
THE MAXIMAL RANK OF ELLIPTIC DELSARTE SURFACES

BAS HEIJNE

Abstract. Shioda described in his article [4] a method to compute the Lef-

schetz number of a Delsarte surface. In one of his examples he uses this method
to compute the rank of an elliptic curve over k(t). In this article we find all

elliptic curves over k(t) for which his method is applicable. For each of these

curves we also compute the Mordell-Weil rank.

1. Introduction

Shioda described in [4] a method to compute the Lefschetz number of a Delsarte
surface. In one of the examples he used his method to compute the rank over k(t)
of the elliptic surface given by:

Y 2 = X3 + atnX + btm.

Here as in the rest of the article k is a algebraically closed field of characteristic 0.
This rank is bounded by 56 and equal to 56 if and only if m is even and 2m ≡ 3n
mod 23 · 32 · 5 · 7. Later in [5] Shioda used this method to find a elliptic surface
with rank 68 over k. This is the highest rank known for an elliptic surface over C.

In this article we will briefly describe the method Shioda used. This method
works for all elliptic curves over k(t) that can be defined by a polynomial of the
form:

(1) f =

3∑
i=0

tai0Xai1Y ai2 .

The first theorem that we will prove is:

Theorem 1.1. Let f be a polynomial as over the field k(t). Suppose f defines a
curve of genus 1 over k(t). This curve is birational to a curve given by a polynomial
g wich also has four terms, and moreover its Newton polygon Γ(g) is one of the
polygons from figure 1.

After the proof of this result we will compute the rank of the elliptic curves
defined by (1) for all corresponding Newton polygons. This will then lead us to the
final theorem of this article:

Theorem 1.2. Suppose E/k(t) is an elliptic curve defined by (1), then rank(E(k(t))) ≤
68.
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Figure 1. All polygons with exactly one interior point and at
most 4 corners.

2. Shioda’s method/Delsarte Surfaces

Assume that f is irreducible of the form 1, and f defines an elliptic curve E over
k(t).

We consider the surface S ⊂ P3 over k defined by the homogenized polynomial
F corresponding to f :

F = ta00Xa01Y a02Za03 +ta10Y a11Y a12Za13 +ta20Xa21Y a22Za23 +ta30Xa31Y a32Za33 .

Let Af = (aij) be the matrix consisting of the powers appearing in the polynomial.
We assume Af to be nonsingular. Then Shioda’s method gives us an algorithm
to compute the Lefschetz number of the surface. We will give a slightly adapted
description of his method, which appears somewhat more convenient to work with.
For more details we refer to Shioda’s orginal paper [4].

Define L to the subgroup of (Q/Z)4 generated by (1, 0, 0,−1)A−1f , (0, 1, 0,−1)A−1f
and (0, 0, 1,−1)A−1f . Define:

Λ =

(ai)i ∈ L :

∀i : ai 6= 0 and
∃t ∈ Z such that ∀i,
ord(tai) = ord(ai) and

∑3
i=0{tai} 6= 2

 .

Here ord is the order in the additive group Q/Z and {ai} is the natural bijection
between [0, 1) ∩Q and Q/Z.

Theorem 2.1 (Shioda). The Lefschetz number of S is λ = #Λ.

Proof: For the proof see [4]. �

3. Genus calculation.

To see which f defines a genus 1 curve, we describe a method which calculates
the genus for a given f as in (1). To do this we will first need three definitions:

Definition 3.1. An integral polygon is the convex hull of a finite subset of Z2.

Definition 3.2. Take f =
∑

(a,b)∈S α(a,b)X
aY b in the ring of Laurent polynomials

k[X±1, Y ±1], with all α(a,b) 6= 0 and S a finite subset of Z2. Define the Newton
polygon, Γ(f), of f as the convex hull of S.

Definition 3.3. Take f =
∑

(a,b)∈S α(a,b)X
aY b ∈ k[X±1, Y ±1]. For every edge,

γ, of the Newton polygon define fγ =
∑

(a,b)∈S∩γ α(a,b)X
aY b. We say that f is

nondegenerate with respect to its Newton polygon if for every γ we have fγ ,
∂fγ
∂X

and
∂fγ
∂Y generate the unit ideal in k[X±1, Y ±1].
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We now give the following theorem.

Theorem 3.4. Let f(X,Y ) ∈ k[X±1, Y ±1] be absolutely irreducible. Then the
curve C defined by f has genus

g ≤ #{integral points in the interior of Γ(f)}.
Equality holds if f is nondegenerate with respect to its Newton polygon and the
singular points of the projective closure of C in P2 are all among (0 : 0 : 1),
(0 : 1 : 0) and (1 : 0 : 0).

Proof: See [1, Theorem 4.2] �

Lemma 3.5. Let C be the projective closure in P2 of a curve over k(t) defined by
a polynomial f as in (1). Assume that Af is nonsingular. Then C does not have

singular points outside the point (0 : 0 : 1), (0 : 1 : 0) and (1 : 0 : 0) over ¯k(t).

Proof: Since Af is nonsingular at least one of the minors corresponding to delet-
ing the first column and a row is nonzero. Without loss of generality we can assume
that this happens for the first row. Define X ′ = sb1X, Y ′ = sb2Y and Z ′ = sb3Z,
where s ∈ k(t) is some root of t and suitable bi ∈ Z. This gives an isomorphism

between C and C̃, where C̃ is the curve given by:

f̃ := snXa01Y a02Zm−a01−a02 +

3∑
i=1

Xai1Y ai2Zm−ai1−ai2 .

To prove the lemma, it will suffice to prove that C̃ has no singular points outside
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1). Assume (x : y : z) is a singular point on C̃.
Write v0 = snxai1yai2zm−ai1−ai2 and vi = xai1yai2zm−ai1−ai2 for i ∈ {1, 2, 3} and
v = (v0, v1, v2, v3). Let B be the matrix defined by:

B =


a01 a02 m− a01 − a02
a11 a12 m− a11 − a12
a21 a22 m− a21 − a22
a31 a32 m− a31 − a32

 .

Then we have vB = 0. Note that the last three rows of B are linearly independent,
since we assume that the minor of A obtained by deleting the first row and the
first column is nonzero. Now there are two possibilities. The first possibility is
that v0 = 0. In that case we find that v = (0, 0, 0, 0). This can only happen when
(x : y : z) is one of (1 : 0 : 0), (0 : 1 : 0) or (0 : 0 : 1).

