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Abstract. We investigate the wavelength dependent ionization, heating, and

expansion dynamics of medium-sized rare-gas clusters (Ar923) under intense

femtosecond short-wavelength free electron laser pulses by quasi-classical molecular

dynamics simulations. A comparison of the interaction dynamics for pulses with

h̄ω=20, 38, and 90 eV photon energy at fixed total excitation energy indicates a smooth

transition from plasma-driven cluster expansion, where predominantly surface ions

are expelled by hydrodynamic forces, to quasi-electrostatic behavior with almost pure

Coulomb explosion. Corresponding signatures in the time-dependent cluster dynamics

as well as in the final ion and electron spectra support that this transition is linked

to a crossover in the electron emission processes. The resulting signatures in the

electron spectra are shown to be even more reliable for identifying the cluster expansion

mechanisms than ion energy spectra itself.

1. Introduction

Within the last decade, the rapid development of intense laser-matter science at short-

wavelengths has been fueled by an enormous progress in free electron laser (FEL)

technology [1, 2, 3, 4]. Today, the availability of high intensity pulses from the vacuum

ultraviolet (VUV) over the extreme ultraviolet (XUV) up to the x-ray domain makes

it possible to study nonlinear laser-matter processes in hitherto unexplored parameter

regimes [5]. In particular the nonlinear response of nanosystems to intense FEL pulses

has become a topic of great interest, as new fundamental insights into ultrafast laser-

driven excitation and decay dynamics of many-particle systems can be gained [6, 7].

Moreover, corresponding knowledge on the related radiation damage processes and

timescales of target destruction is of central importance for novel applications, such as

single-shot diffractive imaging of biological samples or time-resolved x-ray holography

of highly excited nanosystems [8, 9, 10, 11].

http://arxiv.org/abs/1011.2069v1
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For studying nonlinear response processes of finite systems in intense short-

wavelength laser radiation, atomic clusters have been proven to be versatile since the

early days of the VUV-FEL at DESY [12]. A key essence of the first VUV experiments

and a considerable amount of successive theoretical work is, that collisional plasma

heating through inverse Bremsstrahlung (IBS) is a major (typically the leading) heating

process in the λ ≈100 nm range and electron emission proceeds mostly via thermal

evaporation, see e.g. [13, 14, 15, 16]. With increasing photon energy, however, collisional

plasma heating processes diminish rapidly and different heating and electron emission

processes take the lead.

A key process at higher photon energy is sequential direct photoemission into the

continuum [17]. This so-called multistep ionization mechanism produces a characteristic

plateau feature in the electron emission spectra and leaves behind an on-average

homogenously charged cluster, as schematically sketched in Figs. 1a-1b. Multistep

energy

ionization step

a) b) c) d)

expansion

e)

Figure 1. Schematics of the cluster ionization dynamics in intense short-wavelength

laser pulses based on the effective cluster potential. After direct photoemission of

the first electron (a), subsequently emitted photoelectrons experience a continuous

Coulomb downshift with increasing cluster charge (b). This multistep ionization

becomes frustrated at a certain ionization stage and nanoplasma formation sets in

(c). Collisions between trapped electrons induce evaporation electron emission (d).

Finally the cluster expands due to charging and hydrodynamic forces (e).

ionization becomes suppressed, as soon as the cluster Coulomb potential produces

an energy downshift larger than the atomic excess energy of the photoelectrons, see

Fig. 1c. This suppression effect begins at the cluster center (partial frustration) and

then gradually spreads to the surface (full frustration). Simple estimates for the

corresponding thresholds have been given in [18]. If electron impact ionization can

be neglected, which is assumed for our study, frustration of direct photoemission is

required for efficient nanoplasma generation in the cluster (Fig. 1d). Still, even if electron

trapping sets in, collisional heating of the cluster-bound (quasifree) electrons remains

negligible over a wide intensity range [19] and the thermal energy of the nanoplasma

electrons is determined by inner ionization heating, i.e., by the excess energy from

inner photoionization [18]. From this stage on, energy equilibration through electron-

electron collisions and evaporative electron emission yield an additional nearly thermal

distribution to the multistep component of the electron spectrum [20, 21], cf. Fig. 1d.
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Hence, the cluster charging and the formation and energetics of the nanoplasma depend

on the particular ionization regime and thus also determine the cluster expansion

dynamics (Fig. 1e) [22]. In the limit of pure multistep ionization, the quasi-homogenous

charging of the system can be shown to induce a pure Coulomb explosion of the system.

