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The notion of information pervades informal descriptions of biological systems, but formal treat-
ments face the problem of defining a quantitative measure of information rooted in a concept of
fitness, which is itself an elusive notion. Here, we present a model of population dynamics where this
problem is amenable to a mathematical analysis. In the limit where any information about future
environmental variations is common to the members of the population, our model is equivalent to
known models of financial investment. In this case, the population can be interpreted as a portfolio
of financial assets and previous analyses have shown that a key quantity of Shannon’s communi-
cation theory, the mutual information, sets a fundamental limit on the value of information. We
show that this bound can be violated when accounting for features that are irrelevant in finance but
inherent to biological systems, such as the stochasticity present at the individual level. This leads
us to generalize the measures of uncertainty and information usually encountered in information
theory.

I. INTRODUCTION

Information is a central concept in biology [1–4], which many studies have sought to formalize [5–11]. In this quest,
Shannon’s theory of communication [12] has always played an influential role. Originally, this theory was concerned
with two basic problems: the problem of efficiently encoding signals, and the problem of reliably transmitting them
through noisy channels. Shannon proposed a formal framework within which these questions could be addressed
mathematically. By modeling information sources and communication channels in probabilistic terms, and by
focusing on the asymptotic properties of long sequences of symbols, he established fundamental limits for the
achievable rates of data compression and transmission [12, 13]. By virtue of the abstract nature of the model, these
limits hold irrespectively of the particular material implementation. Remarkably, the same quantity, the mutual
information I(X;Y ), a function of two random variables X and Y , emerges as a common measure of ”information”
in the solution of the two problems [14]. As for the related concept of entropy H(X) = I(X;X), the definition of the
mutual information can be axiomatized [12, 15], which has lent support to the view that this quantity represents an
universal and irrefutable measure of information. The emergence of the mutual information as a central quantity in
problems of point-to-point communication however rests on specific assumptions, which have to be reexamined in
any other instance where a concept of ”information” is to be formalized [16].

A class of problems where such a reexamination has led to identifying a different measure of information is
constituted by the engineering problems of control. These problems share two essential features with biological
systems: information is processed for a ”function”, which confers value to the information, and feedback, whereby
elements from the past are used to affect the present, is essential. Historically, these parallels between regulation in
living organisms and control in engineered systems has underlaid the seminal works on control with feedback [17].
It also motivated the influential development of cybernetics, which Wiener defined as ”the science of control and
communication, in the animal and the machine” [18]. A law formulated in the early days of cybernetics is thus the
”law of requisite variety” [19, 20], which states that the value of information for control cannot exceed the limit set
by the mutual information between a disturbance and its measurement (see also [21, 22]). The issue of quantifying
information in systems of control has been revisited thoroughly since this law was proposed [23]. These analyses have
concurred to establish the so-called directed information [24, 25] as a measure of information more relevant than the
mutual information when issues of feedback are involved. The directed information measures the causal dependence
between two stochastic processes, in contrast with the mutual information which ignores any constraint of causality
and only measures statistical correlations. Consistently with the law of requisite variety, the mutual information
however appears as an upper bound for the value of information for control when the later is measured by a directed
information.

The parallel between living organisms and engineered systems provides interesting insights but fails to account
for two other essential features of living organisms: their organization into populations, and the need to evaluate
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performance in terms of ”fitness”, i.e., in terms of an appropriate measure of reproductive value. Viewing the
problem of control from the standpoint of populations of reproducing individuals indeed introduces new options for
coping with unpredictable variations of the environment. Most importantly, a ”bet-hedging strategy” [26] can be
implemented through the diversification of the population. An analogy with financial problems of risk management
has been noticed many times [27–30], including from the perspective of information processing [31–34]. Both
problems involve a growing population facing an unpredictable future: in the financial problem, the population is
composed by the capital of an investor, which is distributed between different assets. These assets are analogous to
the phenotypes of biological organisms, and may respond differently to different environmental perturbations. The
problem of quantifying the value of information in this context was first analyzed by Kelly [35], who found that the
mutual information appeared as a natural measure. His results were later expanded [36–39] showing that, in general,
the relevant measure for the value of information must incorporate characteristic features of the individuals, such
as their multiplication rates. A result analogous to the law of requisite variety however still holds: the value of the
information that an investor may collect remains bounded by the mutual information between this information and
the actual state of the environment (here the stock market) [37].

The analogy between biological populations and problems of financial investment has also its limitations. The
main conceptual difference is that the financial problem is supervised by a goal-oriented investor, who centralizes the
information and the decisions, while information processing is distributed between potentially independent individuals
in biological populations. A first implication is that the biological problem may not correspond to an optimization
at the population level, as it does by definition in finance. In any case, the justification of a criterion of optimality
must involve a non-arbitrary objective function that emerges from the dynamics of the population instead of being a
priori defined. The distributed nature of the biological problem also introduces a level of individual stochasticity that
is absent in finance: even if every individual has the same sensor and has access to the same information, stochastic
noise within each individual sensor can lead to the perception of non-identical signals. This aspect of the problem of
information processing, which has not been previously examined from an information theoretic standpoint, also leads
to a measure of the value of information that differs from the mutual information. In this case, the law of requisite
variety may also be violated: the value of the relevant measure of information can exceed the value indicated by the
mutual information. A population may thus effectively acquire, in a distributed form, a more accurate information
than any of its members.

We shall discuss each of these points in the context of a mathematical model of growing populations in a varying
environment. This model is defined in Sec. II and its main elements are represented in Fig. 1. It deals with two
types of biological information: the information inherited by an individual from its parents, and the information
directly acquired from the environment. To exploit the analogies with the engineering problem of control and the
financial problem of investment (see Table I), we define and justify in Sec. III a suitable ”fitness function”. Our
presentation is then organized around three simplifying assumptions: assumption (A1) that individuals have no
memory, assumption (A2) that individuals all perceive the same information from the environment, and assumption
(A3) that only individuals perfectly adapted to their environment can survive. While under the conjunction of
these three assumptions, the value of information is expressed by a mutual information (Sec. IV) [35], relaxing any
of these assumptions exposes a different limitation of this measure of information. Relaxing (A1) introduces the
possibility of feedback, in which case constraints of causality not accounted for by the mutual information need to
be incorporated (Sec. V) [40]. Relaxing (A2) introduces the possibility for individuals to perceive different signals
from their common environment, which also requires generalizing the mutual information (Sec. VI). Finally, relaxing
(A3) introduces the possibility of different environmental states having non-exclusive ”meaning”, where the source
of meaning, encapsulated in the values of the multiplication rates of the individuals, needs to be taken explicitly into
account in the measure of information (Sec. VII) [14]. Different expressions for quantifying the value of information
are thus obtained, which are summarized in Table II.

Besides the question of quantifying the value of information, our model also addresses a second question, the question
of characterizing the evolutionary stable strategies that optimize fitness. We shall show that, under the assumptions
(A2) and (A3), these strategies amount to a Bayesian computation, as conjectured for instance in [41]. When these
assumptions are not satisfied, however, we find that population-level features can make the implementation of a
Bayesian computation irrelevant.
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II. MODEL

Our approach to investigating the nature and value of information in biological systems is based on an abstract
mathematical model. Expressions for the value of information will result from analyzing this model, both at the
individual level of organisms, at which the model is defined, and at the population level. Specifically, our model seeks
to incorporate the following features, which appear to be commonly shared by all living organisms:

(i) Living organisms change (as a result of development, phenotypic plasticity, learning,. . . );
(ii) Living organisms can generate other living organisms;

(iii) The faculties (i) and (ii) are affected by the state of the organism and the state of its environment;
(iv) The environment of living organisms varies.

The issue of regulation arises when constraints are present which prevent the organisms from perfectly antic-
ipating environmental changes. Here, we focus on constraints due to limited information (see Sec. VIII for extensions):

(v) Changes within a living organism take place in absence of complete information about the forthcoming
environmental states that will affect survival and reproduction.

To account for (iv), the environment is described by a discrete-time and discrete-state Markov chain, with transition
matrix p(xt|xt−1). This Markov chain is assumed to be stationary and ergodic. We shall expend on the notion of
ergodicity in Sec. III, but, in essence, it requires that any environmental state can be reached from any other state
in finite time and with finite probability [42]. Ergodic Markov chains tend asymptotically to an unique stationary
distribution ps(xt), irrespectively of their initial state, where ps(xt) satisfies ps(xt) =

∑
xt−1

p(xt|xt−1)ps(xt−1).

We assume here that the environmental process is stationary. A particular case of interest is when the successive
environmental states are uncorrelated and described by independently and identically distributed (i.i.d.) random
variables, each having a probability p(xt), corresponding to p(xt|xt−1) = p(xt) = ps(xt).

Each individual organism is characterized by an internal state σt, to which we will refer as its current ”type”; in
general, it corresponds to a distinct phenotype, but may also be associated with a distinct genotype. To account
for (ii), the number f(σt;xt) of offsprings generated by an individual organism at time t depends both on its type
σt, and on the current state xt of the environment; in particular, the individual may die if f(σt;xt) = 0 or survive
without reproducing if f(σt;xt) = 1. As a simplifying assumption, we assume here that all offsprings inherit the type
σt of their parent. More generally, a non-integer value of f(σt;xt) will represent the expected number of offsprings
of an individual of type σt in environment xt; f(σt;xt) will therefore be called a multiplication rate. To account for
(iii) and (v), the current type σt can depend both on the ancestral type σt−1 of the individual, and on a signal yt
derived from the environment xt. Following the example of communication theory [12], this dependence is described
probabilistically, with a transition matrix π(σt|σt−1, yt) giving the probability to end up in state σt given (σt−1, yt).
In the language of information theory, such a transition matrix is also called a ”communication channel”, here with
input (σt−1, yt) and output σt; mathematically, it must satisfy two basic properties:

π(σt|σt−1, yt) ≥ 0, for all σt, σt−1, yt, and
∑
σt

π(σt|σt−1, yt) = 1 for all σt−1, yt. (1)

The relation between the signal yt and its source xt, is also specified probabilistically. To distinguish between the
common and individual levels of stochasticity, we describe this relation with two consecutive communication channels
(see Fig. 1): a first communication channel attached to the environment, qenv(x′t|xt), whose output is a cue x′t
common to all individuals in the population, followed by a second communication channel attached to each individual,
qin(yt|x′t), whose output is the signal yt. For instance, if considering a population of bacteria, xt may represent
the chemicals constituting the medium at time t, x′t the subset of those chemicals for which the bacteria have a
sensor, and yt the chemicals that a particular bacterium actually detects at time t, which may vary from bacteria
to bacteria due to imperfect sensors. The difference between xt, the environmental state affecting the multipli-
cation rate f(σt;xt), and x′t, the environmental cue, may also represent a delay between sensing and reproduction [71].

Equation for the conditional mean population size Nt – The model is defined at the level of individual
organisms, but selection may also act at the level of the population; for instance, a diversification between different
types may confer an advantage when the environmental changes are unpredictable. An important implication is
that the problem of regulation in a varying environment should not be treated by isolating an individual from the
population. Here, the population is characterized by the numbers Zt(σ) of individuals of each type σ, which define
a population vector Zt whose norm |Zt| ≡

∑
σ Zt(σ) is the total population size. This vector Zt is a random
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FIG. 1: Schematic representation of the relation between the environment (upper part) and an individual (lower part).The
current environmental state xt affects the number f(σt;xt) of offsprings than an individual of type σt generates (or, more
generally, the expected number of offsprings given σt and xt). The type σt is determined probabilistically by the transition
matrix π(σt|σt−1, yt) which depends on the ancestral type σt−1 and on the perception yt that the individual has of the
environment. The signal yt derives from xt through two possibly noisy communication channels: an ”environmental” channel
qenv(x′t|xt), which specifies a perceptible signal x′t common to the whole population, and an ”individual” channel qin(yt|x′t),
which specifies, independently for each individual, a perceived signal yt. This second channel is noiseless in the financial
interpretation of the model for which no stochasticity is present at the individual level; in this case yt = x′t, and the noiseless
individual channel is denoted qin = δ (see also Fig. 3).

variable from two standpoints: it depends on the environmental sequence x̄ ≡ ((x1, x
′
1), . . . , (xt, x

′
t), . . . ), and for a

given x̄, it is subject to the stochasticity at the individual level, generated through the transition matrices qin(yt|x′t)
and π(σt|σt−1, yt) (and possibly also through the fluctuations in the number of offsprings if f(σt;xt) represents a
multiplication rate). We will use two different symbols for representing the two corresponding averages: 〈Zt(σ)〉 for
the average conditionally to the environmental sequence x̄ , and E[〈Zt〉] for the average over environmental sequences
as well. Our analysis will focus on the conditional mean

Nt(σ) ≡ 〈Zt(σ)〉 (average taken for a given x̄), (2)

which follows a simple recursion:

Nt(σt) = f(σt;xt)
∑

σt−1,yt

π(σt|σt−1; yt) qin(yt|x′t) Nt−1(σt−1). (3)

This recursion can also be written with a vectorial notation:

Nt = A(t)Nt−1, with A(t)
σ′σ ≡ f(σ′;xt)

∑
yt

π(σ′|σ; yt) qin(yt|x′t), (4)

where A(t) is a shorthand for A(xt,x
′
t). Here, the current environment (xt, x

′
t) is a ”quenched” variable, which is

fixed independently of the dynamics of the population. From a mathematical standpoint, Eq. (4) indicates that
studying Nt amounts to studying the product of random matrices A(t)A(t−1) . . .A(1), which is function of the
environmental sequence x̄. In contrast to Zt, Nt = 〈Zt〉 overlooks the discrete nature of the population, and thus
fails to account for possible events of extinction; a population of discrete individuals is indeed not infinitely divisible,
and the stochasticity of the process of reproduction may lead to |Zt| = 0 at some time t, after which any possibility
of recovery is excluded. Remarkably however, the results presented in Sec. III indicate that the basic asymptotic
behavior of |Zt| can be derived from the properties of |Nt|, which will justify that our analysis concentrates on Eq. (3).

