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The transition from two-dimensional to three-dimensional flows in a finite circular

cylinder driven by an axially oscillating sidewall is explored in detail. The complete

symmetry group of this flow, including a spatio-temporal symmetry related to the oscil-

lating sidewall, is Z2 × O(2). Previous studies in flows with the same symmetries, such

as symmetric bluff-body wakes and periodically forced rectangular cavities, were unable

to obtain the theoretically predicted bifurcation to modulated traveling waves. In the

simpler cylindrical geometry, where the azimuthal direction is physically periodic, we

have found these predicted modulated traveling waves as stable fully saturated nonlinear

solutions for the first time. A careful analysis of the base states and their linear stability

identifies different parameter regimes where three-dimensional states that are either syn-

chronous with the forcing or quasiperiodic, corresponding to different symmetry-breaking

processes. These results are in good agreement with theoretical predictions and previous

results in similar flows. These different regimes are separated by three codimension-two

bifurcation points that are yet to be fully analyzed theoretically. Finally, the saturated

nonlinear states and their properties in different parameter regimes are analyzed.

1. Introduction

When a system is invariant under the action of a group of symmetries, there can be

far-reaching consequences on its bifurcations. When the symmetries are purely spatial in

nature (e.g. reflections, translations, rotations), these consequences have been extensively

studied (e.g., see Golubitsky & Schaeffer 1985; Golubitsky, Stewart & Schaeffer 1988;

Crawford & Knobloch 1991; Cross & Hohenberg 1993; Chossat & Iooss 1994; Iooss &

Adelmeyer 1998; Chossat & Lauterbach 2000; Golubitsky & Stewart 2002). The system

may also be invariant to the action of spatio-temporal symmetries. These are spatial

symmetries composed with temporal evolution. A classic example is the two-dimensional

Kármán vortex street form of the wake of a circular cylinder. Other common cases are

periodically forced flows.

The transition from two-dimensional to three-dimensional flow is of fundamental in-

terest in fluid dynamics. Two-dimensional flows, like the Kármán vortex street and other
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bluff-body wakes, are invariant in the spanwise direction to both translations (SO(2)

symmetry group) and reflections (Z2 symmetry group), the combination generating the

O(2) symmetry group. We are interested in the transition from two-dimensional to three-

dimensional flow when the two-dimensional problem has a spatio-temporal symmetry

of Z2 type, as is the case for the wake of a circular cylinder in the streamwise di-

rection (Blackburn & Lopez 2003a; Blackburn, Marques & Lopez 2005). Another flow

with the same spatio-temporal symmetries as the periodically shedding wake is that in

a periodically-driven rectangular cavity of infinite spanwise extent (Marques, Lopez &

Blackburn 2004), which has been studied in Lopez & Hirsa (2001); Vogel, Hirsa & Lopez

(2003); Blackburn & Lopez (2003b).

The complete symmetry group of these flows is Z2 × O(2). The implications of O(2)

symmetry in fluid systems have been studied extensively, both when the instability break-

ing O(2) symmetry (i.e. transition from two-dimensional to three-dimensional) is due to a

single real eigenvalue becoming positive (steady bifurcation) as well as when it is due to a

pair of complex-conjugate eigenvalues gaining positive real part, leading to time-periodic

flow (e.g. see the references cited above). The types of symmetry-breaking bifurcations

to three-dimensional flow that a two-dimensional flow with a space-time symmetry can

experience are completely determined by the symmetry group of the system, and not

by the particulars of the physical mechanisms responsible for the bifurcation, and have

been analyzed in detail in Marques et al. (2004). The main results obtained are that

there are two type of bifurcations, one synchronous with the forcing and the other re-

sulting in quasiperiodic flows. Both types come in two different flavors, depending on

the symmetries of the bifurcated solutions. There are two synchronous modes, A and

B, that break or preserve the space-time symmetry Z2, respectively. The quasiperiodic

solutions have the form of modulated traveling waves or modulated standing waves in the

spanwise direction; they differ in their symmetry properties: the traveling waves preserve

a space-time symmetry, while the standing wave preserves a purely spatial reflection

symmetry.

In the examples of flows with Z2 × O(2) symmetry group described above, the O(2)

invariance is only an idealization of the corresponding experimental flow due to the finite

extent of the spanwise direction. The typical result is that the travelling waves predicted

by the theory do not travel, due to endwall effects (Leung et al. 2005). Cylindrical geome-

tries are very useful in the sense that the azimuthal direction is physically periodic and

have the O(2) symmetry group exactly fulfilled. This fact has been explored in Blackburn

& Lopez (2010) in a driven annular geometry, but unfortunately, the modulated traveling

wave modes that are predicted from the Floquet analysis do not saturate nonlinearly to

pure modes but are always mixed with contributions from the synchronous A mode. In

the present paper we explore a simpler setting, a finite circular cylinder with an axially

oscillating sidewall. The base state is also Z2×O(2) invariant as in the other flow exam-

ples, and we have indeed found nonlinearly saturated pure modulated travelling waves for

the first time in a physically-realizable flow. In this cylindrical setting, as the travelling

waves move in the azimuthal direction, i.e. the pattern rotates around the cylinder axis,

they will be termed rotating (or modulated rotating) waves.
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Figure 1. (Color online) Schematic of the apparatus. The inset shows a synchronous bifurcated

state; translucent isosurfaces (of azimuthal vorticity) show the axisymmetric roller generated

by the side wall oscillation, and solid isosurfaces (of radial vorticity) show the braid structures

associated with three-dimensional instabilities.

The paper is organized as follows: in §2 the formulation of the problem and numerical

methods used are presented; in §3 the base state of the system is computed, and its

changes when parameters are varied are discussed; in §4 the linear stability of the basic

flow is studied, and compared with similar flows. In §5 the three-dimensional structure

and symmetries of the different unstable modes found are analyzed in detail. Finally, in

§6 the main results are summarized and open problems and future directions of study

are discussed.