If v0 6= 0 we can assume v0 = 1. Since B has full rank we now find an unique
solution v. Since it is found with linear algebra over Q we have v1, v2, v3 ∈ Q.
Again using that the last three rows of B are linearly independent this gives that
x, y, z are algebraic over Q. This contradicts the fact that v0 = 1. �

Lemma 3.6. Let f be as in (1). Assume that det(Af ) 6= 0, then f is nondegenerate
with respect to its Newton polygon.

Proof: For any edge γ we find fγ has either two or three terms. Four terms on
one edge is not possible, since then det(Af ) = 0. The case where fγ has only two
terms is simple.

We wil only do the case where fγ has three terms. Without loss of generality

we can assume that fγ = Xa + Y b + snXλaY (1−λ)b, where s a root of t. Here n
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is nonzero, since otherwise det(Af ) = 0. Define η = Xa/Y b. Now we assume that

a 6= 0, then
∂fγ
∂X = 0 and fγ − X

a
∂fγ
∂X = 0 gives:

η + λsnηλ = 0

1 + (1− λ)snηλ = 0

Since s is transcendental over k this has no solution. �

Combining the previous two lemma’s with the result on the genus gives the
following theorem.

Theorem 3.7. Let C be a curve over the field k(t), defined by an absolutely irre-
ducible polynomial of the form given in (1). Also assume that det(Af ) 6= 0 , then
the genus of C equals the number of interior lattice points of its Newton polygon.

4. The forms of the Newton polygon

In this section we will define the concept of equivalent polygons. We will use
this to give a result on equivalence of elliptic curves.

Definition 4.1. We call two polygons A,B integrally equivalent if B is the image
of A under a linear map given by a matrix in GL2(Z) possibly composed with a
translation.

Note that being integrally equivalent is an equivalence relation.
If f ∈ k[X,Y ] is irreducible and is not divisible by X or Y , then Γ(f) has at

least one point on both the x and y-axis. Furthermore Γ(f) is contained in the first
quadrant. Any integral polygon can be shifted in a unique way such that it satisfies
these criteria, i.e. it is contained in the first quadrant and it has a point on each of
the axis. We shall consider this to be the default position of the polygon.

Proposition 4.2. Let f(X,Y ) =
∑

(a,b)∈S α(a,b)X
aY b be a bivariate polynomial

over a field, defining an irreducible curve C. Assume that all α(a,b) 6= 0. Given a
polygon A, in default position, integrally equivalent to the polygon Γ(f), then there
exists an irreducible bivariate polynomial g(X,Y ), such that A = Γ(g). Moreover
the coefficients of f and g will be the same and the curves defined by f and g will
be birationally equivalent.

Proof: Let M =

(
k l
m n

)
be the matrix such that MΓ(f) is a shift of A.

Define g(U, V ) = UλV µ
∑

(a,b)∈S α(a,b)U
ak+blV am+bn. Here λ and µ are so that

Γ(g) is in default position. By definition g has the same nonzero coefficient as f .
The birational equivalence between the curves given by g and f is defined by:

φ : Z(g) −→ Z(f)

(U, V ) −→ (UkV m, U lV n).

�

It is a well known result (see [1] and [3]) that up to integral equivalence there are
exactly 16 polygons with exactly one interior point. Four of these polygons have
more than 4 corners. This gives the final result 1.1.
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5. An example

In this section we present one example of a computation of the rank. For the
other families of elliptic curve we will provide less details. The methods employed
will remain the same however.

We will consider the elliptic curves over k(t) that are defined by a polynomial of
the form:

f = ta + (tb + tc)X3 + tdY 2 = 0,

where a, b, c, d are integers ≥ 0 with c > b. We want to find the maximal rank that
occurs in this family.

Let E be the curve defined by f and E′ the curve defined by:

t6a + (t6b + t6c)X3 + t6dY 2 = 0.

Then we have a natural monomorphism φ : E(k(t)) −→ E′(k(t)), defined by
φ(x(t), y(t)) = (x(t6), y(t6)). In particular we find the rank of E(k(t)) is at most
the rank of E′(k(t)). So we will restrict ourselves to computing the rank of E′.

Divide the equation of E′ by t6a and define ξ = t2(b−a)X, η = t3(d−a)Y and
n = 6(c− b). Then we see that E′ is isomorphic to the curve Ẽ defined by:

f̃ = 1 + (1 + tn)ξ3 + η2 = 0.

So we only have to determine the maximal rank for curves of this form. Note that
for all m > 0 there is an injective map:

Ẽ(k(t)) −→ Ẽ′(k(t)),

(ξ(t), η(t)) −→ (ξ(tm), η(tm)).

Here Ẽ′ is the curve given by:

1 + (1 + tnm)ξ3 + η2 = 0.

From this we see that without loss of generality we can assume that m|n.
We will compute the Lefschetz number using the technique from Shioda. To do

this we first homogenizing f̃ . This gives:

F̃ = Zn+3 + TnX3 +X3Zn + Y 2Zn+1.

Then we compute the matrices A and A−1.

A =


0 0 n+ 3 0
3 0 0 n
3 0 n 0
0 2 n+ 1 0

 and A−1 =


− n

3(n+3) 0 1
3 0

− n+1
2(n+3) 0 0 1

2
1

n+3 0 0 0
1

n+3
1
n − 1

n 0

 .

By definition L is the supgroup of (Q/Z)∗ generated by

w1 = (1, 0, 0,−1)A−1 = (−1

3
,− 1

n
,
n+ 3

3n
, 0),

w2 = (0, 1, 0,−1)A−1 = (−1

2
,− 1

n
,

1

n
,

1

2
),

w3 = (0, 0, 1,−1)A−1 = (0,− 1

n
,

1

n
, 0).

By inspecting these generators we see that L is also generated by:

v1 = w1 − w3 = (−1

3
, 0,

1

3
, 0),
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v2 = w2 − w3 = (−1

2
, 0, 0,

1

2
),

v3 = w3 = (0,− 1

n
,

1

n
, 0).

We see that L consists of elements of the form iv3, v1 + iv3, 2v1 + iv3, v2 + iv3,
v1 + v2 + iv3 and 2v1 + v2 + iv3. For each form there are exactly n elements. To
compute λ we have to find out which of these elements lie in Λ.