Financial interpretation – The decomposition of the channel of acquired information into an environmental
channel qenv(x′t|xt) and an individual channel qin(yt|x′t) is further motivated by the financial interpretation of our
model, where only the environmental channel qenv(x′t|xt) make sense [72]. In this interpretation, Nt(σt) represents the
number of currency units that an investor on the stock market invests in asset σt on day t, π(σt|σt−1, yt) represents
the fraction of money transferred from asset σt−1 to asset σt, based possibly on some information yt available
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acquired inherited

population perceptible x′t transition matrix π

individual perceived yt type σt

FIG. 2: Four different notions of ”information” contained
in the model. Information has two sources, the environ-
ment and the ancestor of the individual, corresponding to
acquired or inherited information, and is defined at two lev-
els, the individual or the population. The transition matrix
π(σt|σt−1, yt) may be viewed as information about the en-
vironment encoded in the organisms (see e.g. Eq. (18)).
If mutations could lead to the unreliable transmission of
π, an extra level of description would be introduced, with
subpopulations characterized by different values of π.

FIG. 3: Two trivial communication channels, the noiseless
channel δ which transmits perfectly information, and the
informationless channel η which does not transmit any in-
formation. We have for instance qin = δ in the financial
interpretation of the model where no individual stochas-
ticity is present, and qenv = η in the case where decisions
must be made in absence of any acquired information about
the current environmental state (see Fig. 4 for less trivial
examples of communication channels).

about the current state xt of the market, and f(σ;xt) represents the return of asset σ on day t, a non-negative
but non-necessarily integer quantity (see Table I). Eqs. (3) and (4) then describe the evolution of Nt in a scenario
where the money is entirely reinvested every time. The essential difference with the biological case is the absence of
stochasticity at the level of individuals, which are strictly equivalent currency units: π(σt|σt−1, yt) results from the
decision of an investor which centralizes the information used for manipulating each of the currency unit constituting
the ”population”. This has two implications: (i) yt has to be common to the population, i.e., qin = δ and as a
result yt = x′t (see Fig. 3); (ii) the only source of stochasticity is the environment, which operates at the level of
the population, i.e., Zt = Nt (note however that the finite divisibility of the currency unit is not accounted for
if considering only Nt). In contrast, the necessity for biological populations to process information at the level
of individual organisms introduces an extra level of stochasticity and heterogeneity, which underlies qualitative
differences with problems of financial investment.

Two basic questions – The transition matrix π(σt|σt−1; yt) specifies the ”strategy” for responding to the
signals that individuals inherit and acquire. A basic problem is to provide a framework for estimating the relative
performance of different strategies. In some particularly cases, the ”best” strategy is clear: if perfect information
is available, a sensible action is indeed for every individual to adopt at time t the type σ that maximizes f(σ;xt),
thus leading to an homogeneous population. Perfect information correspond to noiseless channels, represented by the
identity transition matrix δ such that δ(yt|xt) = 1 if yt = xt, and 0 otherwise (see Fig. 3). In general, however, the
communication channels qenv and qin will reveal incomplete information about xt, and a non-deterministic response,
leading to a diversified population, may be more advantageous. Two basic questions thus arise:

(Q1) What strategy, i.e., choice of the transition matrix π(σt|σt−1, yt), is the most advantageous?

(Q2) What is the value of the information acquired through qenv(x′t|xt) and qin(yt|x′t)?

Answering these two questions require defining a measure of ”fitness”, so as to give a precise meaning to the notions
of ”advantage” and ”value”. In decision theory, this usually involves the introduction of an ad-hoc loss-function [73].
We show however in the next section that a measure of adaptation emerges in the long-term limit, which defines a
non-arbitrary fitness function.

Three simplifying assumptions – As the model is not analytically solvable in its most general form, it is of
interest to analyze it under several simplifying assumptions. Three simplifying assumptions will play a crucial role:

(A1) No information is inherited between successive generations, i.e, π(σt|σt−1, yt) = π(σt|yt);
(A2) Any information acquired from the environment is common to all members of the population, i.e., qin = δ;

(A3) The multiplication rates have a diagonal form, i.e., f(σ;x) = f(x) > 0 if σ = x, and f(σ;x) = 0 otherwise.

Inherited information becomes useful in presence of correlations between successive environmental states and as-
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Biology Finance Control theory Notation

individual currency unit system -

population capital - -

phenotype asset state σt

environment market disturbance xt

multiplication rate return 1 f(σt, xt)

acquired info. side-information feedforward info. yt

inherited info. - feedback info. σt−1

strategy portfolio policy π(σt|σt−1, yt)

fitness utility loss-function Λ(π)

TABLE I: Correspondence between the terms used in biology, finance and control theory. The engineering problem is concerned
with a single system, and therefore involves no notion of multiplication rate or population. The financial problem is defined
for an agent supervising any information processing, and the notion of information inherited by the individuals has therefore
no obvious counterpart.

sumption (A1) is therefore restrictive only when the environment is not i.i.d.. In the language of control theory,
presented in Table I and developed in Sec. VIII, assumption (A1) corresponds to an open-loop mode of control where
feedback is absent. Assumption (A2) amounts to restricting to models which can be interpreted in financial terms,
with no fluctuation in the signals perceived by the individuals. Assumption (A3) describes the situation where in any
environmental state, there is only one type able to survive; in particular, this assumption assumes that the number
of environmental states is the same as the number of types for the individuals. The model defined by the conjunction
of the three assumptions plays a special role, because, as explained in Sec. IV, the two questions (Q1) and (Q2) have
simple answers in terms of the standard measures of uncertainty and information from communication theory, the
entropy H(Xt) and the mutual information I(Xt;Yt) where Xt and Yt refers to the random variables associated with
the environmental state xt and the signal yt (H(Xt) and I(Xt;Yt) are defined below). As we shall show, relaxing
any of these assumptions introduces generalizations of these two quantities. The models satisfying all three assump-
tions were also the first models of population growth to be analyzed from the standpoint of information theory [35].
These models were originally interpreted as models of gambling in horse races, with f(xt) viewed as the pay-off when
horse σ = xt wins and p(xt|xt−1) as the probability for it to happen, given that horse xt−1 won the previous race.
Generalizations to models of investment in the stock market, involving relaxation of the assumptions (A1) and (A3)
have subsequently been considered from the same standpoint [14]. The relevance of this approach to understanding
the adaptive value of strategies of diversification and the value of information in biological populations has also been
previously noticed [32, 33], although always under the restrictive assumption (A2) that information is acquired with
no individual stochasticity.

III. FITNESS AND OPTIMIZATION

The question (Q1) of defining an optimal strategy for a game or a financial investment whose outcome is uncertain
has a long history, dating back from the earliest days of probability theory. We review here some of the solutions that
have been proposed in this context before turning to their relevance for biological populations. We start by assuming
that the environmental process is i.i.d. and that no information is acquired (formally qin = η where the informationless
channel η is defined in Fig. 3). In a model with no correlations between successive environmental states, no gain can
be expected from knowing the previous state, and we can assume without restriction that the optimal transition
matrix π(σt|σt−1) is of the form π(σt|σt−1) = π(σt). Under these assumptions, we need only consider the total size
of the population, |Nt| =

∑
σNt(σ) rather than the population vector Nt. Indeed,

|Nt| = A(t)|Nt−1|, with A(t) ≡ A(t)(π) ≡
∑
σ′

A(t)
σ′σ =

∑
σ′

f(σ′;xt)π(σ′), (5)
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With these notations, a population of initial size |N0| acquires after T time steps a size |NT | determined by a product
of T scalar random variables:

|NT | = A(T )A(T−1) . . . A(1)|N0|. (6)

Arithmetic mean – The difficulty of defining an optimal strategy π basically stems from the fact that |NT | is a
random variable whose value depends on the particular sequence of environments (x1, . . . , xT ): to each such sequence
corresponds an optimal strategy π, but in general no strategy is optimal for every environmental sequence. A näıve
solution would be to maximize the expected return. When the successive environmental states are independent, this
corresponds to

E[A(T )A(T−1) . . . A(1)] =
(
E[A(t)]

)T
, with E[A(t)] = E[A(t)(π)] =

∑
x

p(x)
∑
σ

f(σ;xt)π(σ). (7)

E denotes here the expectation with respect to the fluctuations of the environment. This leads to selecting the portfolio
maximizing the so-called arithmetic mean of the return,

max
π

E[A(t)(π)] (max. arithmetic mean). (8)

This strategy may however be very risky, as illustrated by the following example: consider a horse race involving
only two horses a and b having equal probability of winning, with returns given by f(a; a) = 3, f(b; a) = 0 when
horse a wins, and f(a; b) = 0, f(b; b) = 1/2 when horse b wins. The expected return, f(a; a)π(a) + f(b; b)π(b),
where π(a) + π(b) = 1, is clearly optimized by betting everything on horse a, i.e., π(a) = 1 and π(b) = 0. But
following this strategy in a sequence of races where the gains are systematically reinvested almost surely leads to
bankruptcy. Indeed, if horse b ever wins, everything is lost, and this happens with probability 1 − (1/2)T , which
tends to 1 as T increases. The maximum expected return is indeed optimal only when averaging over all possible
sequences of outcomes, in which case the gain resulting from the only environmental sequence where a never
fail to win more than compensate for the loss experienced with all the other sequences of outcomes. When deal-
ing with a single sequence of outcomes, such an average over different environmental sequences is however not relevant.

Expected utility – An argument often given in the economic literature, which dates back from D. Bernoulli’s
analysis of the famous St Petersburg paradox [43], is that the criterion based on the arithmetic mean fails to recognize
that small losses may represent more ”utility” for the gambler than large gains. According to this view, utility of
losses and gains depends on the gambler, and may for instance vary with the initial wealth |N0|. At any given time,
each investor should be considered as having his own utility function u that he seeks to optimize,

max
π

E[u(A(t)(π))] (max. expected utility u). (9)

The choice of u(x) is critical, since it quantifies the notion of risk. Based on the postulate that an increase in wealth
should result in an increase in utility inversely proportionate to the quantity of goods already possessed, Bernoulli
proposed u(x) = lnx as a sensible form of the utility function. In finance, where the problem arises when selecting
a diversified portfolio of assets, the risk is often measured by the expected return variance. The return of a given
asset σ at time t corresponds in our model to the multiplication rate f(σ;xt), and the expected return of a portfolio
can be written vectorially as π>R where π is the vector of portfolio weights π(σ), and R is the vector of expected
returns R(σ) = E[f(σ;x)]. Following a proposition made by Markowitz [44], the risk is usually measured by π>Σπ
where Σ(σ, σ′) = E[f(σ;x)f(σ′;x)] − R(σ)R(σ′) represents the covariance matrix of the returns. The portfolio
vectors π maximizing π>R − λ π>Σπ then defines a family of efficient portfolios parametrized by λ, a parameter
fixing the degree of risk that the investor is ready to undertake (λ can also be interpreted as a Lagrange multiplier
for the maximization of π>R at fixed level of risk π>Σπ, or alternatively, for the minimization of the risk for a
fixed expected return). Except for the fact that the covariance matrix Σ is used rather than the correlation matrix
C(σ, σ′) = E[f(σ;x)f(σ′;x)], Markowitz criterion is essentially similar to maximizing a quadratic utility function
u(x) = x − λx2. This function may be viewed as the second-order approximation of a more general utility function,
where the approximation is justified by the difficulty of estimating higher-oder moments of the returns. Despite their
widespread use, criteria based on utility theory and its variants however present a fundamental problem: they are
based on ad-hoc definitions of risk.

Geometric mean – An independent line of inquiry, initiated by Kelly [35, 45], has promoted the optimization
of the geometric mean as an objective criterion. It is based on the observation that if |NT | is indeed a random
variable whose value depends on the particular sequence of outcomes, for large T most sequences lead to a common,



8

typical, value of the compound return. This can be seen as resulting from the strong law of large numbers applied to
ln(|NT |/|N0|) =

∑
t lnA(t), which, as a sum of i.i.d. random variables, satisfies

lim
t→∞

1

t
ln |Nt| = E[lnA(t)(π)] with probability 1. (10)

This result motivates the maximum geometric mean return strategy,

max
π

E[lnA(t)(π)] (max. geometric mean), (11)

This criterion is formally equivalent to optimizing a logarithmic utility function, u(x) = lnx, as originally proposed by
Bernoulli in the framework of utility theory [43]. From this standpoint, it may appear as an arbitrary criterion [46],
but the argument given here does not rely on the notion of utility function: it relies instead on a fundamental
mathematical result, the strong law of large numbers.

Strategies π̂ corresponding to maximizing the geometric mean as in Eq. (11) have, besides Eq. (10), a number of
other attractive properties [14, 45] (a hat over a quantity, such as π̂, will always indicate an optimized value of the
quantity). From a biological point of view, a particularly important property of π̂ is asymptotical optimality in an
even stronger sense than indicated by Eq. (10): π̂ outperforms any other strategy π (which may vary in time) for
almost every sequence of outcomes [14], i.e.,

lim sup
t→∞

1

t
ln
|Nt(π)|
|Nt(π̂)|

≤ 0 with probability 1. (12)

From a biological standpoint, the strategy π̂ is an evolutionary stable strategy [47]: a population characterized by
π̂ cannot be outnumbered by a population with a different π. In other words, if one were to start with a variety of
species characterized by different π, one would almost surely end up with a population dominated by the species with
largest geometric mean E[lnA(t)(π)]. This justifies using the growth rate, given by the geometric mean E[lnA(t)(π)],
as an unambiguous measure of adaptation, or ”fitness”. Fitness is often informally defined as the expected number
of descendants of an individual in a given environment [48], which, in our model, would correspond to E[f(σ;x)] if
considering the descendants after one generation. In general, however, the definition of a fitness function must be
supplemented with the references to an ”horizon” T and to a particular sequence of future environmental states [49].
In our model, the growth rate emerges as an unique measure of fitness when considering the long-term limit T →∞,
but, if considering a finite ”horizon”, there may be a different strategy π that outperforms π̂; for instance, at the
scale of a single time step, a better strategy may be to optimize the expected multiplication rate, which essentially
amounts to an optimization of the arithmetic mean. Note also that our measure of fitness for long-term adaptation
is not attached to a particular individual but rather to a trait propagated in a population, the trait defined by the
strategy π. An implication of the fact that the fitness function is defined at the population level is that we should
not seek to interpret the behavior of the members of the population in terms of the maximization of an individual
utility function [50].