2. Governing equations and numerical methods

Consider a Newtonian fluid of kinematic viscosity ν confined in a finite cylinder of

radius R and height H, whose sidewall oscillates harmonically in the axial direction,

with period T and maximum axial velocity Vmax, while the top and bottom lids remain

at rest, as shown schematically in figure 1. The system is non-dimensionalized taking

R as the length scale, and the viscous time R2/ν as the time scale. There are three

non-dimensional parameters in this problem:

Aspect ratio Γ = H/R, (2.1)

Reynolds number Re = VmaxR/ν, (2.2)

Stokes number St = R2/νT. (2.3)

The aspect ratio defines the geometry of the problem, whileRe and St are non-dimensional

measures of the amplitude and frequency of the forcing; the inverse of the Stokes num-

ber is precisely the non-dimensional period of the oscillations, τ = 1/St. In the current

study, the aspect ratio is fixed at Γ = 2. The non-dimensional Navier–Stokes equations
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governing the flow are ( ∂
∂t

+ u · ∇
)
u = −∇p+∇2u, (2.4a)

∇ · u = 0, (2.4b)

where u = (u, v, w) is the velocity field in cylindrical coordinates (r, θ, z) ∈ [0, 1] ×
[0, 2π]× [−Γ/2, Γ/2], and p is the kinematic pressure, all non-dimensional. The vorticity

associated to the velocity field is ∇× u = (ξ, η, ζ). No-slip velocity boundary conditions

are used on all walls. The velocity is zero on stationary top and bottom endwalls, and

the z-component of velocity at the sidewall oscillates periodically in time:

u(r, θ,±Γ/2, t) = (0, 0, 0), (2.5a)

u(1, θ, z, t) =
(
0, 0, Re sin(2πSt t)

)
. (2.5b)

These idealized boundary conditions are discontinuous at the junctions where the sta-

tionary lids meet the oscillating sidewall. In a physical experiment there are small but

finite gaps at these junctions where the axial velocity adjusts rapidly to zero. For a proper

use of spectral techniques, a regularization of this discontinuity is implemented of the

form

w(1, θ, z, t) = Re sin(2πSt t)

[
1− exp

(
−1− z

ε

)][
1− exp

(
−1 + z

ε

)]
(2.6)

where ε is a small parameter that mimics the small physical gaps (ε = 6× 10−3 has been

used as a fixed parameter). The use of ε 6= 0 regularizes the otherwise discontinuous

boundary conditions; see Lopez & Shen (1998) for further details on the use of this

technique in spectral codes.

Instead of having a oscillatory sidewall, we could also consider the situation where the

sidewall is at rest, and the two endwalls oscillate harmonically, which in some cases can

be more convenient from the experimental point of view. In order to have a fixed domain,

it is very useful to write the governing equations in the oscillating reference frame, in

which the cylindrical domain is at rest and the sidewall oscillates. However, the oscillating

reference frame is not an inertial frame, and inertial body force terms must be included in

the Navier–Stokes equations. In this case, there is one extra term, −A/ρ, where A is the

acceleration of the lids and ρ is the fluid density. Since the acceleration A depends only on

time, and for an incompressible flow ρ is constant, this extra term is a gradient that can

be incorporated in the pressure term, thereby recovering exactly the same formulation as

in the case of oscillatory sidewalls. The difference between oscillating the sidewall or the

endwalls is only important when density variations appear, for example in the presence

of temperature differences, or concentration differences if the fluid is a mixture.

The governing equations and boundary conditions are invariant to the following spatial

symmetries:

Kθ(u, v, w)(r, θ, z, t) = (u,−v, w)(r,−θ, z, t), (2.7a)

Rα(u, v, w)(r, θ, z, t) = (u, v, w)(r, θ + α, z, t), (2.7b)

for any real α. Kθ represents reflections about any meridional plane, whilst Rα signifies
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rotations about the cylinder axis. Kθ and Rα generate the groups Z2 and SO(2), but

the two operators do not commute, so the symmetry group generated by Kθ and Rα is

O(2) and it acts in the periodic azimuthal θ-direction. The horizontal reflection on the

mid-plane z = 0 acts on the velocity field as:

Kz(u, v, w)(r, θ, z, t) = (u, v,−w)(r, θ,−z, t). (2.8)

However, Kz is not a symmetry of the system: due to the harmonic oscillation of the

sidewall, the boundary condition (2.5b) is not Kz invariant. However, Kzw(1, θ, z, t)

coincides with w(1, θ, z, t + T/2), introducing an additional spatio-temporal symmetry.

Therefore, the system is also invariant to a reflection about the half-height plane z = 0

together with a half-period evolution in time:

H(u, v, w)(r, θ, z, t) = (u, v,−w)(r, θ,−z, t+ τ/2). (2.9)

The transformation H generates another Z2 symmetry group that commutes with O(2).

Hence, the complete symmetry group of the problem is Z2 × O(2). The action of the

spatio-temporal symmetry H on the vorticity is different to the action on the velocity,

and is given by:

H (ξ, η, ζ) (r, θ, z, t) = (−ξ,−η, ζ) (r, θ,−z, t+ τ/2). (2.10)

Therefore, the individual symmetries (and the generated groups) are exactly the same as

for the periodically-driven annular cavity and analogous to the two-dimensional time-

periodic wake of symmetrical bluff bodies and periodically-driven rectangular cavity

flows.

2.1. Numerical formulation

The governing equations have been solved using a second-order time-splitting method.