Elements of the form iv3, v1 + iv3 and 2v1 + iv3 do not lie in Λ, since they all
have zero as their last coordinate.

An element of the form v2 + iv3 does not lie in Λ. If i = 0 this follows from the
fact that the second and third coordinate are zero. If i 6= 0 then this follows from
the the fact that we can compute for all t with (t, 2n) = 1:

{ ti
n
}+ {− ti

n
}+ { t

2
}+ { t

2
} = 2.

We will now determine when v1 + v2 + iv3 ∈ Λ. Take j,m ∈ Z≥0 such that

j/m = i/n and (j,m) = 1 and write v1 + v2 + iv3 = ( 1
6 ,−

j
m ,

1
3 + j

m ,
1
2 ). We have

v1 + v2 + iv3 ∈ Λ if and only if there exists a t such that (t, 6m) = 1 and

{ t
6
}+ {− jt

m
}+ { t

3
+
jt

m
}+ { t

2
} 6= 2.

It is easy to compute:

{ t
6
}+ {− jt

m
}+ { t

3
+
jt

m
}+ { t

2
} =

 1 if t ≡ 1 mod 6 and { tjm} >
2
3

3 if t ≡ 5 mod 6 and { tjm} <
1
3

2 elsewhere

By considering a pair ±t, this means that v1 + v2 + iv3 ∈ Λ if and only if { tjm} <
1
3

for some t ≡ 5 mod 6, with (t, 6m) = 1. We now distinguish between the various
possibilities :

• The case m ≤ 3 is easy and leads to (v1 + v2 + iv3) 6∈ Λ. This happens
precisely when i ∈ {0, n/2, n/3, 2n/3}.
• Assume m > 3 and 3 6 |m or j ≡ 2 mod 3. Then t ∈ Z exists with

t ≡ 5 mod 6 and t ≡ j−1 mod m. For this t we find { tjm} <
1
3 , hence

(v1 + v2 + iv3) ∈ Λ.
• In the case that m > 3, 3|m, j ≡ 1 mod 3, assume moreover that there

exists a c ≡ 2 mod 3, with (c,m) = 1 and { cm} <
1
3 . We can find t ≡ 5

mod 6 such that t ≡ cj−1 mod m. For that t we have { tjm} <
1
3 . This

means (v1 + v2 + iv3) ∈ Λ. This happens for all m > 3 except when
m ∈ {6, 12, 30}, as is shown in lemma 5.1 below.
• The final case is m > 3, 3|m, j ≡ 1 mod 3 and there exists no c ≡ 2

mod 3, with (c,m) = 1 and { cm} <
1
3 . Assume that v1 + v2 + iv3 ∈ Λ.

Then t ≡ 5 mod 6 exists, coprime to 6m such that { tjm} <
1
3 . Hence

c = jm satisfies c ≡ 2 mod 3, gcd(c,m) = 1 and { cm} <
1
3 , contrary to our

assumption.
So in this case we find (v1 + v2 + iv3) 6∈ Λ. By the following lemma, this

final possibility for m and j happens only if m ∈ {6, 12, 30}. In other words
only if i ∈ {n6 ,

n
12 ,

7n
12 ,

n
30 ,

7n
30 ,

13n
30 ,

19n
30 }.

Lemma 5.1. 6, 12 and 30 are the only integers n > 3 with the property that there
does not exist a prime p ≡ 2 mod 3 such that 3p < n and p 6 |n.
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Proof: If n satisfies this property then it can be written as n = Kp1p2 . . . pt,
with the pi all primes with pi ≡ 2 mod 3 and 3pi < n. Order the pi such that
pi < pi+1. We construct the number N = 3p1 . . . pt−1 + pt and see that it has a
prime p ≡ 2 mod 3 dividing it, with p 6= pi. If n > 51 we find:

p/n ≤ N/n =
3

Kpt
+

1

Kp1 . . . pt−1
≤ 3

17
+

1

2 · 5 · 11
<

1

3
.

This means 3p < n, but p is not any of the pi, a contradiction. So if n satisfies the
conditions of the lemma we have n ≤ 51. Checking the lemma for n ≤ 51 is easy.

�

The cases v1 + v2 + iv3 and 2v1 + v2 + iv3 are similar, since −(v1 + v2 + iv3) =
2v1 + v2 + (n− i)v3 and the fact that v ∈ Λ⇔ −v ∈ Λ.

To ensure that all the special values i ∈ {0, n2 ,
n
3 ,

2n
3 ,

n
6 ,

n
12 ,

7n
12 ,

n
30 ,

7n
30 ,

13n
30 ,

19n
30 }

encountered in the calculations are actually integers we assume that 60|n. In that
case we find λ = 2n− 22.

To compute the rank of the curve we still have to compute both the ρtriv and
h2. Both of these we will compute for the curve in short Weierstrass form. Define
η̃ = (1 + tn)η and ξ̃ = (1 + tn)ξ then we get the formula:

η̃2 + ξ̃3 + (1 + tn)2.

From here we read off the second Betti number h2 = 4n− 2. We also compute:

∆ = −432(tn + 1)4.

j = 0.

From this we see that the elliptic surface has n singular fibres of type IV at the
roots of tn + 1 = 0 and no other singular fibres. So we find ρtriv = (2n+ 2).

Combining these facts gives:

r = h2 − λ− ρtriv = 4n− 2− (2n− 22)− (2n+ 2) = 18.

This concludes the example we find that the rank of E over k(t) is ≤ 18 and it
equals 18 when 60|n.

