the band edges, the advantage of a slowly advancing wave package is balanced

by a reduced propagation length, see the middle panel of Fig. 1. We emphasize that

compared to a single resonator, the CROW may of course offer the advantage of an

increased bandwidth. Likewise, the strongly suppressed group-velocity dispersion at

the band center might also be beneficial in some applications.

In the following we discuss how this result is modified in the presence of disorder.

However, we may at this stage anticipate that disorder may only further limit time

delay, thus in general adding the ’lesser sign’ in Eq. (3) as compared to the equality

derived in Eq. (12).

3.2 The influence of disorder

We next turn to disordered waveguides, formally allowing for CROWs composed of res-

onators with a resonator-to-resonator fluctuation in the resonance frequency Ωj and

the linewidth Γj as well as fluctuations in couplings γlj between neighboring resonators.

For simplicity we will neglect fluctuations in the linewidth so that all resonators have

the same Q factor. For the resonance frequencies and the couplings we will further

assume uncorrelated Gaussian distributions P (Ωj) and P (γlj), respectively. The dis-

tributions have mean values Ω and γ corresponding to the ideal CROW parameters,

while fluctuations σΩ =
√
δ2Ω and σγ =

√

δ2γ around the mean values can be varied

to mimic different strengths of disorder.

We employ a Green’s function method to calculate the transmission and the density-

of-states which allows us to evaluate Eq. (2) for each member of the ensemble. The

Green’s function is formally obtained by inverting the matrix H. However, since its

dimensions are formally infinite we imagine a segment of disordered CROW (containing

N resonators) sandwiched between to semi-infinite ideal CROWs, i.e. with no disorder.

With the aid of Dyson’s equation this apparently unsolvable problem can fortunately

be turned into a matrix problem of finite dimension (corresponding to the dimension

N of the disordered segment) and the retarded Green functions of the CROW can now

be found from a numerical inversion of a sparse N ×N matrix problem [17,16]

G(ω) =
[

ωI −H −Σ(ω)
]−1

, (13)

where I is a unit matrix and the couplings to the two semi-infinite ideal CROWs are

accounted for by a complex-valued frequency dependent self-energy Σ. The details of
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this approach are given in the appendix A, which lists expressions how to obtain the

transmission T and the density-of-states ρ from the Green’s function G.

Once the Green function is obtained, the maximal time delay, Eq. (2), is thus easily

evaluated with the aid of Eqs. (16) and (18). We take advantage of standard matrix

inversion routines to numerically study the statistical properties of large ensembles of

disordered CROWs. In principle this allows us to study statistical moments to any

order, but for simplicity we will here focus on the average properties (first moment)

and only highlight the CROW-to-CROW fluctuations (second moment) by displaying

results for particular members, chosen randomly from the large CROW ensemble.

In the panel b) of the Figure 2 we show results for the ensemble-averaged DOS

(blue lines). It is clearly seen how disorder, in addition to a finite Q, serves to further

broaden the ensemble-averaged DOS near the band edges. Comparing these results to

the DOS associated with one particular realization of the disordered CROW (red line),

it is however clear that pronounced sample-to-sample fluctuations are to be expected.

In particular, the formation of Anderson localized states near the band edges, due to

the strong interference of light waves, is apparent. These fluctuations in the DOS are

quite naturally inherited by other central quantities, such as the maximal group delay

τmax and the transmission T . In panel c) the value of τmax is normalized with photon

lifetime in single resonator τp. For the ensemble-averaged maximal delay time, disorder

is seen to further suppress τmax below the bounds by τp. However, from a practical point

of view it is alarming to see fluctuation comparable to the mean value, as indicated by

the strongly fluctuating results for a particular realization of the disorder (red line).

For the transmission in panel d) we see a similar picture with a strong suppression of

the transmission near band edges, but with the pronounced transmission fluctuations

appearing throughout the entire band. For comparison, the dashed line shows the result

of unity transmission (T = 1) for an ideal CROW with infinite Q, while the green line

shows the pronounced suppression of transmission in the presence of a finite Q, but in

the absence of any additional disorder. The quite abrupt drop in transmission near the

band edges is associated with slow-light enhanced absorption [20] as compared to the

center of the band where slow-light enhancement is almost absent.

There is an interesting interplay between the finite Q factor and the amount of

disorder in the structure. In Figure 3 we plot τmax/τp as a function of disorder strength

σ/Ω = σγ/Ω = σΩ/Ω, evaluated for a frequency corresponding to the band center. The

different curves represent different values of the Q factor. Quite intuitively, the lower

the Q value the less sensitive is the result to disorder, keeping in mind that τmax, T ,

and ng themselves would be heavily suppressed in the presence of a low Q. For higher

Q values, it consequently becomes increasingly challenging, in terms of disorder, to

take full advantage of the high intrinsic photon life time τp.

4 Conclusion

In conclusion, we have derived an explicit relation for the dispersion relation of CROWs

made from resonators with a finite Q factor. A finite Q profoundly influences the

van Hove singularities near the band edges with a resulting limitation of the group

index while at the center of the band the dispersion properties are less affected. Simple

analytical expressions are supported by calculations of the group velocity, demonstrat-

ing how the Q enters on an equal footing with the coupling γ corresponding to the

competing time scales associated with photon decay and tunneling. In the context of
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practical applications involving the group delay, we note that the maximal attainable

group delay appears as a balance between the reduced group velocity and the the decay

length. Explicit calculations show that irrespectively of the underlying bandstructure,

the maximal group delay is limited by the photon life time of the resonators. This

illustrates the importance of addressing propagation loss and slow-light on an equal

footing. Any inevitable presence of disorder will serve to further suppress the attainable

group delay and pronounced sample-to-sample fluctuations may arise.

Acknowledgments

This work is financially supported by the Villum Kann Rasmussen Centre of Excellence

NATEC (Nanophotonics for Terabit Communications).



8

A Details of Green’s function approach

The self energy in Eq. (13) is given by Σ = ΣL + ΣR where the contributions from the left
and right semi-infinite CROWS are given by

{

Σp(ε)
}

jl
= −γ exp [iκ(ω)a] δjspδspl (14)

with sL = 1 and sR = N . The wave vector is related to the energy through the usual cosine
dispersion relation derived above, see Eq. (8), corresponding to

exp [iκ(ω)a] =
Ω − ω

2γ
+ i

√

1 +
(Ω − ω)2

4γ2
. (15)

The transmission probability may now conveniently be written as a trace formula

T (ω) = Tr
[

Γ L(ω)G(ω)Γ R(ω)G
†(ω)

]

, (16)

where
Γ p(ω) = i

[

Σp(ω) −Σ
†
p(ω)

]

. (17)

Likewise, the total density-of-states (per resonator) is given by

ρ(ω) =
1

N

N
∑

j=1

ρj(ω), (18)

with the corresponding local density-of-states governed by the diagonal part of the Green’s
function,

ρj(ω) = −
1

π
Im{Gjj(ω)}. (19)
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Fig. 1 Complex dispersion relation for a CROW. Dashed lines are for Q = ∞ while solid
lines correspond to Q = 102. The left panel shows the frequency ω versus the real part of the
Bloch wave vector κ′, the middle panel shows the frequency ω versus the imaginary part of
the Bloch wave vector κ′′, and the right panel shows the density-of-states ρ (per resonator).
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