The conclusion that the growth rate, given by the geometric mean, is the relevant fitness function in the long-
term extends to cases where the environmental process is stationary and ergodic, but not necessarily i.i.d.. For an
arbitrary environmental processes, the growth rate of a population will indeed depend on the particular sequence of
environmental states x1, x2, . . . , xt that arises. Stationary ergodic processes, however, benefit from a self-averaging
property: particular realizations of such processes tend with time to share common statistical features - features that
reproduce those obtained by averaging over many particular sequences; this property is also known as the asymptotic
equipartition property in information theory, where it plays an equally fundamental role and underlies the choice of
considering infinitely long sequences of symbols [14]. For independent environments, ergodicity amounts to the law
of large numbers, which was the crucial argument leading to Eq. (10): almost all long sequences comprise a same
fraction p(x) of each state x. More generally, assuming that the environmental process is stationary and ergodic, and

that E[max(0, lnA(t)
σ′σ)] <∞ for all σ, σ′, where A(t)

σσ′ is defined as in Eq. (4), it can be shown [51, 52] that the limit

Λ
(qenv,qin)
p;f (π) ≡ lim

t→∞

1

t
E ln |Nt| (13)

exists, and that

lim
t→∞

1

t
ln |Nt| = Λ

(qenv,qin)
p;f (π) with probability 1. (14)
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No simple analytical formula is available for Λ
(qenv,qin)
p;f (π), also known as a Lyapunov exponent, in the most general

case, but an important exception is in absence of inherited information, when π(σt|σt−1, yt) = π(σt|yt) [assumption
(A1)], in which case

Λ
(qenv,qin)
p;f (π) =

∑
xt,x′t

qenv(x′t|xt) ps(xt) ln

(∑
σt,yt

f(σt;xt) π(σt|yt) qin(yt|x′t)

)
. (15)

Typical vs mean population sizes – Importantly, not only Λ
(qenv,qin)
p;f (π) describes the growth rate of the con-

ditional mean Nt = 〈Zt〉, but also, under fairly general conditions, the growth rate of the size |Zt| of a typical
population. An essential condition, however, is that the population does not become extinct. The probability of
survival of a population with an arbitrary initial composition can always be expressed in terms of the probabilities
Q(σ|x̄) of extinction of a population starting from a single individual of type σ: if starting with N0(σ) individuals
in each state σ, the probability of survival is indeed

∏
σ(1−Q(σ|x̄))N0(σ), because each individual generates its own

independent subpopulation. Here, we assume that either all the types have a non-zero probability to survive, i.e.,
P(Q(σ|x̄) < 1,∀σ) = 1, or none of them survive, i.e., P(Q(σ|x̄) = 1,∀σ) = 1; if this is not the case, we can always
ignore the types that inevitably become extinct. Under this condition of regularity and a further technical condition
of stability presented in appendix A, the following classification theorem holds [53]:

(i) Λ
(qenv,qin)
p;f (π) < 0 =⇒ P[Q(σ|x̄) = 1,∀σ] = 1;

(ii) Λ
(qenv,qin)
p;f (π) > 0 =⇒ lim

t→∞

1

t
ln |Zt| = Λ

(qenv,qin)
p;f (π) almost surely conditionally to non-extinction.

(16)

The second case where there is a non-zero probability of non-extinction is known as the supercritical case and is
obviously the one of interest here. Remarkably, this theorem indicates that the growth of branching processes is
controlled by the properties of the product of random matrices A(t) . . .A(1) which governs the evolution of the
conditional mean Nt. Even the condition of stability, detailed in appendix A, bears on properties of this product: it
basically requires that its columns all grow at a same rate so as to prevent too large fluctuations in the population
size. Also note that both this condition of stability and the other condition of regularity relative to the probability
of extinction are trivially satisfied for a single-type population, to which our model can be reduced in absence of
inherited information, when π(σt|σt−1, yt) = π(σt|yt) [assumption (A1)], by noticing that a recursion can be written
directly for |Nt| =

∑
σ Nt(σ), as for instance in Eq. (6).

Reformulation of the two basic questions – Based on the mathematical results presented in this section, the

questions (Q1) and (Q2) introduced previously can be stated formally. Taking the long-term growth rate Λ
(qenv,qin)
p;f (π)

as a measure of fitness, (Q1) becomes the problem of finding a matrix π̂ that maximizes it for given parameters p, f ,

qenv and qin (while the optimal growth rate Λ̂
(qenv,qin)
p;f is unique, ”the” optimal strategy π̂ may not be). Based on the

same principle, (Q2) becomes the problem of estimating Λ̂
(qenv,qin)
p;f − Λ̂

(η,η)
p;f , where Λ̂

(qenv,qin)
p;f = Λ

(qenv,qin)
p;f (π̂) denotes

the optimal growth rate in presence of the channels qenv and qin, and Λ̂
(η,η)
p;f the optimal growth rate in their absence (η

denotes an informationless channel as in Fig. 3). (Q1) and (Q2) thus amount to estimating the two following quantities:

(Q1) π̂ ≡ arg maxπ Λ
(qenv,qin)
p;f (π) (optimal strategy);

(Q2) Λ̂
(qenv,qin)
p;f − Λ̂

(η,η)
p;f (value of the information conveyed by qenv and qin).

In the next section, we show that under the assumptions (A1), (A2) and (A3), the cost of uncertainty, defined as

Λ̂
(δ,δ)
p;f − Λ̂

(qenv,qin)
p;f where δ denotes a noiseless channel as in Fig. 3, and the value of acquired information, defined as

Λ̂
(qenv,qin)
p;f − Λ̂

(η,η)
p;f where η denotes an informationless channel as in Fig. 3, correspond respectively to the conditional

entropy H(Xt|Yt) and the mutual information I(Xt;Yt). In Sec. V and VI, we show that upon relaxing the assumptions
(A1) or (A2), the cost of uncertainty and value of acquired information are still independent of the multiplication

matrix f(σ;x), and thus define two quantities H
(qenv,qin)
p and I

(qenv,qin)
p that generalize the notions of conditional

entropy and mutual information. Finally, we show in Sec. VII, that, in absence of any assumption, the statistical

quantities I
(qenv,qin)
p and H

(qenv,qin)
p are bounds for the cost of uncertainty Λ̂

(δ,δ)
p;f − Λ̂

(qenv,qin)
p;f and the value of acquired

information Λ̂
(qenv,qin)
p;f − Λ̂

(η,η)
p;f respectively. These results are summarized in Table II.
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IV. KELLY’S HORSE RACES

As originally shown by Kelly [35], under the joint assumptions (A1), (A2) and (A3) stated in Sec. II, a simple
connection is found between the long-term growth rate and information theoretic quantities. We start by assuming
that, in addition to the restrictions imposed by (A1), (A2) and (A3), the environment is i.i.d. with probability p(xt)
for the environmental states.

Value of information and cost of uncertainty in absence of acquired information – In absence of acquired
information (qenv = η), the long-term growth rate is given by Eq. (15):

Λ
(η,δ)
p;f (π) =

∑
x

p(x) ln (f(x)π(x)) . (17)

Taking into account the constraint
∑
x π(x) = 1 with Lagrange multipliers, the answer to (Q1) is found to be the

optimal strategy π̂ given by

π̂(x) = p(x), ∀x. (18)

This strategy is called proportional betting and has the remarkable property of not depending on the values of the
returns f(x). It yields an optimal growth rate that can be broken down in two terms:

Λ̂
(η,δ)
p;f =

∑
x

p(x) ln f(x) +
∑
x

p(x) ln p(x) = Λ̂
(δ,δ)
p;f −H

(η,δ)
p . (19)

The first term, Λ̂
(δ,δ)
p;f = E[ln f ] =

∑
x p(x) ln f(x), corresponds to the best conceivable growth rate in a typical sequence

of races: it is achieved if the gambler knows in advance which horse is going to win and bets all his money on it. The
second term, which is independent of f ,

H(η,δ)
p ≡ Λ̂

(δ,δ)
p;f − Λ̂

(η,δ)
p;f = −

∑
x

p(x) ln p(x) (20)

corresponds to Shannon’s entropy for the random variable Xt, usually denoted H(Xt) or H(p) (we follow the
common usage of representing by Xt the random variable and by xt one of its values). The entropy quantifies the
cost of uncertainty when the frequencies p(x) are known but not the particular sequence of outcomes that occurs.
Since π̂ = p, a good gambler must have a good estimate of the environmental distribution p. From the biological
standpoint, a population well-adapted to a varying environment must, in this model, have evolved an ”internal
model of the environment” that encodes its statistical properties [33]; in this sense, the matrix π can be viewed as
information about the environment that is common knowledge in the population (see Fig. 2).

Origins of the entropy – The entropy H
(η,δ)
p appears in source coding theory as the optimal rate of lossless

compression for the memoryless source p [12]. To understand why the same quantity occurs in the two problems,
consider a sequence of T environmental states: if there are n possible states, the number of such sequences in
nT = eT lnn, and lnn, the rate at which the number of possible sequences increases with T , provides a first
plausible measure of uncertainty. This measure, originally proposed by Hartley [54], does not account for the
fact that some states may be less probable than others, thus effectively reducing the uncertainty. If p(1), . . . , p(n)
represent the probabilities of the n different states, the law of large numbers indeed indicates that, almost surely,

long environmental sequences are in state x a fraction p(x) of the time. The entropy H
(η,δ)
p = −

∑
x p(x) ln p(x)

corresponds to the rate of increase of the number of these typical sequences. The number of typical sequences is

indeed Υ
(T )
p ≡ T !/[(p(1)T )! . . . (p(n)T )!] which, for T →∞, satisfies (ln Υ

(T )
p )/T → −

∑
x p(x) ln p(x) = H

(η,δ)
p . Since

the typical sequences are all equiprobable, the entropy also characterizes the probability e−TH
(η,δ)
p of observing a

particular typical sequence; this property of asymptotic equipartition, which generalizes beyond i.i.d. processes, is

central to information theory [14]. The entropy satisfies 0 ≤ H(η,δ)
p ≤ lnn, with H

(η,δ)
p = lnn if and only if no reduc-

tion of uncertainty can be gained from the fact that some states are less probable than others, which is the case only
when all states are equiprobable, i.e., p(x) = 1/n for all x = 1, . . . , n. In the other extreme case where only one state

can occur, say p(1) = 1, the entropy takes its minimal value H
(η,δ)
p = 0, corresponding to an absence of uncertainty [74].

Cost of non-optimal strategies – If the frequencies p(x) are not estimated correctly by the gambler, suggesting
a suboptimal strategy π 6= π̂, an additional cost is incurred,

Λ
(η,δ)
p;f (π) = Λ̂

(η,δ)
p;f (π̂)−D(π̂‖π). (21)
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This cost involves another quantity playing a fundamental role in communication theory [14], the so-called relative
entropy, or Kullback-Leibler divergence, which is defined by

D(π̂‖π) ≡
∑
x

π̂(x) ln
π̂(x)

π(x)
. (22)

It measures the deviation of the distribution π̂ from the distribution π and obeys the inequality D(π‖π̂) ≥ 0, with
equality if and only if π(x) = π̂(x) for all x.

Value of information and cost of uncertainty in presence of acquired information – We now assume
that an information yt is available about the outcome xt of the race, through an external communication channel
characterized by the transition matrix qenv(yt|xt) (here qin = δ and hence x′t = yt). The strategy π can now depend on
the signal yt with π(σt|yt) denoting the fraction of wealth bet on σt. For instance, there may be n possible signals, in
which case, no side-information would correspond to qenv(yt|xt) = 1/n, and perfect side-information to qenv(yt|xt) = 1
if yt = xt and 0 otherwise. In general, some noise may cause qenv(yt|xt) to be non-zero even if yt 6= xt. The expression
for the growth rate is now

Λ
(qenv,δ)
p;f (π) =

∑
x,y

qenv(y|x)p(x) ln (f(x)π(x|y)) , (23)

where qenv(y|x)p(x) represents the joint probability PXt,Yt(x, y) that the environmental state is x and the perceived
signal is y. By conditioning with respect to the received signal y, the problem can be reduced to the case with no
information:

Λ
(qenv,δ)
p;f (π) =

∑
x,y

PXt,Yt(x, y) ln(f(x)π(x|y)) =
∑
y

PYt(y)

[∑
x

PXt|Yt(x|y) ln(f(x)π(x|y))

]
. (24)

For any given y, the optimization problem is therefore solved as before, with PXt(x) = p(x) replaced by PXt|Yt(x|y).
The optimal strategy, i.e., the answer to (Q1), is thus ”conditional proportional betting”:

π̂(σ|y) = PXt|Yt(σ|y) =
PYt|Xt(y|σ) PXt(σ)

PYt(y)
=

qenv(y|σ) p(σ)∑
σ′ qenv(y|σ′) p(σ′)

. (25)

It exactly amounts to a Bayesian computation [41]. The optimal value of the growth rate can again be broken down
in two terms

Λ̂
(qenv,δ)
p;f = Λ̂

(δ,δ)
p;f −H

(qenv,δ)
p . (26)

The second term, H
(qenv,δ)
p , is a generalization of the entropy H

(η,δ)
p known as the conditional entropy, usually denoted

H(Xt|Yt) in communication theory [14]. It measures the residual unpredictability of Xt given Yt and is given by

H(Xt|Yt) =
∑
y

PYt(y) H(Xt|Yt = y) = −
∑
x,y

PXt,Yt(x, y) lnPXt|Yt(x|y). (27)

With perfect side-information, Yt = Xt, and the entropic cost is eliminated, H(Xt|Xt) = 0, leaving only Λ̂
(δ,δ)
p;f =

E[ln f ]. The gain in predictability due to the signal, i.e., the answer to question (Q2), is obtained by comparing the
situations with and without side-information,

I(qenv,δ)
p ≡ Λ̂(qenv,δ)

p − Λ̂(η,δ)
p = H(η,δ)

p −H(qenv,δ)
p = H(Xt)−H(Xt|Yt) ≡ I(Xt;Yt). (28)

The quantity I
(qenv,δ)
p = I(Xt;Yt) is another important measure of information in communication theory, the mutual

information [14]. It appears in channel coding theory, the theory of reliable transmission through noisy channels [12],

where the capacity of the noisy channel qenv is given by C(qenv) = maxp I
(qenv,δ)
p , and in rate-distortion theory, the the-

ory of lossy data compression [13], where the optimal compression rate to describe a source p within a mean distortion

D is given by Rp(D) = minqenv{I
(qenv,δ)
p : E[d(x, y)] ≤ D}, where E[d(x, y)] =

∑
x,y qenv(y|x)p(x)d(x, y) is the mean

distortion for a given distance function d(x, y) between the symbol x from the original data and the symbol y from
the compressed data. When X = Y , the mutual information I(X;X) is nothing but the entropy H(X). The mutual
information between two random variables X and Y can also be expressed as I(X;Y ) = H(X) + H(Y ) −H(X;Y ),
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or as the relative entropy between the joint distribution of (X,Y ) and the product of their marginal distributions,
i.e., I(X;Y ) = D(PX,Y ‖PXPY ). It shows that I(X;Y ) is a symmetric function of its variables, and is always
non-negative, with I(X;Y ) = 0 if and only if X and Y are independent, i.e., PX,Y (x, y) = PX(x)PY (y). The mutual
information is thus a measure of statistical dependence between random variables.

