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Abstract

We propose a convex optimization formulation with the nuclear norm and ℓ1-norm to find a large

approximately rank-one submatrix of a given nonnegative matrix. We develop optimality conditions

for the formulation and characterize the properties of the optimal solutions. We establish conditions

under which the optimal solution of the convex formulation has a specific sparse structure. Finally,

we show that, under certain hypotheses, with high probability, the approach can recover the rank-one

submatrix even when it is corrupted with random noise and inserted as a submatrix into a much

larger random noise matrix.

1 Introduction

Given a nonnegative matrix A ∈ R
m×n, aij ≥ 0 for all i = 1, . . . ,m, j = 1, . . . , n, we consider the

problem of finding I ⊂ {1, . . . ,m} and J ⊂ {1, . . . , n} such that A(I,J ) is close to a rank-one

matrix, and such that ‖A(I,J )‖ is large. We shall call this problem the LAROS problem (for “large

approximately rank-one submatrix”).

The main application of the LAROS problem is for finding features in data. For example, suppose

A represents a corpus of documents in some language. Each column of A is in correspondence with
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one document, and each row is in correspondence with a term used in the corpus. Here, “term” means

a word in the language, excluding common words such as articles and prepositions. The (i, j) entry of

A is the number of occurrences of term i in document j, perhaps normalized. Such a matrix is called

the term-document matrix of the underlying corpus.

In this case, an approximately rank-one submatrix of A corresponds to a subset of terms and a

subset of documents in which the selected terms occur with proportional frequencies in the selected

documents. Such a submatrix may correspond to the intuitive notion of a topic that recurs in several

documents, since a topic may manifest itself as a particular group of relevant terms that occur roughly

in the same proportions.

As another example, the matrix A may correspond to a database of pixelated grayscale images,

where each image has the same pixel size. Each column of A corresponds to one image, and each row to

one pixel position. The (i, j) entry of A is the intensity of the ith pixel in the jth image. In this case,

the approximately rank-one submatrix corresponds to a visual feature that recurs in a certain position

in some subset of the images.

If one wanted to find more than one topic in a term-document matrix or more than one feature in an

image database matrix, then one could iteratively find an approximately rank-one submatrix, subtract

it from A (perhaps modifying the result of the subtraction to ensure that A remains nonnegative), and

then repeat the procedure p times. Let the submatrices discovered be denoted (I1,J1), . . . , (Ip,Jp).

Suppose A(Ii,Ji) ≈ wih
T
i for i = 1, . . . , p, and let w̄i, h̄i denote the extension of wi,hi to vectors of

length m,n by inserting zeros for entries not in Ii,Ji respectively.

It is known that if Â is a nonnegative matrix representing a submatrix of A, then the minimizer whT

of ‖Â−whT ‖ is the dominant singular vector pair in either the Frobenius or 2-norm (a consequence of

the Eckart–Young theorem, Theorem 2.5.3 of [11]) and furthermore, w ≥ 0 and h ≥ 0 (a consequence

of the Perron–Frobenius theorem.) Thus, without loss of generality, we may assume that each wih
T
i

determined by the iterative computation is nonnegative.

In this case, one has an approximate factorization

A ≈ [w̄1, . . . , w̄p][h̄1, . . . , h̄p]
T ,

where we can write the right-hand side as WHT with W ≥ 0, H ≥ 0. This factorization is called

a nonnegative matrix factorization of A. The earliest reference known to us concerning nonnegative

matrix factorization is Thomas’ solution [18] to a problem posed by A. Berman and R. Plemmons

(which, according to a remark in the journal, was also solved by A. Ben-Israel). Cohen and Rothblum
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[8] describe applications for NMF in probability, quantum mechanics and other fields. Lee and Seung

[13] showed that NMF can find features in image databases, and Hofmann [12] showed that probabilistic

latent semantic analysis, a variant of NMF, can effectively cluster documents according to their topics.

Nonnegative matrix factorization is sometimes posed as an optimization problem: find W ∈ R
m×p

and H ∈ R
n×p, both nonnegative, such that ‖A − WHT ‖ is minimized in some matrix norm. It

is known that this optimization problem is NP-hard [19]. Therefore, it is not surprising that most

algorithms for the problem are heuristic in the sense that they do not make guarantees about the

quality of the approximation.

One class of heuristic NMF algorithms are the ‘greedy’ algorithms [2, 3, 4, 10] that follow the

framework described above. In a greedy algorithm, the columns of W and H are generated sequentially,

with each new pair of columns accounting for one feature in the original A. These greedy algorithms

give rise to the LAROS subproblem addressed in this paper, namely, find one pair wi,hi nonnegative

such that wih
T
i , is a good approximation for a submatrix of A in the positions (i, j) where A is positive.

The LAROS subproblem, however, is itself NP-hard as observed by [10]. This is because the

maximum-edge biclique problem can be naturally expressed as a rank-one submatrix problem. The

biclique problem takes as input a bipartite graph G = (U, V,E). The output is composed of two subsets

U∗ ⊂ U and V ∗ ⊂ V such that U∗ × V ∗ ⊂ E (i.e., all possible |U∗| · |V ∗| edges between U∗ and V ∗

are present in G) and such that |U∗| · |V ∗| is maximum with this property. This problem was shown by

Peeters [15] to be NP-hard.

Maximum-edge biclique can be expressed as finding a large rank-one submatrix using the following

construction. Let A be a |U | × |V | matrix with rows in correspondence to U and columns in correspon-

dence to V . Entry (i, j) of A for (i, j) ∈ U × V is 1 if (i, j) ∈ E, else this entry is 0. Then a biclique

corresponds exactly of a |U∗| · |V ∗| submatrix of all 1’s. A submatrix of all 1’s is a rank-one matrix of

norm (|U∗| · |V ∗|)1/2, and there is no other kind of rank-one submatrix of A.

We will provide a formal definition of the LAROS problem, i.e., exactly what is the desired output

in Section 2. (Some authors mentioned earlier, e.g., [4] and [10] have provided other formal definitions.)

We will also propose an convex optimization problem in Section 2 that, for matrices A constructed

in a certain way, successfully finds large, approximately rank-one submatrices. We present two such

theorems. One case is when the approximately rank-one submatrix dominates the rest of the matrix;

this is presented in Section 3.

The second case is when A is constructed as follows:

A = A0 +R,
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where there are two index sets I,J such that rank(A0(I,J )) = 1, A0(i, j) = 0 for all (i, j) /∈ I × J ,

and R is a random matrix representing noise. In this case, under certain assumptions, our algorithm

recovers (I,J ) from A as proved in Section 4.

2 Matrix norm minimization

For reasons that will become clear, we start this section by presenting the convex relaxation of the

LAROS problem, and only later will we present a nonconvex exact optimization formulation. In par-

ticular, we propose the following convex optimization problem that in some cases solves the LAROS

problem:

min ‖X‖∗ + θ‖X‖1
s.t. 〈A,X〉 ≥ 1.

(1)

The matrix X ∈ R
m×n is the unknown. Norm ‖X‖∗ is the nuclear norm, also called the trace norm;

it is the sum of the singular values of X . We use the notation ‖X‖1 to mean the sum of the absolute

values of entries of X , that is, the ℓmn
1 -norm applied to vec(X), the concatenation of the columns of

X into a long vector. Finally, 〈A,X〉 means the inner product of the two matrices. We note that an

objective function involving a sum of the nuclear and ℓ1-norms was used for a different purpose by [7].

Two other norms used extensively in this paper are ‖X‖, which is the spectral or 2-norm, i.e., σ1(X),

and ‖X‖∞, which is the ℓmn
∞ -norm applied to vec(X), i.e., the maximum absolute entry of X.

Before beginning a detailed analysis of this optimization problem, we first provide some motivation.

Consider first the simplification obtained by taking θ = 0:

min ‖X‖∗
s.t. 〈A,X〉 ≥ 1.

It follows from Proposition 1 below that the optimal solution is found using the singular value decom-

position. In particular, if A is factored as A = UΣV T , where U ∈ R
m×m is orthogonal, Σ ∈ R

m×n

is diagonal, and V ∈ R
n×n is orthogonal, then an optimizer is X = U (:, 1)V (:, 1)T /σ1. Thus, when

θ = 0, the above formulation successfully finds the best rank-one approximation to the whole matrix A.