The spatial discretization is via a Galerkin-Fourier expansion in θ and a Chebyshev

collocation in x = 2r and z, of the form

F (r, θ, z) =

nr∑
l=0

nz∑
n=0

nθ∑
m=−nθ

al,n,mTl(x)Tn(z)eimθ (2.11)

for the three velocity components and pressure. The results presented here were computed

with nr = 48, nz = 96 and nθ = 10. This resolution resolves all the spatial scales in the

solutions presented here. Time steps of δt = 10−5 have been required to ensure numerical

stability and accuracy of the temporal scheme. For each Fourier mode, the corresponding

Helmholtz and Poisson equations are solved efficiently using a complete diagonalization of

the operators in both the radial and axial directions. Note that to decouple the Helmholtz

equations for u and v, we have used the combinations u+ = u+ iv and u− = u− iv. The

coordinate singularity at the axis (r = 0) is treated following some prescriptions, which

guarantee the regularity conditions at the origin needed to solve the Helmholtz equations

(see Mercader, Net & Falqués 1991, for details). The spectral collocation solver used here

is based on a previous scheme (Mercader, Batiste & Alonso 2010) that has recently been

tested and used in a wide variety of flows in enclosed cylinders (Marques et al. 2007;

Lopez et al. 2007, 2009; Lopez & Marques 2009).
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(a) St = 10 (b) St = 32 (c) St = 50 (d) St = 100

ψ

η

Figure 2. (Color online) Contours of streamfunction, ψ, and azimuthal vorticity, η, of the basic

state at four St values as indicated, for amplitudes Re very close to the corresponding critical

values. Solid (dashed) contours are positive (negative); light/dark (yellow/red online) colors

correspond to negative/positive values. The base state is periodic, and we have selected for each

St the phase of period where the oblique jet at the bottom corner is most intense; the associated

movies online show temporal evolution over one period.

3. Basic states

The basic flow, having the symmetries of the problem, is always axisymmetric and

time-periodic, synchronous with the forcing. The axial oscillations of the cylindrical wall

produce periodic Stokes-type boundary layers on the oscillating wall. These layers sepa-

rate from the sidewall and move towards the cylinder axis after colliding with the endwalls

to form rollers. These rollers are formed every half period alternatively on each endwall.

The term roller refers to large-scale rotating flow structures with primarily azimuthal

vorticity, η. Instantaneous contours of the streamfunction (ψ, such that u = −1/r ∂ψ/∂z

and w = 1/r ∂ψ/∂r) are shown in the first row of figure 2 for four increasing values of

the forcing frequency St, and for amplitudes Re very close to, and above, the critical

value at which the basic flow becomes unstable; the online version of the paper includes
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movies animating these contours over a forcing period. In all cases the figures represent

meridional planes (r, z) ∈ [0, r]× [−Γ/2, Γ/2] and the wall is at rest at t = 0.

The magnitude and size of the rollers changes substantially with St. For small forcing

frequencies, there is sufficient time for these rollers to dissipate during part of the forc-

ing period, and so in figure 2(a) a single roller fills the whole domain most of the time,

whereas for large frequencies the rollers persist at both ends throughout the whole forcing

cycle. The Stokes number determines the size of the rollers and their dissipation, and

the Reynolds number measures the strength of their collision with the lids and the recir-

culation of the fluid. The characteristics of the rollers are similar to the ones described

in previous works for the planar case (Blackburn & Lopez 2003b) and for an annular

cavity (Blackburn & Lopez 2010), but in the present analysis the curvature effects are

very important, and the flow geometry is substantially altered near the cylinder axis.

Instantaneous contours of the azimuthal vorticity are shown in the second row of

figure 2. These contours describe the boundary layers that form at the sidewall and

endwalls and their dynamics very well. The sidewall boundary layer is a Stokes-type

boundary layer whose thickness is proportional to St−1/2 (Schlichting & Kestin 1979;

Marques & Lopez 1997), so the boundary layer becomes thinner for larger values of

the forcing frequency St (it also becomes thinner as the amplitude of the forcing Re

is increased). The sidewall boundary layer, dragged by the cylinder sidewall motion,

separates upon colliding with the endwalls, and from the corners where the sidewall and

endwalls meet, the boundary layer enters the bulk of the fluid, forming axisymmetric

oblique jets that result in the formation of the rollers. This process is analogous to

the formation of a vortex roller near the junction of an impulsively started plate and

a stationary plate, where there is a jump in the velocity (Allen & Lopez 2007). The

jets are clearly seen in the azimuthal vorticity contours: the jet centerline coincides with

the azimuthal vorticity zero contour, and on each side it is surrounded by regions with

intense azimuthal vorticity of opposite signs. Oscillating boundary layers also form on

the endwalls with azimuthal vorticity of opposite sign to that of the rollers, as a result

of the jet dynamics just described, and because the endwalls are at rest.

4. Stability of the basic flow

By increasing the amplitude of the forcing Re beyond a critical value Rec(St), the

basic state undergoes a symmetry-breaking bifurcation yielding a new three-dimensional

state. Depending on St, the basic state may undergo either synchronous or Neimark–

Sacker bifurcations. The stability of the basic flow has been comprehensively explored

for St ∈ [1, 150], revealing two synchronous modes (A and B) that bifurcate from the

axisymmetric state by breaking the symmetries differently in each case. There is also

a novel quasiperiodic mode that manifests as modulated rotating waves MRW. We use

subscripts for each of these states to indicate their azimuthal wavenumber m.

The linear stability of the basic state to general three-dimensional perturbations has

been determined using global linear stability analysis via time evolution of the Navier–

Stokes equations (Lopez, Marques, Rubio & Avila 2009; Do, Lopez & Marques 2010).

First, a periodic axisymmetric basic state was computed at some point in parameter
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Figure 3. (Color online) Critical Reynolds number, Rec, as a function of the Stokes number, St,

for the transition from the basic state to the different three-dimensional states, B1, B2, MRW1

and A2. The crosses (red in the online version) correspond to the four basic states depicted in

figure 2.

space. Its stability was determined by introducing small random perturbations into all

azimuthal Fourier modes. For sufficiently small perturbations, the nonlinear couplings

between Fourier modes are negligible (below round-off numerical noise) and the growth

rates (real parts of the eigenvalues) and structure of the eigenfunctions corresponding to

the fastest growing perturbation at each Fourier mode emerge from time evolution. This

is tantamount to a matrix-free generalized power method in which the actions of the Ja-

cobian matrices for the perturbations are given by time integration of the Navier–Stokes

equations with the aforementioned initial conditions. This direct numerical technique is

very efficient as the exponential growth or decay of the perturbations is established in

a relatively short evolution time, and there is no need to evolve the disturbances until

they saturate nonlinearly.