Conclusion – We assumed so far that the environment was i.i.d. but under the assumption (A1) that no information
can be inherited, the results of this section can be simply extended to Markov environments, and more generally to
ergodic and stationary environmental processes, by simply replacing p(xt) by the stationary distribution ps(xt) of the
environmental process. To sum up, the growth rate for a model of horse races, defined by the assumptions (A1), (A2),
(A3), can be decomposed as

Λ
(qenv,δ)
p;f (π) = Λ̂

(δ,δ)
p;f −H

(qenv,δ)
p −D(π̂||π), (29)

or, equivalently, as

Λ
(qenv,δ)
p;f (π) = Λ̂

(δ,δ)
p;f −H

(η,δ)
p + I(qenv,δ)

p −D(π̂||π). (30)

Λ̂
(δ,δ)
p;f = E[ln f ] represents the optimal growth rate with perfect information, and D(π̂||π) the cost for following a

strategy π differing from the optimal strategy π̂, with D(π̂||π) = 0 if and only if π = π̂. The first expression makes

apparent the cost of uncertainty H
(qenv,δ)
p , which corresponds here to a conditional entropy:

H(qenv,δ)
p = H(Xt|Yt), (31)

where PXt,Yt(xt, yt) = qenv(yt|xt)ps(xt). The second expression introduces H
(η,δ)
p = H(Xt), the entropy of the

environmental variable Xt, for which PXt(xt) = ps(xt), and it makes explicit the value of acquired information

I
(qenv,δ)
p , which corresponds to the mutual information between the environment Xt and the acquired information
Yt = X ′t:

I(qenv,δ)
p = I(Xt;Yt). (32)

In the next three sections, we examine how these relations are modified when relaxing any of the assumptions (A1),
(A2) and (A3) on which they rely.

V. CAUSAL CONSTRAINTS AND INHERITED INFORMATION

We first consider the consequences of relaxing the assumption (A1) by allowing information to be inherited. Under
the assumptions (A2) and (A3) that the model still admits an interpretation in terms of horse races, so that in
particular σt−1 = xt−1, the argument used to derive Eq. (24) can be invoked to infer that the Bayesian strategy, given
by π̂(σ|xt−1, yt) = PXt|Xt−1,Yt(σ|xt−1, yt), is optimal [14], with an associated cost of uncertainty independent of f and
given by

H(qenv,δ)
p ≡ Λ̂

(δ,δ)
p;f − Λ̂

(qenv,δ)
p;f = H(Xt|Xt−1, Yt). (33)

Here, following the definition of Eq. (27), H(Xt|Xt−1, Yt) is given by

H(Xt|Xt−1, Yt) = −
∑

xt,xt−1,yt

qenv(yt|xt)p(xt|xt−1)ps(xt−1) ln

(
qenv(yt|xt)p(xt|xt−1)∑
z qenv(yt|z)p(z|xt−1)

)
. (34)

Value of information and cost of uncertainty in absence of acquired information – In absence of

acquired information (qenv = η), the uncertainty cost reduces to H
(η,δ)
p = H(Xt|Xt−1). This cost is smaller than the

uncertainty cost incurred in absence of inherited information, which was shown in the previous section to be H(Xt).
The difference is the mutual information I(Xt;Xt−1) = H(Xt) − H(Xt|Xt−1), which thus quantifies the value of
inherited information in this context.

The uncertainty cost H
(η,δ)
p = H(Xt|Xt−1) can also be interpreted as the entropy rate H(X) of the environmental

process: denoting XT ≡ (X1, . . . , XT ), the entropy rate of the environmental process X is generally defined by
H(X) = limT→∞H(XT )/T [14]. The limit always exists for a stationary ergodic process and it corresponds to
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H(X) = H(Xt|Xt−1) for a Markov chain, and H(X) = H(Xt) for an i.i.d. process.

Value of information in presence of acquired information – In presence of both acquired and inherited
information, it follows from Eq. (33) that the value of acquired information is given by

I(qenv,δ)
p ≡ H(η,δ)

p −H(qenv,δ)
p = H(Xt|Xt−1)−H(Xt|Xt−1, Yt) ≡ I(Xt;Yt|Xt−1), (35)

where the last equality defines the conditional mutual information I(Xt;Yt|Xt−1). Using a conditioned version of
the general relation I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X), this conditional mutual information can also be
written I(Xt;Yt|Xt−1) = H(Yt|Xt−1)−H(Yt|Xt). It is instructive to compare this quantity with the rate of mutual
information between the processes X and Y , which is defined by I(X;Y ) = limT→∞ I(XT ;Y T )/T , where we use
again the notations Y T = (Y1, . . . , YT ) and XT = (X1, . . . , XT ). Given that I(XT ;Y T ) = H(Y T )−H(Y T |XT ), the
rate of mutual information corresponds here to I(X;Y ) = H(Y )−H(Yt|Xt), where H(Y ) represents the entropy rate
for the process Y (as an hidden Markov chain derived from a stationary ergodic chain, Y has indeed a well-defined

entropy rate). From H(Yt|Xt) ≤ H(Y ), it follows that I
(qenv,δ)
p = I(Xt;Yt|Xt−1) ≤ I(X;Y ), where the inequality is

generically strict if the environmental process is not i.i.d.. The value of acquired information, I
(qenv,δ)
p , is thus not

given by the rate of mutual information I(X;Y ), except in special cases such as when no correlations are present
between successive environmental states (i.i.d. environment).

I
(qenv,δ)
p does not indeed correspond to the rate of mutual information, but to the rate of directed information [24,

25, 40], generally defined by

I(Y T → XT ) ≡
T∑
t=1

I(Xt;Y
t|Xt−1). (36)

For a Markov environmental process, conditioning with respect to Xt−1 is equivalent to conditioning with respect
to Xt−1 and I(Xt;Y

t|Xt−1) = I(Xt;Yt|Xt−1), so that the generic term of the sum equates the conditional mutual
information obtained in Eq. (35). If I(Y → X) ≡ limT→∞ I(Y T → XT )/T denotes the rate of directed information,

we have therefore I
(qenv,δ)
p = I(Y → X). To understand the origin of the difference between I(Y → X) and the rate

of mutual information I(X;Y ), we may similarly expand the mutual information I(XT ;Y T ) using the chain rule [14]:

I(XT ;Y T ) =

T∑
t=1

I(Xt;Y
T |Xt−1). (37)

In this expression, Y t in Eq. (36) is replaced by Y T = (Y t, Yt+1, . . . , YT ). Consequently, I(Y T → XT ) ≤ I(XT ;Y T )
and the difference may be interpreted as the information that would be gained about the current environmental
state xt from knowing the future signals yt+1, . . . , yT ; these signals are indeed informative about xt, since they
are correlated to xt through xt+1, . . . , xT , although they are not accessible at time t for a strategy π(σ|xt−1, yt)
which relies only on the current signal yt (keeping memory of the past signals yt−1 does not make a difference in
the present context where xt−1 is available). The mutual information I(XT ;Y T ) thus accounts for all statistical
correlations between XT and Y T , while the directed information I(Y T → XT ) accounts only for the correlations
that are consistent with the constraints of causality imposed on π(σ|xt−1, yt). Consistently with this interpretation,
the difference I(XT ;Y T )− I(Y T → XT ) can be shown to be I(XT−1 → Y T ).

Cost of uncertainty in presence of acquired information – Similarly, the uncertainty cost in presence of
side-information, given in Eq. (33), does not correspond to the rate H(X|Y ) of the conditional entropy H(XT |Y T ),
but instead to the rate H(X‖Y ) of the causally conditional entropy H(XT ‖Y T ) [40, 55], which is generally defined
by

H(XT ‖Y T ) ≡
T∑
t=1

H(Xt|Xt−1, Y t). (38)

For comparison, H(XT |Y T ) can be similarly expressed with Y t replaced by Y T in each term of the sum, thus
showing that H(XT ‖Y T ) ≥ H(XT |Y T ). In the context of our model, H(Xt|Xt−1, Y t) = H(Xt|Xt−1, Yt), and

hence Eq. (33) indicates that H
(qenv,δ)
p = H(X‖Y ). As the conditional entropy is related to the mutual information

by I(XT ;Y T ) = H(XT ) − H(XT |Y T ), the causally conditional entropy is related to the directed information by
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I(Y T → XT ) = H(XT )−H(XT ‖Y T ), or, in terms of rates, I(Y → X) = H(X)−H(X‖Y ).

Conclusion – The conclusions that the uncertainty cost is given by the rate of a causally conditional entropy,
which is greater than the rate of a conditional entropy,

H(qenv,δ)
p = H(X‖Y ) ≥ H(X|Y ), (39)

and the value of acquired information by the rate of directed information, which is smaller than the rate of mutual
information,

I(qenv,δ)
p = I(Y → X) ≤ I(X;Y ), (40)

can be extended beyond Markov processes to more general ergodic stochastic processes, provided one allows for arbi-
trary long memory, i.e., strategies of the form π(xt|xt−1, yt) [40]. More generally, the notion of directed information
appears as the relevant generalization of the notion of mutual information when causal relations, and not merely
statistical relations, must be taken into account [24, 25]; for instance, while the capacity of memoryless channels is
expressed in terms of a mutual information, the capacity of channels with feedback involves a directed information [56].

Coming back to our model, in absence of the simplifying assumption (A3) that the multiplication matrix f(σ;x)
is diagonal, problems involving both acquired and inherited information are generally difficult to solve; in particular,
no closed-form expression for the growth rate generalizing Eq. (15) is available. Horse race models are an exception,
due to the fact that the history of past types of any individual mirrors the history of past environmental states, since
only individuals with σt = xt survived at time t. This reduces the problem to an effectively feedforward problem,
where π(σt|σt−1, yt) does not actually depend on the ”control variable” σt−1, but only on the ”primary variables”
xt−1 and yt. An other solvable case, for essentially the same reason, is the limit where any given environmental state
lasts long enough for a single type to dominate the population [33]: we show in appendix C how the problems of
delay and timing that generally arise in correlated environments with inherited information can be treated in this case.

VI. INDIVIDUAL STOCHASTICITY AND DISTRIBUTED INFORMATION

Cost of uncertainty – Retaining the assumptions (A1) and (A3) but now relaxing (A2) by allowing each individual
to perceive a different signal from the environment leads to a different generalization of the definitions of entropy and
mutual information, with no equivalent in the context of models of financial investment. In this case, the expression
for the growth rate, Eq. (15), is

Λ
(qenv,qin)
p;f (π) =

∑
x,x′

qenv(x′|x)ps(x) ln

(∑
y

f(x)π(x|y)qin(y|x′)

)
. (41)

Following the derivation given in Sec. IV, its optimal value can again be decomposed in two terms,

Λ̂
(qenv,qin)
p;f = Λ̂

(δ,δ)
p;f −H

(qenv,qin)
p . (42)

The second term, which is again independent of f ,

H(qenv,qin)
p ≡ min

π

∑
x,x′

qenv(x′|x)ps(x) ln

(∑
y

π(x|y)qin(y|x′)

)−1

, (43)

generalizes the notions of entropy H
(η,δ)
p = H(Xt) and conditional entropy H

(qenv,δ)
p = H(Xt|Yt) obtained for horse

races in Sec. IV [75]. From the concavity of the logarithm (Jensen’s inequality),

H(Xt|X ′t) ≤ H(qenv,qin)
p ≤ H(Xt|Yt), (44)

where, following the usual notations, X ′t refers to the random variable for the component x′t of the signal defined
at the population level, and Yt to the random variable for the signal yt effectively perceived by an individual (see Fig. 1).

As an illustration of the properties of this generalized entropy, showing in particular that, generically,

H
(qenv,qin)
p < H(Xt|Yt), we compare in Fig. 5 and 6 the benefits of the same channel q located either at the
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FIG. 4: Models of communication channels for qenv and qin when the environment alternates between two states 1 and 2. Left:
the binary erasure channel qe (BEC), which erases the input with probability ε and transmits it faithfully with probability
1−ε. Right: the binary symmetric channel qs (BSC), which exchanges the input with probability ε and transmits it unchanged
with probability 1− ε. The channels δ and η presented in Fig. 3 represent extreme cases: the noiseless channel δ corresponds
to the BEC or the BSC with ε = 0, and the informationless channel η to the BEC with ε = 1, or the BSC with ε = 1/2.

population level, qenv = q, qin = δ, or at the individual level, qenv = δ, qin = q, taking for q two classical examples of
communication channels defined in Fig. 4 (the details of the calculations are presented in appendix B).

Value of information – The fact apparent in Fig. 5-6 that the same communication channel q induces less

uncertainty when located at an individual level than at a population level, i.e., Λ̂
(q,δ)
p;f ≤ Λ̂

(δ,q)
p;f , holds generally, again

as a consequence of Jensen’s inequality,

Λ̂
(qin∗qenv,δ)
p;f ≤ Λ̂

(qenv,qin)
p;f ≤ Λ̂

(δ,qin∗qenv)
p;f , (45)

where qin ∗ qenv denotes the convolution of qin and qenv, i.e., qin ∗ qenv(y|x) =
∑
x′ qin(y|x′)qenv(x′|x). An important

implication is that the mutual information between the source Xt and the perceived signal Yt does not represent an

upper bound for the value of acquired information. From the relation H
(qenv,qin)
p + I

(qenv,qin)
p = Λ̂

(δ,δ)
p;f − Λ̂

(η,η)
p;f , we have

indeed a relation dual to Eq. (44) for the value of information I
(qenv,qin)
p ≡ Λ̂

(η,η)
p − Λ̂

(qenv,qin)
p :

I(Xt;Yt) ≤ I(qenv,qin)
p ≤ I(Xt;X

′
t). (46)

Informally, we may say that the value of the information acquired collectively by the population exceeds the value
of the information acquired by any of its members. This result contrasts with the law of requisite variety derived in
other contexts which states that the mutual information I(Xt;Yt) between the environmental fluctuation Xt and the
signal Yt derived from it sets an upper limit on the value of information for control [19, 21]. In comparison with the

mutual information I(Xt;Yt), I
(qenv,qin)
p is not symmetrical in Xt and Yt, although it similarly satisfies I

(qenv,qin)
p = 0

if and only if Xt and Yt are independent.