This approximation, however, is not always well suited for identifying submatrices. Consider e.g.
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the following 6× 6 matrix:

A =





























0.8 0.9 1.1 0.1 0.2 0.2

0.8 1.1 0.8 0 0 0

1.0 1.0 0.8 0 0 0

0 0 0 0.8 0.9 1.0

0 0 0 0.9 1.0 0.8

0 0 0 1.0 1.1 0.8





























It is apparent from inspection that this matrix has two 3×3 approximately rank-one blocks in positions

{1, 2, 3}×{1, 2, 3} and {4, 5, 6}×{4, 5, 6}. If the ‘noise’ entries in the upper right {1, 2, 3}×{4, 5, 6} block

were absent, then the two dominant singular vectors would exactly identify the two diagonal blocks.

Once the noise entries are inserted, however, the dominant left singular vector of the above matrix A

accurate to two decimal places is [.45, .37, .37, .40, .40, .43]T . In other words, there is no separation at

all between the rows numbered 1, 2, 3 and those numbered 4, 5, 6, so no submatrix is identified.

Armed with a preliminary understanding of the convex relaxed formulation, we now present and

motivate an exact (nonconvex) formulation of LAROS, which is as follows.

min ‖X‖∗ + θ |I| |J |
s.t. 〈A,X〉 ≥ 1,

xij = 0, ∀ (i, j) /∈ I × J ,

where I ⊂ {1, . . . ,m} and J ⊂ {1, . . . , n} are unknowns (as well as X). For fixed I and J , the

optimal solution would be the rank-one approximation of the submatrix A(I,J ) given by the SVD, as

explained above, and the optimal value is ‖A(I,J )‖−1 + θ |I| |J |. The first term of the optimal value

is ‖A(I,J )‖−1; therefore, for appropriate selection of θ, a large submatrix (in terms of 2-norm) will be

selected. The second term is the size of the submatrix, which is a nonconvex function. Thus, the two

terms balance the twin objectives of selecting a submatrix with a large first singular value and selecting

a submatrix that has a relatively small number of entries.

This now motivates (1): we relax the above nonconvex formulation by replacing the cardinality

term in the objective function with the ℓ1-norm. The relaxed term θ‖X‖1 in the objective function

has the well-known effect of favoring sparser matrices X (those with fewer nonzero entries). Thus, the

combination of the two terms seeks a low rank matrix with many entries equal to 0. For example,

our formulation (1) applied to A above identifies the {4, 5, 6} × {4, 5, 6} submatrix when θ = 0.5. In

particular, the solution X has zeros in all positions except {4, 5, 6} × {4, 5, 6}; in these positions it has

positive entries ranging from 0.08 to 0.16.
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To start our more formal analysis, let us consider the following general norm minimization problem.

min ‖|X|‖
s.t. 〈A,X〉 ≥ 1,

(2)

where ‖| · |‖ is an arbitrary norm function on R
m×n. (For example, the objective function ‖X‖∗+θ‖X‖1

appearing in (1) is a norm.) Using the associated dual norm ‖| · |‖∗, we can relate Problem (2) to an

equivalent problem as follows.

Lemma 1. Consider A 6= 0. Matrix X∗ is an optimal solution of Problem (2) if and only if Y ∗ =

‖|A|‖∗X∗ is an optimal solution of the following problem:

max 〈A,Y 〉
s.t. ‖|Y |‖ ≤ 1.

(3)

Proof. Let X∗ be an optimal solution of Problem (2). Clearly, X∗ 6= 0 and 〈A,X∗〉 = 1. Apply the

norm inequality, we have

‖|X∗|‖ · ‖|A|‖∗ ≥ 〈A,X∗〉 = 1 ⇔ ‖|X∗|‖ ≥ 1

‖|A|‖∗ .

According to Boyd and Vandenberghe [5], the dual of the dual norm is the original norm and the

norm inequality is tight: for any A, there is always an X 6= 0 such that the equality holds (for finite-

dimensional vector spaces). Since X∗ is an optimal solution of Problem (2),

‖|X∗|‖ =
1

‖|A|‖∗ .

Let Y ∗ = ‖|A|‖∗X∗, we then have: ‖|Y ∗|‖ = 1 and 〈A,Y ∗〉 = ‖|A|‖∗. We also have:

‖|A|‖∗ = max 〈A,Y 〉
s.t. ‖|Y |‖ ≤ 1.

Thus Y ∗ is indeed an optimal solution of Problem (3). Using similar arguments, we can prove that

conversely, if Y ∗ is an optimal solution of Problem (3), then X∗ = (‖|A|‖∗)−1Y ∗ is an optimal solution

of Problem (3). �

The next lemma characterizes the set of all optimal solutions of Problem (3).

Lemma 2. The set of all optimal solutions of Problem (3) with A 6= 0 is the subgradient of the dual

norm function ‖| · |‖∗ at A, ∂‖|A|‖∗.
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Proof. Let Y ∗ be an optimal solution of Problem (3), we have ‖|Y ∗|‖ = 1 since A 6= 0. Thus we

have: ‖|A|‖∗ = 〈A,Y ∗〉. For an arbitrary matrix B ∈ R
m×n,

‖|A+B|‖∗ ≥ 〈A+B,Y ∗〉 = ‖|A|‖∗ + 〈B,Y ∗〉.

Thus Y ∗ ∈ ∂‖|A|‖∗.
Now consider Y ∈ ∂‖|A|‖∗:

‖|B|‖∗ ≥ ‖|A|‖∗ + 〈B −A,Y 〉 ⇔ 〈A,Y 〉 − ‖|A|‖∗ ≥ 〈B,Y 〉 − ‖|B|‖∗, ∀B ∈ R
m×n.

With B = 0 and B = 2A, we obtain the equality 〈A,Y 〉 = ‖|A|‖∗ > 0. We have:

〈A,Y 〉 = ‖|A|‖∗ ≤ ‖|A|‖∗‖|Y |‖ ⇔ (‖|Y |‖ − 1)‖|A|‖∗ ≥ 0 ⇒ ‖|Y |‖∗ ≥ 1.

In addition, 〈B,Y 〉 − ‖|B|‖∗ ≤ 0 for all B ∈ R
m×n. The norm inequality 〈B,Y 〉 ≤ ‖|B|‖∗‖|Y |‖ is

tight and Y 6= 0 (‖|Y |‖ ≥ 1); therefore, there exists B 6= 0 such that 〈B,Y 〉 = ‖|B|‖∗‖|Y |‖. Thus we

have:

‖|B|‖∗‖|Y |‖ − ‖|B|‖∗ ≤ 0 ⇔ (‖|Y |‖ − 1)‖|B|‖∗ ≤ 0 ⇒ ‖|Y |‖ ≤ 1.

Thus ‖|Y |‖ = 1 and 〈A,Y 〉 = ‖|A|‖∗, the optimal value of Problem (3), which means Y is an optimal

solution of Problem (3). �

Lemma 1 and 2 show that the set of all optimal solutions of Problem (2) is (‖|A|‖∗)−1∂‖|A|‖∗. The
uniqueness of the optimal solution of Problem (2) is equivalent to the differentiability of the dual norm

function ‖| · |‖∗ at A. These results are summarized in the following theorem.

Theorem 1. Consider A 6= 0. The following statements are true:

(i) The set of optimal solutions of Problem (2) is (‖|A|‖∗)−1∂‖|A|‖∗.

(ii) Problem (2) has a unique optimal solution if and only if the dual norm function ‖| · |‖∗ is differ-

entiable at A.

If the norm is set to be the nuclear norm, we obtain the following minimization problem, which has

been used [9, 16, 6, 1] as a relaxation of rank minimization optimization problems:

min ‖X‖∗
s.t. 〈A,X〉 ≥ 1.

(4)
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The dual norm of the nuclear norm is the spectral norm. According to Ziȩtak [20], if A = UΣV T

is a singular value decomposition of A and s is the multiplicity of the largest singular value of A, the

subgradient ∂ ‖A‖ is written as follows:

∂ ‖A‖ =







U





S 0

0 0



V T : S ∈ Ss
+, ‖S‖∗ = 1







.

Clearly, the largest rank-one approximation of A, u1v
T
1 , always belongs to the subgradient ∂ ‖A‖. The

description of the subgradient ∂ ‖A‖ shows that the maximum possible rank of an optimal solution

of Problem (4) is the multiplicity of the largest singular value of A. In addition, the spectral norm

function ‖ · ‖ is not differentiable in general. The uniqueness of the optimal solution of Problem (4) is

equivalent to the differentiability of the spectral norm function ‖ · ‖ at A. The necessary and sufficient

condition is s = 1 or equivalently, σ1(A) > σ2(A). In the case of unique optimal solution, we obtain

the largest rank-one approximation of A (up to the scaling factor ‖A‖−1). These results are stated in

the following proposition:

Proposition 1. Consider A 6= 0. The following statements are true:

(i) The set of optimal solutions of Problem (4) is ‖A‖−1 ∂ ‖A‖.