6. Results

The following table is a complete list of all integer polygons with exactly one
interior point and at most four corners, up to equivalence. For each polygon we
give a list of curves over k(t), such that any elliptic curve with Newton polygon
equal to the given one can be injected in one of these curves. As a consequence we
create 42 families of elliptic curves over k(t). Any other Delsarte elliptic curve over
k(t) can be injected into at least one of the 42 families.
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Picture Name Form with maximal rank Maximal rank Occurring for n
E1a
n 1 + tn +X3 + Y 2 68 360

E1b
n 1 + tnX +X3 + Y 2 56 840

E1c
n 1 + tnX2 +X3 + Y 2 9 20

E1d
n 1 + (1 + tn)X3 + Y 2 18 60

E1e
n tn + Y +X3 + Y 2 68 360

E1f
n 1 + tnXY +X3 + Y 2 9 10

E1g
n 1 +X3 + (1 + tn)Y 2 4 6

E2a
n (1 + tn)X +X3 + Y 2 24 24

E2b
n tnX +X2 +X3 + Y 2 3 12

E2c
n X + (1 + tn)X3 + Y 2 24 24

E2d
n tnX +XY +X3 + Y 2 3 12

E2e
n X +X3 + (1 + tn)Y 2 6 12

E3a
n (1 + tn)Y +X3 + Y 2 18 60

E3b
n Y + (1 + tn)X3 + Y 2 18 60

E3c
n Y +X3 + (1 + tn)Y 2 18 60

E3d
n Y + tnXY +X3 + Y 2 1 2

E4a
n 1 + tn +X4 + Y 2 24 24

E4b
n tn +X +X4 + Y 2 56 840

E4c
n tn +X2 +X4 + Y 2 3 12

E4d
n 1 +X3 + tnX4 + Y 2 56 840

E4e
n 1 + (tn + 1)X4 + Y 2 24 24

E4f
n 1 + tnY +X4 + Y 2 24 12

E4g
n tn +XY +X4 + Y 2 3 12

E4h
n 1 + tnX2Y +X4 + Y 2 24 12
E4i
n 1 +X4 + (1 + tn)Y 2 6 12

E5a
n 1 + tn +X3 + Y 3 18 60

E5b
n 1 + tnX +X3 + Y 3 68 120

E5c
n 1 + tnX2 +X3 + Y 3 68 120

E5d
n 1 + (1 + tn)X3 + Y 3 18 60

E5e
n 1 + tnY +X3 + Y 3 68 120

E5f
n 1 + tnXY +X3 + Y 3 1 2

E5g
n 1 + tnX2Y +X3 + Y 3 68 120

E5h
n 1 + tnY 2 +X3 + Y 3 68 120
E5i
n 1 + tnXY 2 +X3 + Y 3 68 120

E5j
n 1 +X3 + (1 + tn)Y 3 18 60
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Picture Name Form with maximal rank Maximal rank Occurring for n

E6
n tnX2 + Y +X3 + Y 2 9 20

E7
n tnX + Y +X3 + Y 2 56 840

E8
n 1 + tnX2Y +X3 + Y 2 56 420

E9
n tn +X2Y +X2 + Y 2 3 12

E10
n tnX + Y +X2Y +XY 2 0 1

E11
n tn +XY 2 +X3 + Y 2 18 120

E12
n tn +X2 + Y 2 +X2Y 2 0 1

7. equivalence

Before we proceed to compute the rank of the elliptic curves in the above table,
we give some criteria explaining why the ranks of certain elliptic curves are the
same.

First of all if there is an isogeny between two curves E1 and E2 then the ranks
of the two curves will be the same.

Secondly if two elliptic curves E1 and E2 are defined over a field k(t) and there
is a k-linear automorphism φ : k(t) → k(t) bijecting the point of E1 to E2 then
these two curves will have the same rank.

Of course sometimes a combination of these two methods can be used to show
that two curves have the same rank. In this section we will use these methods to
show why certain families of elliptic curves in our table have the same maximal
rank.

Definition 7.1. As a matter of terminology, we will say that two curves are k-
isogenous (respectively k-equivalent) if they are isogenous (respectively isomorphic)
after a k-linear automorphism.

7.1. 1a. In this section we explain the relation between the families of curves E1a
n ,

E1e
n , E5b

n , E5c
n , E5e

n , E5g
n , E5h

n and E5i
n .

Permuting homogeneous coordinates X, Y , Z gives isomorphisms between the
families described by E5b, E5c, E5e, E5g, E5h and E5i.

A short Weierstrass form for the curves E1e
n is

1− 4tn + ξ3 + η2 = 0.

The field automorphism defined by t → n
√
−4t brings this precisely in the form

described by E1a
n . We conclude that the curves E1a and E1e are k-equivalent.
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Finally using ideas described in [6, Ch. 8 ] one finds that the curve E5b
n isomor-

phic to the curve given by:

η2 + ξ3 + 1 +
4

27
t3n

The field automorphism defined by t→ 3n
√
−4/27t brings this precisely to the curve

E1a
3n. From this it follows that E1a

3n and E5b
n are k-equivalent.

We conclude that the curves E1a
3n, E1e

3n, E5b
n , E5c

n , E5e
n , E5g

n , E5h
n and E5i

n are all
k-equivalent, and hence have the same rank.

7.2. 1b. Here we show that E1b
2n, E4b

2n, E4d
2n, E7

2n and E8
n are k-equivalent. From

this we can conclude that these families of curves have the same maximal rank.
The short Weierstrass form of E7

n is

1 +
4

3
√
−4

tnξ + ξ3 + η2 = 0.

The field automorphism defined by t→ (−4)2/(3n)t brings this in the form described
by E1b

n .
Using ideas from [6, Ch. 8 ] we find that the curve E4b

n is isomorphic to the one
given by:

η2 + η + ξ3 − 2
3
√

2
ξ = 0.

After a field automorphism this gives exactly the curve E7
n.

The curve of the form E4b
n and E4d

n are isomorphic by the isomorphism (X,Y )→
( 1
X ,

Y
X2 ).

The curve E8
n is isomorphic to the curve given by:

η2 + 1 + ξ3 − t2n

4
ξ4 = 0.

There is a field homomorphism bringing this precisely to E1b
2n.

7.3. 1c. We will show that the curves E1c
2n, E1f

n and E6
2n are k-equivalent.

The curve E1f
n is isomorphic to the curve given by:

η2 + 1 + ξ3 − 1

4
t2nξ2 = 0.

There is a field homomorphism bringing this curve precisely to E1c
2n. Likewise there

is an isomorphism from E6
n to the curve given by

η2 + 1 + ξ3 + 3
√
−4tnξ2 = 0,

and there is a field homomorphism sending this curve to E1c
n .