Optimal strategy and Bayesian inference – Another remarkable feature displayed in Fig. 5 and 6 is the possible
existence of a critical level of noise εc(p) below which a stochastic response is not required for achieving optimal growth.
This contrasts with the horse race model, where a non-deterministic response is required not only to achieve an optimal
growth, but even more fundamentally to avoid extinction. Here, the diversification of the population caused by the
deterministic response of individuals perceiving stochastic signals is optimal at low error rates. Although estimation
and decision can be separated in principle [57], and although a Bayesian computation, as in Eq. (25), would provide
an optimal estimation, the simplest implementation of the optimal strategy involves here no computation at all: when
ε < εc(p), the individual can process the signal as if it were perfectly reliable [76]. This situation is analogous to
the situation with optimal source-channel communication: although in principle a solution can always be obtained
by treating separately the problems of source compression and channel coding [12], a computationally much simpler
solution may be available, which in some cases does not involve any coding at all [58]. Living systems are unlikely to
solve stochastic control problems by relying on the estimation-decision separation principle, as they are unlikely to
solve communication problems by relying on the source-channel separation principle [8].

VII. GENERAL MULTIPLICATION RATES AND FUNCTIONAL INFORMATION

Retaining the assumptions (A1) and (A2) but relaxing (A3) leads to a different departure from the usual concepts

of communication theory. Now the cost of uncertainty Λ̂
(δ,δ)
p;f − Λ̂

(qenv,qin)
p;f and the value of acquired information

Λ̂
(qenv,qin)
p;f − Λ̂

(η,η)
p;f are no longer necessarily independent of the multiplication rates f(σ;x), and cannot therefore
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FIG. 5: Value of information for a two-state model with
information transmitted through a binary erasure channel
situated either at the population level (red curve) or at
the individual level (blue and green curve). The probabil-
ity of the environmental state 1 is here fixed to p(1) = 0.1.
The binary erasure channel qe, defined in Fig. 4, has a
probability of erasure ε which is varied along the x-axis.
When the channel is at the population level, the value of

information Λ̂
(qe,δ)
p;f − Λ̂

(η,η)
p;f corresponds to the mutual in-

formation between the input and output signals which,
for the binary erasure channel, is a linear function of ε
(red line). When the same channel is at the individual

level, the value of information Λ̂
(δ,qe)
p;f − Λ̂

(η,η)
p;f is generally

higher (blue and green curve), and a transition occurs at
εc(p) = (1 − 2p(1))/(1 − p(1)) = 0.88: for ε < εc(p), the
optimal strategy is a pure strategy with π̂(1|∗) = 0 (blue
part), while for ε > εc(p), it becomes a mixed strategy
with both π̂(1|∗) > 0 and π̂(2|∗) > 0 (green part). The
calculations are detailed in appendix B 2.

FIG. 6: Value of information for a two-state model with in-
formation transmitted through a binary symmetric channel
situated either at the population level (red curve) or at the
individual level (blue and green curve). The probability of
the environmental state 1 is here fixed to p(1) = 0.1. The
binary symmetric channel qs, defined in Fig. 4, has a prob-
ability of error ε which is varied along the x-axis. When the
channel is at the population level, the value of information

Λ̂
(qs,δ)
p;f − Λ̂

(η,η)
p;f corresponds to the mutual information be-

tween the input and output signals (red curve). When the
same channel is at the individual level, the value of infor-

mation Λ̂
(δ,qs)
p;f − Λ̂

(η,η)
p;f is generally higher (blue and green

curve), and a transition occurs at εc(p) = p(1) = 0.1: for
ε < εc(p), the optimal strategy is to adopt a pure strategy
when receiving either of the two possible signals 1 and 2,
i.e., π̂(1|1) = π̂(2|2) = 1 (blue part), while for ε > εc(p) the
optimal strategy is a mixed strategy with π̂(2|2) = 1 but
0 < π̂(1|1) < 1 (green part). The calculations are detailed
in appendix B 3.

be written as statistical quantities H
(qenv,qin)
p or I

(qenv,qin)
p depending only on the transition matrices p(xt|xt−1),

qenv(x′t|xt) and qin(yt|x′t).

Uncertainty cost – A very special feature of models satisfying assumption (A3), i.e., models where the
multiplication rates have a diagonal form, with f(σ;x) = f(x) if σ = x and 0 otherwise, is that the environmental
states x and the individual types σ are in one-to-one correspondence. The environment is however generally defined
independently of any reference to the internal states of the individuals of the population. We should therefore
not expect a quantity like the entropy rate of the environmental process, H(X), to correctly capture the cost of
uncertainty, which depends essentially on the definition of the internal states of the individuals. The environmental
states may indeed specify details that are irrelevant to the growth of the population, say the positions of distant

stars, which inflate arbitrarily the entropy rate H(X) without influencing the uncertainty cost Λ̂
(δ,δ)
p;f − Λ̂

(qenv,qin)
p;f .

As an example, consider an horse race where each distinct environmental state corresponds to a distinct ordered
list of arrival of all the horses participating to the race; this description indeed includes useless information if only
the first horse has a non-zero pay-off. In such a case, we may still capture the uncertainty cost by a statistical
quantity by partitioning the environmental states into exclusive sets X (σ) grouping the lists where horse σ is
first, such that f(σ;x) = f(σ) if x ∈ X (s) and 0 otherwise: assuming i.i.d. races, the uncertainty cost then
correspond to the entropy of the coarse-grained description H(Xt) rather than the entropy H(Xt), with obviously
H(Xt) ≥ H(Xt) (see also appendix D). More generally, the uncertainty cost ignores any stochastic element of the
environment that is irrelevant for the growth of the population, but nevertheless contributes to the entropy rate H(X).

In addition, when several types σ have non-zero multiplication rates f(σ;x) > 0 in a given environmental state x,
the non-optimal but yet surviving types contribute to the growth although they are not associated with the exact
prediction of the optimal type σ for the given environment x. Again, this implies that an entropic measure based only
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FIG. 7: Nature of the optimal strategy for a model
with 2 types and 2 environmental states whose prob-
abilities p(1) and p(2) = 1 − p(1) are varied along
the x-axis, and with multiplication rates whose ratio
γ = f(1; 1)/f(2; 1) − 1 = f(2; 2)/f(1; 2) − 1 is varied
along the y-axis (this ratio may be thought as quantifying
the dissimilarity between the two types). No information
is assumed to be available. The blue curves delineate
the regions of the parameter space where the optimal
strategy involves switching, with 0 < π̂(1) < 1, from
the regions where one of the two types is excluded from
the optimal strategy, corresponding to homogeneous
populations, with π̂(1) = 1 or π̂(2) = 1. The location of

the transitions is given by γ
(1)
c = (1 − p(1))/p(1) − 1 and

γ
(2)
c = p(1)/(1 − p(1)) − 1. The calculations are detailed

in appendix B 1.

FIG. 8: In green: Optimal growth rate Λ̂
(η,η)
p for a model

in absence of information with 2 types and 2 environmen-
tal states, as a function of the probability p(1) of the first
environmental state. The values of multiplication rates are
f(1; 1) = 3, f(2; 2) = 2, f(2; 1) = 2, and f(1; 2) = 1. The
dashed lines represent transitions between mixed and pure

strategies: for p(1) < p
(1)
c = 0.2 the type σ = 1 is excluded

from the optimal strategy, while for p(1) > p
(2)
c = 0.6 this

is the case for σ = 2. In red: Optimal growth rate Λ̂
(δ,δ)
p;f

for the same model in presence of complete information.

In blue: Optimal growth rate Λ̂
(δ,δ)
p,f − H(Xt) for a corre-

sponding horse race model with f(1; 1) = 3, f(2; 2) = 2
and f(2; 1) = f(1; 2) = 0 and no information. This exam-

ple shows that the uncertainty cost Λ̂
(δ,δ)
p − Λ̂

(η,η)
p (differ-

ence between the red and green curves) is generally strictly
smaller than the entropy of the environment H(Xt) (dif-
ference between the red and blue curves). The calculations
are detailed in appendix B 1.

on the environmental process tends to overestimate the uncertainty cost. We show in appendix D that the following
bound holds:

Λ̂
(δ,δ)
p;f − Λ̂

(qenv,qin)
p;f ≤ H(qenv,qin)

p . (47)

Here, the generalized entropy H
(qenv,qin)
p is the uncertainty cost for a horse race model with same channels p(xt|xt−1),

qenv(x′t|xt) and qin(yt|x′t). As defined in the previous sections, this generalized entropy is independent of the value

of the multiplication rates f . The quantity Λ̂
(δ,δ)
p;f − Λ̂

(qenv,qin)
p;f can be seen as a measure of uncertainty that refines

H
(qenv,qin)
p by accounting for the effective reduction of uncertainty due to the redundancy between environments

and types encoded in f . This is a further refinement over the concept of entropy H
(qenv,qin)
p , which itself can be

seen as refining Hartley’s measure lnn by accounting for the effective reduction of uncertainty due to the unequal
probabilities of the different environmental states. In the two cases, the refinement takes the form of an inequal-
ity, with equality if f is diagonal in the first case, and if all the environmental states are equiprobable in the second case.

Value of information – The corresponding inequality holds for the value of information, with

Λ̂
(qenv,δ)
p;f − Λ̂

(η,δ)
p;f ≤ I

(qenv,δ)
p . (48)

In particular, under the assumptions (A1) and (A2) such that I
(qenv,δ)
p is given by the mutual information I(Xt, Yt),

the value of information is bounded by I(Xt, Yt). The deviation of Λ̂
(qenv,δ)
p;f − Λ̂

(η,δ)
p;f from I

(qenv,δ)
p , when the

multiplication rates are non-diagonal, can be interpreted as arising from the fact that the environmental states have
no longer an exclusive ”meaning”, in the sense that the same environment can be beneficial to different types, and
different environments to the same type. A noticeable feature of models with non-diagonal multiplication matrices
is also that the optimal strategy may actually exclude some types σ, i.e., we may have π̂(σ|y) = 0 for some σ. A
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Assumptions Extra assumption Value of information Cost of uncertainty Sec.

Λ̂
(qenv,qin)
p;f − Λ̂

(η,η)
p;f Λ̂

(δ,δ)
p;f − Λ̂

(qenv,qin)
p;f VII

(A3) no survival for σt 6= xt

f(σt;xt) = f(xt)δ(xt|σt) I
(qenv,qin)
p H

(qenv,qin)
p VI

(A2) (A3) no individuality directed information causally conditional entropy

qin(yt|x′t) = δ(yt|x′t) I(Y → X) H(X‖Y ) V

(A1) (A2) (A3) no feedback mutual information conditional entropy

π(σt|σt−1, yt) = π(σt|yt) I(Xt;Yt) H(Xt|Yt) IV

TABLE II: Expressions for the value of information and cost of uncertainty under different assumptions. The top row cor-
responds to the most general model and each subsequent row involves an additional assumption, indicated in the second
column. The last row thus defines the most restrictive model, which is the horse model from which we started in Sec. IV.
We then presented the implications of relaxing successively the various assumptions that it involves, thus moving up in this

table. The different measures of information are related by Λ̂
(qenv,qin)
p;f − Λ̂

(η,η)
p;f ≤ I

(qenv,qin)
p ≤ I(X ′ → X) ≤ I(Xt;X

′
t) and

I(Y → X) ≤ I
(qenv,qin)
p , where I(X ′ → X) = I

(qenv,δ)
p and I(Y → X) = I

(qenv∗qin,δ)
p : see Eqs. (40), (45), (48). Sim-

ilarly, the different measures of uncertainty are related by Λ̂
(δ,δ)
p;f − Λ̂

(qenv,qin)
p;f ≤ H

(qenv,qin)
p ≤ H(Xt|Yt) ≤ H(X‖Y ) and

H(X‖X ′) ≤ H(qenv,qin)
p , where H(X‖X ′) = H

(qenv,δ)
p and H(X‖Y ) = H

(qenv∗qin,δ)
p : see Eqs. (39), (44), (47).

trivial example is when two types σ and σ′ are present, for which f(σ;x) > f(σ′;x) in any environmental state x, in
which case the optimal strategy will never populate σ′. A less trivial, yet analytically solvable class of models which
display the same feature is defined by extending (A3) to the case where the off-diagonal terms of the matrix f(σ;x)

are non-zero but constant, i.e., f(σ;x) = f(x) for σ = x and f(σ;x) = f̃(x) < f(x) for σ 6= x (see appendix B); in
particular for n = 2 states, the model is solvable for arbitrary matrices f , as illustrated in Fig. 7 and 8 [77]. Another
important solvable class of models is when a separation of time scales allows for an adiabatic approximation, as
presented in appendix C.

General conclusion – To sum up the results of the last three sections, the relaxations of the assumptions (A1),
(A2) and (A3) lead to generalizations of the notions of entropy and mutual information in three different directions:
(i) to account for the constraints of causality (Sec. V); (ii) to account for the level at which information is processed
(Sec. VI); (iii) to account for the meaning of information encoded in the matrix f(σ;x) (this section). In the cases
(i) and (iii), which had been previously studied from the standpoint of financial investment, the mutual information
appears as an upper limit for the value of acquired and inherited information, consistently with Ashby’s law of requisite

variety [19]; this limit cannot generally be reached, and a tighter and achievable upper bound is provided by I
(qenv,qin)
p .

In the case (ii), which is specific to the biological interpretation of the model, the fundamental limit I
(qenv,qin)
p can be

greater than the mutual information I(Xt;Yt). In general, all three assumptions (A1), (A2) and (A3) may be jointly
violated, and the uncertainty cost and value of information need to be measured accordingly. These conclusions are
summarized in Table II. The problem of measuring the degree of adaptation of a population with given communication
channels qenv and qin can be treated as well. As shown in appendix E, the identity involving the relative entropy that
emerged from the analysis of horse race models in Sec. IV, Eq. (21), is more generally replaced by an inequality.

VIII. GENERALIZATIONS

Regulation is a general requirement for the sustainability and optimization of systems facing uncertainties. It
forms the core issue of control in engineering, where acquired information is referred to as feedforward information
and inherited information as feedback information (see Table I and Fig. 9). Quantifying the value of limited
information is a long-standing open conceptual problem in control theory [23, 57]. For growing populations, the
law of large numbers and its extension, ergodicity, make the problem well-posed by introducing in the long-term,
or infinite horizon limit in the language of control theory, an unambiguous loss-function, the growth rate of the
population (see Sec. III). Uncertainties are however generally not only due to limited information, and regulation
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FIG. 9: An alternative representation to
Fig. 1, where the strategy π(σt|σt−1, yt) is
viewed as a controller. The controller receives
both feedforward information yt through the
sensor q(yt|x′t), and feedback information
σt−1, subject to delay (see also Table I).

