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Abstract

We introduce what we call alternative twisted tensor products for not necessarily asso-
ciative algebras, as a common generalization of several different constructions: the Cayley-
Dickson process, the Clifford process and the twisted tensor product of two associative al-
gebras, one of them being commutative. We show that some very basic facts concerning
the Cayley-Dickson process (the equivalence between the two different formulations of it and
the lifting of the involution) are particular cases of general results about alternative twisted
tensor products of algebras. As a class of examples of alternative twisted tensor products,
we introduce a tripling process for an algebra endowed with a strong involution, containing
the Cayley-Dickson doubling as a subalgebra and sharing some of its basic properties.
Keywords: twisted tensor products; Cayley algebras
2000 Mathematics Subject Classification: 17A01

Introduction

If A and B are associative algebras and R : B ⊗ A → A ⊗ B is a linear map satisfying a
certain list of axioms, then A⊗B becomes an associative algebra with a multiplication defined in
terms of R and the multiplications of A and B. This construction appeared in several contexts
and under different names. Following [9] we call such an R a twisting map and the algebra
structure on A⊗B afforded by it the twisted tensor product of A and B and denote it by A⊗RB
(if R is the usual flip map then A ⊗R B coincides with the usual tensor product of algebras).
The twisted tensor product of associative algebras can be regarded as a representative for the
cartesian product of noncommutative spaces, better suited than the ordinary tensor product,
see [9], [11], [12] for a detailed discussion and references. Examples of twisted tensor products
are provided by classical ring theory (crossed products with trivial cocycles, Ore extensions with
trivial derivations), Hopf algebra theory (smash products, diagonal crossed products as in [8],
[10]), noncommutative geometry etc.
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†Research started while the second author was visiting the Centre for Mathematics of the University of Coimbra

(CMUC) supported by a postdoctoral fellowship offered by CMUC, and finished while this author was a member
of the CNCSIS project “Hopf algebras, cyclic homology and monoidal categories”, contract nr. 560/2009, CNCSIS
code ID−69.
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An important feature of this construction is that it allows to build new algebra structures
starting with two given algebras. From this point of view, and also having in mind the emerging
nonassociative geometry (cf. [1], [6], [13]), regarded as a further extension of noncommutative
geometry, with the “coordinate algebra” allowed to be nonassociative, it is natural to try to
consider analogues of twisted tensor products for more general classes of algebras than the
associative ones. It turns out that it is straightforward to do this for the so-called quasialgebras
as named in [3], that is algebras in monoidal categories (since the associativity constraints are
allowed to be nontrivial, the class of quasialgebras contains various classes of nonassociative
algebras, for instance the octonions and the other Cayley algebras, cf. [3]). Twisted tensor
products of certain quasialgebras have been studied by the authors in [5].

In this paper we will introduce a different kind of twisted tensor product for nonassociative
algebras, having as motivating example the Cayley-Dickson process. We recall that if B is an
algebra endowed with an involution σ : B → B and q is a nonzero element in the base field K,
the Cayley-Dickson algebra B(q) is an algebra structure on B ⊕B, whose elements are written
uniquely as a + vb, with a, b ∈ B, where v is a notational device with v2 = q1, and whose
multiplication is defined by

(a+ vb)(c + vd) = (ac+ qdσ(b)) + v(σ(a)d + cb), ∀ a, b, c, d ∈ B.

If we denote by C(K, q) the 2-dimensional algebra C(K, q) := K[v]/(v2−q), it is clear that B(q)
may be identified as vector space with C(K, q) ⊗ B, and the multiplication of B(q) depends
somehow on the multiplications of C(K, q) and B. Our original purpose was to make exact
sense of this claim; more precisely, we wanted to express B(q) as some sort of twisted tensor
product between C(K, q) and B.

The general construction that we introduce, with B(q) as the motivating example, is called
alternative twisted tensor product between two nonassociative algebras A and B and is defined
by means of a so-called alternative twisting map R : B ⊗ A → A ⊗ B, which is a linear map
satisfying some axioms resembling the ones for a twisting map. We emphasize that a twisting
map between two associative algebras A and B in general is not an alternative twisting map.
However, if B is moreover commutative, the two concepts coincide.

Our main results (Theorems 2.1 and 3.1) show that some basic features of the Cayley-Dickson
process (the fact that it admits two different but equivalent descriptions and the fact that the
involution σ can be lifted to an involution on B(q)), which apparently are very peculiar to it, are
actually particular cases of general results about alternative twisted tensor products of algebras.
This kind of phenomenon appeared also in [11], where it was shown that various results from
Hopf algebra theory are actually particular cases of general results about twisted tensor products
of associative algebras.

