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Abstract

The work is devoted to investigation of the canonical structure of regular, in
domain of definition U ⊆ R

m, the pencil of matrix-functions A(x) + λB(x).
It is supposed that detA(x) ≡ 0 and detB(x) ≡ 0 ∀ x ∈ U , and all roots of
the characteristic equation det(A(x) + λB(x)) = 0 with λ = λ(x) ∈ Cp(U),
are of constant multiplicity.
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In the study of linear partial differential-algebraic equations of the form

A(x)ut(x) +B(x)

n
∑

i=1

uxi
(x) + C(x)u(x) = f(x),

where coefficients A(x), B(x) and C(x) are singular, at every point of the
domain of definition U , matrix of Cp(U) functions depending on many vari-
ables, it remains an important question about the possibility of bringing the
pencil A(x)+λB(x) to a canonical form with the help of suitable p times dif-
ferentiable linear transformation (see, for example [1]-[3]). In the papers [4]-
[6], we considered the linear partial differential-algebraic equations with the
pencil A(x) + λB(x), which has the structure of the “rank-degree”. This is
perhaps the most simple structure of the pencil A(x) + λB(x), where it is
supposed that detA(x) ≡ 0 and detB(x) ≡ 0 ∀ x ∈ U , with non-multiple
finite and infinite elementary divisors of the pencil. The structure of the
matrix-functions pencil known as “rank-degree” in the first time appears
when studying of differential-algebraic systems [7] and later it was extended
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by the author of [7] to the case, when the pencil of matrix-functions depend
on the several variables.

In this paper, we consider some canonical srtucture of regular pencil
A(x) + λB(x), where it is supposed that detA(x) ≡ 0 and detB(x) ≡ 0
in U , with finite and infinite elementary divisors, which has constant multi-
plicity equal no less than one in U . As a result, we obtain sufficient conditions
for the p-smooth equivalence of the matrix-functions pencil to this canonical
form.

Throughout the paper, we use the following notations. Let A(x) and
B(x) be an n×n matrices of Cp(U) real-valued functions of m real variables
x ≡ (x1, x2, . . . , xm) ∈ U ⊆ R

m, where U is supposed to be a compact and
simply connected domain in the R

m. The expression of the form A(x) +
λB(x), with λ = λ(x) ∈ Cp(U) is called the matrix-functions pencil. One
says, that the pencil under consideration is regular in U , if exists a function
c = c(x) ∈ Cp(U), for which the condition det(A(x) + cB(x)) 6= 0 ∀ x ∈ U
holds [8]. In what follows, we need in the following two definitions.

Definition 1. [9], [10], [11] Two square matrices of Cp(U) functions A(x)
and Ã(x) of order n are called p-smoothly similar if there exists some matrix-
function T (x) satisfying the following conditions:

(i) the elements of T (x) belong to Cp(U);

(ii) T (x) is nonsingular in the domain of definition U ;

(iii) T−1(x)A(x)T (x) = Ã(x) in U .

Moreover, if T (x) is the unitary matrix-function, then one says that the
matrix-functions A(x) and Ã(x) are p-smoothly unitarily similar in U [8].

Definition 2. Two pencils of square Cp(U) matrix-functions of order n, say,
A(x)+λB(x) and Ã(x)+λB̃(x) is called p-smoothly equivalent, if there exists
a pair of matrix-functions P (x) and Q(x), independing on λ and satisfying
the following conditions:

(i) the elements of P (x) and Q(x) belong to Cp(U);

(ii) P (x) and Q(x) are nonsingular in U ;

(iii) P (x)(A(x) + λB(x))Q(x) = Ã(x) + λB̃(x) in U .

The investigation of the structure of pencils in the classical theory of ma-
trices is commonly based on the properties of their similarity to the canonical
forms. When studying the matrix-functions pencils, we keep this trend.
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Our paper is organized as follows. In the second section, we prove an
auxiliary result concerning p-smooth similarity of matrix-functions with a
single eigenvalue identically equal to zero to some nilpotent matrix. In the
third section, we prove a theorem on the p-smooth equivalence of pencil
A(x) + λB(x) to some specified canonical form. This theorem is the main
result of our paper. In conclusion of the paper, we give two examples of
pencils to illustrate our theorem.

1. Lemma on the similarity of matrix-functions

A well-known fundamental theorem of Shur and Toeplitz [12] guaran-
tees that every constant matrix A is unitarily similar to a triangular matrix.
Let us put the following question: whether this statement holds for matrix-
functions? It turns out that for analytic matrix-functions of one variable the
theorem of Shur and Toeplitz remains valid [13], but for analytic matrix-
functions of several variables this theorem, in general, is not true. For exam-
ple, consider the matrix-function with single eigenvalue identically equal to
zero in the domain of definition, namely,

A(x) =

(

x1(x1 + x2) −(x1 + x2)
2

x2
1 −x1(x1 + x2)

)

, U = R
2.

