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Beam Excited Signals in a Cavity BPM

A. Lyapin, University College London, UK

Abstract

A beam traversing a cavity BPM excites many modes, of which we are usually
interested in the first lower modes with the strongest excitation, which are usu-
ally below the beampipe cut-off frequency. Besides the bunch charge, their signals
may depend on the bunch offset, slope and tilt. Due to de-phasing between the
bunch and the excited field, the excitation also has a non-linear dependence on the
width of the cavity gap and the bunch length. In this note I give estimates for each
component of the fundamental (the fist monopole, or common) mode, and the first
dipole mode using a two-bunch approximation.

A bunch of charged particles crossing a cavity BPM excites an infinite number of
cavity modes. For some modes the excitation is very weak due to their field configu-
rations. Modes with the resonant frequencies higher than the beampipe cut-off escape
from the cavity through the beampipe. But the modes that are used for beam position
and phase measurements are designed to be below cut-off.

Even a relativistic bunch of particles (and here I assume v = c) takes some timeto
cross the gap of the cavity, and, since the gap width is usually comparable with the
wavelength of the mode in question, a de-phasing between the excited field and the
bunch starts occuring. This leads to transient effects including non-linear dependence
between the gap width and the signal amplitude, and bunch angle and tilt sensitiv-
ity. A similar effect takes place when the length of the bunch is comparable with the
wavelength.

I use a few more approximations in this note. Firstly, I assume that the bunch has a
Gaussian shape. In that case it can be represented by two point charges carrying a half
of the total bunch charge each and separated by the RMS bunch length σ. Secondly,
I assume that the excitation of the dipole mode is linear vs. beam offset. At the first
glance, it seems that this approximation is only valid for small offsets, but the presence
of the beampipe modifies the fields so that the linearity is significantly improved. The
last approximation is that the fields only exist within the caivty gap. This assumption
does affect the result, but since the field quickly decays in the beampipe for the trapped
modes, the error is not likely to exceed 10-20%. Some techniques allow for matching
the fields of the cavity mode and the evanescent waveguide mode, but require more
elaborate maths.

In order to compare the excitation, let us calculate the voltage corresponding to each
component excited in the cavity. We integrate the electric field among the trajectory:
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V =

+∞
∫

−∞

Edz =

+L/2
∫

−L/2

E0e
jkzdz, (1)

where L is the cavity length (or the width of the cavity gap), k is the wave number for
the mode and Em is the amplitude of the electric field. Rewriting this equation for our
two-bunch model, we get:

V0 =
qE0

2

+L/2
∫

−L/2

[

ejk(z−
σ

2
) + ejk(z+

σ

2
)
]

dz. (2)

Integrating and rearranging this equation using Euler’s formula, we obtain the voltage
for the monopole mode:

V0 = qE0L cos
(kσ

2

)sin kL/2

kL/2
. (3)

The term sin kL/2
kL/2

is known as the transit time factor and takes into account de-phasing

between the field and the bunch while it crosses the gap. The cosine term takes care of
the similar effect occuring due to a finite bunch length.

For the dipole mode the field depends on the offset x: E = E1xe
jkz, hence:

V1 = E1

+L/2
∫

−L/2

xejkzdz. (4)

In case the offset is constant (the trajectory is parallel to the cavity axis) the voltage
is simply:

Vx = qE1x

+L/2
∫

−L/2

[

ejk(z−
σ

2
) + ejk(z+

σ

2
)
]

dz = qE1xL cos
(kσ

2

)sin kL/2

kL/2
. (5)

Now let’s assume we have a bunch traveling through the cavity center but with a
small slope θ to the axis, so that the offset is changing as x = zθ. Equation (4) is then
modified to

Vθ = qE1θ

+L/2
∫

−L/2

z
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σ

2
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σ

2
)
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dz = j
qE1θL

k
cos

(kσ
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2
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2

]

.

(6)
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The imaginary unit j in this equation signals that the inclination caused component
has a 900 phase offset with respect to the displasement components.

In order to estimate the dipole mode response to a tilted bunch, we assume that the
tilt α is small, so that the offset of the charges is x = ±σα/2. This way (4) becomes

Vα =
qE1

2

ασ

2

+L/2
∫

−L/2

[

ejk(z−
σ

2
) + ejk(z+

σ

2
)
]

dz = −jqE1L
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2
sin

(kσ

2

)sin kL/2

kL/2
. (7)

Now, let us introduce the senstivity defined as the output signal generated by
ashort bunch with a charge of 1 nC and, for the dipole mode, an offset of 1 mm. The
sensitivity depends on the coupling strength and the shunt impedance of the cavity, so
for the monopole mode we have

S0 =
ω0

2

√

Z

Q
(0)
ext

(R

Q

)

x=0
· 10−9, (8)

in [V/nC] and for the dipole

S1 =
ω1

2

√

Z

Q
(1)
ext

(R

Q

)

x=1mm
· 10−9

· 10−3 (9)

in [V/mm/nC].

Since the voltage coupled out from the cavity is proportional to the voltage excided
in it, we can introduce our sensitivities into the above equations and get:

V
(0)
out = S0 cos

(kσ

2

)

q[nC]; (10)

V
(x)
out = S1 cos

(kσ

2

)

q[nC] x[mm]; (11)

V
(θ)
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j

k
S1 cos

(kσ

2

)

[

1−
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2
cot

kL

2

]

q[nC] θ[mrad]; (12)

V
(α)
out = −

jσ

2
S1 sin

(kσ

2

)

q[nC] α[mrad]; (13)

These equations allow to quickly estimate the signals for a given cavity, or relative
contributions of the dipole mode components for different gap lengths, frequencies
and bunch lengths.

If you spot any mistakes or typos, please, report them to me at al@hep.ucl.ac.uk