As a class of examples of alternative twisted tensor products, we introduce a sort of tripling
process: if B is an algebra endowed with a strong involution σ and q, r are nonzero scalars,
we construct an algebra B(q, r), whose dimension is 3 · dim(B), containing the Cayley-Dickson
algebras B(q) and B(r) as subalgebras. Unlike B(q) (which is alternative when B is associative),
the algebras B(q, r) are never alternative algebras. But, exactly as for Cayley algebras, B(q, r)
is always power-associative, it is flexible if and only if B is flexible and if the norm on B is
nondegenerate then so is the norm on B(q, r).
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1 Alternative twisted tensor products of algebras

In what follows, by “algebra” we will mean a not necessarily associative algebra with unit
over a field K (of characteristic 6= 2 if necessary); all algebra maps are assumed to be unital. For
an algebra A we will denote its multiplication by µA and its unit by 1A. All algebras that will
appear will be considered together with a given and fixed decomposition as a direct sum of vector
spaces A = K · 1A ⊕A0 (our constructions will depend on the decomposition). If q ∈ K, q 6= 0,
the decomposition for the algebra C(K, q) := K[v]/(v2−q) will always be C(K, q) = K ·1⊕K ·v.
If V , W are vector spaces, we denote by τV,W : V ⊗W → W ⊗ V the flip map v ⊗ w 7→ w ⊗ v.

We recall from [9], [16] the construction of the twisted tensor product of associative algebras.
Let A and B be two associative algebras and R : B ⊗A → A⊗B a linear map, with Sweedler-
type notation R(b ⊗ a) = aR ⊗ bR, for a ∈ A, b ∈ B. Then R is called twisting map if the
following conditions are satisfied (we denote by r another copy of R):

R(1B ⊗ a) = a⊗ 1B , R(b⊗ 1A) = 1A ⊗ b,

R(b⊗ aa′) = aRa
′
r ⊗ (bR)r,

R(bb′ ⊗ a) = (aR)r ⊗ brb
′
R,

for all a, a′ ∈ A and b, b′ ∈ B. If we introduce a multiplication on A⊗B, by

(a⊗ b)(a′ ⊗ b′) = aa′R ⊗ bRb
′, ∀ a, a′ ∈ A, b, b′ ∈ B,

then this multiplication is associative with unit 1A ⊗ 1B . This algebra structure on A ⊗ B is
called the twisted tensor product afforded by R and is denoted by A⊗R B.

Let A and B be two algebras and R : B ⊗ A → A ⊗ B a linear map, with Sweedler-type
notation R(b⊗a) = aR⊗bR, for a ∈ A, b ∈ B. Assume that the following conditions are satisfied
(we denote by r another copy of R):

R(1B ⊗ a) = a⊗ 1B , R(b⊗ 1A) = 1A ⊗ b, ∀ a ∈ A, b ∈ B, (1.1)

R(b⊗ aa′) = aRa
′
r ⊗ (bR)r, ∀ a, a′ ∈ A, b ∈ B, (1.2)

R(bb′ ⊗ a) = (aR)r ⊗ b′Rbr, ∀ a ∈ A0, b, b
′ ∈ B. (1.3)

We consider the multiplication on the vector space A⊗B uniquely defined by the formulae

(1A ⊗ b)(a′ ⊗ b′) = a′R ⊗ bRb
′, ∀ a′ ∈ A, b, b′ ∈ B,

(a⊗ b)(a′ ⊗ b′) = aa′R ⊗ b′bR, ∀ a ∈ A0, a
′ ∈ A, b, b′ ∈ B.

This algebra structure on A ⊗ B will be called an alternative twisted tensor product

and will be denoted by A⊗RB; the map R satisfying the conditions (1.1)–(1.3) will be called an
alternative twisting map. Clearly 1A⊗1B is the unit for A⊗RB. If the algebras A and B are
associative and B is commutative then the alternative twisted tensor product A⊗RB coincides
with the usual twisted tensor product A⊗R B and so is an associative algebra.

Remark 1.1 If A⊗RB is an alternative twisted tensor product and B is commutative, then the
multiplication of A⊗RB does not depend on the decomposition A = K · 1A ⊕A0.

We recall now the Cayley-Dickson process, see for instance [14]. Let B be an algebra and
σ : B → B an involution, i.e. an algebra antiautomorphism with σ2 = idB . We fix q ∈ K, q 6= 0,
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and define B(q) := B⊕B as vector space; we write an element of B(q) uniquely as a+ vb, with
a, b ∈ B, where, as above, C(K, q) = K[v]/(v2 − q). Define a multiplication on B(q), by

(a+ vb)(c + vd) = (ac+ qdσ(b)) + v(σ(a)d + cb), ∀ a, b, c, d ∈ B.