It is evident that all elements of A(x) are analytic (polynomial) functions at
every point of U , but nevertheless the matrix-function A(x) can not be cast to
triangular form with the aid of a nonsingular analytic linear transformation,
since the functions α(x) and β(x) from lemma 1 of the paper [14], which
must satisfy the conditions:

α(x)x1(x1 + x2)− β(x)x2

1 = 0, α2(x) + β2(x) = 1

are evidently not analytic at the point (0, 0).
This example shows that p-smoothly unitary similar matrix-functions of

several variables should satisfy additional conditions. In the case when the
matrix-function have single eigenvalue being equal identically zero in U , ad-
ditional condition to be required is the one of constant rank of the matrix-
function in U . Let us prove the following auxiliary statement.

Lemma 1. Let A(x) be an n× n matrix-function defined in U ⊆ R
m satis-

fying the following conditions:
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(i) the elements of A(x) belong to the space Cp(U);

(ii) the A(x) has single eigenvalue being equal identically to zero in U ;

(iii) A(x) has constant rank in U . Then A(x) is p-smoothly unitarily similar

to some nilpotent matrix-function N (x).

Proof. The method of proof, in general, follows the line suggested in the
papers [12] and [13]. Thus, there is no need to write down in detail all the
proof of the lemma. Let us consider only some important aspects of the
proof.

Let X(x) be a right eigenvector of A(x), corresponding to the eigenvalue
λ ≡ 0 in U . Let us prove that the elements of eigenvector X(x) belong to
the space Cp(U). We write down the equation for the right eigenvector

A(x)X(x) = 0. (1)

Since, by assumption, the rank of A(x) does not depend on x in U , then (see
lemma 2, [11]) there exists a pair of Cp(U) matrix-functions P (x) and Q(x)
nonsingular in U , such that

P (x)A(x)Q(x) = diag{Er,O}, where r ≡ rank(A(x)).

It is obvious that r < n. Let {ei, i = 1, n} be standard orthonormal basis of
linear space R

n. It is easily seen that vector-function X(x) = Q(x)en is the
solution of equation (1). Furthermore, the all components of vector X(x)
belong to the space Cp(U). Let us show now that it is possible to construct,
attached to X(x), the orthonormal system of linearly independent vectors

X̂1(x), X̂2(x), . . . , X̂n(x), (2)

satisfying the following conditions:1

X̂1(x) = X(x)/‖X(x)‖, (3)

X̂i(x)
⊤ · X̂j(x) = 0, ∀ i 6= j, i, j = 1, n ∀ x ∈ U , (4)

Xi(x) ∈ Cp(U), ‖X̂i(x)‖ ≡ 1, ∀ i = 1, n. (5)

1
Here ‖ · ‖ denotes euclidean norm.
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Consider following set of vector-functions [13]

Z1(x) = Q(x)en, Z2(x) = Q(x)en−1, . . . , Zn(x) = Q(x)e1. (6)

Since the matrix-function Q(x) is nonsingular in U , then (6) gives the set of
linearly independent vector-functions U . Applying the Gram-Schmidt pro-
cedure to (6), we obtain the orthogonal set of vectors

X1(x) = Z1(x),

X2(x) = Z2(x)−
X⊤

1 (x) · Z2(x)

X⊤

1 (x) ·X1(x)
X1(x),

X3(x) = Z3(x)−
X⊤

1 (x) · Z3(x)

X⊤

1 (x) ·X1(x)
X1(x)−

X⊤

2 (x) · Z3(x)

X⊤

2 (x) ·X2(x)
X2(x), (7)

. . . . . . . . . . . . . . . . . .

Xn(x) = Zn(x)−
X⊤

1 (x) · Zn(x)

X⊤

1 (x) ·X1(x)
X1(x)− · · · −

X⊤

n−1(x) · Zn(x)

X⊤

n−1(x) ·Xn−1(x)
Xn−1(x).

By construction, each of vector-functions Xi(x) is not equal to zero vector in
U . This means that

X⊤

i (x) ·Xi(x) 6= 0, i = 1, n, ∀ x ∈ U

and the components of vector-functions (7) belong to the space Cp(U). More-
over, the vector-functions X̂i(x) = Xi(x)/‖Xi(x)‖ satisfy required condi-
tion (3)-(5). Then, clearly, the matrix-function

U(x) = (X̂1(x), X̂2(x), . . . , X̂n(x))

is nonsingular in U . Moreover, it satisfies the condition U⊤(x) = U−1(x),
that is, U(x) is the unitary matrix-functions. It remains to prove that

U(x)−1A(x)U(x) = N (x),

where N (x) is some nilpotent matrix-function. This part of the proof goes
by induction and completely coincides with the proof of theorem Shur and
Toeplitz [12]. Therefore, we will not dwell on this part of the proof. So, the
lemma is proved.
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It is worth to remark the third condition of the lemma is sufficient, but not
necessary. We can give an example, when the rank of A(x) is variable in the
domain of definition U , but nevertheless A(x) is p-smoothly similar to some
nilpotent matrix-function. For example, consider the matrix-function

A(x) =





x1 −1 x1(x1 + x2)
x2
1 −x1 −x1 − x2

0 0 0



 , U = R
2.