The bifurcation curves for the different modes in (St,Re)-space are shown in figure 3.

At low St, mode B is the first to become critical with increasing Re, while at high St

mode A is first. At intermediate values St ∈ [40.7, 79.7], the quasiperiodic mode bifurcates

first, in the form of modulated rotating waves MRW. The synchronous mode A always

has an azimuthal wave number m = 2 (A2), the quasiperiodic mode has m = 1 (MRW1),

and the synchronous mode B may have either m = 1 or m = 2 depending on St. The

bifurcations to the four different states (B1, B2, MRW1 and A2) when varying the forcing

frequency St are separated by three codimension-two bifurcation points at which two of

the states bifurcate simultaneously. The four base states shown in figure 2 correspond

to the four distinct bifurcated states in figure 3. The synchronous modes for small St

have azimuthal wave number m = 1 (B1) and a single roller fills the domain most of the

time, whereas they have azimuthal wave number m = 2 (B2 and A2) for larger St > 15

and two rollers persist throughout the whole forcing cycle. However, the quasiperiodic

MRW1 has azimuthal wave number m = 1 although it is dominant in a St region where

the two rollers persist.

A very similar scenario occurred in the periodically-driven rectangular cavity problem,
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Figure 4. Critical Reynolds number, Rec, as a function of the Stokes number, St, for the

transition from the basic state to the different three-dimensional states, B, QP and A, for the

periodically forced rectangular cavity flow (adapted from Leung et al. 2005).

as illustrated in figure 4, showing the critical Re number as a function of St in the cavity

flow (adapted from Leung et al. 2005). Figures 3 and 4 are strikingly similar, and they

only differ in their scaling. The critical Re and St for the rectangular cavity are about a

factor of two larger than for the cylinder case, so that the marginal curve in the cavity

flow occurs at higher Re number, and the different modes are shifted to higher St. The

qualitative shape of the marginal curves are very similar in both cases, and the shift in

(St,Re) reflects the different geometries of the two problems. An important difference

between the two problems is that in the driven rectangular cavity the wavenumber of the

bifurcated solution varies continuously, while in the cylinder problem it is discrete (and

in fact of very small wavenumber, either m = 1 or m = 2). However, the qualitative trend

is the same in both problems. In the driven rectangular cavity, the wavenumber of mode

B increases with St, while for QP and A their wavenumbers are almost independent of

St (Leung et al. 2005). In the cylinder problem, the azimuthal wave number of mode

B also increases with St (varying from m = 1 to m = 2), while for MRW and A their

azimuthal wave numbers do not vary with St (m = 1 for MRW and m = 2 for A).

A detailed comparison with the annular cavity problem (Blackburn & Lopez 2010)

is not possible, because that study focused on the analysis of the modulated rotating

waves, that unfortunately where unstable and resulted in complicated flows with mixed

characteristics between the synchronous and quasiperiodic solutions. Also, they only

considered a single value of St = 100 at which the traveling wave state was expected to

be found. Nevertheless, the different modes obtained here were also present in the annular

cavity problem. The radius ratio used in the annular study was close to one, so that both

inner and outer radii were much larger than the annular gap. That choice was made to

compare with the rectangular cavity flow problem, which corresponds to the radius-ratio-

going-to-one limit. As a result, the azimuthal wave numbers of the bifurcating states were

very large (between m = 30 and m = 35 for the dominant modes in the parameter regime

considered). In contrast, in the cylinder problem which corresponds to radius ratio zero

(the inner cylinder does not exist so that the outer radius and the gap coincide), the
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Figure 5. (a) Time series of the energies of the leading Fourier modes for the B2 state at

Re = 525 and St = 32; and (b) a close-up of E2(t) after saturation, over two forcing periods.

azimuthal wave numbers are very small (m = 1 and m = 2). Furthermore, even though

the two problems have the same symmetry group, the flow domain in the cylinder is

singly-connected whereas in the annulus it is doubly-connected.

5. Three-dimensional structure and symmetries of the unstable

modes

After perturbing the axisymmetric basic flow with Re > Rec(St), a new three-dimen-

sional periodic or quasiperiodic state is reached, after waiting enough time for saturation.

This bifurcated state depends strongly on the mode that drives the instability, and on the

precise values of (St,Re). When describing these bifurcated flows, we will use the term

braid, of widespread use in similar flows, to denote smaller-scale meridional structures

with vorticity components ξ and ζ. Braids are typically generated through the amplifi-

cation of spanwise-orthogonal perturbations of the rollers in rectangular cavities, and in

cylindrical and annular geometries it is the amplification of meridional perturbations of

the rollers that gives rise to the braids.

In the following subsections the symmetries and features of the different bifurcated

solutions are described and illustrated with results computed at given values of St. Modes

B1, B2 and A2 are computed at St = 10, 32, 100, respectively, whilst mode MRW1

has been computed at St = 50, and the corresponding base states have already been

illustrated in figure 2. All the solutions have been computed at Re slightly above Rec.

5.1. Synchronous modes

Three-dimensional states result when a single purely real eigenvalue crosses the unit

circle at +1 in the complex plane. When an axisymmetric flow that belongs to the

synchronous region is perturbed, the energies of the Fourier modes may grow or decay

depending on the case, but what is clear is the modulation of the energies with the

sidewall frequency. When the basic flow is unstable to synchronous modes, the Fourier

spectra begin to grow and at some time reach an asymptotic state where the modes are

saturated but oscillate with the driving frequency of the wall around a mean value. Such
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(a) B1 (b) B2 (c) A2

Figure 6. (Color online) Isosurfaces of radial vorticity ξ (solid) and azimuthal vorticity η

(translucent) for the synchronous states (a) B1 at (Re, St) = (340, 10) with ξ = ±50 and

η = ±500, (b) B2 at (Re, St) = (525, 32) with ξ = ±40 and η = ±1000, and (c) A2 at

(Re, St) = (700, 100) with ξ = ±150 and η = ±800. The associated movies online show temporal

evolution over one forcing period.

an evolution can be seen in figure 5, where the energies of the leading Fourier modes are

shown as a function of time for the B2 state at Re = 525 and St = 32; the inset show

the oscillations in the energy, synchronous with the forcing (period τ = 1/St = 0.04),

but with the period halved because the energy is a sum of squares of the velocities.