This algebra B(q) is said to have been obtained from B by the Cayley-Dickson process.
Consider the linear map R : B ⊗ C(K, q) → C(K, q)⊗B uniquely defined by the formulae

R(b⊗ 1) = 1⊗ b, R(b⊗ v) = v ⊗ σ(b), ∀ b ∈ B. (1.4)

Then one can check that R is an alternative twisting map and we have an algebra isomorphism

B(q) ≃ C(K, q)⊗RB, a+ vb 7→ 1⊗ a+ v ⊗ b, ∀ a, b ∈ B.

Thus, any algebra obtained by applying the Cayley-Dickson process may be regarded as an
alternative twisted tensor product of algebras. In particular, this is the case of the algebra of
octonions and, by [2], of any division alternative quasialgebra.

We recall now the so-called Clifford process as introduced in [4]. Let A be an algebra and
σ : A → A an algebra automorphism which is involutive (i.e. σ2 = idA), let q ∈ K, q 6= 0 and
again C(K, q) = K[v]/(v2 − q). Define Cl(A) := A ⊕ A as vector space and write an element
of Cl(A) uniquely as a+ bv, with a, b ∈ A; then Cl(A) becomes an algebra with multiplication
given by the formula

(a+ bv)(c + dv) = (ac+ qbσ(d)) + (ad+ bσ(c))v, ∀ a, b, c, d ∈ A.

This algebra Cl(A) is said to have been obtained from A by the Clifford process.
Consider the linear map R : C(K, q)⊗A → A⊗ C(K, q) uniquely defined by the formulae

R(1⊗ a) = a⊗ 1, R(v ⊗ a) = σ(a)⊗ v, ∀ a ∈ A.

Then one can check that R is an alternative twisting map and we have an algebra isomorphism

Cl(A) ≃ A⊗RC(K, q), a+ bv 7→ a⊗ 1 + b⊗ v, ∀ a, b ∈ A.

If A is associative, since C(K, q) is associative and commutative it follows that A⊗RC(K, q)
is a usual twisted tensor product of associative algebras, so Cl(A) is an associative algebra (this
was noted in [4] too). By [4], the usual Clifford algebras may be obtained from the field K
by iterating the Clifford process. Thus, the alternative twisted tensor product of algebras as
introduced above provides a common generalization of Clifford algebras and Cayley algebras.

Let A⊗RB be an alternative twisted tensor product of algebras. Clearly the maps

A → A⊗RB, a 7→ a⊗ 1B ,

B → A⊗RB. b 7→ 1A ⊗ b,

are algebra maps, and (a⊗ 1B)(1A ⊗ b) = a⊗ b in A⊗RB, for all a ∈ A, b ∈ B. We have already
seen that if A is associative and B is associative and commutative then A⊗RB is associative. We
can prove a converse of this, generalizing the well-known fact that the algebra B(q) obtained from
B by the Cayley-Dickson process is associative if and only if B is associative and commutative:
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Proposition 1.2 If A0 6= 0 (i.e. dim(A) ≥ 2) and A⊗RB is associative, then A is associative
and B is associative and commutative. Thus, in this case A⊗RB is a usual twisted tensor
product of associative algebras.

Proof. Obviously A and B are associative, as they are embedded as algebras into A⊗RB. Let
a ∈ A0, a 6= 0 and b, b′ ∈ B. We have:

(a⊗ 1B)[(1A ⊗ b)(1A ⊗ b′)] = a⊗ bb′,

[(a⊗ 1B)(1A ⊗ b)](1A ⊗ b′) = (a⊗ b)(1A ⊗ b′) = a⊗ b′b,

and so the associativity of A⊗RB implies bb′ = b′b. �

2 An isomorphism theorem

It is known (see for instance [17]) that the Cayley-Dickson process admits a second descrip-
tion, different from the one presented above, but equivalent to it, which we recall now.

We begin with an algebra B and an involution σ on it, we fix q ∈ K, q 6= 0 and consider
again the algebra C(K, q) = K[v]/(v2 − q). Define B(q) := B ⊕B as vector space, and write an
element of B(q) uniquely as a+ bv, with a, b ∈ B. Define a multiplication on B(q) by

(a+ bv)(c + dv) = (ac+ qσ(d)b) + (bσ(c) + da)v, ∀ a, b, c, d ∈ B.