FIG. 10: Generalization of the model presented in Fig. 1, which corresponds
to a particular form of the transition matrix τ(σt|σt−1, xt).

must typically be made in presence of other constraints. These constraints can generally be classified in three
categories: (i) constraints on estimation, i.e., on the acquisition of information about the current internal and
external states, σt−1 and xt, with the constraints on acquired information considered so far being an example; (ii)
constraints on decision, i.e., on the computation of σt from σt−1 and yt; (iii) constraints on actuation, i.e., on the
implementation of the switch from σt−1 to σt. Biological constraints of the later type for instance arise when the
types correspond to different developmental stages, in which case constraints of irreversibility are common [78]. While
constraints on the organisms limit the ability of a population to control its growth rate, it is interesting to notice
that constraints on the environment, such as constraints on the possible states that may follow the current envi-
ronmental state, render the future more predictable and have therefore the opposite effect of enhancing this ability [79].

To encompass more general forms of constraints, our model can be extended to the model represented in Fig. 10,
which considers a population with internal states σt and environmental states xt described by

Nt(σt) = f(σt;xt)
∑
σt−1

τ(σt|σt−1, xt) Nt−1(σt−1), (49)

where τ(σt|σt−1, xt) is a transition matrix, and where the environment follows as before a Markov chain p(xt|xt−1).
Imposing constraints on control formally amounts to restricting τ(σt|σt−1, xt) to a subset C of the set of conceivable
transition matrices. Different ”information patterns” [57], specifying ”who knows what and when”, can thus be
enforced. For instance, excluding feedback information corresponds to restricting τ(σt|σt−1, xt) to the form τ(σt|xt),
and excluding feedforward information to restricting it to the form τ(σt|σt−1). The model with constraints on acquired
information presented in Sec. II can be formulated in this more general framework, by considering x̃t = (xt, x

′
t)

for the environmental states, σ̃t = (σt, yt) for the internal states, and p̃(x̃t|x̃t−1) = qenv(x′t|xt)p(xt|xt−1) for the
transition matrix between environmental states; the transition matrix τ(σ̃t|σ̃t−1, x̃t) must then be constrained to the
form τ((σt, yt)|(σt−1, yt−1), (xt, x

′
t)) = π(σt|σt−1, yt)qin(yt|x′t), which defines a subset C(qin) of admissible transition

matrices. Several extensions of the model presented in Sec. II can similarly be formulated. For instance, the sensor qin

may be taken to depend on the type σt, thus allowing for different phenotypes to have different abilities to sense the
environment: τ(σt|σt−1, xt) must then be constrained to the form τ(σt|σt−1, xt) =

∑
yt
π(σt|σt−1, yt)qin(yt|xt, σt−1).

Another possible extension is to consider that the types are transmitted with some errors by constraining τ(σt|σt−1;xt)
to the form τ(σt|σt−1;xt) =

∑
zt
π(σt|zt, xt)µ(zt|σt−1), where µ(zt|σt−1) represents a given ”mutational” transition

matrix.

The questions (Q1) and (Q2) formulated in Sec. III can be addressed in this more general framework by taking

again the growth rate Λp;f (τ) as a fitness function. A first point of comparison is provided by Λ̂p;f , the optimal growth
rate in absence of any constraint, obtained after optimization over τ . The optimal transition matrix, τ̂(σt|σt−1;xt), is
easily characterized: at time t, it converts all the population to one of the types σ maximizing f(σ;xt), irrespectively
of the type σt−1 inherited from the previous generation. This optimal strategy is, however, generally excluded by
the presence of constraints, characterized by the subset C to which τ(σt|σt−1, xt) must belong. Given C, question
(Q1) becomes the problem of finding a transition matrix τ̂ which maximizes Λp;f (τ) subject to the constraint τ ∈ C.
This defines an optimal growth rate under constraints, Λ̂

(C)
p;f . The arguments of the previous sections can then be

repeated mutatis mutandis. For intance, under the assumptions (A1) and (A3), the solution τ̂ is independent of f
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and is associated with a generalization of Shannon’s entropy, H
(C)
p ≡ Λ̂p;f − Λ̂

(C)
p;f , given by

H(C)
p = min

τ∈C

∑
x

p(x) ln
1

τ(x;x)
. (50)

More generally, this quantity provides an upper bound for the cost of the constraints Λ̂p;f − Λ̂
(C)
p;f . On the other

hand, question (Q2) pertains to the value of relaxing a constraint C to a lesser constraint C′ ⊃ C, and amounts to

estimating the quantity I
(C;C′)
p;f = Λ̂

(C′)
p;f − Λ̂

(C)
p;f , which generalizes the notion of mutual information I

(qenv,qin)
p obtained

when C corresponds to the presence of the channels (qenv, qin), and C′ to the absence of any channel.

The major problem not addressed in the present framework is the specification of the constraints and, more
broadly, the characterization of the costs for implementing any particular strategy. For instance, when analyzing
the value of acquired information, not only should we take into account the benefit provided by the communication
channel qin, but also the cost for producing and operating it. This cost c(qin) is to be measured in terms of growth
rate, and its value will determine whether the sensor qin has an adaptive value [59]. More generally, a trade-off
between cost and accuracy will arise if c(qin) is taken to be an increasing function of the accuracy of qin. From
this point of view, imposing constraints in the form of a subset C of achievable transition matrices corresponds to
assuming that some strategies have infinite costs while some other are cost-less. Costs are also generally present
not only in the estimation step, but also in the decision and actuations steps; for instance, there may be a cost for
switching between types, as there are transaction costs in finance [60].

Several other extensions can also be considered to explore other features of regulation in biological populations. For
instance, from the standpoint of understanding the origin of diversification in a population, a key aspect of biological
environments is their spatial heterogeneities. This feature may be incorporated at a mean-field level (not taking into
account any geometrical properties of space) by making not only the acquired information yt specific to individuals, but
also the environmental factor zt affecting their multiplication rates. We may thus assume that a ”micro-environment”
(yt, zt) derives independently for each individual from the ”macro-environment” (xt, x

′
t), through a transition matrix

v(yt, zt|xt, x′t) attached to each individual. The dynamics of the population is then described by

Nt(σt) =
∑
zt

f(σt; zt)
∑

yt,σt−1

π(σt|σt−1, yt) v(yt, zt|xt, x′t) Nt−1(σt−1), (51)

where xt and x′t are again quenched environmental variables defined through p(xt|xt−1) and qenv(x′t|xt). We
recover our previous model when v(yt, zt|xt, x′t) = qin(yt|x′t) δ(zt|xt), i.e., zt = xt. More generally, if yt and zt
are conditionally independent, i.e., v(yt, zt|xt, x′t) = qin(yt|xt) u(zt|xt) for some transition matrix u(zt|xt), then
the model can be reduced to a model without spatial heterogeneity but with an effective multiplication rate
f̄(σt, xt) =

∑
zt
f(σt, zt)u(zt|xt). Note that this effective multiplication rate will generally be non-integer, even

when f(σt, zt) represents an actual number of offsprings. f̄(σt;xt) can also be non-diagonal even though f(σt;xt) is
diagonal, so that in this case uncertainty is not measured by Shannon entropy even under the restrictive assumptions
(A1), (A2), (A3). Note also that while the relevant temporal average of the multiplication rates is the geometric
mean, the relevant spatial average in presence of spatial heterogeneities is an arithmetic mean. Another type of spatial
heterogeneity is when several patches of population are present and each patch experiences independently an environ-
mental sequence x̄ described by the same Markov chain p(xt|xt−1). In the limit of infinitely many patches, the growth
of the overall population is then not described by the quenched Lyapunov exponent Λquenched = limt→∞(1/t)E ln |Nt|
introduced in Sec. III, but by the annealed Lyapunov exponent Λannealed = limt→∞(1/t) lnE|Nt|, which averages
over all environmental sequences instead of focusing on typical ones. These two growth rates, sometimes called
the ”stochastic growth rate” and the ”megamatrix growth rate” in the ecological literature [61], satisfy the general
relation Λquenched ≤ Λannealed, which reflects the fact that with many independent patches, the overall population
benefits from the few patches that experience atypical but particularly favorable environmental sequences.

Finally, we may mention briefly several other generalizations. A relatively straightforward one, which preserves
a close connection to communication theory, is to consider continuous environmental and organismal states [62]; an
interesting phenomenon of discretization whereby the optimal distribution of phenotype is actually discrete has then
been described [63]. The extension to continuous time is also relatively straightforward (see e.g. [33]). Models where
both time and space are continuous are also commonly considered in finance, and can be treated with the tools of
stochastic calculus [64]. Another kind of generalization is to introduce a longer time scale at which the transmission of
the matrix π is itself subject to mutations, thus allowing to address the issue of the evolution of π towards π̂. Finally,
a more challenging extension is to account for interactions between individuals. For instance, it would be interesting
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to consider situations where the environment of one population is determined by another population, and to include
the possibilities of communication between individuals, or of sexual reproduction.

IX. CONCLUSION

Applications of the concepts of information theory to biology have often been criticized on two main grounds [65]:
their failure to account for the directionality of information (the statistical problem of causality), and their failure to
account for the value of information (the semantic problem of meaning). Following treatments of analogous problems
in engineering and finance, we presented and analyzed a model in which these two features could be integrated.
The analysis revealed another limitation of the usual concepts of information theory: their failure to account for the
different levels at which information may be processed in a population, which led us to new generalizations of the
entropy and mutual information.
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PXt|X′t(x|X

′
t)‖π ∗ qin(x|X ′t)
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∑
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∑
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∑
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Appendix A: Definition and properties of the model

In mathematical terms, our model belongs to the class of Athreya-Karlin models of multi-type branching process in
random environments [42, 69]. Without seeking the highest level of rigor and generality, it can be described as follows.
Let the environmental process be a discrete time, stationary and ergodic, stochastic process x̄ = (x1, . . . , xt, . . . ) with
a finite set of states. Let S be a finite set of admissible internal states σ (types) of the individuals in a population.

Let ξ
(t)
σ|σ′;i be the random variable giving the number of offsprings of type σ that a particular individual i of type σ′

generates at time t. The reproductive process, identical and independent for each individual i, is described by the

joint distribution Pt
(
ξ

(t)
σ|σ′}

)
, which is conditional on the environmental state xt, and therefore dependent on t. To

complete the definition, we may consider starting at time t = 1 with a single individual in the given type σ0 ∈ S,
but the asymptotic results, conditional on non-extinction, will not depend on this initial composition. The number
Zt(σ) of individuals of type σ at time t is a random variable in terms of which the branching process can recursively
be defined as

Zt(σ) =
∑
σ′∈S

Zt−1(σ′)∑
i=1

ξ
(t)
σ|σ′;i, (A1)

where different values of i correspond to different realizations of the same random variable.

Our most basic model assumes that the reproductive process has the particular form

Pt
(
ξ

(t)
σ|σ′ = ξ

)
= R(ξ|σ;xt) π(σ|σ′;xt), (A2)

where R(ξ|σ;xt) is generally a transition matrix, with ξ ∈ N. Eq. (3) is obtained by taking the expectation in Eq. (A1)

with respect to the random variables ξ̄ = {ξ(t)
σ|σ′;i}t,σ,σ′,i for a given environmental sequence x̄ = (x1, . . . , xt, . . . ):

Nt(σ) = Eξ̄[Zt(σ)|x̄]. (A3)

Nt(σ) depends on R(ξ|σ;xt) only through the multiplication rates defined by

f(σ;x) = Eξ[ξ R(ξ|σ;x)|x] =

∞∑
ξ=0

ξ R(ξ|σ;x). (A4)

Other properties, not considered here, such as the probability of extinction, may depend on the fluctuations in the
number of offsprings.

In the case of a constant environment, only two events can happen with positive probability [42, 69]: either the
population goes extinct, i.e., |Zt| ≡

∑
σ Zt(σ) = 0 for some t, or it explodes, i.e., Zt → ∞ with t → ∞. There are

therefore two essential questions: (1) What is the probability of extinction? (2) What is the growth rate in the case
of explosion? The answer to these questions is contained in the matrix A given by Aσσ′ = Eξσ|σ′ [ξσ|σ′ ] = f(σ)π(σ|σ′).
Assuming that A is irreducible and aperiodic, it follows from the Perron-Frobenius theorem that A has an unique
largest real eigenvalue λ = exp(Λ) with a corresponding eigenvector v having strictly positive components, which can
be normalized so that

∑
σ vσ = 1. Let Q(σ) be the probability of extinction when initiating the population with a

single individual of type σ; then the answer to (1) is:

Q(σ) < 1, ∀σ if and only if Λ > 0. (A5)

When Λ > 0, the branching process is said to be supercritical, and we assume that our model is in this regime to
prevent almost sure extinction. For such processes, the answer to (2) is given by Kesten-Stigum theorem [70]:

e−tΛZt →Wv with probability 1, (A6)

where W is a scalar random variable with the following property:

P(W > 0) > 0, if and only if E

∑
σ,σ′

ξσ|σ′ max(0, ln ξσ|σ′)

 <∞. (A7)
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We assume that our model satisfies this X logX condition, i.e., Eξσ|σ′ [ξσ|σ′ max(0, ln ξσ|σ′)] =∑
ξ(ξ ln ξ)R(ξ|σ)π(σ|σ′) < ∞. Thus, under the assumption of non-extinction, the distribution of the popula-

tion is asymptotically described by the distribution of the first moments Nt(σ) = Eξ[Zt(σ)|x], i.e., by the dominant
eigenvector v of A [70]:

lim
t→∞

Zt(σ)∑
σ′ Zt(σ

′)
= vσ almost surely conditionally on non-extinction of the population. (A8)

In the case of varying environments, there is no longer necessarily convergence of the composition of the population
as in Eq. (A6), but the Lyapunov exponent for the product of random matrices A(t) . . .A(1) still corresponds to the
typical growth rate of growing populations: Λ = limt→∞

1
t ln (

∑
σ Zt(σ)) almost surely, as indicated in Eq. (16). The

stability condition required for this result to hold is that, with probability one [53],

lim sup
t→∞

1

t
E

[
ln min

σ

∑
σ′

(A(t)A(t−1) . . .A(1))σσ′

]
= lim sup

t→∞

1

t
ln ‖A(t)A(t−1) . . .A(1)‖, (A9)

where ‖M‖ represents a matrix norm, for instance ‖M‖ =
∑
σ,σ′ |Mσ,σ′ |.