(ii) The largest rank-one approximation of A is an optimal solution of Problem (4) and it is the unique

solution if and only if σ1(A) > σ2(A).

Similar to low-rank minimization problems with nuclear norm approximation, sparse optimization

problems can be approximately handled by the (vector) ℓ1-norm function ‖ · ‖1. Let us consider the

following problem

min ‖X‖1
s.t. 〈A,X〉 ≥ 1.

(5)

The dual norm of ℓ1-norm is the (vector) infinity norm ‖ · ‖∞, i.e., the maximum absolute entry of the

matrix, and the subgradient ∂ ‖A‖∞ can be written as follows,

∂ ‖A‖∞ = conv

{

sgn(aij)Eij | (i, j) ∈ argmax
(k,l)

|akl|
}

,

where Eij is the unit matrix in R
m×n with Eij(i, j) = 1. The sparsity of the optimal solution X∗

of Problem (5) is clearly related to the multiplicity of the maximum absolute value of elements of A.

Applying Theorem 1 for this particular ℓ1-norm, we obtain the following results:
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Proposition 2. Consider A 6= 0. The following statements are true:

(i) The set of optimal solutions of Problem (5) is ‖A‖−1
∞ ∂ ‖A‖∞.

(ii) The matrix sgn(aij)Eij , where (i, j) ∈ argmax
(k,l)

|akl|, and sgn(·) is the usual sign function, is an

optimal solution of Problem (5) and it is the unique solution if and only if |aij | > |akl| for all

(k, l) 6= (i, j).

As mentioned above, finding a low-rank submatrix clearly involves both low-rank and sparse opti-

mization (with a specific sparse structure). Let us return to the parametric optimization problem (1)

proposed at the beginning of this section

min ‖X‖∗ + θ ‖X‖1
s.t. 〈A,X〉 ≥ 1,

where θ ≥ 0. Clearly, if θ = 0, we obtain Problem (4) and when θ → ∞, we approach Problem (5).

This optimization problem clearly addresses both low-rank and sparse requirements of the solution X.

We now would like to characterize the set of optimal solutions of the problem.

The objective function ‖X‖∗ + θ ‖X‖1 is a norm function since θ ≥ 0. Denote ‖X‖θ to be this

parametric norm of X,

‖X‖θ := ‖X‖∗ + θ ‖X‖1

and consider its dual norm function ‖ · ‖∗θ. Clearly, Problem (1) is a special case of Problem (2). The

set of optimal solutions of Problem (1) can therefore be characterized as follows:

Proposition 3. Consider A 6= 0. The following statements are true:

(i) The set of optimal solutions of Problem (1) is (‖A‖∗θ)−1∂ ‖A‖∗θ.

(ii) There is a unique solution if and only if the dual norm function ‖ · ‖∗θ is differentiable at A.

We now focus on deriving some properties of the dual norm ‖ · ‖∗θ. We have:

‖A‖∗θ = max 〈A,X〉
s.t. ‖X‖θ ≤ 1.

(6)

We will use the gauge function and its dual polar function (see Rockafellar [17] for more details) to

compute this dual norm.
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Proposition 4. The dual norm ‖A‖∗θ with θ > 0 is the optimal value of the following optimization

problem:

‖A‖∗θ = min max
{

‖Y ‖ , θ−1 ‖Z‖∞
}

s.t. Y +Z = A.
(7)

Proof. Consider the closed unit ball C∗ = {X ∈ R
m×n | ‖X‖∗ ≤ 1} with respect to the nuclear norm

and similarly, the unit ball C1 with respect to the ℓ1-norm ‖ · ‖1. We have the polar of C∗ is the closed

unit ball with respect to the spectral norm, C◦
∗ = C. Similarly, we have: C◦

1 = C∞, the unit ball with

respect to the infinity norm.

Using the definition of gauge functions, we have: ‖X‖∗ = γC∗(X) = min{λ ≥ 0 | X ∈ λC∗}. In

addition, the support function σS(X) = max{〈X ,Y 〉 | Y ∈ S} is the gauge function of S◦ for all

symmetric closed bounded convex set with 0 ∈ int(S). All unit balls satisfy these conditions; therefore,

we obtain the well-known results ‖X‖∗ = γC∗(X) = σC◦
∗
(X) = σC(X) and ‖X‖1 = γC1(X) = σC◦

1
(X) =

σC∞(X).

Now consider the unit ball Cθ = {X ∈ R
m×n | ‖X‖∗ + θ ‖X‖1 ≤ 1}, we have:

Cθ = {X ∈ R
m×n | σC(X) + θσC∞(X) ≤ 1}.

Applying the definition of support functions, we have: σC(X) + θσC∞(X) = σC+θC∞(X), where

C + θC∞ is the Minkowski sum of two sets, C and θC∞. This set satisfies all the conditions above;

therefore, σC+θC∞(X) = γ(C+θC∞)◦(X). Thus

Cθ = {X ∈ R
m×n | γ(C+θC∞)◦(X) ≤ 1} = (C + θC∞)◦.

We also have: ‖A‖∗θ = σCθ(A). Thus

‖A‖∗θ = γC◦
θ
(A) = γC+θC∞(A).

We have: γC+θC∞(A) = min{λ ≥ 0 | A ∈ λ(C + θC∞)} or equivalently,

γC+θC∞(A) = min λ

s.t. A = Y +Z,

‖Y ‖ ≤ λ,

θ−1 ‖Z‖∞ ≤ λ,

λ ≥ 0.
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Rewriting the minimization problem above, we obtain the final result as shown in (7):

‖A‖∗θ = min max
{

‖Y ‖ , θ−1 ‖Z‖∞
}

s.t. Y +Z = A.

�

We can now derive the optimality conditions for both problems (6) and (7):

Lemma 3. Nonzero feasible solutions X and (Y ,Z) are optimal for Problem (6) and (7) respectively

if and only if they satisfy the conditions below:

(i) ‖Y ‖ = θ−1 ‖Z‖∞,

(ii) X ∈ α∂ ‖Y ‖, α ≥ 0,

(iii) X ∈ β∂ ‖Z‖∞, β ≥ 0, and

(iv) α+ θβ = 1.

Proof. We first prove the weak duality result. Consider feasible solutions X and (Y ,Z) for Problem

(6) and (7) respectively, we have:

〈X,A〉 = 〈X,Y 〉+ 〈X,Z〉
≤ ‖X‖∗ ‖Y ‖+ ‖X‖1 ‖Z‖∞
≤ ‖X‖∗max{‖Y ‖ , θ−1 ‖Z‖∞}+ θ ‖X‖1max{‖Y ‖ , θ−1 ‖Z‖∞}
= (‖X‖∗ + θ ‖X‖1)max{‖Y ‖ , θ−1 ‖Z‖∞}
≤ max{‖Y ‖ , θ−1 ‖Z‖∞}.

The strong duality result shows that X and (Y ,Z) are the optimal solutions if and only if 〈X,A〉 =
max{‖Y ‖ , θ−1 ‖Z‖∞}. This happens if and only if all the conditions below are satisfied:

(i) 〈X ,Y 〉 = ‖X‖∗ ‖Y ‖ and 〈X,Z〉 = ‖X‖1 ‖Z‖∞,

(ii) ‖Y ‖ = max{‖Y ‖ , θ−1 ‖Z‖∞} = θ−1 ‖Z‖∞, and

(iii) ‖X‖∗ + θ ‖X‖1 = 1.

The first two conditions are equivalent to the fact that X = α∂ ‖Y ‖, where α = ‖X‖∗, and

X = β∂ ‖Z‖∞, where β = ‖X‖1. The second condition is simply ‖Y ‖ = θ−1 ‖Z‖∞ and the third

condition is equivalent to α + θβ = 1. Thus we have proved the necessary and sufficient optimality

conditions for Problem (6) and (7). �
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Using these optimality conditions, we can obtain simple sufficient conditions for the uniqueness of

the optimal solution X:

Proposition 5. Consider the feasible solution X of Problem (6). If there exists (Y ,Z) that satisfies

the conditions below,

(i) Y +Z = A and ‖Y ‖ = θ−1 ‖Z‖∞,

(ii) X ∈ α∂ ‖Y ‖, α ≥ 0,

(iii) X ∈ β∂ ‖Z‖∞, β ≥ 0,

(iv) α+ θβ = 1, and

(v) ‖ · ‖ is differentiable at Y or ‖ · ‖∞ is differentiable at Z,

then X is the unique optimal solution of Problem (6).