Then one can see that we have an algebra isomorphism

B(q) ≃ B(q), a+ bv 7→ a+ vσ(b), ∀ a, b ∈ B. (2.1)

Our next aim is to give an interpretation of this fact in terms of alternative twisted tensor
products of algebras. To begin with, we note that if A⊗RB is such an alternative twisted tensor
product, the algebras A and B do not play a symmetric rôle in its construction. Thus, we
construct first a new kind of product, a sort of mirror image of A⊗RB. Namely, we begin with
two algebras C, D and a linear map P : D⊗C → C⊗D, with Sweedler-type notation as before,
and we assume that the following conditions are satisfied (denote by p another copy of P ):

P (1D ⊗ c) = c⊗ 1D, P (d⊗ 1C) = 1C ⊗ d, ∀ c ∈ C, d ∈ D, (2.2)

P (d⊗ cc′) = c′pcP ⊗ (dP )p, ∀ c, c′ ∈ C, d ∈ D0, (2.3)

P (dd′ ⊗ c) = (cP )p ⊗ dpd
′
P , ∀ c ∈ C, d, d′ ∈ D. (2.4)

We consider the multiplication on the vector space C ⊗D uniquely defined by the formulae

(c⊗ d)(c′ ⊗ 1D) = cc′P ⊗ dP , ∀ c, c′ ∈ C, d ∈ D,

(c⊗ d)(c′ ⊗ d′) = c′P c⊗ dP d
′, ∀ c, c′ ∈ C, d ∈ D, d′ ∈ D0.

This algebra structure on C ⊗D, whose unit is 1C ⊗ 1D, will be denoted by C⊗PD. If the
algebras C and D are associative and C is commutative then C⊗PD coincides with the usual
twisted tensor product C ⊗P D and so is an associative algebra.

Consider now again an algebra B with an involution σ and the linear map P : C(K, q)⊗B →
B ⊗ C(K, q) uniquely defined by the formulae

P (1⊗ b) = b⊗ 1, P (v ⊗ b) = σ(b)⊗ v, ∀ b ∈ B. (2.5)
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Then P satisfies the conditions (2.2)–(2.4) and we have an algebra isomorphism

B(q) ≃ B⊗PC(K, q), a+ bv 7→ a⊗ 1 + b⊗ v, ∀ a, b ∈ B.

We can regard now the isomorphism (2.1) between the two formulations B(q) and B(q) of
the Cayley-Dickson process as follows: we have an algebra isomorphism ϕ : B⊗PC(K, q) ≃
C(K, q)⊗RB, given by

ϕ(b⊗ 1) = 1⊗ b, ϕ(b⊗ v) = v ⊗ σ(b), ∀ b ∈ B, (2.6)

where R is the map given by (1.4) and P is the map given by (2.5).
It turns out that this result is a particular case of a general property of alternative twisted

tensor products of algebras:

Theorem 2.1 Let A⊗RB be an alternative twisted tensor product of algebras such that the map
R is bijective, with inverse denoted by P : A⊗B → B⊗A. Assume that the following conditions
are satisfied:

(idA ⊗ τB,B) ◦ (R⊗ idB) ◦ (idB ⊗R) = (R ⊗ idB) ◦ (idB ⊗R) ◦ (τB,B ⊗ idA), (2.7)

R(B ⊗A0) = A0 ⊗B. (2.8)

Then the map P satisfies the conditions (2.2)–(2.4) (for C = B and D = A) and R : B⊗PA →
A⊗RB is an algebra isomorphism.

Proof. It is obvious that P satisfies (2.2) because R satisfies (1.1), and P satisfies (2.4) because
R satisfies (1.2). We have to prove that P satisfies (2.3). The condition (1.3) for R may be
written on B ⊗B ⊗A0 as

R ◦ (µB ⊗ idA) = (idA ⊗ µB) ◦ (idA ⊗ τB,B) ◦ (R⊗ idB) ◦ (idB ⊗R),

which by using (2.7) becomes

R ◦ (µB ⊗ idA) = (idA ⊗ µB) ◦ (R⊗ idB) ◦ (idB ⊗R) ◦ (τB,B ⊗ idA),

which by composing with the appropriate maps and using (2.8) becomes

P ◦ (idA ⊗ µB) = (µB ⊗ idA) ◦ (τB,B ⊗ idA) ◦ (idB ⊗ P ) ◦ (P ⊗ idB)

as an equality of maps from A0 ⊗B ⊗B to B ⊗A0, and this is exactly (2.3).
The only thing left to prove is that R is multiplicative. First, it is obvious that

R((b⊗ 1A)(b
′ ⊗ 1A)) = R(b⊗ 1A)R(b′ ⊗ 1A), ∀ b, b′ ∈ B.

Take now a ∈ A0, b, b
′ ∈ B. By making use of (2.8), we compute:

R((b⊗ a)(b′ ⊗ 1A)) = R(bb′P ⊗ aP )

(1.3)
= ((aP )R)r ⊗ (b′P )Rbr

P=R−1

= ar ⊗ b′br

= (ar ⊗ br)(1A ⊗ b′)

= R(b⊗ a)R(b′ ⊗ 1A).
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Take now a′ ∈ A0, b, b
′ ∈ B. We compute:

R((b⊗ 1A)(b
′ ⊗ a′)) = R(b′b⊗ a′)

(1.3)
= (a′R)r ⊗ bRb

′
r

(2.7)
= (a′R)r ⊗ brb

′
R

= (1A ⊗ b)(a′R ⊗ b′R)

= R(b⊗ 1A)R(b′ ⊗ a′).