Appendix B: Analytically solvable models

Here, we present the analysis of our model in a few simple cases where a solution can be obtained analytically.
Beyond horse race models, which are defined by the assumptions (A1), (A2), (A3) introduced in Sec. II, a general
class of solvable model is when (A3) is relaxed to allow for non-zero multiplication rate of the form f(σ;x) = f(x)

if σ = x, and f(σ;x) = f̃(x) < f(x) otherwise (horse race models correspond to the case where f̃(x) = 0). Under
the assumptions (A1) and (A2) that the environment is i.i.d. and that qin = δ, the mathematical simplicity of these
models stems from the fact that π(x|x′) contributes only to one term indexed by x in the following sum:

Λ
(qenv,qin)
f ;p (π) =

∑
x,x′

qenv(x′|x)p(x) ln
(
f̃(x) + (f(x)− f̃(x))π(x|x′)

)
. (B1)

The case where qin is a binary erasure channel as defined in Fig. 4 has also the same property. A subclass of this class
of model is when the organisms and the environment have only two states, as in Fig. 5, 6, 7, and 7. We present the
details of the analysis of this two-state model below, always assuming that the environment is i.i.d..

1. Two-state generic model with no information

In absence of information,

Λ
(η,η)
f ;p (π) = p(1) ln(f(1; 1)π(1) + f(2; 1)π(2)) + p(2) ln(f(1; 2)π(1) + f(2; 2)π(2)). (B2)

It is convenient to introduce the variables

γ1 =
f(1; 1)− f(2; 1)

f(2; 1)
, γ2 =

f(2; 2)− f(1; 2)

f(1; 2)
(B3)

which, without loss in generality, can be assumed to be positive. Using π(1) +π(2) = 1, the expression for the growth
rate then becomes

Λ
(η,η)
f ;p (π) = Λ̂(δ,δ)

p + p(1) ln
1 + γ1π(1)

1 + γ1
+ p(2) ln

1 + γ2π(2)

1 + γ2
. (B4)

Since π(1) + π(2) = 1, the optimization involves only one independent variable, say π(1), subject to the constraints
0 ≤ π(1) ≤ 1. As a function of p(1), we thus obtain the following solution:

Λ̂
(η,η)
f ;p =


Λ̂

(δ,δ)
f ;p − p(1) ln(1 + γ1) if p1 ≤ p(1)

c ,

Λ̂
(δ,δ)
f ;p −H

(η,η)
p + p(1) ln

(
1 + γ1

(1+γ1)γ2

)
+ p(2) ln

(
1 + γ2

(1+γ2)γ1

)
if p

(1)
c ≤ p(1) ≤ p(2)

c ,

Λ̂
(δ,δ)
f ;p − p(2) ln(1 + γ2) if p(1) ≥ p(2)

c ,

(B5)
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with p(1)
c =

γ2

γ1 + γ2 + γ1γ2
, p(2)

c = 1− γ1

γ1 + γ2 + γ1γ2
. (B6)

The first and third cases correspond respectively to π̂(1) = 0 and π̂(1) = 1, when not switching is optimal, and the
intermediate case to π̂(1) = [p(1)(γ1 + γ2 + γ1γ2)− γ2]/(γ1γ2). The location of the transitions between the different

cases is represented in Fig. 7 for γ1 = γ2, and the optimal growth rate Λ̂
(η,η)
p as a function of p(1) in Fig. 8 for a

particular choice of the parameters.

2. Two-state diagonal model with a binary erasure channel

We assume here that assumption (A3) holds, i.e., f is diagonal, but consider that assumption (A2) does not hold,

and qin is the binary erasure channel qe defined in Fig. 4. The optimization problem to be solved is H
(δ,qe)
p =

−maxπ Υ
(qe)
p (π) with

Υ(qe)
p (π) = p(1) ln(π(1|1)(1− ε) + π(1|∗)ε) + p(2) ln(π(2|2)(1− ε) + π(2|∗)ε). (B7)

Clearly π̂(1|1) = π̂(2|2) = 1, so that we have a single independent variable over which to optimize, say π ≡ π(1|∗) =
1− π(2|∗). If we introduce γ = ε/(1− ε) then

Υ(qe)
p (π) = ln(1− ε) + p(1) ln(1 + γπ) + p(2) ln(1 + γ(1− π)). (B8)

This is formally equivalent to the optimization performed above in absence of information (this formal equivalence
extends beyond two-state models). As a function of the level of noise ε, the solution for the binary erasure channel is

H(δ,qe)
p =

{
−min(p(1), p(2)) ln(1− ε) if ε ≤ εc(p)
H

(η,η)
p − ln(2− ε) if ε ≥ εc(p)

, with εc(p) = max

(
1− 2p(1)

1− p(1)
,

1− 2p(2)

1− p(2)

)
. (B9)

If, for instance, we assume that p(1) ≤ p(2), then εc(p) = (1− 2p(1))/(1− p(1)) and π̂ = 0, H
(δ,qe)
p = −p(1) ln(1− ε)

for ε < εc(p). An illustration is given in Fig. 5 where we compare for p(1) = 0.1 the individual information I
(δ,qe)
p =

H
(η,η)
p −H(δ,qe)

p with the mutual information I
(qe,δ)
p = H

(η,η)
p −H(qe,δ)

p = (1 − ε)H(η,η)
p for the same binary erasure

channel.

3. Two-state model diagonal with a binary symmetric channel

We assume here that assumption (A3) holds, i.e., f is diagonal, but consider that assumption (A2) does not
hold, and qin is the binary symmetric channel qs defined in Fig. 4. The binary symmetric channel corresponds to
qs(1|1) = qs(2|2) = 1−ε and qs(2|1) = qs(2|1) = ε, where, without loss in generality, we can assume that 0 ≤ ε ≤ 1/2.

The optimization problem to be solved is H
(δ,qs)
p = −maxπ Υ

(qs)
p (π) with

Υ(qs)
p (π) ≡ p(1) ln(π(1|1)(1− ε) + π(1|2)ε) + p(2) ln(π(2|2)(1− ε) + π(2|1)ε). (B10)

We have here two independent parameters over which to optimize, π1 = π(1|1) and π2 = π(2|2), since π(2|1) =
1−π(1|1) = 1−π1 and π(1|2) = 1−π(2|2) = 1−π2. If we introduce γ = ε/(1− ε), the function to optimize becomes

Υ(qs)
p (π1, π2) ≡ ln(1− ε) + p(1) ln(π1 + (1− π2)γ) + p(2) ln(π2 + (1− π1)γ). (B11)

The calculation shows that the only case where we can have both 0 < π̂1 < 1 and 0 < π̂2 < 1 is the blind case where
γ = 1 and ε = 1/2, for which we have the proportional betting solution π̂1 = p(1) and π̂2 = p(2). In any other case,
π̂1 = 1 or π̂2 = 1, which reduces the problem to an optimization over a single variable. The solution is

H(δ,qs
p =

{
− ln(1− ε) if ε ≤ εc(p)
H

(0)
p − εc(p) ln((1− ε)/ε) if ε ≥ εc(p)

, with εc(p) = min(p(1), p(2)). (B12)

If for instance p(1) ≤ p(2), when εc(p) < p(1) we have both π̂1 = 1 and π̂2 = 1 while for εc(p) > p(1), we have π̂2 = 1

but π̂1 < 1. An illustration is given in Fig. 6 where we compare for p(1) = 0.1 the individual information I
(δ,qs)
p with

the mutual information I
(qs,δ)
p for the same binary symmetric channel.
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Appendix C: A solvable model in non i.i.d. environments

We connect here the model proposed in [33] to the framework of this paper and discuss how uncertainties in timing
can thus be quantified. We will thus make explicit the time scales involved in the trade-off between short-term
adjustment to the current environmental conditions, and longer term anticipation of changes of these conditions.

Two time scales govern short-term adjustement: the time τ(ε) that an environmental state ε lasts, and the time
α(ε; ε′) that it takes for the type with largest multiplication rate in ε to dominate the population; this later adjustment
time depends on the composition of the population at the time of the environmental change, and the notation α(ε; ε′)
indicates that we consider a population initially adjusted to some other environmental state ε′. In the so-called
adiabatic regime where the population has always time to adjust to the current environment, i.e., α(ε; ε′)� τ(ε) for
all ε and ε′ 6= ε, the dynamics of the population has a common feature with horse race models: at the end of an
environmental period, most of the population shares a common type, much as in horse race models where, at the
end of a time step, only the money invested in the winning horse yields a non-zero payoff. In horse race models,
the particular form of the multiplication rates, where f(σ; ε) = 0 whenever σ 6= ε, implies that the uncertainty cost

Λ̂ω;f − Λ̂
(C)
ω;f can be measured by the entropic function Ĥ

(C)
ω defined in Eq. (50), where the transition matrix for the

environment is here denoted ω(εt|εt−1). We shall see that the same function contributes to the uncertainty cost of
systems in the adiabatic regime; in particular, the entropy of the environmental process can account for part of the
uncertainty cost, as first noticed in [33].

The characteristic time that an environmental state ε lasts can be defined as the mean time τ(ε) spent in ε

τ(ε) =
1

1− ω(ε|ε)
. (C1)

To simply define an adjustment time α(ε; ε′), we assume that each environmental state ε is associated with a different
optimal type denoted with the same symbol σ = ε, i.e., f(ε; ε) > f(σ; ε) for all σ 6= ε. We also assume that, in the
course of a single time step, an individual is more likely to stay in its current type than to adopt a new one, i.e.,
π(σ′|σ; ε)� 1 for σ′ 6= σ; these two assumptions ensure that, in a constant environment ε, an optimal type σ = ε can
indeed dominate the population if given sufficient time. Under these assumptions, a population initially composed of
N0 individuals adjusted to environment ε′, has, after a time t spent in environment ε, a number Nt(ε) of individuals
of type ε which is given by

Nt(ε) ' f(ε; ε)tQ(ε; ε′)N0. (C2)

Here, Q(ε; ε′), which satisfies 0 < Q(ε; ε′) < 1, can be interpreted as a (non-symmetric) overlap between the compo-
sitions of the population before and after the environmental change from ε′ to ε; as shown in appendix F, it is given
for ε 6= ε′ by

Q(ε; ε′) = ∆(ε; ε′)π(ε|ε′; ε′) + ∆(ε′; ε)π(ε|ε′; ε) with ∆(ε; ε′) =
f(ε; ε′)

f(ε′; ε′)− f(ε; ε′)
. (C3)

The adjustment time α(ε; ε′) can then be defined as the time at which the sub-population of type ε starts to overtake
the sub-population of type ε′, Nt(ε) ∼ Nt(ε′); given Eq. (C2) and Nt(ε′) ∼ f(ε′; ε)tN0, this leads to

α(ε; ε′) =
1

ln f(ε; ε)− ln f(ε; ε′)
ln

(
1

Q(ε; ε′)

)
. (C4)

In the ”adiabatic regime” where environmental periods exceed the adjustment times, i.e., α(ε; ε′) � τ(ε) for all ε
and ε′ 6= ε, we obtain from Eq. (C2) a simple expression for the Lyapunov exponent (see appendix F),

Λ
(adiabatic)
ω;f (π) '

∑
ε

ω(ε) ln f(ε; ε)−
∑
ε,ε′

ω(ε|ε′)ω(ε′) ln

(
1

Q(ε; ε′)

)
, (C5)

with the convention that, when ε′ 6= ε, Q(ε; ε) = π(ε|ε; ε). The first term on the right hand side corresponds to the

optimal Lyapunov exponent, Λ̂ω;f , and the second, when optimized over π, to the uncertainty cost Λ̂ω;f − Λ̂
(C)
ω;f . This

second term depends, via Q(ε; ε′), on both the transition matrix π, and the values of the multiplication rates f . These
two contributions are, however, set apart when the transition matrix π can be factorized in Eq. (C3), which occurs
in two notable cases. One case is in absence of a sensor, when π(ε|ε′; ε′) = π(ε|ε′; ε) = π(ε|ε′), and, therefore,

Q(ε; ε′) = Γ(ε; ε′)π(ε|ε′) with Γ(ε; ε′) = ∆(ε; ε′) + ∆(ε′; ε). (C6)
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Another case is in presence of a reliable sensor, when π(ε|ε′; ε′)� π(ε|ε′; ε), and, therefore,

Q(ε; ε′) ' Γ(ε; ε′)π(ε|ε′; ε) with Γ(ε; ε′) = ∆(ε′; ε). (C7)

In both of these cases, the second term of the right-hand side of Eq. (C5) can be decomposed as∑
ε,ε′

ω(ε|ε′)ω(ε′) ln

(
1

Q(ε; ε′)

)
=
∑
ε,ε′ 6=ε

ω(ε|ε′)ω(ε′) ln Γ(ε; ε′)−
∑
ε,ε′

ω(ε|ε′)ω(ε′) lnπ(ε|ε′; ε). (C8)

The term −
∑
ε,ε′ ω(ε|ε′)ω(ε′) lnπ(ε|ε′; ε) is analogous to the term obtained for a horse-race model in a Markov

environment. The other term, involving Γ(ε; ε′), may be interpreted as the cost of the delay for transferring the
majority of the population from one type to the next (such a term is absent in horse race models where transfers of
capital can occur instantaneously prior to the environmental change).

Since only the term −
∑
ε,ε′ ω(ε|ε′)ω(ε′) lnπ(ε|ε′; ε) depends on the transition matrix π, the optimal strategy is the

one that minimizes it, and it has exactly the same features as in horse race models. If we consider for instance the
situation with no information, we find π̂(η)(ε|ε′) = ω(ε|ε′), the proportional betting strategy, and the optimal value of
the last term in Eq. (C8) is the entropy rate

H(η)
ω = −

∑
ε,ε′

ω(ε|ε′)ω(ε′) lnω(ε|ε′). (C9)

It is instructive to make here explicit the characteristic times τ(ε) giving the mean duration in each environmental
state ε. This is done by introducing ω̃(ε|ε′) = ω(ε|ε′)/τ(ε′), the probability that the environment changes from state
ε′ to state ε 6= ε′, given that it does change its state, and ω̃(ε) = ω(ε)τ(ε)/τ , the probability to end up in state ε when
such an environmental change occurs, with τ =

∑
ε ω̃(ε)τ(ε) representing the mean duration of a period of constant

environment. With these definitions, it can indeed be shown that

H(η)
ω =

1

τ
H

(η)
ω̃ +

∑
ε

τ(ε)

τ
ω̃(ε)H

(η)
b(1/τ(ε)) (C10)

where b(1/τ(ε)) refers to the Bernoulli distribution with parameter 1/τ(ε) whose entropy is

H
(η)
b(1/τ(ε)) = − 1

τ(ε)
ln

1

τ(ε)
−
(

1− 1

τ(ε)

)
ln

(
1− 1

τ(ε)

)
. (C11)

Eq. (C10) shows that the uncertainty has two components, each of which measurable by an entropy: an uncertainty

about the nature of the next environment, captured by H
(η)
ω̃ , and an uncertainty about the timing of environmental

changes, captured by H
(η)
b(1/τ(ε)). As in horse race models, the maladjustment cost has, in the ”adiabatic” limit and

in absence of information, the form of a relative entropy which can also be decomposed in two terms; when the
corresponding expressions are expanded for large τ(ε), the formulas presented in [33] are thus recovered.