In contrast to that, ions in the inner region of the cluster can be efficiently screened in

the presence of a dense nanoplasma, leading to a hydrodynamic expansion behavior [23].

However, as we will show by examples, the identification of the expansion mechanism

from ion energy spectra is often ambiguous. Alternative methods would thus be desirable

for identifying the relative impact of the different explosion mechanisms.

The key motivation for the present study is the question, if electron spectra can

be used for an easier identification of the leading expansion processes. Therefore we

investigate the transition from hydrodynamic expansion to Coulomb explosion behavior

as function of wavelength and examine the relations between the ionization regime

and the electron and ion spectra. We analyze the cluster response for excitations

with VUV, XUV and soft x-ray pulses using Ar923 as a medium-sized model system.

The applied molecular dynamics approach is similar to that of a previous study on

the intensity-dependence of the electron emission from small rare-gas clusters at fixed

wavelength [18]. For comparability of the simulations and to highlight the fundamental

differences between the excitation regimes, the laser intensity is chosen such, that a

fixed total energy absorption is achieved. For extracting characteristic signatures from

the ion spectra that can be used for comparison with experimental spectra, ion energy

distributions are analyzed in two ways, i.e., shell-resolved as well as charge-state resolved.

Therein, electron-ion recombination in the expanding cluster is taken into account, which

is of particular interest for the investigation of core-shell effects [24, 25, 26].

The remaining text is structured as follows. The theoretical approach and its

numerical implementation are described in Sec. 2. Simulation results are presented in

Sec. 3, containing an analysis from the time-dependent perspective (Sec. 3.1) in relation

to the final emission spectra (Sec. 3.2). Conclusions and an outlook are given in Sec. 4.

2. Simulation method

The laser-cluster interaction dynamics are modeled by a quasi-classical molecular

dynamics approach. Therein, atomic ionization processes are described quantum

mechanically via appropriate rates, whereas resulting ions and electrons is treated

classically. This general strategy has been widely applied to laser-cluster interactions

from the near infrared up to the x-ray domain, see [6, 7] and references therein.

As optical field ionization is negligible in the wavelength range from the VUV

to the soft x-ray range, single-photon ionization is considered to be the main inner

ionization process. Departing from an initial Ar923 cluster in relaxed icosahedral

structure, photoionization of the cluster constituents is evaluated stochastically using

single-photon ionization cross sections taken from free atomic Ar, see Tab. 1. It should

be noted that medium-induced atomic ionization threshold lowering due to screening
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and local plasma field effects is explicitly taken into account [27] and enables charging of

cluster constituents beyond the maximum charge state of the atomic species, for details

see [15, 28, 29]. The photoionization probability is determined from the instantaneous

laser intensity I(t) = I0f
2(t), where I0 is the peak intensity and f(t) = exp(−2 ln 2t2/τ 2)

is the normalized temporal field envelope of a Gaussian pulse with a pulse duration

τ (FWHM). Resulting ions and electrons are propagated classically in the linearly

polarized laser field (dipole approximation) and under the influence of a regularized

Coulomb interaction of the form

Vij(rij , q1, q2) =
e2

4πε0

qiqj
rij

erf
(

rij
s

)

, (1)

where e is the elementary charge, rij is the distance between the interacting particles

with charge state qi and qj and s = 1.128 Å is a numerical smoothing parameter. The

latter prevents classical electron-ion recombination below the lowest quantum energy

level. The classical trajectories are integrated using a standard velocity-Verlet algorithm.

For the classification of active electrons we define a single particle energy

Esp
i =

mi

2
v2i +

∑

i 6=j

Vij , (2)

where mi and vi are the mass and velocity of the i-th particle. Electrons are denoted

as quasifree (delocalized, still bound to the cluster) if Esp < 0 and as free if Esp ≥ 0

(continuum energy).