Finally, take a, a′ ∈ A0, b, b
′ ∈ B. Using again (2.8), we compute (denote r, R two copies of R):

R((b⊗ a)(b′ ⊗ a′)) = R(b′P b⊗ aPa
′)

(1.2)
= (aP )Ra

′
r ⊗ ((b′P b)R)r

(1.3)
= ((aP )R)Ra

′
r ⊗ (bR(b

′
P )R)r

(2.7)
= ((aP )R)Ra

′
r ⊗ (bR(b

′
P )R)r

P=R−1

= aRa
′
r ⊗ (bRb

′)r
(1.3)
= aR(a

′
r)R ⊗ b′r(bR)R

= (aR ⊗ bR)(a
′
r ⊗ b′r)

= R(b⊗ a)R(b′ ⊗ a′),

showing that indeed R is multiplicative. �

If we consider again an algebra B with an involution σ, it is easy to see that the map R
given by (1.4) satisfies the hypotheses of Theorem 2.1, and the isomorphism B⊗PC(K, q) ≃
C(K, q)⊗RB provided by the Theorem coincides with the isomorphism ϕ given by (2.6).

Let us also note that the condition (2.7) is a particular case of the hexagon (or braid) relation
which arose in [11] in the context of iterated twisted tensor products of associative algebras.

3 Lifting involutions to alternative twisted tensor products

Let B be an algebra and σ : B → B an involution. It is well-known (see [14]) that the map

σ : B(q) → B(q), σ(a+ vb) = σ(a)− vb, ∀ a, b ∈ B, (3.1)

is an involution for the Cayley-Dickson algebra B(q). We will show that this fact is a particular
case of a general result about alternative twisted tensor products of algebras, which in turn is
analogous to a result in [16] about twisted tensor products of associative algebras:

Theorem 3.1 Let A⊗RB be an alternative twisted tensor product of algebras, σA : A → A and
σB : B → B two involutions, and define σ : A⊗B → A⊗B, σ := R ◦ (σB ⊗σA) ◦ τA,B. Assume
that R satisfies (2.7) and moreover the following conditions hold:

R(B ⊗A0) ⊆ A0 ⊗B, (3.2)

σA(A0) ⊆ A0, (3.3)

σ2 = idA⊗B . (3.4)

Then σ is an involution for A⊗RB.
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Proof. Note first that σ is given by the formula σ(a ⊗ b) = σA(a)R ⊗ σB(b)R, for all a ∈ A,
b ∈ B, and (3.4) together with the fact that σA and σB are involutions imply

σA(aR)r ⊗ σB(bR)r = σA(a)⊗ σB(b), ∀ a ∈ A, b ∈ B. (3.5)

In view of (3.4), the only thing we need to prove is that σ is antimultiplicative. We will denote
by r, R, R some more copies of R. First, it is easy to see that

σ((1A ⊗ b)(1A ⊗ b′)) = σ(1A ⊗ b′)σ(1A ⊗ b), ∀ b, b′ ∈ B.

Take now a′ ∈ A0, b, b
′ ∈ B. By using (3.2) and (3.3), we compute:

σ((1A ⊗ b)(a′ ⊗ b′)) = σ(a′R ⊗ bRb
′)

= σA(a
′
R)r ⊗ σB(bRb

′)r

= σA(a
′
R)r ⊗ (σB(b

′)σB(bR))r
(1.3)
= (σA(a

′
R)R)r ⊗ σB(bR)RσB(b

′)r
(3.5)
= σA(a

′)r ⊗ σB(b)σB(b
′)r

= (σA(a
′)r ⊗ σB(b

′)r)(1A ⊗ σB(b))

= σ(a′ ⊗ b′)σ(1A ⊗ b).

Take now a ∈ A0, b, b
′ ∈ B; by using (3.3), we compute:

σ((a⊗ b)(1A ⊗ b′)) = σ(a⊗ b′b)

= σA(a)R ⊗ σB(b
′b)R

= σA(a)R ⊗ (σB(b)σB(b
′))R

(1.3)
= (σA(a)R)r ⊗ σB(b

′)RσB(b)r
(2.7)
= (σA(a)R)r ⊗ σB(b

′)rσB(b)R

= (1A ⊗ σB(b
′))(σA(a)R ⊗ σB(b)R)

= σ(1A ⊗ b′)σ(a⊗ b).

