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Time scales of epidemic spread and risk perception on adaptive networks
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Incorporating dynamic contact networks and delayed awareness into a contagion model with
memory, we study the spreading patterns of infectious diseases in connected populations. It is found
that the spread of an infectious disease is not only related to the past exposures of an individual to
the infected but also to the time scales of risk perception reflected in the social network adaptation.
The epidemic threshold pc is found to decrease with the rise of the time scale parameter s and
the memory length T, they satisfy the equation pc = 1

T
+ ωT

<k>as(1−e−ωT2/as
)
. Both the lifetime

of the epidemic and the topological property of the evolved network are considered. The standard
deviation σd of the degree distribution increases with the rise of the absorbing time tc, a power-law
relation σd = mtγc is found.
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I. INTRODUCTION

Over the last decade, the study of epidemiological pro-
cesses on complex networks has become a great inter-
est for scientists [1, 2]. Among them, the susceptible-
infected-susceptible (SIS) model and the susceptible-
infected-refractory (SIR) model have been widely used in
the study of epidemic dynamics on complex networks [3–
7], such as the small world networks, the growing scale-
free networks and the hierarchical networks [8–10]. It
has been shown that the network geometry has a great
impact on the epidemic threshold and the fluctuating en-
demic level [11, 12].
More recently, findings in the coupled dynamics of the

epidemic status and the structural evolution have fu-
eled extended discussions about the generalized conta-
gion processes in the networked systems [13–16]. In so-
cial contagion processes, an individual may get benefits
or suffer from loss from existing relationships. For ex-
ample, a close friend may help us overcome difficulties
whereas an infectious individual may trigger influenza
outbreaks in the neighborhood [17, 18]. When facing the
threat of an epidemic, humans tend to avoid contact with
the infected individuals. By rewiring a fraction of local
connections, the social network evolves and the dynamics
of the disease is influenced.
In the process of deactivating the links with potential

hazards and creating new social ties, most coevolution-
ary epidemiological studies have made the additional as-
sumption that the potential infectious hazards are known
to all the individuals [19, 20]. With complete informa-
tion, it is easy for an individual to get rid of its disadvan-
tage and get access to more social resources. However,
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because of the complexity of the real world, it is nearly
impossible for us to have an accurate real-time informa-
tion in all cases [21–27]. For example, on Election Day,
our knowledge of other people’s opinions to a nominee
only comes from the statistical data which were made
public by the media a few days ago. In the stock market,
the global information may not always be refreshed in
time and the share holders can only make their judgment
by the out-of-date or incomplete information. During an
epidemic outbreak, as the outbreak of SARS in 2003, the
information about who has been infected or who has re-
covered is not easy to be attained and our knowledge of
the spread of epidemics usually lags behind the real-time
information. Therefore, when modeling the coevolution
of individual characteristics and socioeconomic networks,
such timescale effects should not be disregarded.

In the study of the timescale effects between the epi-
demic information and the risk perception, the general-
ized contagion model introduced by P.S.Dodds et al [28]
is especially useful to be studied upon. In the P.S.Dodds’
epidemic model, the past exposures to the contagious in-
fluences are recorded in the memory of the agents. An
individual’s state is determined by his dose threshold. If
the cumulative dose in the latest T time steps surpasses
the dose threshold, the individual will become infected.
Or else, he will be in the susceptible or recovery state. In
such a generalized contagion model, the memory length
T is one of the key factors in determining the fraction of
infective individuals in the population in the final steady
state. By introducing the rewiring process into the evolu-
tionary steps, it is easy for us to know of how the delayed
epidemic information will affect the time-dependent en-
demic levels and the topological properties of the evolved
network.