In order to calculate final ion charge states, e.g. to analyze charge-state dependent

energy spectra, recombination of quasifree cluster electrons with ions is treated by the

scheme developed in Ref. [27]. As radiative recombination rates are negligibly small

occ3s occ3p I3sp [eV] σ3s [Mb] (20/38/90 eV) I3pp [eV] σ3p [Mb] (20/38/90 eV)

Ar 2 6 29.3 - / 0.2[a]/ 0.2[a] 15.76[b] 30[a] / 5.0[a]/ 1.2[a]

Ar+ 2 5 43.67 - / - / 0.2 27.63[b] - / 2.6[c]/ 1.0

Ar2+ 2 4 58.09 - / - / 0.2 42.54 - / - / 0.8

Ar3+ 2 3 73.60 - / - / 0.2 57.60 - / - / 0.6

Ar4+ 2 2 90.07 - / - / - 74.96 - / - / 0.4

Ar5+ 2 1 107.4 - / - / - 90.94 - / - / -

Table 1. Photoionization cross-sections (σα) and ionization energies (Iα
p
) for atomic

Ar. Superscripts α indicates electron removal from 3s and 3p shell (as indicated)

with initial shell occupation occα. Remaining ionization potentials are calculated

with an atomic all-electron Dirac-LDA code [30]. Remaining cross sections have

been extrapolated from the next known values assuming linear scaling with shell

occupation.
[a] Values taken from Ref. [31]
[b] Values taken from NIST
[c] Values taken from Ref. [32]
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for rapidly expanding clusters, only three-body-recombination (TBR) is resolved in our

model. Since TBR proceeds mainly to highly excited, Rydberg-like atomic levels, a

classical description is justified. To evaluate TBR, electrons are treated as recombined

when localized to an ionic cell after a sufficiently long propagation time (here we use

trecomb = 3ps). The charge state of the corresponding ion is reduced by the number

of localized electrons. Remaining quasifree electrons persist and are assumed to be

removed in an experiment by the extraction fields of the ion detector.

3. Results and discussion

For examining the wavelength-dependent cluster response we compare excitations

of Ar923 with τ=30 fs laser pulses at h̄ω = 20, 38, and 90 eV, representing typical

parameters presently available at FEL light sources. For brevity these cases will

henceforward be denoted as VUV, XUV and soft x-ray. To achieve a fixed total energy

absorption (13 keV), the pulse intensities are chosen as I0 = 2.5× 1012, 1.5 × 1013, and

5 × 1013W/cm2, respectively. The intensity increase with photon energy reflects the

reduced photoionization cross sections at shorter wavelength.

3.1. Time-dependent analysis

A time-dependent analysis of characteristic quantities as extracted from the three

simulation scenarios is presented in Fig. 2. For sufficient statistics we performed

ensemble averaging over a sufficient number of runs. Thus all observables reflect

statistical mean values. For all cases, the estimated critical cluster charge for partial

(qpar) and full frustration (qfull) of direct photoionization due to the cluster Coulomb

field are indicated assuming a spherical homogenously charged cluster with radius

Rcl = 19.6 Å (radius determined from the root-mean-square radius of the ions) and

3p photoemission from neutral atomic Ar with an ionization potential of Ip = 15.76 eV.

The number of free electrons in the simulations is taken as a measure for the outer

cluster charge state.

The evolutions of cluster ionization displayed in Figs. 2a-2c show an increase of

the final number of free electrons (blue curves) with photon energy, though the total

number of activated electrons decreases (black curves). Focussing on the VUV case

(h̄ω = 20 eV), direct photoionization is operational only in a very early period of the laser

pulse before the critical charge state for full frustration of q ≈ 6 is reached, see Fig. 2a.