Proof. Using the first four conditions, we can prove that X is an optimal solution of Problem (6) and

(Y ,Z) is an optimal solution of Problem (7). Now assume that ‖ · ‖ is differentiable at Y , we have:

∂ ‖Y ‖ is a singleton, ∂ ‖Y ‖ = {V }. Thus we have:

‖X‖1 = α ‖V ‖1 = β ⇒ α(1 + θ ‖V ‖1) = 0 ⇒ α =
1

1 + θ ‖V ‖1
.

Assume there is another optimal solution X̄ 6= X of Problem (6). Applying Lemma 3, we will have

X̄ ∈ ᾱ∂ ‖Y ‖ and similarly X̄ ∈ β̄∂ ‖Z‖∞ with ᾱ + θβ̄ = 1. Same calculation results in ᾱ = α

(contradiction). Thus X is the unique optimal solution of Problem (6). Similar arguments can be used

to prove the uniqueness of X if ‖ · ‖∞ is differentiable at Z. �

Proposition 5 relies on dual solutions Y and Z to show the uniqueness of the primal solution X.

Next, we will focus on the low-rank and sparse property of the optimal solution X for different values

of θ. The following theorem provides the sufficient conditions on matrix A for the rank-one property

(and uniqueness) of the optimal solution X when θ is small enough.

Theorem 2. If A satisfies the condition σ1(A) > σ2(A), then Problem (6) has a (unique) rank-one

optimal solution X for all 0 ≤ θ < θA, where θA =
1√
mn

(

σ1(A)− σ2(A)

3σ1(A)− σ2(A)

)

.

Proof. The optimality conditions in Lemma 3 show that there exist Y and Z such that A = Y +Z,

‖Z‖∞ = θ ‖Y ‖ and X ∈ α∂ ‖Y ‖. Applying a standard perturbation theorem of singular values (see

Cor. 8.6.2 of [11]), we have:

|σi(A)− σi(Y )| ≤ ‖Z‖ , i = 1, 2.
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We also have: ‖Z‖ ≤ √
mn ‖Z‖∞. Thus

‖Z‖ ≤ √
mn (θ ‖Y ‖) = √

mn (θσ1(Y )) .

For all 0 ≤ θ < θA, we have:

σ1(Y ) ≤ σ1(A) + ‖Z‖ ≤ σ1(A) +
√
mn (θσ1(Y )) < σ1(A) +

√
mn (θAσ1(Y )) .

This implies

(1− θA
√
mn)σ1(Y ) < σ1(A) ⇔ 2σ1(A)

3σ1(A)− σ2(A)
σ1(Y ) < σ1(A) ⇔ σ1(Y ) <

1

2
(3σ1(A)− σ2(A)).

We then have:

‖Z‖ ≤ √
mn (θσ1(Y )) <

√
mn (θAσ1(Y )) <

1

2
(σ1(A)− σ2(A)).

Thus

σ1(Y ) ≥ σ1(A)− ‖Z‖ >
1

2
(σ1(A) + σ2(A)) > σ2(A) + ‖Z‖ ≥ σ2(Y ).

We have σ1(Y ) > σ2(Y ); therefore, ‖ · ‖ is differentiable at Y . According to Proposition 5, we have

X is the unique rank-one optimal solution of Problem (6). �

The last result of this section concerns the nonnegativity of X. If A is nonnegative, then one might

expect X to be nonnegative. For θ = 0 or θ = ∞, this is certainly true by preceding results in this

section. It is not always necessarily true for intermediate values of θ. The following theorem shows

that, at least in the rank-one case, nonnegativity is assured.

Theorem 3. Consider the set of optimal solutions of Problem (6) when A ≥ 0. We have:

(i) If Problem (6) has a rank-one optimal solution, then there exists a nonnegative rank-one optimal

solution.

(ii) If θ > 1, then all optimal solutions of Problem (6) are nonnegative.

Proof.

(i) Consider a rank-one optimal solution X , X = σuvT , of Problem (6). We prove that |X| =
σ |u| |v|T ≥ 0 is also an optimal solution. Let X̃ denote |X|. We have:

∥

∥

∥X̃

∥

∥

∥

θ
=
∥

∥

∥X̃

∥

∥

∥

∗
+ θ

∥

∥

∥X̃

∥

∥

∥

1
= ‖X‖∗ + θ ‖X‖1 .

In addition, 〈A, X̃〉 ≥ 〈A,X〉 since A ≥ 0. Thus clearly X̃ is also an optimal solution.

13



(ii) Assume that there exists an optimal solution X of Problem (6) is not nonnegative. Without loss

of generality, assume x11 < 0. Consider X(ǫ) = X + ǫE11, where ǫ > 0 and E11 is the matrix of

all zeros except the element E11(1, 1) = 1, we have:

‖X(ǫ)‖∗ ≤ ‖X‖∗ + ǫ ‖E11‖∗ = ‖X‖∗ + ǫ.

In addition, ‖X(ǫ)‖1 = ‖X‖1 − ǫ if ǫ ≤ |x11|. Therefore, we have:

‖X(ǫ)‖θ ≤ ‖X‖+ (1− θ)ǫ = 1 + (1− θ)ǫ < 1, ∀ 0 < ǫ ≤ |x11| .

Here we assume that A 6= 0; therefore, ‖X‖θ = 1. We also have

〈A,X(ǫ)〉 = 〈A,X〉+ ǫa11 ≥ 〈A,X〉.

Now consider X̄ =
1

1 + (1− θ)ǫ
X(ǫ). Clearly,

∥

∥X̄
∥

∥

θ
= 1 and 〈A, X̄〉 > 〈A,X〉 > 0 (contradic-

tion). Thus all optimal solutions of Problem (6) are nonnegative if θ > 1.

�

3 Sparsity

As mentioned in the introduction, the penalty term θ‖X‖1 in the objective function of (1) is intended

to promote sparsity of X. For some very simple convex optimization problems with an ℓ1 penalty term,

e.g., the unconstrained problem of minimizing ‖x − c‖2 + θ‖x‖1 for a given vector c, it is known that

sparsity increases monotonically with θ (i.e., if x∗
1 is the optimizer for θ1 and x∗

2 is the optimizer for θ2

with θ1 ≤ θ2, then the indices of nonzeros of x∗
2 are a subset of the indices of nonzeros of x∗

1).

For a more complicated problem such as (1), monotonicity does not hold in general. But nonetheless,

some weaker statements about the relationship between θ and sparsity are possible. Two such results

are derived in this section. We start with a lemma that leads to a sparsity result.

Lemma 4. Assume X = σuvT , where ‖u‖2 = ‖v‖2 = 1, u ≥ 0, and v ≥ 0, is the optimal solution of

Problem (6). If ui > uj = 0 then

‖A‖∗θ =
aT
i v

θ ‖v‖1 + ui
≥

aT
j v

θ ‖v‖1
, (8)

where ai and aj are the ith and jth row of A.
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Proof. We again assume here A 6= 0, which means ‖X‖θ = 1. We have:

‖X‖θ = σ + θσ ‖u‖1 ‖v‖1 = 1 ⇔ σ =
1

1 + θ ‖u‖1 ‖v‖1
.

Consider X(ǫ) = σ(u+ ǫei)v
T , where ǫ ≥ 0 and ei is the ith unit vector, we have:

‖u+ ǫei‖22 = ‖u‖22 + (ui + ǫ)2 − u2i = 1 + 2uiǫ+ ǫ2.

Thus ‖X(ǫ)‖∗ = σ
√
1 + 2uiǫ+ ǫ2. On the other hand, ‖X(ǫ)‖1 = σ(‖u‖1 + ǫ) ‖v‖1. So we have:

‖X(ǫ)‖θ = 1 + σ
(

√

1 + 2uiǫ+ ǫ2 − 1 + θǫ ‖v‖1
)

= 1 + σǫ

(

2ui + ǫ√
1 + 2uiǫ+ ǫ2 + 1

+ θ ‖v‖1
)

.

Let α =
2ui + ǫ√

1 + 2uiǫ+ ǫ2 + 1
+ θ ‖v‖1 and consider X̄ =

X(ǫ)

1 + σǫα
, we have:

∥

∥X̄
∥

∥

θ
= 1 and

〈A, X̄〉 = 〈A,X(ǫ)〉
1 + σǫα

=
‖A‖∗θ + σǫaT

i v

1 + σǫα
≤ ‖A‖∗θ .

With σ > 0 and ǫ > 0, we obtain the following inequality

aT
i v ≤

(

2ui + ǫ√
1 + 2uiǫ+ ǫ2 + 1

+ θ ‖v‖1
)

‖A‖∗θ .

Taking the limit ǫ → 0+, we have:

‖A‖∗θ ≥
aT
i v

θ ‖v‖1 + ui
.