Numerical simulations show that the delayed epidemic
information may mislead the noninfected in the rewiring
process, which will result in a decrease in the epidemic
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threshold and the prevalence of an infectious disease.
One of the novel findings is that the evolved network
structure is related to the time for an epidemic to reach
steady state. Depending upon a mean-field approxima-
tion, both the degree distribution of the evolved network
and the threshold condition are derived.
The plan of the paper is as follows. In Sec.II,

the memory-based contagion model with timescales and
adaptive networks is introduced. In Sec.III, we describe
the implementation of the SIR dynamics and discuss
the numerical simulation results about the spread of the
infectious disease and the topological properties of the
evolved network. In Sec. IV, theoretical analysis is given
within the context of mean field theory. Our findings are
summarized in Sec. V.

II. THE MODEL

Following the work done in ref.[28]. In the present for-
mulation of the memory-based contagion model, N indi-
viduals are initially located on a random regular (RRG)
network with average degree < k > and each individual
is in one of the three states: S (susceptible), I (infected),
or R (refractory). The SIR dynamics proceeds as follows.
At each time step t, a randomly chosen individual i comes
into contact with one of its immediate neighbors j and re-
ceives a dose d, which is kept in its memory recording the
doses received in the latest T time steps. The value of
d is related to the state of j. If j is infected, i receives
a positive dose d > 0 with probability p; or else, d = 0.
Individual changes its state according to the cumulative
dose

Di(t) =

t
∑

t′=t−T+1

di(t
′), (1)

i.e., if i is susceptible (infected) and Di(t) > d∗i (Di(t) <
d∗i ), in which d∗i represents i’s dose threshold drawn ran-
domly from an initially given distribution, i becomes in-
fected (refractory).
To avoid being infected, a susceptible or refractory in-

dividual may rewire its local connections. The dynamics
of the evolving network are as follows: with probability
ω, a susceptible or refractory individual can protect itself
from being infected by cutting the existing links with the
infected and establishing new links with other suscepti-
ble or refractory individuals. Double or self-connections
are inhibited.
Time scales enter the coevolving dynamics through

the rewiring process. There is a common look-up ta-
ble recording the instant or delayed epidemic informa-
tion. Keeping track of such information, a susceptible
or refractory individual makes its decision on which link
should be rewired. The timescale parameter s, an in-
teger number between 0 and ∞, represents the delayed
time step between the instant and the known epidemic
information. For example, s=0 means that an individ-
ual knows about the instant epidemic information, that
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FIG. 1. (a)Average fraction of the infected in the final steady
state as a function of the dose-receiving probability p for
N=10000, < k >= 10, ω = 0.05 and s=0 (circles), 9(squares),
averaged over 10 runs. (b) The epidemic threshold as a func-
tion of s.

is, who has been infected and who has not been infected
at the present time. With the instant information about
each individual’s state, a susceptible or refractory indi-
vidual can make a right decision in the rewiring process.
For s ≥ 1, the known epidemic information is s time
step(s) delay in comparison with the instant epidemic
information. A larger value of s corresponds to a slower
reaction of an individual to the change of the states of
other nodes and an S-S, S-R or R-R link may be cut by
mistake.
In the coevolving process, the average degree < k > is

kept constant while the degree distribution P(k) evolves.
The dispersion of degrees is measured by the standard
deviation σd of the degree distribution. The temporal
evolution of the system can be captured by the ratio of
the infected or the active S-I links. With the evolution-
ary dynamics, the system may finally reach one of the
following two stable states: an absorbing state where no
active link exists and an active stable state where the
susceptible and the infected coexist with a fixed ratio.