As inner ionization continues, a dense nanoplasma is formed (red curve). Therein,

collisional equilibration of quasifree electrons leads to thermal electron evaporation,

which is the dominant emission process in this case. However, the vast majority of

activated electrons remains trapped in the cluster potential. The electron spill-out

produced by hydrodynamic electron pressure and the concentration of positive charge

at the cluster surface result in a cluster potential that expels ions predominantly from

the outer shells, see Fig. 2d. Ions in inner shells hardly move within the displayed
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Figure 2. Calculated dynamics of Ar923 under 30 fs laser pulses at h̄ω = 20 eV (left),

38 eV (middle), and 90 eV (right) with laser intensities of I0 = 2.5× 1012, 1.5 × 1013,

and 5×1013W/cm2, respectively; (a)-(c): evolutions of the number of free and quasifree

electrons (as indicated) together with corresponding frustration levels (dashed and

dotted lines, see text); shaded areas indicate laser intensity envelopes; (d)-(f): shell-

resolved cluster expansion based on the rms radii of the radial shells (as indicated);

(g)-(i): time-evolution of absorbed, potential and kinetic energies (as indicated).

time interval, indicating efficient screening of the corresponding ions by the remaining

quasifree electrons.

The ionization and expansion behavior gradually changes with increasing photon

energy. In the intermediate XUV case (h̄ω = 38 eV), a notable period of multistep

ionization occurs in the leading edge of the pulse, where only free electrons are created

(Fig. 2b). This direct emission stops abruptly as soon as the full frustration threshold

is reached at about t ≈ −15 fs, see Fig. 2b. The subsequent generation of quasifree

electrons again induces evaporative electron emission, which roughly sets in at time zero

and produces a number of free electrons similar to the previous multistep ionization

phase. In contrast to the ion dynamics in the VUV case, a much more pronounced

expansion is observed for the second outer shell and also the inner shells show a

considerable expansion effect, see Fig. 2e.

In the soft x-ray case (h̄ω = 90 eV), multistep ionization is even more pronounced

and frustration of direct emission begins only after the pulse peak, see Fig. 2b. The

subsequently produced quasifree electrons are less abundant than free electrons and
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only very weak evaporative emission is observed. It should be noted that the direct

photoemission stops on a level that is slightly below the predicted threshold for full

frustration (dashed line). This effect is attributed to the additional trapping field

resulting from quasifree electrons that are produce in the inner region of the cluster

as soon as the partial frustration level is reached. Because of their high excess energy

(about 74 eV for 3p electron detachment from Ar), these electrons induce a significant

charge separation at the surface (spill-out) that enhances electron trapping. Further,

all ionic shells expand similar to a pure electrostatic Coulomb explosion of the cluster

(Fig. 2f).

Deeper insights into the importance of the different expansion mechanisms, i.e., the

contributions from hydrodynamic vs. electrostatic Coulomb forces to the final total ion

kinetic energy, can be extracted from a time-resolved analysis of the energy distribution

in the system, see Figs. 2g-2i. The evolution of the total potential Coulomb energy

and the kinetic energy contributions from ions and active electrons can be used to

reconstruct the energy exchange processes. After the laser pulse. i.e., without further

inner ionization, the sum of these components is constant because of energy conservation

(not shown). It is further assumed, that the change of the kinetic energy of free electrons

is negligible, which is fulfilled in good approximation in all scenarios discussed here.

Under these circumstances, any gain of ion kinetic energy is either due to the release

of thermal energy by expansion cooling of quasifree electrons (hydrodynamic) or due to

the release of potential Coulomb energy (Coulomb explosion).

Based on these assumptions, the following picture can be deduced from the above

scenarios. For the VUV case, the ion energy gain results almost completely from the

release of thermal energy of quasifree electrons, indicating the hydrodynamic expansion

regime, cf. Fig. 2g. The small decrease of potential energy indicates that electrostatic

Coulomb explosion is only a minor effect. As IBS-heating is negligible for all runs

presented here (well below 1%), the available thermal energy of quasifree electrons is

determined by ionization heating. Note that significant IBS heating may occur for VUV

excitation, but only at much higher pulse fluence [29].

An intermediate situation is found with XUV excitation, cf. Fig. 2h, where nearly

equal release of thermal electron energy and potential energy occurs. This scenario thus

represents a dynamical mixture of hydrodynamic expansion and Coulomb explosion

with comparable contributions. Finally, nearly pure Coulomb explosion is observed in

the soft x-ray case (Fig. 2i), where potential energy release yields the main contribution

to the ion recoil energy. The three different scenarios thus reflect the transition from

hydrodynamic to Coulomb-driven cluster expansion.