7.4. 1d. We will show that the curves E1d
n , E3a

n , E3b
n , E3c

n , E5a
n , E5d

n and E5j
n are

isomorphic.
Permuting X, Y , Z gives isomorphisms between the curves E5a

n , E5d
n and E5j

n .
Likewise the curves E3a

n , E3b
n and E3c

n are isomorphic by the morphisms: (X,Y )→
(X, (1 + tn)Y ) from E3c

n to E3b
n , and (X,Y )→ ((1 + tn)X, (1 + tn)Y ) from E3b

n to
E3a
n .
Using ideas from [6, Ch. 8 ] we find that both the curves E5a

n and E3b
n are

isomorphic to E1d
n .
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7.5. 2a. We will show that the curves E2a
2n, E2c

2n, E4a
2n, E4e

2n, E4f
n and E4h

n are k-
equivalent.

The curves E2a
n and E2c

n are isomorphic and the isomorphism from E2a
n to E2c

n

is given by (X,Y ) → ( 1
X ,

Y
X2 ). The curves E4a

n and E4e
n are also isomorphic, with

isomorphism given by (X,Y ) → ( 1
X ,

Y
X2 ). The curves E4f

n and E4h
n are likewise

isomorphic, with isomorphism given by (X,Y )→ ( 1
X ,

Y
X2 ).

Bringing E4a
n in short Weierstrass form gives E2a

n . So these two forms are also
isomorphic.

The curve E4f
n can by taking (X,Y )→ (X,Y + 1

2 t
n) be brought to the form:

ξ4 + η2 + 1− 1

4
t2n = 0.

There is a field homomorphism bringing this precisely E4a
2n.

7.6. 2b. We show here that the curves E2b
n , E2d

n , E4c
n , E4g

n and E9
n are k-isogenous

and hence have the same rank.
The curve E2d

n is isomorphic to the curve defined by:

η2 + ξ3 + ξ2 + 16tnξ = 0.

There is a field homomorphism sending this curve to E2b
n , so E2d

n and E2b
n are

k-equivalent.
There is an isogeny from E4c

2n to E2d
n given by: (x, y) → (x2, xy), so these two

curves are isogenous.
There is an isomorphism from E4g

n to the curve given by

η2 + ξ4 + ξ2 + 16tn = 0.

There is a field homomorphism sending this curve to E4c
n .

Likewise there is is an isomorphism from E9
n to the curve given by

η2 − 1

4
tn + ξ2 + ξ4 = 0.

There is a field homomorphism sending this curve to E4c
n .

7.7. 2e. The curves E2e
n and E4i

n are isomorphic. An isomorphism from E4i
n to E2e

n

is given by: (X,Y )→ (
4
√
−1−X

4
√
−1+X ,

√
2Y

(X+ 4
√
−1)2 ).

7.8. 3d. There is an isogeny from E5f
n to E3d

n , given by (x, y) → (xy, y3). Hence
the curves E5f

n and E3d
n are isogenous.

7.9. 10. There is an also isogeny from E12
n to E10

n , given by (x, y) → (xy−1, xy),
hence the curves E10

n and E12
n are isogenous.

8. Calculation of the ranks.

In the previous section we found a number of families that for various reasons
have the same maximal rank. In this section we will use Shioda’s method to calcu-
late these ranks.
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8.1. 1a. From the previous section we know that the curves E1e
3n, E5b

n , E5c
n , E5e

n ,
E5g
n , E5h

n and E5i
n are all k-isomorphic to a curve E1a

3n. In particular that means
that these families all have the same maximal rank. We will give the computation
of the maximal rank of a curves in the family E1a

n .
The maximal rank of this family was already computed by Shioda [5] in 1992.

More details about this curve can be found in the work of Usui [9] and in the article
by Chahal, Meijer and Top [2] in 2000. We will repeat their results here out of a
sense of completeness. The curve E1a

n is defined by:

f = 1 + tn +X3 + Y 2 = 0.

This is already in short Weierstrass form, with

∆ = −432(1 + tn)2, and j = 0.

The corresponding elliptic surface has a smooth fibre at t =∞ precisely when 6|n.
For the rest of this calculation we will assume 6|n. In this case the surface has
precisely n singular fibres of type II. This gives ρtriv = 2. We have that the second
Betti number h2 = 2n− 2

Shioda’s method can now be used to find λ. Homogenizing f gives:

Zn + Tn +X3Zn−3 + Y 2Zn−2.

This gives the matrix:

A =


0 0 n 0
0 0 0 n
3 0 n− 3 0
0 2 n− 2 0

 .

From here we find the vectors generating L:

v1 = (−1

3
, 0,

1

3
, 0),

v2 = (−1

2
, 0, 0,

1

2
),

v3 = (
1

n
,− 1

n
, 0, 0).

It can easily be shown that iv3, iv3 + v1, iv3 + 2v1, iv3 + v2 6∈ Λ. We will now
determine when iv3 +v1 +v2 is an element of Λ. Write t(iv3 +v1 +v2) = ( jtm ,−

jt
m −

t5
6 ,

t
3 ,

t
2 ). Here j

m = i
n −

5
6 . Compute:

{ tj
m
}+ {− tj

m
− t5

6
}+ { t

3
}+ { t

2
} =


1 if t ≡ 1 mod 6 and tj

m < 1
6

2 if t ≡ 1 mod 6 and tj
m > 1

6

2 if t ≡ 5 mod 6 and tj
m < 5

6

3 if t ≡ 5 mod 6 and tj
m > 5

6

This means that iv3 + v1 + v2 6∈ Λ precisely when either m ≤ 6 or m > 6 and

there does not exist a j′ ≡ 2 mod 3 such that j′ ≡ j mod m and { j
′

m} <
1
6 . The

only m for which this happens are 1, 2, 3, 4, 5, 6, 9, 12, 18, 24, 30, 60. For elements
iv3 + 2v1 + v2 ∈ L we get a similar result. This gives that λ is at most 2n − 72,
with equallity if 360|n.

We can now compute the maximal rank:

r = h2 − λ− ρtriv = 2n− 2− (2n− 72)− 2 = 68.
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8.2. 1b. In the previous section we found that the curves E1b
2n, E4b

2n, E4d
2n, E7

2n and
E8
n are all k-equivalent. This means that the maximal rank of these families of

elliptic curves will be the same. We will give the details of the computation of the
maximal rank for the family E1b

n . Note that his example has already been treated
by Shioda in [4].

A maximal curve will be of the form:

f = 1 + tnX +X3 + Y 2 = 0.

This is in short Weierstrass form so we can easily compute

∆ = −64t3n − 432, and j = 1728
2t3n

2t3n + 27
.