III. NUMERICAL SIMULATIONS AND

DISCUSSIONS

We have performed extensive numerical simulations to
explore the timescale effects on the adaptive networks
and the epidemic dynamics. Throughout the paper, dose
sizes are lognormally distributed with mean one and vari-
ance 0.01, the dose cumulative time is set at T=10, the
dose thresholds of all the nodes are the same as d∗ = 1,
the average degree is < k >= 10 and the population size
is N=10000.
Fig.1(a) shows the average fraction of infected nodes

pinf as a function of dose-receiving probability p with
the time scale parameter s=0 and 9. Each data point is
obtained by averaging over 10 runs and after 104 relax-
ation time steps for each run. The fraction of initially
infected nodes and the rewiring probability are fixed at
p0inf = 0.1 and ω = 0.05. It is observed that, as p ranges
from 0 to unity, there exist two thresholds, here we call
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FIG. 2. The density of infected individuals versus time in an
evolving network of N=10000, < k >= 10, ω = 0.05 with
(a) p=0.09, s=0(solid), 3(dash), 7(dash-dot), 9(dash-dot-dot)
and (b) p=0.2, s=0(solid), 2(dash), 5(dash-dot), 9(dash-dot-
dot).
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FIG. 3. The fixation time to the disease free state as a func-
tion of s for p=0.05(circles), 0.07(squares), 0.09(triangles),
0.10(stars), and 0.11(chars). All the other parameters are the
same as that in Fig.2. Each data point is obtained by aver-
aging over ten runs.

them the epidemic threshold pc and the globally infected
threshold p′c respectively. Below pc all the agents are in a
disease-free state and above p′c the agents are all infected.
Between pc and p′c, the susceptible and the infected co-
exist and the fraction of the infected increases with the
rise of p.
The epidemic threshold characterizes a transition be-

tween the disease free state and the epidemic prevalence
in the steady state. The epidemic threshold pc decreases
monotonically with the rise of s (Fig.1(b)). As s ranges
from 0 to 9, pc shifts from 0.145 to 0.112 while p′c has
little change. We have also found that pc and p′c are
independent of the population size N.
To have a close eye of the temporal behaviors of epi-

demic spreading, in Fig.2 we give the density of infected
individuals versus time for different p. For p=0.09, which
corresponds to the region of p < pc, the time to the
disease-free state increases with the rise of s. For p=0.2,
which corresponds to the region of p > pc, increasing
dose-receiving rate accelerates the dynamical evolution
to the global infection. Such results indicate that the
evolutionary time of the system to the equilibrium is
closely related to the dose-receiving probability p and
the timescale parameter s.
In Fig.3 the fixation time tc for the disease to go ex-

tinction is plotted against s for different p. It reveals that
the functional relation between tc and s is determined by
p. For small p, such as p=0.05, tc increases slowly with
the rise of s. As p is close to the epidemic threshold, such
as p=0.11, there is a sharp increase in tc as s increases.
Rewiring not only leads to the change of the epidemic
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FIG. 4. The degree distribution of the evolved network for
N=10000, < k >= 10, ω = 0.05, (a) p=0.11 with s=0(circles),
9(squares) and (b) p=0.2 with s=0(circles), 9(squares), aver-
aged over 10 runs. The inset gives the analytical result (solid
line).
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FIG. 5. The averaged standard deviation σd of the degree
distribution in the final steady state as a function of dose-
receiving probability p for N=10000, < k >= 10, ω = 0.05,
and s=0(circles), 9(squares), averaged over 10 runs.

threshold but also the network structure. In Fig.4(a) and
(b) we plot the degree distribution of the evolved net-
work in the final steady state with s=0 and 9. Fig.4(a)
shows the change of s has a great impact on the topolog-
ical property of the evolved network within the range of
p < pc. For s=0, the evolution of the network leads to the
increase of the average degree of some agents and the de-
crease of the average degree of other agents. The combi-
nation of a Possion-like distribution peaked at < k >∼ 7
and an exponential-like distribution with a larger average
degree forms the present curve. But for s=9, the evolu-
tion of the network leads to the occurrence of a lognormal
degree distribution. As the dose-receiving probability p
is larger than pc, Fig. 4(b) shows the change of s has only
a minor impact on P(k), both of which are like lognormal
distributions.
Fig. 5 shows the averaged standard deviation σd of the