3.2. Electron and ion spectra

In the next step, the final electron and ion spectra are examined in detail to extract

characteristic features of the different ionization and expansion regimes. The spectra are

sampled after 3 ps of propagation and include averaging over a large set of simulation
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Figure 3. Calculated electron and ion spectra for the same simulation parameters as

in Fig. 2; (a)-(c) electron energy spectra; (d)-(f): shell-resolved ion energy spectra

(as indicated); (g)-(i): charge-state resolved ion energy spectra with and without

recombination (as indicated) and corresponding ion charge distributions (insets).

runs to provide sufficient statistics.

The energy distributions of emitted electrons in Figs. 3a-3c show a transition

from an exponential to a plateau-like structure. In the VUV scenario (Fig. 3a), only

a small feature from multistep ionization below 4 eV (see arrow) is observed within

the otherwise smooth exponential spectrum, reflecting the dominant contribution from

electron evaporation. For XUV excitation, multistep ionization produces a pronounced

plateau with the characteristic sharp cutoff at the atomic photoline (at 22 eV), see

Fig. 3b. Nevertheless, the spectrum still contains a sizable exponential component

in the low energy range and beyond the atomic photoline. In contrast to that, the

electron spectrum is completely dominated by the multistep plateau for the soft x-ray

scenario in Fig. 3c, where the evaporative part is negligible. It should be emphasized

that the plateau contains a small step at about 60 eV in this case. This feature results

from the fact, that 3s and 3p ionization of the argon atoms produce separate multistep

plateaus that are shifted by the difference of the corresponding ionization potentials

(about 14 eV) against each other. Such step in the spectrum is not possible for VUV

excitation (I3sp > h̄ω) and less visible for the XUV case, where 3p ionization is much

more dominant over the 3s channel as in the soft x-ray case.
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The electron spectra are thus found to be very sensitive to the ionization processes

and the excitation regime being probed and thus represent a useful sensor for the

cluster expansion dynamics. Strongly exponential electron spectra indicate a strong

contribution of hydrodynamic expansion while plateau structures typical for multistep

ionization are a marker for Coulomb explosion.

We now turn to the analysis of the spectra of emitted ions, where the signatures

are much more complex. The final ion energy spectrum for the VUV case (black

dotted curve in Fig. 3d) is weakly structured and exhibits a negative slope over almost

the full energy range. This latter feature is typical for the hydrodynamic expansion

regime [23]. The shell-resolved analysis reveals that only ions from the outermost shell

and a small portion of the second outer shell achieve high recoil energy whereas ions

from inner shells acquire only very little energy. The weak modulation of the full

spectrum results from different charge states of ions originating from the outermost

shell, cf. Fig. 3d in comparison with the charge-state resolved spectrum in Fig. 3g. In

addition, the charge-state resolved spectra for higher final ionization levels show isolated

peak structures (green curve for q=2 and blue curve for q=3 in Fig. 3g) which can be

explained by electron-ion recombination. While highly charged ions from outer shells

can escape quickly, the ionization levels of transiently produced high-z ions from inner

shells are reduced by recombination (compare ion spectra before and after recombination

in Fig. 3g). Note that ions with a transient charge state q = 4 are removed from the

final spectra almost completely due to recombination. Strongly peaked and isolated

features in charge-state resolved energy spectra thus indicate the presence of a dense

nanoplasma (electrons are required to recombine) and are thus typical in the regime

of hydrodynamic expansion. This picture is substantiated by recent experiments where

such isolated features have been observed in charge-state resolved ion spectra from

Xenon clusters in 62 nm pulses [33].

For the XUV case, the total ion energy spectrum is much more structured and

exhibits a strong oscillatory behavior. This structure can be traced back to different ion

charge states originating mostly from the two outermost shells, see Fig. 3e and 3h. The

charge-state resolved contributions before recombination show nearly the same profiles