The three-dimensional structures of modes A and B are visualized in figure 6 with the

aid of perspective views of instantaneous isosurfaces of the radial vorticity (dark/light,

or yellow/red in the online movies, are positive/negative values), which shows the braid

structures, and azimuthal vorticity (translucent), showing the rollers. Note that the only

component of vorticity of the axisymmetric base state that is non-zero is the azimuthal

component, and that the braids are comprised of radial and axial components of vorticity

and are a direct result of breaking axisymmetry. In general terms, braids are located near

the lids and away from the sidewall, and they are born on the oblique jets alternatively

emerging from the top and bottom corners. Nevertheless, there are some subtle variations.

For A2, braids suffer slight changes in shape and their behavior is quite regular as is that

of the rollers. Notice that the shape of each roller stays essentially the same as those of

the base state. For B1 and B2, braids change abruptly during a forcing cycle, as do the

rollers in this regime, and their dynamics (creation, merging and destruction) are much

more complex. In addition, the azimuthal vorticity of the B modes is very different to

that of the corresponding basic state.

As the bifurcated solutions are no longer axisymmetric, the O(2) symmetry has been

broken, and there only remains the discrete symmetry R2π/m, a rotation of angle 2π/m

around the axis, where m is the azimuthal wave number of the bifurcated solution. This

rotation generates the so-called Cm (or Zm) symmetry group; when m = 1 this group

is trivial (containing only the identity), and all the rotational symmetries are destroyed.

Now, let us examine what happens with the spatio-temporal symmetry H. We have

plotted in figure 7 axial vorticity contours of the critical eigenvectors for the B1, B2 and
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B1 B2 A2

(a)

(b)

Figure 7. (Color online) Axial vorticity contours in a z-constant plane of the eigenfunctions

at the bifurcation to states B1, B2 and A2 shown in figure 6; (a) is computed at a convenient

time t0 and z = Γ/4, while (b) is computed at time t0 + τ/2 and z = −Γ/4, i.e. applying the

space-time transformation H to (a). Solid (dashed) contours are positive (negative); light/dark

(yellow/red online) colors correspond to negative/positive values.

A2 bifurcations in a horizontal section z = Γ/4 for a given time, and in the reflection-

symmetric section z = −Γ/4 after advancing half the forcing period. The figure shows

that the bifurcations to B1 and B2 are H-symmetric, i.e. the values of the axial vorticity

ζ of the eigenfunctions, at a given time t0 and at z = Γ/2 (figure 7a), are the same as the

values of ζ advancing time by half the forcing period, t0+τ/2, on the reflection-symmetric

plane z = −Γ/2 (figure 7b). The eigenfunction of the A2 bifurcation is not H-symmetric,

but changes sign, so the H-symmetry is broken in this bifurcation. However, H combined

with the rotation Rπ/m, with m = 2 (half the angle of the rotational symmetry of the

state), results in a space-time symmetry of the A2 eigenfunction. This is precisely the

expected behavior from bifurcation theory (Marques et al. 2004): there are only two

options for three-dimensional synchronous eigenfunctions under the action of the space-

time symmetry H, multiplication by ±1. The behavior of all the velocity and vorticity
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B1 B2 A2

(a)

(b)

Figure 8. (Color online) Axial vorticity contours in a z-constant plane of nonlinear saturated

states corresponding to B1, B2 and A2 shown in figure 6; (a) is computed at a convenient time t0
and z = Γ/4, while (b) is computed at time t0 + τ/2 and z = −Γ/4, i.e. applying the space-time

transformation H to (a). Solid (dashed) contours are positive (negative); light/dark (yellow/red

online) colors correspond to negative/positive values.

components is given by

H preserved:

{
(u, v, w)(r, θ, z, t) = (u, v,−w)(r, θ,−z, t+ τ/2),

(ξ, η, ζ)(r, θ, z, t) = (−ξ,−η, ζ)(r, θ,−z, t+ τ/2),
(5.1)

H broken:

{
(u, v, w)e(r, θ, z, t) = (−u,−v, w)e(r, θ,−z, t+ τ/2),

(ξ, η, ζ)e(r, θ, z, t) = (ξ, η,−ζ)e(r, θ,−z, t+ τ/2),
(5.2)

Rπ/mH preserved:

{
(u, v, w)(r, θ, z, t) = (u, v,−w)(r, θ + π/m,−z, t+ τ/2),

(ξ, η, ζ)(r, θ, z, t) = (−ξ,−η, ζ)(r, θ + π/m,−z, t+ τ/2),
(5.3)

The space-time symmetries of the eigenfunctions translates to the nonlinear saturated

states (as long as no additional bifurcations take place in the saturation process). How-

ever, the multiplication by -1 shown in (5.2) is a property of the eigenfunction that the

saturated states do not have. The reason is that the eigenfunctions are pure Fourier modes

in the azimuthal direction, and when they develop to fully nonlinear three-dimensional

bifurcated solutions, Fourier harmonics appear, and the even harmonics (including the

zero mode) are multiplied by (−1)2 = +1 under the action of the H-symmetry, so the full

nonlinear solution does not have the multiplication by -1 property that the eigenfunc-

tion has. Figure 8 shows the same information as in figure 7, but for the full nonlinear

bifurcated solutions, illustrating the symmetry properties of the saturated states. The
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Figure 9. Time average of the energy of the dominant mode for the synchronous solutions as

a function of Re, (a) B1 solutions at St = 10, (b) B2 solutions at St =, and (c) A2 solutions at

St = 100. The diamond corresponds to the critical Re obtained by linear stability analysis and

the solid disks correspond to computed nonlinear solutions.

behavior labeled by the subscript e in (5.2), corresponding to multiplication by -1 under

the action of the H-symmetry, is no longer present in the saturated nonlinear solution.