degree distribution in the final steady state as a function
of dose-receiving probability p for s=0 and 9. As p ranges
from 0 to unity, σd firstly increases with the rise of p
and reaches a maximum value σmax near the epidemic
threshold pc. Then, σd decreases slowly with the rise of
p. As p is near the globally infected threshold p′c, σd has
a sharp drop, which results from the limited evolutionary
time for all the individuals to get infected because of the
high infection rate. The change of s leads to the change
of σd within the whole range.
To find the time scale effect on the evolved network

structure, we give the standard deviation σd of the degree
distribution as a function of s in Fig.6(a). It shows that
the functional relation between σd and s is similar to that
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FIG. 6. The standard deviation σd of the degree distri-
bution as a function of (a) s and (b) tc with N=10000,
< k >= 10, p=0.05(circles), 0.07(squares), 0.09(triangles),
0.10(stars), and 0.11(chars), averaged over 100 runs. The
dashed line satisfies the equation σd = 0.2t0.48c .

between tc and s (Fig.3). As the standard deviation σd is
plotted against tc in Fig. 6(b), it is observed that all the
data have collapsed into a single line. When we perform
a fit to the results in Fig.6(b), a power-law function σd =
mtγc ,where m ∼ 0.2 and γ ∼ 0.48, is found. Such a
result reveals that the change of σd in the present model
is determined by the evolutionary time for the system to
reach equilibrium.

IV. ANALYTICAL CALCULATIONS

A. evolutionary time and degree distribution

In the present model, because of the switch process, the
evolved network structure has significant alterations in
comparison with the initial network connectivity. Using
mean field analysis, in the following, we calculate the
degree distribution of the evolved network with a fixed
number of nodes and edges.
Firstly consider the degree distribution of the suscepti-

ble and the infected respectively irrespective of the infec-
tion process. Because the susceptible individuals protect
themselves by reconnecting a fraction of S-I links into
S-S links, the average degree < kinf > of the infected
decreases while the average degree < ksus > of the sus-
ceptible increases with time. The random cut of S-I links
forms a random graph of the infected, in which there is
a Possion degree distribution with mean < kinf >. But
for the susceptible, the increase of the average link is
just like that in the growing network without attachment
preference introduced in ref.[29], the degree distribution
of them will evolve into an exponential distribution with
mean < ksus >.
Next, the epidemic is incorporated into the rewiring

process. Because of the infection or recovery, the above
independent cutting or liking process should take place
in each individual. The degree of a node can be written
as k = k1 + k2, in which k1 results from the random link
and k2 results from the growing link.
Considering the above two attachment methods, we

can calculate the mixed degree distribution in the
rewiring dynamics independent of the infectious process.
Just as that in Ref.[30], the random graph is attained as

follows: start with n nodes. At each time step, two ran-
domly chosen nodes are linked together with probability
ξ = ρ(1 − q), where ρ is the ratio of active links in the
population and q is the growing attachment probability.
The probability that a vertex has k1 edges satisfies the
equation

Pk1
=

(

n
k1

)

ξk1(1 − ξ)n−k1 . (2)

After a long time, the degree distribution of the evolved
network follows a Poisson distribution

P (k1) ∼
e−ξ<k>(ξ < k >)k1

k1!
. (3)

In the growing model, a new node is linked to any of
the nodes already existing in the system with the same
probability [29]

Ω =
1

m0 + t− 1
, (4)

where m0 is the initial number of nodes in the system.
With the time evolution, the degree distribution becomes
a Possion distribution

P (k2) ∼ e−βk2 , (5)

where β = 1
qρ<k> . Combining the above two mecha-

nisms, the degree of a node in the present model can be
written as k = k1 + k2 and the degree distribution of the
evolved network can be written as

P (k) ∼

k
∑

k2=0

[(1 − q)ρ < k >]k−k2

(k − k2)!
e−(1−q)ρ<k>e−

k2
qρ<k> ,

(6)
and the standard deviation of it becomes [31]