(after rescaling the respective energy axis by the ion charge state). These features

indicate that ions from outermost shells already expand similar to a regular Coulomb

explosion. Ions from inner shells, on the other hand, still exhibit smooth energy spectra

with negative slopes and much lower energies. The signal reduction at low energies for

q = 2 and q = 3 results from recombination to the next lower charge states (q → q−1),

which transfers the contributions to the energy spectra of charge state q−1. Similarly,

the signal gain at high energy in the spectra for q = 1 and q = 2 can be traced back to

recombination from the next higher ionization stage (q+1 → q), leading to an additional

step on the high energy side (see Fig. 3h). However, in the XUV scenario recombination

is less efficient than for the VUV case, as the lower fraction of quasifree electrons and the

higher temperature of the nanoplasma reduce the corresponding rates (compare spectra

before and after recombination in Figs. 3g and 3h). Nonetheless, the signatures from
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recombination reflect that a dense nanoplasma is still present in the XUV case, though

hydrodynamic expansion and Coulomb explosion contribute with comparable strength.

The strongest oscillatory pattern in the ion energy spectra are found for soft x-

ray excitation together with a clearly positive slope of the total energy spectrum at

low energy, cf. Fig. 3f. This feature reflects that Coulomb explosion is the dominant

mechanism. The maxima of the shell-resolved distributions occur at nonzero energy

values that gradually increase with shell number. Note that the peaks at higher

ion energy (at about 160 and 260 eV) contain contributions from the four outermost

shells, representing a clear signature from overrun effects in the exploding cluster [34].

Inspection of the charge-state resolved spectra shows that recombination is negligible

for this scenario. The latter two effects, however, can be resolved only with the full

microscopic information available from the simulation.

From the above analysis it can be concluded, that also the ion spectra contain

useful features to identify the type of the expansion and thus the ionization regime.

The most important features that may be analyzed in corresponding experiments are

the slope of the full ion energy spectrum at low energies and the presence of well isolated

peaks in the energy spectra of high-z ions. The presence of a negative slope hints at

hydrodynamic expansion effects, which are closely connected to extensive nanoplasma

generation and ionization heating. A sizable contribution from Coulomb explosion, on

the other hand, is indicated by a positive slope of the ion energy spectra at low energy,

strong oscillatory pattern, and self-similar structures (after rescaling with charge state)

of charge-state resolved ion energy spectra. These features are typical for the multistep

ionization regime. Intermediate cases show step structures at the high energy side with

respect to the maximum in the charge-state-resolved ion spectra that are produced

from recombination of the respective higher charge states. The identification of the

strengths of hydrodynamic and Coulomb explosion effects from the ion spectra, however,

is expected to be difficult in experiments, as focus averaging and a finite size distribution

of the clusters induce additional blurring of the signatures.

4. Summary and conclusions

To summarize, we have investigated the transition from nanoplasma-driven

hydrodynamic cluster expansion to mostly electrostatic Coulomb explosion for medium-

sized ArN in intense VUV, XUV, and soft x-ray pulses from free electron lasers. By

analyzing the time-dependent cluster dynamics as well as final electron and ion spectra

with quasi-classical simulations, we have shown that this transition is closely linked to a

crossover in the ionization dynamics and electron emission processes. From this strong

link the possibility arises to identify the dominant cluster expansion mechanism just from

the evaluation of electron spectra, as exemplarily shown for three simulation scenarios:

While plateau-shaped structures arising from multistep ionization indicate Coulomb

explosion, exponential electron spectra from thermal electron evaporation are a typical

sign for hydrodynamic cluster expansion. The simultaneous measurement of electron
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and charge-state-resolved ion energy spectra thus offers a promising route towards a

more detailed reconstruction of cluster expansion, overrun effects, and recombination

processes from laser-cluster interactions in the short wavelength regime.

These results thus add a new flavor to FEL science with clusters. In previous work

it has been pointed out that the characteristic ionization mechanisms and the absence

of strong plasma heating in short-wavelength laser-cluster interactions can be exploited

to measure the pulse fluence just from the width of the multistep plateau in the electron

spectra [35]. Here we have shown that even the expansion dynamics of nanosized target

can be inferred from electron spectra. This would be of interest for applications that

are closely related to the correlation between ionization and expansion dynamics of

many-particle systems in intense FEL pulses, such as single-shot diffractive imaging or

time resolved x-ray holography. Moreover, because of the conceptual similarities of key

response mechanisms, cluster dynamics in intense short-wavelength FEL pulses can even

be linked to the field of ultracold plasmas [36].
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