From this point we will assume 4|n so that the corresponding elliptic surface has
a smooth fibre at t = ∞. The surface has as its only singular fibres 3n fibres of
type I1. This gives ρtriv = 2. The second Betti number can also be determined as
h2 = 3n− 2.

We use Shioda’s method to find λ. Homogenizing f gives:

Zn+1 + TnX +X3Zn−2 + Y 2Zn−1.

This gives the matrix:

A =


0 0 n+ 1 0
1 0 0 n
3 0 n− 2 0
0 2 n− 1 0

 .

From here we can compute the vectors generating L:

v1 = (−1

2
, 0, 0,

1

2
),

v2 = (
2

3n
,− 1

n
,

1

3n
, 0).

We easily find that iv2 6∈ Λ. For iv2 + v1 we write t(iv2 + v1) = (2 jtm ,−3 jtm −
3t
4 ,

jt
m + t

4 ,
t
2 ), where j

m = i
3n −

1
4 . Now compute

{2 jt
m
}+{−3

jt

m
−3t

4
}+{ jt

m
+
t

4
}+{ t

2
} =



1 if t ≡ 1 mod 4 and { tjm} <
1
12

2 if t ≡ 1 mod 4 and 1
12 < {

tj
m} <

5
12

3 if t ≡ 1 mod 4 and 5
12 < {

tj
m} <

1
2

2 if t ≡ 1 mod 4 and { tjm} >
1
2

2 if t ≡ 3 mod 4 and { tjm} <
1
2

1 if t ≡ 3 mod 4 and 1
2 < {

tj
m} <

7
12

2 if t ≡ 3 mod 4 and 7
12 < {

tj
m} <

11
12

3 if t ≡ 3 mod 4 and { tjm} >
11
12

From this we can see that that iv2+v1 6∈ Λ precisely when eitherm ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}
or j ≡ 3 mod 4 and m ∈ {20, 28, 36, 60, 84}. This gives that λ is at least 3n− 60,
with equality if 840|n.

Combining the results gives (for 840|n) that:

r = h2 − λ− ρtriv = 3n− 2− 2− (3n− 60) = 56.
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8.3. 1c. In the previous section we proved that the curves E1c
2n, E1f

n and E6
2n are

k-equivalent. To find the maximal rank of these families of elliptic curves it suffices
to find the maximal rank of the family of curves E1c

n .
The curve E1c is given by:

f = 1 + tnX2 +X3 + Y 2 = 0.

Bringing this to short Weierstrass gives:

η2 + ξ3 − t2n

3
ξ + 1 +

2

27
t3n = 0.

and we find

∆ = −64t3n − 432, and j = − 256t6n

4t3n + 27
.

For the rest of this calculation we will assume that 2|n, so that the only singular
fibres of the corresponding elliptic surface are 3n fibres of type I1 and one of type
I3n. From here we see that ρtriv = 1 + 3n. We can also compute the second Betti
number h2 = 6n− 2

We use Shioda’s method to find λ. Homogenizing f gives:

Zn+2 + TnX2 +X3Zn−1 + Y 2Zn.

From here we determine the matrix:

A =


0 0 n+ 2 0
2 0 0 n
3 0 n− 1 0
0 2 n 0

 .

This gives the generators of L:

v1 = (−1

2
, 0, 0,

1

2
),

v2 = (
1

3n
,− 1

n
,

2

3n
, 0).

We trivially find that iv2 6∈ Λ. For iv2 + v1 we write t(iv2 + v1) = ( jtm ,−3 jtm +
t
2 , 2

jt
m ,

t
2 ). Here j

m = i
3n −

1
2 . We compute

{ jt
m
}+ {−3

jt

m
+
t

2
}+ {2 jt

m
}+ { t

2
} =


1 if { tjm} <

1
6

2 if 1
6 < {

tj
m} <

5
6

3 if 5
6 < {

tj
m}

This means that iv2 + v1 6∈ Λ precisely when m ∈ {1, 2, 3, 4, 5, 6}. This gives
that λ is at least 3n− 12, and equality holds if 20|n.

Combining the results gives, for 20|n that the rank is:

r = h2 − λ− ρtriv = 6n− 2− (3n+ 1)− (3n− 12) = 9.

8.4. 1d. We already found that the curves E1d
n , E3a

n , E3b
n , E3c

n , E5a
n , E5d

n and E5j
n

are k-invariant. In the example we already computed the maximal rank of the curve
E1d
n and found r = 18.
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8.5. 1g. We will now compute the maximal rank of the family of curves E1g
n . The

curve E1g
n is given by:

f = 1 +X3 + (1 + tn)Y 2 = 0.

Bringing this is in short Weierstrass form gives:

η2 + ξ3 + (1 + tn)3 = 0.

And we can compute:

∆ = −432(tn + 1)6, and j = 0.

For the rest of the calculation we will assume 2|n. In that case the corresponding
elliptic surface has exactly n singular fibres of type I∗0 and no other singular fibres.
From this we find ρtriv = 2 + 4n. The second Betti number can also be found to
be h2 = 6n− 2

We use Shioda’s method to find λ. Homogenizing f gives:

Zn+2 +X3Zn−1 + Y 2Zn + Y 2Tn.

This gives the matrix:

A =


0 0 n+ 2 0
3 0 n− 1 0
0 2 n 0
0 2 0 n

 ,

and generators for L:

v1 = (−1

3
,

1

3
, 0, 0),

v2 = (−1

2
, 0,

1

2
, 0),

v3 = (0, 0,
1

n
,− 1

n
).

It can easilly be seen that iv3, v1 + iv3, 2v1 + iv3, v2 + iv3 6∈ Λ. We will now
determine when v1 + v2 + iv3 ∈ L Write t(v1 + v2 + iv3) = (− 5t

6 ,
t
3 ,

t
2 + jt

m ,−
jt
m ),

where j and m are minimal such that j/m = i/n. Compute

{−5t

6
}+ { t

3
}+ { t

2
+
jt

m
}+ {− jt

m
} =

 1 if t ≡ 1 mod 6 and { tjm} >
1
2

3 if t ≡ 5 mod 6 and { tjm} <
1
2

2 otherwise

This means that v1 + v2 + iv3 6∈ Λ precisely when m ∈ {1, 2} or when m ∈ {3, 6}
and j ≡ 1 mod 3. For 2v1 + v2 + iv3 we get a similar result. This gives that λ is
at least 2n− 8, and equality holds if 6|n.