Now consider the case in which ui > 0 and set X(ǫ) = σ(u − ǫei)v
T , where 0 ≤ ǫ ≤ ui. Similarly,

we have:

‖X(ǫ)‖θ = 1− σǫ

(

2ui − ǫ√
1− 2uiǫ+ ǫ2 + 1

+ θ ‖v‖1
)

.

This implies the following inequality

aT
i v ≥

(

2ui − ǫ√
1− 2uiǫ+ ǫ2 + 1

+ θ ‖v‖1
)

‖A‖∗θ .

Again, taking the limit ǫ → 0+, we have:

‖A‖∗θ ≤
aT
i v

θ ‖v‖1 + ui
.

From these two results, we can see that if ui > uj = 0, then

‖A‖∗θ =
aT
i v

θ ‖v‖1 + ui
≥

aT
j v

θ ‖v‖1
.

�

15



Since the roles of columns and rows are interchangeable, we also have the following result. If

vk > vl = 0, then

‖A‖∗θ =
uTAk

θ ‖u‖1 + vk
≥ uTAl

θ ‖u‖1
, (9)

where Ak and Al are k-th and l-th column of A.

The sparsity structure of X = σuvT depends on the sparsity structure of u and v. The results

obtained above help us derive some conditions under which a row (or column) of X is zero.

Corollary 1. Consider two rows aT
i and aT

j of matrix A. If mink {aik} ≥ αmaxk {ajk}, where α > 1,

then for every θ >
1

α− 1
and for every nonnegative rank-one optimal solution X of Problem (6), the

jth row of X is zero.

Proof. Assume that X = σuvT , where u ≥ 0 and v ≥ 0, and ‖u‖2 = ‖v‖2 = 1. We have:

aT
i v

θ ‖v‖1 + ui
≥ mink{aik} ‖v‖1

θ ‖v‖1 + 1
≥ αmaxk{ajk} ‖v‖1

θ ‖v‖1 + 1
=

αmaxk{ajk}
θ +

1

‖v‖1

≥ αmaxk{ajk}
θ + 1

,

since ‖v‖1 ≥ ‖v‖2 = 1. On the other hand, we also have the following inequality

aT
j v

θ ‖v‖1 + uj
≤ maxk{ajk} ‖v‖1

θ ‖v‖1
=

maxk{ajk}
θ

.

We have:
αmaxk{ajk}

θ + 1
− maxk{ajk}

θ
= max

k
{akj}

(α− 1)θ − 1

θ(θ + 1)
> 0, ∀ θ >

1

α− 1
.

Thus we have:
aT
i v

θ ‖v‖1 + ui
>

aT
j v

θ ‖v‖1 + uj
, ∀ θ >

1

α− 1
,

which means uj = 0 according to Lemma 4. Thus the j-th row of X is zero. �

We would like to use these results to build up results for columns and rows simultaneously. More

exactly, consider a subset I ⊂ {1, . . . ,m} and J ⊂ {1, . . . , n}, we would like to obtain conditions on

magnitudes of elements of A(I,J ) as compared to those of the remaining elements of A to guarantee

that all rows and columns that are not in I and J have to be zero in the nonnegative rank-one optimal

matrix X of Problem (6) for θ ≥ θ0. One of the difficulties here is that under these conditions, there is

a coupling relationship between rows and columns. More exactly, in order to prove the rows that are

not in I are zero, we need to prove the columns that are not in J are small or zero at the same time.

Lemma 4 and Corollary 1 are based on local optimality conditions with respect to rows or columns.

We can obtain additional results on the sparsity of the optimal solution X using the global optimality

conditions.
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The following theorem states that if the weight of nonnegative matrix A is concentrated in a partic-

ular subblock then for θ sufficiently large, the optimal solution X will have nonzero entries only in that

subblock. “Concentration of weight” in this sense means that the average of those entries dominates all

the other entries of the matrix.

As a special case, this theorem implies that if the maximum entry of A is unique, then for θ

sufficiently large, X will be a singleton matrix whose unique nonzero entry corresponds to the maximum

entry of A.

Theorem 4. Assume A ≥ 0. Let I and J be subsets of {1, . . . ,m} and {1, . . . , n}, respectively;

|I| = M and |J | = N . Define ā(I,J ) =
1

MN

∑

(i,j)∈(I,J )

aij and amax(I,J ) = max
(i,j)6∈(I,J )

aij. If ā(I,J ) >

amax(I,J ) then all optimal solutions X of Problem (6) are sparse, xij = 0 for all (i, j) 6∈ (I,J ), for

all θ > θB, where θB =
1√
MN

(

ā(I,J )
√
MM + amax(I,J )

ā(I,J )− amax(I,J )

)

.

Proof. Assume there exists an optimal solution X of Problem (6) such that xij 6= 0 for some

(i, j) 6∈ (I,J ) when θ > θB. We have: θB > 1; therefore, according to Theorem 3, X ≥ 0. Thus

xij > 0. We also have: A 6= 0; therefore X 6= 0 and ‖X‖θ = 1. Consider two cases, aij = 0 and aij > 0.

If aij = 0, let X0 = X − xijEij , where Eij is the matrix of all zeros but the element Eij(i, j) = 1.

We have: ‖X0‖ ≤ ‖X‖+ xij and ‖X0‖1 = ‖X‖1 − xij. Thus

‖X0‖θ ≤ ‖X‖θ + (1− θ)xij < 1, ∀ θ > θB > 1.

We also have: since aij = 0, 〈A,X0〉 = 〈A,X〉 = ‖A‖∗θ > 0. Thus X0 6= 0 or ‖X0‖θ > 0. Define

Xs
0 =

1

‖X0‖θ
X0, we have: Xs

0 is a feasible solution of Problem (6) with the objective value 〈A,Xs
0〉 =

‖A‖∗θ
‖X0‖θ

> ‖A‖∗θ (contradiction).

Now consider the case when aij > 0. DefineD = eIe
T
J −MNreie

T
j , where r =

ā(I,J )

aij
, eI =

∑

i∈I

ei,

ei ∈ R
m is the ith unit vector in R

m, and similarly, eJ =
∑

j∈J

ej, ej ∈ R
n is the j-th unit vector in R

n.

We have r is well-defined since A > 0 and r > 1. We now consider a new solution Xα = X + αD,

where 0 < α ≤ xij
MNr

. Clearly, Xα ≥ 0. Thus we have: ‖Xα‖1 = ‖X‖1 + αMN(1 − r). Applying the

triangle inequality, we can bound ‖Xα‖∗ as follows:

‖Xα‖∗ ≤ ‖X‖∗ + α ‖D‖∗ ≤ ‖X‖∗ + α(
√
MN +MNr).

Thus we have:

‖Xα‖θ ≤ ‖X‖θ + α
√
MN

[

(1 + r
√
MN ) + θ

√
MN(1− r)

]

.
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Since θ > θB =
1√
MN

(

ā(I,J )
√
MM + amax(I,J )

ā(I,J )− amax(I,J )

)

and 0 < aij ≤ amax(I,J ) < ā(I,J ), we have:

θ >
1√
MN

(

1 + r
√
MN

r − 1

)

.

This implies that ‖Xα‖θ < ‖X‖θ = 1 for all 0 < α ≤ xij
MNr

. Now consider the scaled solution

Xs
α =

1

‖Xα‖θ
Xα, which is also a feasible solution of Problem (6). In terms of the objective, we have:

〈A,D〉 = eTIAeJ −MNraij = 0. Thus 〈A,Xα〉 = 〈A,X〉 = ‖A‖∗θ for all α. We then have:

〈A,Xs
α〉 =

‖A‖∗θ
‖Xα‖θ

> ‖A‖∗θ , ∀α ∈
(

0,
xij

MNr

]

,

which is a contradiction because ‖A‖∗θ is the optimal value of Problem (6).

Thus we can conclude that if A ≥ 0, all optimal solutions X of Problem (6) are sparse with xij = 0

for all (i, j) 6∈ (I,J ) when θ > θB . �

4 Random noise

The main technical result of this article is that the proposed algorithm can find a large rank-one

submatrix hidden in a substantial amount of noise. The noise takes two forms: the rank-one submatrix

itself has random noise added to it (so that its rank is no longer 1), and the entries outside the rank-one

submatrix are generated by a random process.

First, we recall the following definition: a random variable x is b-subgaussian if its mean is zero, and

if there exists a b > 0 such that for all t ≥ 0,

P(|x| ≥ t) ≤ exp(−t2/(2b2)). (10)

For example, a normally distributed variable or any mean-zero variable with a discrete distribution is

subgaussian.

The result of this section is the following bound. For this entire section, we adopt the notation that

eM denotes the vector of all 1’s of length M , and similarly for eN .