However, the preserved symmetries H (5.1) and Rπ/mH (5.3) clearly persist.

The three bifurcations to B1, B2 and A2 are supercritical, as shown in figure 9, where

the time-averaged energy of the dominant mode 〈Em〉 is plotted as a function of the

Reynolds number; there is no hysteresis, and the behavior of 〈Em〉 is linear as Re ap-

proaches the critical value (�). The normal form for the amplitude of the bifurcated

synchronous solutions in the supercritical case is given by Ȧ = A(µ− c|A|2). When sat-

uration is reached, Ȧ = 0 and we have Re − Rec = µ = c|A|2 = d〈Em〉, the observed

linear behavior close to the bifurcation point.

5.2. Quasiperiodic mode

The onset of the quasiperiodic states occurs when two complex-conjugate pairs of

eigenvalues cross the unit circle, thus introducing a second frequency ωQ related to the

phase of the complex-conjugate pairs. Generically this second frequency will be incom-

mensurate with the forcing frequency, so the H-symmetry is broken in this bifurcation.

The second frequency ωQ can manifest itself in two ways, depending on whether the

bifurcation breaks Kθ or Rα of the O(2) symmetry of the basic state. In the linear sta-

bility analysis we referred only to mode MRW1, but this term encompasses modulated

θ-travelling wave (MRW) and modulated standing wave (MSW) states. Due to the O(2)

symmetry of the governing equations, there are two pairs of complex conjugate eigenval-

ues that bifurcate simultaneously, and they correspond to modulated θ-travelling waves,

that can travel in the positive or negative θ-direction; after a period of the forcing, the

flow pattern repeats itself, but rotated a certain angle, ±θ0, related to the second fre-

quency by θ0 = 2πωQ/St, where St = ωf is the forcing frequency. Kθ transforms each one

of the MRW into the other, therefore the Kθ-symmetry is broken; the SO(2) rotational

symmetry is also broken, because the solution has azimuthal wave number m = 1 ; how-
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(a) MRW1 (b) MSW1

Figure 10. (Color online) Isosurfaces of radial vorticity ξ (solid) and azimuthal vorticity η

(translucent) for (a) MRW1 with ξ = ±180, and (b) MSW1 with ξ = ±120, both with η = ±1000

and computed at (Re, St) = (615, 50); only MRW1 is stable. Light/dark (yellow/red online) solid

colors correspond to negative/positive values of ξ. The associated movies online show temporal

evolution over several forcing periods.

ever, as they are modulated traveling waves, there is a preserved space-time symmetry,

consisting in advancing one forcing period in time combined with the rotation R±θ0 .

Besides the two MRW solutions, there is also a third nonlinear solution corresponding

to a symmetric combination of the two MRW states; these states, called modulated stand-

ing waves MSW, are Kθ-symmetric, but the SO(2) rotational symmetry is completely

broken. Only one of the two families of solutions, MRWand MSW, is stable (Marques

et al. 2004). In the present problem, as in the case for the driven annular cavity (Black-

burn & Lopez 2003b) and for the driven annular cavity (Leung et al. 2005), the stable

solutions are MRW; their sense of travel depends on the initial condition for the sign of

the azimuthal velocity perturbation. In order to obtain MSW, it is necessary to enforce

the Kθ symmetry, restricting the computations to the appropriate Fourier subspace.

When an axisymmetric flow unstable to MRW1 mode is perturbed, the energies of all

Fourier modes begin to grow with the driving frequency and this is additionally mod-

ulated by the quasiperiodic frequency, which is approximately one order of magnitude

smaller than the forcing frequency, and it is the same for MRW and MSW states. How-

ever, when MSW reaches a saturated state, the energy of the Fourier modes retain both

characteristic times, whilst the quasiperiodic frequency for MRW, being related to the

azimuthal precession of the pattern, does not manifest in the energy of the Fourier modes.

The three-dimensional structures of these quasiperiodic flows are visualized in fig-

ure 10 by means of perspective views of instantaneous isosurfaces of the axial vorticity

(dark/light are positive/negative values) and azimuthal vorticity (translucent). Braids

are concentrated on the cylinder endwalls away from the sidewall and suffer large vari-

ations in all cases. As with the synchronous modes, the braids seem to be born along

the oblique jets emerging from the corners and propagate into the interior, interacting in

a complex way with the braids coming from the other endwall. Nevertheless, for MSW

the braids possess very regular shapes and look quite similar to those of the synchronous
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Figure 11. (Color online) Same solutions and isosurface levels as in figure 10, but strobed every

10 forcing periods. The associated movies online show temporal evolution strobed every forcing

period.

states, and the rollers are virtually not distorted. For MRW however, the braids have a

helical structure and the rollers do not resemble the corresponding base flow rollers at

all. In fact, the rollers in MRW are tilted with respect to the horizontal rollers in the

base state.

Figure 11 shows the same contours as in figure 10, all at the same phase at integer

multiples of the forcing period apart. For MRW, the strobed structures do not change in

a frame of reference that rotates in the azimuthal by an angle θ0 every forcing period,

justifying the name of modulated rotating wave. For the MRW shown in figures 10

and 11 at (Re, St) = (615, 50), this value is θ0 ≈ 28.77◦. This results in a precession

frequency ωp = 3.996. For MSW, the strobed structures vary substantially in one period,

as can be seen in the movie associated with figure 11(b). In general, the ratio between

the quasiperiodic and wall periods are not commensurate, and the flow structure never

repeats itself. However, the flow structure of MSW remains almost unchanged after ten

forcing periods, as shown in figure 11(b); the only noticeable difference is the formation

of braids very close to the bottom lid. This is because the ratio of quasiperiodic to forcing

frequencies is very close to 1/10 for the parameter values (Re, St) = (615, 50) of MSW;

this will be explored in more detail at the end of the present section.