Combining this gives if 6|n the rank:

r = h2 − λ− ρtriv = 6n− 2− (2n− 8)− (4n+ 2) = 4.
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8.6. 2a. In the previous section we found that the curves E2a
2n, E2c

2n, E4a
2n, E4e

2n, E4f
n

and E4h
n are all k-equivalent. We will only have to compute the maximal rank of

the family of curves E2a
n . The curve E2a

n is defined by:

f = (1 + tn)X +X3 + Y 2 = 0.

This is already on short Weierstrass form so we can easily compute.

∆ = −64(tn + 1)3, and j = 1728.

From here we will assume 4|n. In this case the corresponding elliptic surfaces has
n singular fibres of type III and no other singular fibres. This gives ρtriv = 2 + n.
The second Betti number will be h2 = 3n− 2.

We use Shioda’s method to find λ. Homogenizing f gives:

XZn +XTn +X3Zn−2 + Y 2Zn−1.

This gives the matrix:

A =


1 0 n 0
1 0 0 n
3 0 n− 2 0
0 2 n− 1 0

 .

From this we can compute generators for L:

v1 = (−3

4
, 0,

1

4
,

1

2
),

v2 = (
1

n
,− 1

n
, 0, 0).

It can be easily seen that iv2, 2v1 + iv2 6∈ Λ. We now have to determine when
v1 + iv2 ∈ Λ. Write t(v1 + iv2) = ( jtm −

3t
4 ,−

jt
m ,

t
4 ,

t
2 ), where j,m are minimal such

that j/m = i/n. Now compute

{ jt
m
− 3t

4
}+ {− jt

m
}+ { t

4
}+ { t

2
} =

 1 if t ≡ 1 mod 4 and { tjm} >
3
4

3 if t ≡ 3 mod 4 and { tjm} <
1
4

2 otherwise

This means that v1+iv2 6∈ Λ precisely when m ∈ {1, 2, 3, 4} or when m ∈ {8, 12, 24}
and j ≡ 1 mod 4. For 3v1 + iv2 we get a similar result. This gives that λ is at
least 2n− 28, and equality holds if 24|n.

Combining the we find that if 24|n the rank:

r = h2 − λ− ρtriv = 3n− 2− (2n− 28)− (n+ 2) = 24.

8.7. 2b. In the previous section we proved that the curves E2b
n , E2d

n , E4c
n , E4g

n and
E9
n are k-isogenous, and as such have the same rank. We will compute the maximal

rank of the family of curves E2b
n . The curve E2b

n is given by

f = tnX +X2 +X3 + Y 2 = 0.

In short Weierstrass form this curve is given by:

η2 + ξ3 + (tn − 1

3
)ξ +

2

27
− tn

3
= 0.

From this we can compute:

∆ = −64t3n + 16t2n, and j = 256
(3tn − 1)3

4t3n − t2n
.
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From here on we will assume that 4|n. In this case the corresponding elliptic surface
has n singular fibres of type I1, one singular fibre of type I2n and no other singular
fibres. This gives ρtriv = 2n+ 1. The second Betti number is given by h2 = 3n− 2.

We use Shioda’s method to find λ. Homogenizing f gives:

XTn +X2Zn−1 +X3Zn−2 + Y 2Zn−1.

This gives the matrix:

A =


1 0 0 n
2 0 n− 1 0
3 0 n− 2 0
0 2 n− 1 0

 ,

and generators for L:

v1 = (0,−1

2
, 0,

1

2
),

v2 = (− 1

n
,

2

n
,− 1

n
, 0).

It is easily seen that iv2 6∈ Λ. For v1 + iv2 we write t(v1 + iv2) = (− jt
m , 2

jt
m −

t
2 ,−

jt
m ,

t
2 ). Here j,m are minimal such that j/m = i/n. We can compute:

{− jt
m
}+ {2 jt

m
− t

2
}+ {− jt

m
}+ { t

2
} =


3 if { tjm} <

1
4

2 if 1
4 < {

tj
m} <

3
4

1 if 3
4 < {

tj
m}

This means that v1 + iv2 6∈ Λ precisely when m ∈ {1, 2, 3, 4}. This gives that λ is
at least n− 6, and equality holds if 12|n.

It follows that if 12|n the rank is:

r = h2 − λ− ρtriv = 3n− 2− (n− 6)− (2n+ 1) = 3.

8.8. 2e. The curves E2e
n and E4i

n are isomorphic, as such they have the same rank.
We will compute the maximal rank of the family E2e

n . The curve E2e
n is defined by:

f = X +X3 + (1 + tn)Y 2 = 0.

In short Weierstrass form this gives:

η2 + ξ3 + (tn + 1)2ξ = 0.

For this curve we can compute:

∆ = −64(1 + tn)6, and j = 1728.

We will from here on assume that 2|n. In that case the corresponding elliptic
surface has n singular fibres of type I∗0 and no other singular fibres. This gives
ρtriv = 4n+ 2. The second Betti number can be determined h2 = 6n− 2.

We use Shioda’s method to find λ. Homogenizing f gives:

XZn+1 +X3Zn−1 + Y 2Zn + Y 2Tn.

This gives the matrix:

A =


1 0 n+ 1 0
3 0 n− 1 0
0 2 n 0
0 2 0 n

 .
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This gives as generators for L:

v1 = (
1

4
,

1

4
,

1

2
, 0),

v2 = (0, 0,
1

n
,− 1

n
).

It is easy to see that iv2, 2v1 + iv2 6∈ Λ. Write t(v1 + iv2) = ( t4 ,
t
4 ,

jt
m + t

2 ,−
jt
m ),

where j,m are minimal such that j/m = i/n. We can compute

{ t
4
}+ { t

4
}+ { jt

m
+
t

2
}+ {− jt

m
} =

 1 if t ≡ 1 mod 4 and { tjm} >
1
2

3 if t ≡ 3 mod 4 and 1
2 > {

tj
m}

2 elsewhere

This means that v1 + iv2 6∈ Λ precisely when m ∈ {1, 2} or when m ∈ {4, 12} and
j ≡ 1 mod 4.

For 3v1 + iv2 we get a similar result. Now it follows that λ is at least 2n − 10,
and equality holds if 12|n. We conclude that if 12|n the rank of our curve is:

r = h2 − λ− ρtriv = 6n− 2− (2n− 10)− (4n+ 2) = 6.