σd =
√

(qρ < k >)2 + (1− q)ρ < k >. (7)

For a known σd, the growing attachment probability
can be written as

q =
1 +

√

1− 4ρ < k > +4σ2
d

2ρ < k >
. (8)

For ρ = 1 and < k >= 10, we obtain

q =
1 +

√

4σ2
d − 39

20
. (9)

From simulation results in Fig.5 we observe that, near
the threshold point p=0.11 for s=9, the standard devia-
tion of the degree distribution is σd = 5.8. From equa-
tion (9) we get q=0.54. Substituting q=0.54, ρ = 1 and
< k >= 10 into equation (6), we get

P (k) ∼

k
∑

k2=0

(4.6)k−k2

(k − k2)!e−(
k2
5.4+4.6)

. (10)

Considering the normalizing condition, from Fig.4(a) we
observe that the analytical calculations fit the simulation
data well.
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B. epidemic threshold

The epidemic threshold is the critical infection prob-
ability pc above which a stable epidemic occurs. In the
present model, pc is found to be related to the rewiring
process which is determined by the delayed epidemic
information. In the following, to derive the epidemic
threshold, we assume that all the individuals have the
same receiving dose d=1 or 0, dose threshold d∗ = 1 and
memory size T > 1.
First, consider the epidemic process without rewiring.

At a given time, the contagious entity in the population
consists of those who have had at least an S-I contact
during the preceding T time steps. In the well-mixed
case, the fraction of the infected satisfies the equation
[32]

ϕinf = 1− (1− pϕinf )
T . (11)

In the limiting case ϕinf → 0, the epidemic threshold is
obtained

pc =
1

T
. (12)

On a random graph, the epidemic threshold should also
be related to the mean degree < k >[2]. To make the
equation satisfy pc = 1

T for < k >→ ∞, we adopt the
form

pc ∼
1

T
+

1

< k > T
. (13)

Next, consider the effect of rewiring on the epidemic.
At each time step, because of the cut of S-I links, the
average degree of the infected decreases, which leads to
the rise of the epidemic threshold. Equation (13) can be
rewritten as

pc =
1

T
+

1

Tκ
, (14)

where κ represents the average degree of the infected hav-
ing lost a fixed ratio ωT

as of its links. For an exponential

expression k(t) =< k > e−ωTt/as

[13], we get

κ =

∫ T

0 < k > e−ωTt/as

dt

T
. (15)

Substituting equation (15) into equation (14), we obtain
the epidemic threshold in the present model

pc =
1

T
+

ωT

< k > as(1− e−ωT 2/as)
. (16)

In Fig.7 we give the epidemic threshold as a function
of s for ω = 0.05, 0.1, and 0.2, the analytical calculations
are in accordance with the simulation data.
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FIG. 7. The epidemic threshold as a function of s for
ω = 0.05(circles), 0.1(squares), and 0.2(triangles) in simu-
lation and analytical calculation(lines).

V. SUMMARY

The present work has offered us a clear picture of the
epidemic spread pattern in the dynamically structured
populations. It is found that the effectiveness of refrain-
ing from being infected by the infectious disease is con-
strained by the epidemic information known to the pub-
lic. The erroneous reconnections posed by the lagged
epidemic information would result in the prolonged epi-
demic which in turn exacerbates the heterogeneity of the
evolved social networks. A power-law relation between
the standard deviation of the degree distribution and
the duration time before the epidemic becomes stable is
found. Depending upon the mean field theory, we have
analytically calculate the degree distribution and the epi-
demic threshold in which the time scale parameter is in-
cluded.
The understanding of the time scale effect presented

here could help us accurately estimate the realistic risks
caused by the delay in taking measures and develop a
variety of disease control methods to avoid the epidemic
outbreaks. In the future, the generalized epidemic model
should be further studied in the human mobility circum-
stances and the epidemic spread pattern in the commu-
nity structures is one of the favorite interests of us.
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