Theorem 5. Let A be an m× n matrix defined as follows.

A =





σ0u0v
T
0 0

0 0



+





R11 R12

R21 R22



 , (11)
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where σ0 > 0, u0 ∈ R
M , u0 ≥ 0, M < m, and v0 ∈ R

N , v0 ≥ 0, N < n. Furthermore, assume that

u0 = eM+p with ‖p‖2 ≤ c1
√
M , and v0 = eN+q with ‖q‖2 ≤ c2

√
N . The matrix R is a random matrix

with i.i.d. nonnegative elements rij with mean c3σ0, where c3 > 0 is a constant, such that rij/σ0 − c3 is

b-subgaussian. Here c1, c2, c3 are positive constants. Assume that these scalar constants c1, c2, c3 satisfy

the following relations

c5 ≤ 1/3, c3 + c5 < 1. (12)

where c5 is chosen to satisfy

c5 > c1 + c2 + c1c2. (13)

Under these hypotheses concerning A, and assuming θ satisfies

θ ≤ min

(

1

c3 + c5
,
1 + c3 − 3c5

2c5

)

· 1√
MN

, (14)

θ ≥ 2c3
1− c3 − c5

· 1√
MN

, (15)

the solution X to problem (1) is a rank-one matrix with positive entries in positions that are indexed

by {1, . . . ,M} × {1, . . . , N} and zeros elsewhere with probability exponentially close to 1 (i.e., of the

form 1 − exp(−(M + N)const)) provided that MN ≥ Ω
(

(M +N)4/3
)

and MN ≥ Ω(m + n). Here,

the constants implicit in the Ω(·) notation depend on b and c5. See (32)–(35) below for a detailed

presentation of these constants.

Remarks.

1. Naturally, the theorem also applies if the MN distinguished entries occur as any M×N submatrix

of A; we have numbered the distinguished submatrix first in order to simplify notation.

2. It is not enough to assume simply that u0 > 0 and v0 > 0 because if these vectors have very

small entries, then they cannot be distinguished from the noise.

3. This theorem is not a consequence of Theorem 4 because the hypotheses do not force entries

outside the distinguished block to be smaller than the average of the distinguished block’s entries.

4. The relationships among the constants as well as (14), (15) can all be satisfied provided c3, c5 are

sufficiently small.

5. The result holds with probability exponentially close to 1 as long as M ∼ N and M ≥ Ω(m1/2),

N ≥ Ω(n1/2). Thus, the rank-one submatrix can be much smaller than the entire matrix A.
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Before beginning the proof of the theorem, we require the following key lemma regarding matrices

constructed from independent b-subgaussian random variables.

Lemma 5. Let B ∈ R
m×n be a random matrix, where bij are independent b-subgaussian random

variables for all i = 1, . . . ,m, and j = 1, . . . , n. Then for any u > 0,

(i) P (‖B‖ ≥ u) ≤ exp

(

−
(

8u2

81b2
− (log 7)(m+ n)

))

(ii) P (‖CB‖ ≥ u) ≤ exp

(

−
(

8u2

81b2 ‖C‖2
− (log 7)(m+ n)

))

, where C is a deterministic matrix.

The proof of this lemma follows the proof techniques by Litvak et al. [14]. Major steps are shown

as follows.

Proof.

(i) We have: ‖B‖ = max
‖x‖2=‖y‖2=1

yTBx. We discretize the unit balls in R
n and R

m by finite ǫ-nets,

where ǫ ∈ (0, 1). An ǫ-net of a set K is the subset N such that for all x ∈ K, there exists y ∈ N
such that ‖x− y‖2 ≤ ǫ. Using a construction proof, we can prove that there exists a finite ǫ-net

of the unit ball in R
n with the cardinality of no more than

(

2

ǫ
+ 1

)n

. Let N and M be the

finite ǫ-nets of the unit balls in R
n and R

m with minimum cardinality, respectively. Applying the

triangle inequality, we have:

‖B‖ ≤ 1

(1− ǫ)2
max

x∈N ,y∈M
yTBx.

We can bound the tail probability P (‖B‖ ≥ u) as follows.

P (‖B‖ ≥ u) ≤
(

2

ǫ
+ 1

)m+n

max
x∈N ,y∈M

P
(

yTBx ≥ (1− ǫ)2u
)

.

We have, bij are independent b-subgaussian random variables; therefore, yTBx =

m
∑

i=1

n
∑

j=1

(xjyi) bij

is also a b-subgaussian random variable since
n
∑

i=1

n
∑

j=1

(xjyi)
2 = ‖x‖22 ‖y‖22 = 1. Thus we have:

P (‖B‖ ≥ u) ≤
(

2

ǫ
+ 1

)m+n

e−
(1−ǫ)4u2

2b2 .

Letting ǫ = 1/3, we obtain the inequality

P (‖B‖ ≥ u) ≤ e
−
(

8u2

81b2
−(log 7)(m+n)

)
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(ii) We have: yTCBx =
(

CTy
)T

Bx, thus:

P
(

yTCBx ≥ u
)

≤ e
− u

2

2b2‖CT y‖22‖x‖2
2 ≤ e

− u
2

2b2‖C‖2 .

Applying similar arguments, we can then obtain the inequality (ii) of the Lemma.

�

We now turn to the proof of the main theorem. We now would like to find conditions on θ and the

constants so that Problem (1) has an optimal solution X of the form

X =





σ1u1v
T
1 0

0 0



 ,

where u1 > 0, ‖u1‖2 = 1, and v1 > 0, ‖v1‖2 = 1. If u1 and v1 are determined, σ1 can be easily

calculated in order to satisfy the condition 〈A,X〉 = 1 of the optimal solution. Thus the main task is to

find u1 and v1 if they exist. We will construct them using optimality conditions derived in the previous

section for Problem (6) (equivalent to Problem (1)) and its dual, Problem (7). Defining u = [u1;0] ∈ R
m

and v = [v1;0] ∈ R
n, we can then write the optimality conditions as follows:

There exists Y and Z such that A = Y +Z and

Y = ‖A‖∗θ (uvT +W ), Z = θ ‖A‖∗θ V ,

where ‖W ‖ ≤ 1, W Tu = 0, Wv = 0, and ‖V ‖∞ ≤ 1, V 11 = eMeTN .

These conditions come from the properties of the subgradient ∂ ‖Y ‖ and ∂ ‖Z‖∞ and the fact that X

belongs to these sets (up to appropriate scaling factors).

In the following analysis, we will construct (V ,W ) so that the optimality conditions are satisfied.

The entries of these matrices will be constructed separately for the four subblocks of A, starting with

the (1, 1) block. Breaking the equation Y + Z = A into blocks and scaling by 1/‖A‖∗θ, we obtain the

following more detailed optimality conditions.

u1v
T
1 +W 11 + θeMeTN = A11/‖A‖∗θ = (σ0u0v

T
0 +R11)/‖A‖∗θ, (16)

W ij + θV ij = Aij/‖A‖∗θ = Rij/‖A‖∗θ, (17)

where the second line applies to (i, j) equal to (1, 2), (2, 1) and (2, 2). Following this block matrix

notation, the remaining optimality conditions to be established are W T
11u1 = 0, W T

21u1 = 0, W 11v1 =

21



0, W 12v1 = 0, ‖V ‖∞ ≤ 1, ‖W ‖ ≤ 1. We shall establish the latter inequality by proving more

specifically that ‖W ij‖ ≤ 1/2 for (i, j) ∈ {1, 2} × {1, 2}.
We begin with the (1, 1) block of this equation. The conditions ‖W 11‖ ≤ 1/2, W T

11u1 = 0,

W 11v1 = 0 imply that
∥

∥u1v
T
1 +W 11

∥

∥ = 1. This is because the dominant singular triple of u1v
T
1 +W 11

must be (1,u1,v1) by the conditions. Equivalent to
∥

∥u1v
T
1 +W 11

∥

∥ = 1 is
∥

∥

∥

∥

1

‖A‖∗θ
A11 − θV 11

∥

∥

∥

∥

= 1,

where, as noted earlier, we are required to take V 11 = eMeTN .

Thus the first necessary condition for X to be the optimal solution is that there exists λ > 0 such

that f(λ) = ‖λA11 − θV 11‖ = 1. If such a λ is identified, then u1 and v1 can be easily found since

u1v
T
1 is the rank-one approximation of λA11 − θV 11. Note that the nonnegativity of u1 and v1 will

require additional conditions which will be discussed later. We have:

λA11 − θV 11 = λ
[

σ0u0v
T
0 +R11

]

− θeMeTN

= λ
[

σ0(eM + p)(eN + q)T +R11

]

− θeMeTN

= (λσ0 − θ)eMeTN + λ
[

σ0(eMqT + peTN + pqT ) +R11

]

= [λσ0(1 + c3)− θ]eMeTN + λ
[

σ0(eMqT + peTN + pqT ) + (R11 − c3σ0eMeTN )
]

.