8.9. 3d. The curves E5f
n and E3d

n are isogenous, as such they have the same rank.
We will now compute the maximal rank of the family of curves E3d

n . The curve E3d
n

is given by:

f = Y + tnXY +X3 + Y 2 = 0.

Bringing this in short Weierstrass form gives:

η2 + ξ3 − (
1

48
t4n +

1

2
tn)ξ − 1

4
− 1

24
t3n − 1

864
t6n.

For this form we compute the invariants:

∆ = −(t3n + 27), and j = − (t4n + 24tn)3

t3n + 27
.

This has 3n singular fibres of type I1, one singular fibre of type I9n. From this
we can compute ρtriv = 9n+ 1. The second Betti number can also be determined
h2 = 12n− 2.

We use Shioda’s method to find λ. Homogenizing f gives:

Y Zn+1 + TnXY +X3Zn−1 + Y 2Zn.

This gives the matrix:

A =


0 1 n+ 1 0
1 1 0 n
3 0 n− 1 0
0 2 n 0

 .

Using this we can find that L is generated by:

v1 = (
1

3n
,− 1

n
,

1

3n
,

1

3n
).

It has to determine whether iv1 ∈ Λ or not. Write t(iv1) = ( jtm ,−3 jtm ,
jt
m ,

jt
m ). Here

j,m are minimal such that j/m = i/3n. We can compute

{ jt
m
}+ {−3

jt

m
}+ { jt

m
}+ { jt

m
} =


1 if { tjm} <

1
3

2 if 1
3 < {

tj
m} <

1
3

3 if 2
3 < {

tj
m}
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This means that iv1 6∈ Λ precisely when m ∈ {1, 2, 3}. This gives that λ is at least
3n − 4, and equality holds if n is even. We conclude that for even n the rank will
be:

r = h2 − λ− ρtriv = 12n− 2− (3n− 4)− (9n+ 1) = 1.

8.10. 11. We will determine the maximal rank of curves of the family E11
n . The

curve E11
n is given by.

f = tn +XY 2 +X3 + Y 2.

We will for our calculation assume that 6|n. In this case we find that the short
Weierstrass form becomes:

η2 + ξ3 − 3tn/3ξ + 1 + tn.

This has the following invariants:

∆ = −432(1− tn)2 and

j = −110592tn

(1− tn)2
.

The corresponding surface has exactly n singular fibres all of type I2. It follows
that ρtriv = n+ 2. The second Betti number in this case is h2 = 2n− 2.

We use Shioda’s method to find λ. Homogenizing f gives:

Tn +XY 2Zn−3 +X3Zn−3 + Y 2Zn−2.

This gives the matrix:

A =


0 0 0 n
1 2 n− 3 0
3 0 n− 3 0
0 2 n− 2 0

 ,

from which we compute generators for L:

v1 = (0,
1

2
,

1

2
, 0),

v2 = (− 1

n
,− 3

n
,

1

n
,

3

n
).

It is easily seen that iv2, 6∈ Λ. For v1 + iv2 we write t(v1 + iv2) = (− jt
m −

t
6 ,−3 jtm ,

2t
3 + jt

m ,
t
2 + 3 jtm ). Here j,m are minimal such that j/m = i/n − 1/6. We

can compute:

{− jt
m
− t

6
}+{−3

jt

m
}+{2t

3
+
jt

m
}+{ t

2
+3

jt

m
} =


3 if t ≡ 1 mod 6 and { tjm} <

1
6

1 if t ≡ 1 mod 6 and 1
2 < {

tj
m} <

2
3

3 if t ≡ 5 mod 6 and 1
3 < {

tj
m} <

1
2

1 if t ≡ 5 mod 6 and 5
6 < {

tj
m}

2 otherwise.

This means that v1 + iv2 6∈ Λ precisely when m ∈ {1, 2, 3, 4, 6}. or when m ∈
12, 24, 60 and j ≡ 2 mod 3. This gives that λ is at least n− 22, and equality holds
if 120|n. Combining these results gives if 120|n:

r = h2 − λ− ρtriv = 2n− 2− (n− 22)− (n+ 2) = 18.
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8.11. 12. Finally we will look at the family E12
n . This family consists of elliptic

curves in the Edwards form. The curve E12
n is given by:

f = tn +X2 + Y 2 +X2Y 2 = 0.

Reducing to short Weierstrass form gives:

η2 + ξ3 − (
1

3
+

14

3
tn +

1

3
t2n)ξ +

2

27
− 22

9
tn − 22

9
t2n +

2

27
t3n.

For this we compute the invariants:

∆ = −256tn(1− tn)4, and

j = −16
(1 + 14tn + t2n)3

tn(1− tn)4
.

We will for the rest of this calculation assume that n is even. The surface now has
n singular fibres of type I4 and 2 singular fibres of type In and no other singular
fibres. This gives ρtriv = 5n. From here on we will assume that n is even. Under
this assumption the second Betti number is h2 = 6n− 2.

We use Shioda’s method to find λ. Homogenizing f gives:

Tn +X2Zn−2 + Y 2Zn−2 +X2Y 2Zn−4.

This gives the matrix:

A =


0 0 0 n
2 0 n− 2 0
0 2 n− 2 0
2 2 n− 4 0

 .

This gives the following generators for L:

v1 = (0, 0,
1

2
,

1

2
),

v2 = (0,
1

2
, 0,

1

2
),

v3 = (− 1

n
,

1

n
,

1

n
,− 1

n
).

It turns out that iv3, v1 + iv3, v2 + iv3 6∈ Λ. Write t(v1 + v2 + iv3) = (− jt
m ,

jt
m +

t
2 ,

jt
m + t

2 ,−
jt
m ), where j,m are minimal such that j/m = i/n. Now compute

{− jt
m
}+ { jt

m
+
t

2
}+ { jt

m
+
t

2
}+ {− jt

m
} =

{
1 if { tjm} <

1
2

3 if 1
2 < {

tj
m}

This means that v1 + v2 + iv3 6∈ Λ precisely when m ∈ {1, 2}. This gives that λ is
at least n− 2, and equality holds if 2|n.

Combining the results gives for even n:

r = h2 − λ− ρtriv = 6n− 2− (n− 2)− 5n = 0.
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