The quasiperiodic bifurcation is subcritical, for both MRW and MSW, in contrast to

the synchronous bifurcations which are supercritical. Figure 12 shows the time average

of the energy of the m = 1 dominant mode for the quasiperiodic solutions, 〈E1〉, as a

function of the Reynolds number. The MRW solutions show a well-defined hysteretic

region; for the MSW, the hysteretic region is very costly computationally to obtain,

having extremely long transients. Nevertheless, the energies do not behave linearly close
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Figure 12. Time average of the energy of the m = 1 dominant mode for the quasiperiodic

solutions as a function of Re, for St = 50. The diamond corresponds to the critical Re obtained

by linear stability analysis. Symbols correspond to computed saturated solutions, and the curves

are best fits to the parabolic profiles predicted by normal form theory.

to the critical Reynolds Rec = 610.47 for St = 50. We can fit the computed energy

amplitudes to the shape predicted by normal form theory. According to Marques et al.

(2004), the amplitudes of the bifurcated solutions vary as

Re−Rec = µ = a|A|4 − b|A|2 = a〈E1〉2 − b〈E1〉, (5.4)

where a quartic term has been included due to the subcritical nature of the bifurcation.

The fitting parameters a and b can be expressed in terms of the energy and Re at the

saddle-node point:

Re−Rec
Rec −ReSN

=
〈E1〉
〈E1〉SN

(
〈E1〉
〈E1〉SN

− 2

)
. (5.5)

The solid lines in figure 12 are best fits of this expression to the computed values. The

agreement is very good and provides good estimates of the Reynolds numbers of the

saddle-node bifurcations. The estimates are ReSN ≈ 610.28 for MSW and ReSN ≈ 608.57

for MRW.

The frequencies of the quasiperiodic states can be computed via FFT of the time series

of a convenient variable; here we have chosen the value of the axial velocity at a point

P close to the sidewall at the cylinder mid-height, (r, θ, z)P = (0.9, 0, 0). Figure 13(a)

shows the power spectral density for MSW at (Re, St) = (615, 50). It is a quasiperiodic

spectrum with two well-defined frequencies, ωf = 50 and ωQ = 5.035, and their linear

combinations. The ratio of the frequencies is close to resonance, ωQ/ωf = 0.1007 ≈ 1/10,

and so a small frequency corresponding to 10ωQ − ωf ≈ 0.353 is also present. The FFT

supplies ωQ up to a multiple of the forcing frequency; its precise value must be obtained

by other methods. In order to analyze in detail how close to resonance the Neimark–

Sacker bifurcation is and also to confirm the value of the second frequency, we have

computed Poincaré sections of the quasiperiodic states by strobing the MSW solution

every period τ . The Poincaré section is shown in Figure 13(b), where we have projected

the infinite-dimensional phase space into the plane corresponding to the values of the

axial velocity w at two different locations P and Q in the cylindrical domain. The point
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Figure 13. (a) Power spectral density of the FFT for MSW at (Re, St) = (615, 50) and (b)

Poincaré section of the same solution strobing MSW every τ . Symbols • and numbers in (b) corre-

sponds to successive iterates, showing that the frequency ratio is close to rational: ωQ/ωf ≈ 1/10.
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Figure 14. (a) Power spectral density of the FFT for MRW at (Re, St) = (615, 50) and (b)

Poincaré section of the same solution strobing MRW every τ . Symbols • and numbers in (b) corre-

sponds to successive iterates, showing that the frequency ratio is close to rational: ωQ/ωf ≈ 2/25.

P is the same used for computing the FFT, at (r, θ, z)P = (0.9, 0, 0), and Q is close to

the bottom endwall at (r, θ, z)P = (0.9, 0,−0.1). The closed curve is the section of the

two-torus where the solution lives, and the symbols • correspond to successive iterates

that are numbered in the figure. The tenth iterate, after 10τ , almost coincides with the

initial point. We have plotted 50 iterates, so we have 10 clusters of 5 points, showing

that the rotation number (the ratio of the frequencies ωQ/ωf ) is very close to 1/10. This

justifies the selection of ωQ = 5.035 from the FFT.

Figure 14(a) shows the power spectral density for MRW at (Re, St) = (615, 50). The

second frequency is ωQ = 3.996, quite different and smaller than the frequency of MSW.

In this case we are even closer to resonance, but a different one. From the Poincaré section

in figure 13(b), we see that the iterates undergo two turns on the section before almost

coinciding with the initial point after 25 iterates, so now the rotation number (frequency

ratio) is ωQ/ωf = 0.07992 ≈ 2/25, and a very small frequency appears, 2ωf−25ωQ ≈ 0.1.

Here, we can also estimate ωQ by measuring the angle θ0 rotated by the flow pattern
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Figure 15. Computed frequencies ωQ of the quasiperiodic states MRW and MSW as a function

of Re. Also included are the frequencies of the most unstable eigenfunction, and the critical

value �.

after one forcing period τ , and the result is in fully agreement with the Poincaré section

method.

The frequencies of MRW and MSW for (Re, St) = (615, 50) are different, and so we

have explored ωQ as a function of Re, for fixed St = 50; the results are shown in figure 15.

We have also plotted the critical frequency at the bifurcation point, ωQ,c = 5.1572, and

the value of ωQ for the most dangerous eigenfunction as a function of Re. What we

observe is that the second frequency for the eigenfunction is almost constant, as is that

for MSW with ωQ slightly smaller than the critical frequency ωQ,c. In contrast, the second

frequency of MRW is substantially smaller than the critical value, and it decreases with

Re, the amplitude of the forcing. This is probably related to the fact that the energy of

the MRW is much larger than the energy of MSW, and also to the larger subcriticality

of the modulated rotating waves, as shown in figure 12.

We see from figure 15 that the second frequency ωQ, for the MRW and MSW at

(Re, St) = (615, 50), which are the ones we have discussed in detail in this study, is very

close to 4 and 5 respectively. As the forcing frequency is St = 50, the ratio ωQ/ωf is

very close to rational (2/25 and 1/10 respectively), as we have already discussed when

measuring the frequencies via FFT and Poincaré sections. Of course, along the curves

ωQ(Re), other resonances can be located, but all of them have large denominators, so we

do not expect any new dynamics associated with these resonances (Kuznetsov 2004).