We have: f(λ) → +∞ when λ → +∞ since A11 6= 0. Now define λ0 =
θ

σ0(1 + c3)
to make the first

term vanish, yielding

λ0A11 − θV 11 = λ0

[

σ0(eMqT + peTN + pqT ) + (R11 − c3σ0eMeTN )
]

= λ0 [σ0P +Q] ,

where P = eMqT +peTN +pqT and Q = R11 − c3σ0eMeTN . We now bound the spectral norm of P and

Q as follows.

‖P ‖ ≤
∥

∥eMqT
∥

∥+
∥

∥peTN
∥

∥+
∥

∥pqT
∥

∥

= ‖e‖2 ‖q‖2 + ‖p‖2 ‖eN‖2 + ‖p‖2 ‖q‖2
≤ c1

√
MN + c2

√
MN + c1c2

√
MN

= (c1 + c2 + c1c2)
√
MN.

Matrix Q/σ0 is random with i.i.d. elements that are b-subgaussian. Thus by Lemma 5(i),

P (‖Q‖ ≥ uσ0) ≤ exp

(

−
(

8u2

81b2
− (log 7)(M +N)

))

,
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for any u > 0. Let us fix u = (MN)3/8 to obtain

P

(

‖Q‖ ≥ σ0(MN)3/8
)

≤ exp

(

−
(

(MN)3/4

81b2
− (log 7)(M +N)

))

. (18)

For the remainder of this analysis, we will impose the assumption that the event in (18) does not happen.

At the end of the proof the right-hand side (18) will be one of the terms in the failure probability of

identifying the optimal X.

Thus, ‖Q‖ ≤ o(1)σ0
√
MN , so applying the triangle inequality,

‖σ0P +Q‖ ≤ σ0(c1 + c2 + c1c2 + o(1))
√
MN

≤ σ0c5
√
MN. (19)

by (13). (The strict inequality ‘>’ in (13) is used in order to absorb the o(1) term.) Therefore,

f(λ0) = λ0‖σ0P +Q‖

≤ c5θ
√
MN

1 + c3
.

Thus with high probability, f(λ0) ≤ 1 if

θ <

(

1 + c3
c5

)

1√
MN

, (20)

Inequality (20) is a consequence of (14) stated in the theorem. This inequality implies f(λ0) ≤ 1, and,

due to the continuity of function f , there exists λ∗ ≥ λ0 such that f(λ∗) = 1. We will prove that under

some additional conditions, this value λ∗ satisfies all other optimality conditions of Problem (1) and

indeed ‖A‖∗θ =
1

λ∗
.

Let us recall that ‖λ∗A11−θV 11‖ = 1, i.e., ‖(λ∗σ0(1+c3)−θ)eMeTN +λ∗(σ0P +Q)‖ = 1. Applying

the fact that ‖eMeTN‖ =
√
MN and the triangle inequality twice to this equation yields

[λ∗σ0(1 + c3)− θ]
√
MN − λ∗ ‖σ0P +Q‖ ≤ 1 ≤ [λ∗σ0(1 + c3)− θ]

√
MN + λ∗ ‖σ0P +Q‖ .

Applying (19) yields

[λ∗σ0(1 + c3 − c5)− θ]
√
MN ≤ 1 ≤ [λ∗σ0(1 + c3 + c5)− θ]

√
MN.

Rearranging this chain of inequalities and using the fact that 1 + c3 − c5 > 0, which follows from (12)

stated in the theorem, yields

1 + θ
√
MN

σ0(1 + c3 + c5)
√
MN

≤ λ∗ ≤ 1 + θ
√
MN

σ0(1 + c3 − c5)
√
MN

, (21)
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with high probability.

We wish to establish that λ∗σ0 − θ ≥ 0. Using the left inequality in (21) yields:

λ∗σ0 − θ ≥ 1 + θ
√
MN

(1 + c3 + c5)
√
MN

− θ

=
1− (c3 + c5)θ

√
MN

(1 + c3 + c5)
√
MN

.

Thus, nonnegativity of λ∗σ0 − θ is implied by the inequality θ ≤ 1/((c3 + c5)
√
MN), which is a conse-

quence of assumption (14).

Since λ∗σ0 − θ ≥ 0,

λ∗A11 − θV 11 = (λ∗σ0 − θ)eMeTN + λ∗(σ0P +R11) > 0.

Applying the Perron-Frobenius theorem, we obtain the positivity of u1 and v1.

We also need ‖W 11‖ ≤ 1/2. Recall ‖W 11‖ = σ2(λ
∗A11 − θV 11), the second largest singular value

of λ∗A11 − θV 11, since λ∗A11 − θV 11 = u1v
T
1 +W 11. Using the well-known fact that

σ2(A) = min{‖A− S‖ : rank(S) ≤ 1},

we obtain

‖W 11‖ ≤ ‖λ∗(σ0P +Q)‖ .

Here we selected S to be [λ∗σ0(1+c3)−θ]eMeTN . With high probability, we obtain the bound ‖W 11‖ ≤
λ∗σ0c5

√
MN from (19).

Using the upper bound on λ∗ from (21), we have:

‖W 11‖ ≤ (1 + θ
√
MN)c5

1 + c3 − c5
.

In order to obtain ‖W 11‖ ≤ 1/2, a sufficient condition is

(1 + θ
√
MN)c5

1 + c3 − c5
≤ 1

2
(22)

which is rearranged as

θ ≤
(

1 + c3 − 3c5
2c5

)

1√
MN

.

The latter inequality follows from (14); the numerator of the right-hand side is positive by (12).

Turning to (17) when (i, j) = (2, 2), we need to find W 22 and V 22 that satisfy

λ∗R22 = W 22 + θV 22,
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‖W 22‖ ≤ 1/2, and ‖V 22‖∞ ≤ 1. Consider the assignment V 22 =
λ∗σ0c3

θ
em−MeTn−N and W 22 =

λ∗R22 − θV 22. The coefficient λ∗σ0c3/θ is chosen for the definition of V 22 so that the entries of the

remainder term W 22 have mean zero.

The requirement ‖V 22‖∞ ≤ 1 is satisfied if and only if λ∗σ0c3/θ ≤ 1. Because of the upper bound

on λ∗ established by (21), this requirement is satisfied if

(1 + θ
√
MN)c3

θ(1 + c3 − c5)
√
MN

≤ 1 ⇔ θ ≥
(

c3
1− c5

)

1√
MN

, c5 < 1.

This inequality is assured by (12) and (15). (In particular, (12) implies c5 < 1.)

To bound ‖W 22‖, consider W 22/(λ
∗σ0), which is a random matrix with i.i.d. elements that are

b-subgaussian. Applying Lemma 5(i) to W 22/(λ
∗σ0) and taking u = 1/(2λ∗σ0) yields

P (‖W 22‖ ≥ 1/2) ≤ exp

(

−
(

2

81b2(λ∗σ0)2
− (log 7)(m−M + n−N)

))

.

Use the upper bound on λ∗ from (21) to obtain the following tail bound:

P

(

‖W 22‖ ≥ 1

2

)

≤ exp

(

−
(

2(1 + c3 − c5)
2

81b2(1 + θ
√
MN)2

MN − (log 7)(m−M + n−N)

))

.

From (22) we obtain
(1 + c3 − c5)

2

(1 + θ
√
MN)2

≥ 4c25 (23)

hence

P

(

‖W 22‖ ≥ 1

2

)

≤ exp

(

−
(

8c25MN

81b2
− (log 7)(m−M + n−N)

))

. (24)

Now consider (17) when (i, j) = (1, 2). Again we need to find W 12 and V 12 such that

λ∗R12 = W 12 + θV 12,

‖W 12‖ ≤ 1/2, ‖V 12‖∞ ≤ 1, and W T
12u1 = 0. We construct W 12 and V 12 column by column as follows:

V 12(:, i) =
λ∗R12(:, i)

Tu1

θ ‖u1‖1
eM , W 12(:, i) = λ∗R12(:, i) − θV 12(:, i)

all i = 1, . . . , n−N . By construction we have W 12(:, i)
Tu1 = 0 for all i = 1, . . . , n−N . Now consider

the requirement that ‖V 12(:, i)‖∞ ≤ 1 for all i = 1, . . . , n−N . The requirement is equivalent to

λ∗R12(:, i)
Tu1

θ ‖u1‖1
≤ 1

for all i = 1, . . . , n − N . Subtract λ∗c3σ0/θ from both sides and apply the identity eTMu1 = ‖u1‖1 to

obtain
λ∗(R12(:, i)

T − c3σ0e
T
M )u1

θ ‖u1‖1
≤ 1− λ∗c3σ0

θ
.
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We will establish this inequality in two steps. First, we establish that λ∗c3σ0/θ ≤ 1/2. Because of

(21), it suffices to establish that
c3(1 + θ

√
MN)

θ(1 + c3 − c5)
√
MN

≤ 1

2
. (25)

This can be rearranged into

θ ≥ 2c3

(1− c3 − c5)
√
MN

,

which follows from (15).