Appendix D: Proof of the entropic bound

We prove here the bound on the uncertainty cost,

Λ̂
(δ,δ)
p;f − Λ̂

(qenv,qin)
ω;f ≤ H(qenv,qin)

p , (D1)

for i.i.d. environments but arbitrary multiplication rates f .

By defining ε = (x, x′), ω(ε) = qenv(x′|x)p(x) and q(y|ε) = qin(y|x′), the Lyapunov exponent Λ
(qenv,qin)
p;f (π) is more

concisely, but equivalently, written

Λ
(q)
ω;f (π) =

∑
ε

ω(ε) ln

(∑
σ,y

f(σ; ε)π(σ|y)q(y|ε)

)
. (D2)

For each environmental state ε, let φ(ε) be one of the types σ with maximal multiplication rate, such that
f(σ; ε) ≤ f(φ(ε); ε) for all σ. An assumption is here that f(φ(ε); ε) > 0 for all ε, which is necessary for the population
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not to go extinct, assuming that ω(ε) > 0 for all ε.

From the definition of Λ̂
(q)
ω;f as maxπ Λ

(q)
ω;f (π), for any probability matrix π(σ|y), we have

Λ̂
(δ)
ω;f − Λ̂

(q)
ω;f ≤

∑
ε

ω(ε) ln f(φ(ε); ε)−
∑
ε

ω(ε) ln

(∑
σ,y

f(σ; ε)π(σ|y)q(y|ε)

)
(D3)

= −
∑
ε

ω(ε) ln

(∑
σ,y

f(σ; ε)

f(φ(ε); ε)
π(σ|y)q(y|ε)

)
(D4)

= −
∑
ε

ω(ε) ln

∑
y

π(φ(ε)|y) +
∑

σ 6=φ(ε)

f(σ; ε)

f(φ(ε); ε)
π(σ|y)

 q(y|ε)

 (D5)

≤ −
∑
ε

ω(ε) ln

(∑
y

π(φ(ε)|y)q(y|ε)

)
. (D6)

Let ρ̂(ε|y) be a transition matrix that achieves the minimum in the definition of H
(q)
ω , which is

H(q)
ω = min

ρ

∑
ε

ω(ε) ln

(∑
y

ρ(ε|y)q(y|ε)

)−1

. (D7)

Under the assumption that φ is injective, by taking π(σ|y) = ρ̂(ε|y) if σ = φ(ε), and π(σ|y) = 0 if there is no ε for
which σ = φ(ε), we define a probability matrix π for which the right-hand side of Eq. (D6) corresponds exactly to

H
(q)
ω . Hence

Λ̂
(δ)
ω;f − Λ̂

(q)
ω;f ≤ H

(q)
ω . (D8)

If φ is non-injective, an even tighter upper bound can be designed. To this end, we go back to the variables (x, y′)
and define a coarse-grained environmental process whose states are the equivalent classes for the relation φ(x) = φ(z),
and whose probability distribution is defined on the quotient set by p̃(x̃) =

∑
z∈x̃ p(z) for every equivalent class

x̃ = {z : φ(z) = φ(x)}. Introducing also q̃env(x′|x̃) =
∑
x∈x̃ qenv(x′|x)p(x)/p̃(x̃), the expression in Eq. (D6) becomes

∑
x′,x

qenv(x′|x)p(x)

(∑
y

π(φ(x)|y)q(y|x′)

)
=
∑
x′,x̃

q̃env(x′|x̃)p̃(x̃) ln

(∑
y

π(φ(x̃)|y)q(y|x′)

)
, (D9)

where π̃(φ(x̃)|y) = π(φ(x)|y) is well-defined by definition of the equivalence relation. We are then reduced to the
injective case, and can therefore conclude

Λ̂
(δ,δ)
p;f − Λ̂

(qenv,q)
p;f ≤ H( ˜qenv,q)

p̃ . (D10)

Finally, it follows from the definition of generalized entropy H
(qenv,q)
p and from the concavity of the logarithm that

coarse-graining always reduces the entropy, i.e., H
( ˜qenv,q)
p̃ ≤ H

(qenv,q)
p , thus proving the entropic bound in the general

case.

Appendix E: Proof of the maladjustment bound

We prove here a bound on the cost incurred for following a non-optimal strategy. This bound generalizes the bound
established for models of financial investments where qin = δ [14]. We consider here an i.i.d. environment but arbitrary
multiplication rates f . If π̂p′ denotes an optimal strategy for the i.i.d. environment with probability p′(x) rather than
p(x), we show that

Λ̂
(qenv,qin)
p;f − Λ

(qenv,qin)
p;f (π̂p′) ≤ D(p‖p′), (E1)

where D(p‖p′) =
∑
x p(x) ln[p(x)/p′(x)] is the relative entropy between the environmental distributions p and p′.
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Writing the Lyapunov exponent Λ
(qenv,qin)
p;f (π) as in Eq. (D2), we show that

Λ̂
(q)
ω;f − Λ

(q)
ω;f (π̂ω′) ≤ D(ω‖ω′), (E2)

from which Eq. (E1) follows by taking ε = (x, x′) and ω(ε) = qenv(x′|x)p(x) and ω′(ε) = qenv(x′|x)p′(x).

The proof relies on the characterization of π̂ω′ in terms of the so-called Kuhn-Tucker conditions [14], which gener-
alizes to inequality constraints the method of Lagrange multipliers. These conditions imply here the existence of a
set of λy ≥ 0 satisfying

∑
ε

ω′(ε)

(
f(σ; ε)q(y|ε)∑

y′,σ′ f(σ′; ε)π̂ω′(σ′|y′)q(y′|ε)

){
= λy if π̂ω′(σ|y) > 0,

≤ λy if π̂ω′(σ|y) = 0,
(E3)

and
∑
y λy = 1.

After noticing that by taking the union of the two environmental state spaces if necessary, we can assume that
the two processes described by ω and ω′ have same states, we generalize a proof presented in [14] by considering the
following series of inequalities:

Λ̂
(q)
ω;f − Λ

(q)
ω;f (π̂ω′) =

∑
ε

ω(ε) ln

( ∑
y,σ f(σ; ε)π̂ω(σ|y)q(y|ε)∑

y′,σ′ f(σ′; ε)π̂ω′(σ′|y′)q(y′|ε)

)

=
∑
ε

ω(ε) ln

(
ω′(ε)

∑
y,σ f(σ; ε)π̂ω(σ|y)q(y|ε)

ω(ε)
∑
y′,σ′ f(σ′; ε)π̂ω′(σ′|y′)q(y′|ε)

)
+D(ω‖ω′)

≤ ln

(∑
ε

ω′(ε)
∑
y,σ f(σ; ε)π̂ω(σ|y)q(y|ε)∑

y′,σ′ f(σ′; ε)π̂ω′(σ′|y′)q(y′|ε)

)
+D(ω‖ω′)

= ln

(∑
y,σ

π̂ω(σ|y)
∑
ε

ω′(ε)

(
f(σ; ε)q(y|ε)∑

y′,σ′ f(σ′; ε)π̂ω′(σ′|y′)q(y′|ε)

))
+D(ω‖ω′)

≤ ln

(∑
y,σ

π̂ω(σ|y)λy

)
+D(ω‖ω′)

= ln

(∑
y

λy

)
+D(ω‖ω′)

= D(ω‖ω′),

(E4)

where the first inequality follows from the concavity of the logarithm (Jensen’s inequality), and the second from
Eq. (E3).

Appendix F: Perturbative approximation

With Nt representing the population vector whose components Nt(σ) are the mean number of individuals of type
σ, and assuming here that no information is acquired, Eq. (4) can be written

Nt+1 =
(
A(εt)

0 +A(εt)
1

)
Nt (F1)

where, using a braket notation, the elements of the matrices A(ε)
0 and A(ε)

1 , are

〈σ′|A(ε)
0 |σ〉 =

{
f(σ; ε) if σ′ = σ,

0 if σ′ 6= σ,
(F2)

〈σ′|A(ε)
1 |σ〉 =

{
−f(σ; ε)(1− π(σ|σ; ε)) if σ′ = σ,

f(σ′; ε)π(σ′|σ; ε) if σ′ 6= σ.
(F3)
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The rational for this decomposition is that A1 is a perturbation for A0 when the assumption is made that individuals
are less likely to switch to a new type than to retain their current type. To simplify the discussion, we also assume
that each environmental state ε is associated with an unique optimal type σ = ε, satisfying f(ε; ε) > f(σ; ε) for all
σ 6= ε.

Under these assumptions, we can derive approximate expressions for the eigenvalues and eigenvectors of A1 +A0

by a perturbative expansion. If λ
(ε)
σ , |ψ(ε)

σ 〉 and 〈ψ(ε)
σ | denote respectively the eigenvalue, and the right and left

eigenvectors of the matrix A(ε)
0 +A(ε)

1 , we have, to first order in the perturbative expansion:

λ(ε)
σ = f(σ; ε)π(σ|σ; ε), (F4)

|ψ(ε)
σ 〉 = |σ〉+

∑
σ′ 6=σ

f(σ′; ε)

f(σ; ε)− f(σ′; ε)
π(σ′|σ; ε)|σ′〉, (F5)

〈ψ(ε)
σ | = 〈σ|+

∑
σ′ 6=σ

f(σ′; ε)

f(σ; ε)− f(σ′; ε)
π(σ|σ′; ε)〈σ′|. (F6)

The domain of validity of this approximation can be estimating by comparing the first and second order contributions
to the eigenvalues, and we thus get the condition∣∣∣∣∣∣

∑
σ′ 6=σ

f(σ; ε)f(σ′; ε)

f(σ; ε)− f(σ′; ε)
π(σ′|σ; ε)π(σ|σ′; ε)

∣∣∣∣∣∣� f(σ; ε)(1− π(σ|σ; ε)), ∀σ, ε. (F7)

Given that 1− π(σ|σ; ε) =
∑
σ′ 6=σ π(σ′|σ; ε), a sufficient condition for Eq. (F7) to hold is

π(σ|σ′; ε)�
∣∣∣∣f(σ; ε)− f(σ′; ε)

f(σ′; ε)

∣∣∣∣ , ∀σ, σ′, ε (σ 6= σ′). (F8)

This shows that the underlying assumption behind the perturbative expansion is that changes in composition of the
population should primarily be due to differences in multiplication rates, rather than be due to switches to new types.

For the dynamics to be in the ”adiabatic regime”, it is furthermore necessary that the environment stays long
enough in any given state ε. When this is the case, the population vector Nt is, at the end of a period spent in

state ε, quasi aligned along the dominant eigenvector vector |ψ(ε)
ε 〉 that corresponds to the most favorable type for

environment ε, |ψ(ε)
ε 〉 ' |ε〉. If ε′ was the environmental state preceding the current state ε, the system is described

by |ψ(ε′)
ε′ 〉 at t = 0 and, at t = τ(ε), when the environmental state becomes ε, we require that∣∣∣∣∣∣

∑
σ 6=ε

〈ψ(ε)
σ |ψ

(ε′)
ε′ 〉

(
λ(ε)
σ

)τ(ε)

∣∣∣∣∣∣� 〈ψ(ε)
ε |ψ

(ε′)
ε′ 〉

(
λ(ε)
ε

)τ(ε)

. (F9)

This condition can be made explicit by using the perturbative formulas

〈ψ(ε)
σ |ψ

(ε′)
ε′ 〉 =

{
1 if σ = ε′,

f(σ;ε′)
f(ε′;ε′)−f(σ;ε′)π(σ|ε′; ε′) + f(ε′;ε)

f(σ;ε)−f(ε′;ε)π(σ|ε′; ε) if σ 6= ε′.
(F10)

Given ε, the longest delay time α(ε; ε′) is therefore when the preceding environment ε′ corresponds to the second

largest eigenvalue of A(ε)
1 , that is, when ε′ = σ such that f(σ; ε) = maxσ′ 6=ε f(σ′; ε). Denoting Q(ε; ε′) = 〈ψ(ε)

ε |ψ(ε′)
ε′ 〉

we thus obtain the condition f(ε′; ε)τ(ε) � f(ε; ε)Q(ε; ε′) or, equivalently,

τ(ε)� 1

ln f(ε; ε)− ln f(ε′; ε)
ln

1

Q(ε; ε′)
, (F11)

where the right-hand side can be taken as a definition for the adjustment time α(ε; ε′).

Let now denote ω̃(ε|ε′) the probability for the environment to change from state ε′ to state ε 6= ε′, given that it does
change its state. This is given by ω̃(ε|ε′) = ω(ε|ε′)/(1−ω(ε′|ε′)), where τ(ε′) = 1/(1−ω(ε′|ε′)) also corresponds to the
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mean time spent in state ε′. The unconditional probability to end up in state ε when an environmental change occurs
is ω̃(ε) = ω(ε)τ/τ(ε) where τ =

∑
ε w̃(ε)τ(ε) represents the mean duration of a period of constant environment. In

terms of these quantities, the growth rate is

Λ(adiabatic)
ω (π) =

1

τ

∑
ε,ε′ 6=ε

w̃(ε|ε′)w̃(ε′) ln

((
λ(ε)
ε

)τ(ε)

〈ψ(ε)
ε |ψ

(ε′)
ε′ 〉

)
, (F12)

which is also equivalent to

Λ(adiabatic)
ω (π) =

∑
ε,ε′

ω(ε|ε′)w(ε′) ln f(ε; ε)−
∑
ε,ε′

ω(ε|ε′)w(ε′) ln
1

Q(ε; ε′)
, (F13)

with the convention that Q(ε; ε) = π(ε|ε; ε), while Q(ε; ε′) for ε 6= ε′ is given by Eq. (C3).
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