Finally, take a, a′ ∈ A0, b, b
′ ∈ B. Again by using (3.2) and (3.3) we compute:

σ((a⊗ b)(a′ ⊗ b′)) = σ(aa′R ⊗ b′bR)

= σA(aa
′
R)r ⊗ σB(b

′bR)r

= (σA(a
′
R)σA(a))r ⊗ (σB(bR)σB(b

′))r
(1.2)
= σA(a

′
R)RσA(a)r ⊗ ((σB(bR)σB(b

′))R)r
(1.3)
= (σA(a

′
R)R)RσA(a)r ⊗ (σB(b

′)RσB(bR)R)r

(2.7)
= (σA(a

′
R)R)RσA(a)r ⊗ (σB(b

′)RσB(bR)R)r

(3.5)
= σA(a

′)RσA(a)r ⊗ (σB(b
′)RσB(b))r

(1.3)
= σA(a

′)R(σA(a)R)r ⊗ σB(b)R(σB(b
′)R)r

= (σA(a
′)R ⊗ σB(b

′)R)(σA(a)R ⊗ σB(b)R)

= σ(a′ ⊗ b′)σ(a⊗ b),

finishing the proof. �
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Remark 3.2 There exists at least one natural case when (3.4) holds automatically. Namely,
let A, B be algebras with B commutative; then obviously the flip map τA,B is an alternative
twisting map. If σA : A → A and σB : B → B are two involutions, then obviously σ is given by
σ(a⊗ b) = σA(a)⊗ σB(b), for all a ∈ A, b ∈ B, and it clearly satisfies (3.4).

Consider now the description B(q) ≃ C(K, q)⊗RB of the Cayley-Dickson process as an
alternative twisted tensor product. We denote σB = σ, A = C(K, q), and consider the involution
σA of A given by σA(1) = 1, σA(v) = −v. Then one can easily check that the hypotheses of
Theorem 3.1 are fulfilled, and the involution σ on A⊗RB provided by the Theorem coincides
with the involution (3.1) via the identification B(q) ≃ C(K, q)⊗RB.

We recall from [4] that if A is an algebra and σ : A → A is an involutive automorphism, then
σ can be lifted to an involutive automorphism σ : Cl(A) → Cl(A), σ(a + bv) = σ(a) − σ(b)v,
for all a, b ∈ A. It is easy to see that this fact is a particular case of the following result about
alternative twisted tensor products, which in turn is the analogue of a result in [7] for twisted
tensor products of associative algebras:

Proposition 3.3 Let A⊗RB and E⊗TF be two alternative twisted tensor products of algebras
and f : A → E, g : B → F two algebra maps such that f(A0) ⊆ E0 and (f ⊗g)◦R = T ◦ (g⊗f).
Then f ⊗ g : A⊗RB → E⊗TF is an algebra map.

Proof. A straightforward computation. �

4 A class of examples

We recall that an algebra D is called alternative if (xx)y = x(xy) and x(yy) = (xy)y, for all
x, y ∈ D. These identities are called the left and respectively right alternative laws. We also
recall that an involution σ on an algebra B is called strong if b+σ(b) ∈ K ·1B and bσ(b) ∈ K ·1B
for all b ∈ B. In this case we denote as usual b + σ(b) = t(b)1B and bσ(b)(= σ(b)b) = n(b)1B .
The maps t, n : B → K are called the trace and respectively norm of B.

Proposition 4.1 (i) Let A = K · 1A ⊕A0 be an algebra satisfying the condition

A0 · A0 ⊆ K · 1A, (4.1)

let B be an algebra and σ : B → B an involution. Then the map R : B ⊗A → A⊗B defined by

R(b⊗ 1A) = 1A ⊗ b, R(b⊗ a) = a⊗ σ(b), ∀ a ∈ A0, b ∈ B,

is an alternative twisting map.
(ii) If moreover A and B are alternative and σ is strong, then, for all b, b′ ∈ B and all “homo-
geneous” a, a′ ∈ A (i.e. a and a′ belong either to K · 1A or to A0), the left and right alternative
laws for tensor monomials hold:

[(a⊗ b)(a⊗ b)](a′ ⊗ b′) = (a⊗ b)[(a⊗ b)(a′ ⊗ b′)], (4.2)

(a⊗ b)[(a′ ⊗ b′)(a′ ⊗ b′)] = [(a⊗ b)(a′ ⊗ b′)](a′ ⊗ b′). (4.3)

Proof. (i) Follows by a direct computation; note that (4.1) is used for proving (1.2).
(ii) We check the left alternative law, while the proof of the right alternative law is similar and
left to the reader. Note first that the alternativity of B implies