6. Conclusions

Several fluid systems with complete symmetry group Z2 × SO(2) have been explored

in recent years. The interest in these flows was triggered by the analysis of symmetric

bluff body wakes (see a summary in Blackburn et al. 2005), starting with circular cylin-

ders, and followed by other symmetric bodies, the square cylinder and a flat plate. Flows

driven by the periodic motion of one of the container walls resulted in systems with the

same symmetry group, and previous studies have analyzed the rectangular driven cavity

(Blackburn & Lopez 2003b; Leung et al. 2005) and a driven annular cavity (Blackburn
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& Lopez 2010). As the symmetry group of all these flows is the same, dynamical systems

analysis (Marques et al. 2004) predicts the type of bifurcations they can undergo, which

are the same in all cases regardless of the specifics of the problem and of the physical

mechanisms at work. There are only three possibilities for the transition from the basic

state to three-dimensional flows: synchronous modes preserving or breaking the space-

time symmetry H or quasiperiodic modes, that come in two flavors, either modulated

travelling waves or modulated standing waves. The synchronous modes with the corre-

sponding symmetry properties have been observed in all of these various flow problems.

The quasiperiodic modes however have been much more elusive. In symmetric bluff-body

wake problems, the quasiperiodic modes do not manifest themselves as primary bifurca-

tions, and can only be observed or computed as secondary or higher bifurcations, in the

form of mixed modes. In periodically driven flows, as there are more control parameters,

they have been observed in the rectangular driven cavity, but unfortunately spanwise

endwalls effects, effectively breaking the O(2) symmetry, resulted in modulated travel-

ling waves that do not travel. In the annular driven geometry with large radius ratios, the

quasiperiodic modes are of very high azimuthal wavenumber and have not been found as

nonlinearly saturated pure modes, but instead they are mixed complicated modes.

In the present study, we have analyzed the simplest geometry available with the correct

symmetries, the cylindrical driven cavity with moderate aspect ratio. This geometry has

two advantages over previous studies. First, the O(2) symmetry is exactly fulfilled by the

cylindrical geometry (periodicity in the azimuthal direction), eliminating the spanwise

endwall effects of the rectangular cavity. And second, the bifurcated states have small

azimuthal wavenumbers (typically m = 1 or 2), so the competition between different

modes is greatly reduced. As a result, we have been able to compute nonlinearly saturated

pure modulated standing and traveling waves for the first time, and we have also found

the two types of synchronous modes, in the appropriate parameter ranges.

As a starting point of the analysis, the periodic synchronous base states have been

computed for different forcing amplitudes, Re, and forcing frequencies, St. These are

non-trivial states, with axisymmetric rollers forming alternatively close to each of the

endwalls due to the periodic oscillation of the cylinder sidewall. This oscillation produces

axisymmetric jets of azimuthal vorticity, emerging from the corners, moving into the

interior, and forming the rollers.

The linear stability analysis of the base state has resulted in the computation of the

marginal stability curve, shown in figure 3. We have found synchronous bifurcations

preserving the H symmetry for small forcing frequencies St, and breaking H for larger St

values. In between, for intermediate St values, we have found a transition to quasiperiodic

solutions. The form of the instabilities is always the same, the formation of braids that

are small-scale meridional perturbations of the rollers. The size and persistence of these

braids depends strongly on St. These results are in good agreement with previous results

in flows with the same symmetries, in particular with the driven rectangular cavity

problem.

We have also computed saturated nonlinear states, and in all cases sufficiently close

to the bifurcation curve, these are pure modes that we have analyzed in detail. The
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quasiperiodic stable solutions in the present problem are modulated rotating waves, and

by restricting the computations to the appropriate subspace, we have also been able

to compute the corresponding unstable modulated standing waves. As a result of these

nonlinear simulations, we have established that the bifurcations to synchronous states

are supercritical, while the bifurcations to quasiperiodic states are subcritical. A careful

analysis of the quasiperiodic frequency ωQ of the modulated standing waves has shown

that ωQ is almost constant and close to the frequency that emerges from the linear

stability analysis for the modulated standing waves, whereas the modulated rotating

waves exhibit a smaller frequency ωQ that varies significantly with St. Finally, we have

found in preliminary explorations to higher Re (i.e. increasing the forcing amplitude)

that the three-dimensional pure modes undergo secondary bifurcations to complicated

mixed modes for moderate increments in Re beyond critical.

Future directions include an examination of the dynamics in the neighborhood of

the codimension-two points where two distinct modes bifurcate simultaneously; these

codimension-two points act as organizing centers of the dynamics, and are very likely

associated with the secondary bifurcations to mixed modes and more complex dynam-

ics. We have found three codimension-two bifurcations, one associated with the com-

petition between modes B1 and B2, and two on each side of the quasiperiodic region.

The codimension-two bifurcation between B1 and B2 is a 1:1 resonance preserving H-

symmetry, that has been fully studied theoretically (Kuznetsov 2004). The other two

bifurcations are more complex, they are bifurcations of maps with a real eigenvalue

(either ±1) and a pair of complex conjugate eigenvalues of modulus 1, where the H-

symmetry plays a key role. Although there are some partial results on these bifurcations,

they have not been yet fully analyzed (Kuznetsov 2004), and here we have a physically

realizable fluid dynamics system in which they occur. Studies in fluids have been in-

strumental in developments in nonlinear dynamics, allowing for unified understanding of

complex dynamics in a wide spectrum of fields. We hope that this driven cylinder system

can help further address some general open questions in dynamical systems. Moreover,

this is a relatively easy system in which to conduct experimental research, and we hope

experiments in this system will be undertaken in the near future.

This work was supported by the National Science Foundation grant DMS-05052705

and the Spanish Government grant FIS2009-08821.
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