Second, we establish that with probability exponentially close to 1,

λ∗(R12(:, i)
T − c3σ0e

T
M )u1

θ ‖u1‖1
≤ 1

2
.

Notice that rji/σ0 − c3 is b-subgaussian; thus,

1

σ0
(R12(:, i)− c3σ0eM )T u1 =

1

σ0

M
∑

j=1

u1(j) (R12(j, i) − c3σ0)

is also b-subgaussian since ‖u1‖2 = 1. Thus, by (10), taking x = (R12(:, i) − c3σ0eM )T u1/σ0 and

taking t = θ‖u1‖1/(2λ∗σ0),

P

(

λ∗(R12(:, i)
T − c3σ0eM )u1

θ ‖u1‖1
>

1

2

)

≤ exp
(

−θ2‖u1‖21/(8b2(λ∗σ0)
2)
)

.

≤ exp
(

−c23‖u1‖21/(2b2)
)

. (26)

since, as noted above θ/(λ∗σ0) ≥ 2c3.

To proceed, we now need a lower bound for ‖u1‖1. Let F denote λ∗A11 − θV 11, which is equal

to [λ∗σ0(1 + c3) − θ]eMeTN + λ∗(σ0P + Q). We know that u1 is the first (left) singular vector of F .

Letting X0 = [λ∗σ0(1 + c3)− θ]eMeTN and E = λ∗(σ0P +Q), we then have F = X0 +E, and X0 is

a rank-one matrix with a single nonzero singular value equal to (λ∗σ0(1 + c3)− θ)
√
MN and with left

singular vector eM/
√
M and right singular vector eN/

√
N . Furthermore, since ‖F ‖ = 1, we know that

the singular value of X0 is at least 1− ‖E‖ by Corollary 8.6.2 of [11]. Thus, by Theorem 8.6.5 of [11],
∥

∥

∥

∥

u1 −
eM√
M

∥

∥

∥

∥

≤ 4‖E‖
1− ‖E‖ ≤ 4/5, (27)

provided that ‖E‖ ≤ 1/6. Thus, the next step in the analysis is to show that ‖E‖ ≤ 1/6. This follows

from the following sequence of inequalities:

‖E‖ = λ∗‖σ0P +Q‖

≤ c5(1 + θ
√
MN)

1 + c3 − c5

≤ 1/6,
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where the second line holds with high probability according to (19) and the third line follows from (22)

and (12).

Thus, we have established that ‖E‖ ≤ 1/6 with high probability, which in turn implies that

‖u1‖1 = eTMu1

= (eM −M1/2u1 +M1/2u1)
Tu1

≥ M1/2uT
1 u1 − |(eM −M1/2u1)

Tu1|

≥ M1/2uT
1 u1 − ‖eM −M1/2u1‖ · ‖u1‖

= M1/2 −M1/2‖M−1/2eM − u1‖

≥ M1/2 − (4/5)M1/2 ,

where the last line is obtained from (27). This gives a lower bound ofM1/2/5 on ‖u‖1. Thus, substituting
this into (26) yields

P

(

λ∗(R12(:, i)
T − c3σ0eM )u1

θ ‖u1‖1
>

1

2

)

≤ exp
(

−σ2
0c

2
3M/(50b2)

)

.

This shows that one column of V 12 exceeds norm 1/2 with exponentially small probability. Applying

the union bound over all the columns, we find

P (‖V 12‖∞ ≥ 1) ≤ (n−N) exp
(

−σ2
0c

2
3M/(50b2)

)

. (28)

Thus, we have established that ‖V 12‖∞ ≤ 1 with probability exponentially close to 1.

We now consider the matrix W 12, which can be written as W 12 = λ∗DR12, where D ∈ R
M×M is

given by

D = I − 1

‖u1‖1
eMuT

1 .

Notice that we can equivalently write

W 12 = λ∗D(R12 − c3σ0eMeTn−N ),

since DeM = 0. The matrix R12 − c3σ0eMeTn−N is a subgaussian matrix scaled by σ0. Furthermore,

‖D12‖ ≤ 1 +

√
M

‖u‖1
≤ 6,

with high probability, since ‖u1‖1 ≥ M1/2/5. Thus, Lemma 5(ii) applied to W 12/(λ
∗σ0), taking u =

1/(2λ∗σ0), yields

P (‖W 12‖ ≥ 1/2) ≤ exp

(

−
(

2

36 · 81b2σ2
0(λ

∗)2
− (log 7)(M + n−N)

))

.
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Apply the upper bound on λ∗ from (21) to obtain

P (‖W 12‖ ≥ 1/2) ≤ exp

(

−
(

2(1 + c3 − c5)
2MN

36 · 81b2(1 + θ
√
MN)2

− (log 7)(M + n−N)

))

.

Now finally we apply (23) to obtain

P (‖W 12‖ ≥ 1/2) ≤ exp

(

−
(

8c25MN

36 · 81b2 − (log 7)(M + n−N)

))

. (29)

The same construction and analysis applies to V 21 and W 21, and the same results are obtained

except with the roles of (M,m) and (N,n) interchanged. Thus,

P (‖V 21‖∞ ≥ 1) ≤ (m−M) exp
(

−σ2
0c

2
3N/(50b2)

)

, (30)

and

P (‖W 21‖ ≥ 1/2) ≤ exp

(

−
(

8c25MN

36 · 81b2 − (log 7)(N +m−M)

))

. (31)

From the analysis of all four blocks of V and W , we have:

‖V ‖∞ = max {‖V 11‖∞ , ‖V 12‖∞ , ‖V 21‖∞ , ‖V 22‖∞} ≤ 1,

where V 11 = eMeTN . With a high probability, we also have ‖W ‖ ≤ 1 since

‖W ‖2 ≤ ‖W 11‖2 + ‖W 12‖2 + ‖W 22‖2 + ‖W 21‖2 ≤ 1.

By the union bound, the probability of failure of the main result is at most the sum of the probabilities

of the failure at each step. Therefore, the failure of the convex relaxation to find the claimed optimal

X is at most the sum of the right-hand sides of (18), (24), (30), (29), (28), and (31). We require these

probabilities to be exponentially small. We assure that (18) is exponentially small by requiring

MN ≥ k1(M +N)4/3 (32)

where

k1 >
(

(log 7)81b2
)4/3

. (33)

Next, all of (24), (29), (31) are exponentially small provided that

MN ≥ k2(m+ n) (34)

where

k2 >
(log 7)36 · 81b2

8c25
. (35)

Finally, to ensure that (28) and (30) tend to 0 exponentially fast requires that M grow as fast as

Ω(log(n − N)) and similarly N grows as fast as Ω(log(m − M)), but this is already a consequence of

(32) and (34).
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5 Conclusions

We have shown that a convex relaxation can find a large, approximately rank-one submatrix of a much

larger noisy matrix provided that the dimensions of the larger matrix are no larger than the square of

the dimensions of the smaller matrix, and provided certain upper bounds are satisfied on the level of

the noise.

It is interesting to note that our result also applies to the maximum biclique problem, which was

introduced in Section 1 as a special case of LAROS. In particular, if G is a bipartite graph (U, V,E)

containing a biclique given by U∗ × V ∗, where |U | = m, |V | = n, |U∗| = M , |V ∗| = N , and if the

remaining edges of E (i.e., those not in U∗ × V ∗) are inserted at random with probability 1/2, then the

U -to-V adjacency matrix has the form (11) in which σ = 1, c1 = c2 = 0, c3 = 1/2, b = 1/(8 log 2)1/2.

(This is not quite correct since in this case R11 = 0. However, our analysis covers this case as well.)

Thus, our algorithm with parameter θ = O(1/(MN)1/2) finds the planted biclique when M ∼ N ,

m ∼ n, and M ≥ Ω(m1/2). The same result was obtained earlier by Ames and Vavasis [1] using a

different convex relaxation. Theirs has the advantage that M,N do not need to be known or estimated

in advance, but ours solves a more general class of problems.
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