(b′σ(b))b = n(b)b′, (4.4)
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(b′b)σ(b) = n(b)b′, (4.5)

for all b, b′ ∈ B. Indeed, we have

(b′σ(b))b = (b′(t(b)1B − b))b

= t(b)b′b− (b′b)b

= t(b)b′b− b′(bb)

= b′(t(b)b − bb)

= b′(σ(b)b)

= n(b)b′,

and similarly for (4.5).
We have to prove that (4.2) holds for all homogeneous a, a′ ∈ A and all b, b′ ∈ B. This is

obvious if a = a′ = 1A, so we only have three cases to analyze:
case 1: a, a′ ∈ A0; we compute:

[(a⊗ b)(a⊗ b)](a′ ⊗ b′) = (a2 ⊗ bσ(b))(a′ ⊗ b′)

= (a2 ⊗ n(b)1B)(a
′ ⊗ b′)

(4.1)
= a2a′ ⊗ n(b)b′,

(a⊗ b)[(a ⊗ b)(a′ ⊗ b′)] = (a⊗ b)(aa′ ⊗ b′σ(b))

(4.1)
= a(aa′)⊗ (b′σ(b))b

(4.4)
= a2a′ ⊗ n(b)b′.

case 2: a ∈ A0, a
′ = 1A; we compute:

[(a⊗ b)(a⊗ b)](1A ⊗ b′) = (a2 ⊗ n(b)1B)(1A ⊗ b′)

= a2 ⊗ n(b)b′,

(a⊗ b)[(a⊗ b)(1A ⊗ b′)] = (a⊗ b)(a⊗ b′b)

= a2 ⊗ (b′b)σ(b)

(4.5)
= a2 ⊗ n(b)b′.

case 3: a = 1A, a
′ ∈ A0; we compute:

[(1A ⊗ b)(1A ⊗ b)](a′ ⊗ b′) = (1A ⊗ b2)(a′ ⊗ b′)

= a′ ⊗ σ(b2)b′

= a′ ⊗ σ(b)2b′,

(1A ⊗ b)[(1A ⊗ b)(a′ ⊗ b′)] = (1A ⊗ b)(a′ ⊗ σ(b)b′)

= a′ ⊗ σ(b)(σ(b)b′)

= a′ ⊗ σ(b)2b′,

finishing the proof. �
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Remark 4.2 Although the alternative laws for homogeneous tensor monomials hold, in general
this does not imply that A⊗RB is an alternative algebra. A concrete counterexample is provided
by the algebra of sedenions, which is not alternative although is an alternative twisted tensor
product between C(K, q) and the (alternative) algebra of octonions.

Let now B be an algebra endowed with a strong involution σ : B → B, let q, r ∈ K\{0}
and consider the 3-dimensional algebra A over K with basis {1, v, z}, where 1 is the unit and
v2 = q1, z2 = r1, vz = zv = 0. Note that A is not associative, not even alternative (as
qz = (vv)z 6= v(vz) = 0). If we define A0 = Kv⊕Kz, then obviously we have A0 ·A0 ⊆ K · 1A,
so we can define the alternative twisting map R : B ⊗ A → A ⊗ B, R(b ⊗ 1A) = 1A ⊗ b,
R(b⊗ v) = v⊗σ(b), R(b⊗ z) = z⊗σ(b), for all b ∈ B. We denote the algebra A⊗RB by B(q, r)
and we write an element of this algebra uniquely as x = a + vb + zc, with a, b, c ∈ B. Then
dim(B(q, r)) = 3 · dim(B) and the multiplication in B(q, r) is given by

(a+ vb+ zc)(a′ + vb′ + zc′) = (aa′ + qb′σ(b) + rc′σ(c)) + v(σ(a)b′ + a′b) + z(σ(a)c′ + a′c).

Proposition 4.3 The map σ : B(q, r) → B(q, r), σ(a + vb + zc) := σ(a) − vb − zc, for all
a, b, c ∈ B, is a strong involution for B(q, r). Moreover, the trace and norm of the element
x = a+ vb+ zc ∈ B(q, r) are given by t(x) = t(a) and n(x) = n(a)− qn(b)− rn(c), where t and
n are the trace and norm on B.

Proof. The fact that σ is an involution follows either by a direct computation or as a consequence
of Theorem 3.1, and the fact that σ is strong, together with the explicit formulae for the trace
and the norm, follow easily by direct computation. �

Remark 4.4 Obviously the Cayley-Dickson algebras B(q) and B(r) are subalgebras in B(q, r).

On the other hand, if we consider the algebra B(q)(r) obtained by applying the Cayley-Dickson

process to B(q), it might be tempting to believe that B(q, r) is a subalgebra in B(q)(r), but this

is not true, since vz = 0 in B(q, r) while vz 6= 0 in B(q)(r).

Let B be an associative algebra and σ : B → B a strong involution. It is well-known
that in this case the Cayley-Dickson algebra B(q) is alternative. On the other hand, since
the 3-dimensional algebra A defined above is a subalgebra in B(q, r) and A is not alternative,
it follows that B(q, r) is never alternative. However, since B(q, r) is endowed with a strong
involution (hence is of degree two), it follows that it is always power-associative.

We will see that the algebras B(q, r) share some more common properties with the Cayley-
Dickson algebras B(q). We recall that an algebra D is called flexible if (xy)x = x(yx) for all
x, y ∈ D. By [15] we know that all Cayley-Dickson algebras are flexible. We will prove that a
similar result holds for the algebras B(q, r). We need to recall some formulae from [15], which
are valid for any flexible algebra B endowed with a strong involution σ:

(xy)σ(y) = σ(y)(yx) = y(σ(y)x) = (xσ(y))y, (4.6)

(uσ(y))x+ y(σ(u)x) = x(yσ(u)) + (xu)σ(y), (4.7)

for all x, y, u ∈ B. Also, by writing σ(x) = t(x)1B−x, one can easily check the following formula:

(σ(u)σ(x))y + x(uy) = σ(x)(σ(u)y) + (ux)y. (4.8)
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Proposition 4.5 Let B be an algebra and σ : B → B a strong involution. Then B(q, r) is
flexible if and only if B is flexible.

Proof. IfB(q, r) is flexible then obviously B is flexible, as it is a subalgebra of B(q, r). Conversely,
assume that B is flexible and let X = a + vb + zc and Y = a′ + vb′ + zc′ be two elements in
B(q, r). We can easily compute:

(XY )X = (aa′)a+ q((b′σ(b))a+ b(σ(b′)a)) + r((c′σ(c))a+ c(σ(c′)a))

+qb(σ(b)σ(a′)) + rc(σ(c)σ(a′))

+v((σ(a′)σ(a))b + a(a′b) + q(bσ(b′))b+ r(cσ(c′))b+ a(σ(a)b′))

+z((σ(a′)σ(a))c + a(a′c) + q(bσ(b′))c+ r(cσ(c′))c+ a(σ(a)c′)),

X(Y X) = a(a′a) + q(a(bσ(b′)) + (ab′)σ(b)) + r(a(cσ(c′)) + (ac′)σ(c))

+q(σ(a′)b)σ(b) + r(σ(a′)c)σ(c)

+v(σ(a)(σ(a′)b) + (a′a)b+ q(bσ(b′))b+ r(cσ(c′))b+ σ(a)(ab′))

+z(σ(a)(σ(a′)c) + (a′a)c+ q(bσ(b′))c+ r(cσ(c′))c+ σ(a)(ac′)),

and we immediately obtain (XY )X = X(Y X) by using the flexibility of B together with (4.6),
(4.7), (4.8). �

Remark 4.6 In particular, if we take B to be an associative or alternative algebra with a strong
involution, we obtain an infinite family of flexible algebras, of dimensions 3n · dim(B), for all
positive integers n.

Assume now char(K) 6= 2 and let B be an algebra endowed with a strong involution σ. We
recall that the norm n on B is called nondegenerate if the associated symmetric bilinear form

(x, y) =
1

2
(n(x+ y)− n(x)− n(y)), ∀ x, y ∈ B,

is nondegenerate (i.e. if (x, y) = 0 for all y ∈ B then x = 0). It is well-known (see [14], p. 70)
that all Cayley-Dickson algebras have nondegenerate norms. We prove a similar result for the
algebras B(q, r):

Proposition 4.7 If B has nondegenerate norm, then B(q, r) has also nondegenerate norm.

Proof. Let x = a+ vb+ zc ∈ B(q, r) such that (x, y) = 0 for all y = a′ + vb′ + zc′ ∈ B(q, r). It
is easy to see that

(x, y) =
1

2
(n(x+ y)− n(x)− n(y))

=
1

2
(n(a+ a′)− qn(b+ b′)− rn(c+ c′)− n(a) + qn(b) + rn(c)

−n(a′) + qn(b′) + rn(c′))

= (a, a′)− q(b, b′)− r(c, c′),

thus (x, y) = 0 for all y implies (a, a′) = q(b, b′)+r(c, c′) for all a′, b′, c′ ∈ B. By taking b′ = c′ = 0
we obtain (a, a′) = 0 for all a′ ∈ B, and since the norm on B is nondegenerate this implies a = 0.
Similarly, by taking a′ = c′ = 0 and then a′ = b′ = 0 and using the fact that q 6= 0, r 6= 0 and
again the nondegeneracy of the norm on B, we obtain b = 0 and respectively c = 0; that is,
x = 0. �
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