On the line given by the equation x2 = −x1, the rank of A(x) is equal to
one, while outside this line the rank of A(x) is two. Remark, that in this
example, there are not isolated points of change of the rank. In this case, we
are able construct the unitary matrix-function U(x) in U . It is given by

U(x) =
1

√

1 + x2
1





1 x1 0
x1 −1 0
0 0 1





while the nilpotent matrix-function N (x) takes the following form:

N (x) = (1 + x2

1)





0 1 0
0 0 x1 + x2

0 0 0



 .

2. The theorem on canonical structure of regular matrix-functions

pencil

Let us prove the theorem on canonical form of regular matrix-functions
pencil.

Theorem 2. Let the following conditions be satisfied:

(i) the all roots of characteristic polynomial det(A(x)+λB(x)) are real and
of constant multiplicity in the domain of definition U ;

(ii) the leading coefficient of polynomial det(A(x)+λB(x)) is not identically
equal to zero on U ;

(iii) the ranks of A(x) and B(x) are independent of x ∈ U and less than

dimension n.
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Then the pencil A(x)+λB(x) is p-smoothly equivalent to the following canon-

ical form:

diag{Ed,M(x), El̂}+ λ diag{J (x), El,N (x)}, (8)

where Ed denotes identity matrix of order d; M(x) and N (x) are some

nilpotent matrices of orders l and l̂, respectively, l̂ = n − d − l; J (x) =
diag{J1,J2, . . . ,Jk}, where Ji for i = 1, k are nonsingular matrix-functions

of orders pi, respectively;
∑k

i=1
pi = d; every block Ji has single eigenvalue

−1/λi(x) in U ; λi(x) for i = 1, k being eigenvalues of the characteristic

polynomial det(A(x) + λB(x)) are not equal to zero in U .

Proof. It is obvious, that the coefficients of characteristic polynomial ∆(λ, x) =
det(A(x) + λB(x)) belong to the space Cp(U). Moreover, it is known, that
the roots λi(x) for i = 1, k + 1 belong to the space Cp(U) (see lemma 1, [10]).
First condition of the theorem, require that the roots of ∆(λ, x) do not co-
incide in U , that is, λi(x) 6= λj(x) ∀ i 6= j and ∀ x ∈ U . The second
condition of the theorem excludes the case, when ∆(λ, x) ≡ 0 in U , that is,
the case of singular pencil. In these circumstances, there exists some function
c = c(x) ∈ Cp(U), such that c(x) 6= 0 ∀ x ∈ U for which the condition

det(A(x) + cB(x)) 6= 0 ∀ x ∈ U

holds. The function c(x) can be constructed, for instance, as the arithmetic
mean of the two neighboring roots of characteristic polynomial ∆(λ, x).

Let A1(x) ≡ A(x) + cB(x), then

A(x) + λB(x) = A1(x) + (λ− c)B(x). (9)

Multiplying the equation (9) by the matrix A−1

1 (x) on the left, yields

A−1

1 (x) [A(x) + λB(x)] = En + (λ− c)A−1

1 (x)B(x). (10)

Let us consider for matrix-function A−1

1 (x)B(x) its characteristic polynomial

∆̃(ξ, x) = det(A−1

1 (x)B(x)− ξEn),

with ξ = ξ(x) being some unknown function. Making use of elemetary
properties of the determinant, we can write

∆̃(ξ, x) = (−1)n detA−1

1 (x) det(ξA(x) + (ξc− 1)B(x)). (11)
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Let us write down the characteristic polynomial ∆(λ, x) in the form

∆(λ, x) =
n

∑

i=0

Si(x)λ
i, (12)

where the coefficients Si(x) are the sums of the all minors of order n, com-
posed of the n − i rows of A(x) and the i rows of B(x). Clearly, S0(x) and
Sn(x) are determinants of A(x) and B(x), respectively.

In virtue of the third condition the theorem, the ranks of A(x) and B(x)
are less than dimension n. Hence, S0(x) ≡ 0 and Sn(x) ≡ 0 in U . Then,
among the roots of the polynomial ∆(λ, x) we can always find the root which
is identically equal to zero in U . It can be assumed, without loss of generality,
that, say, λk+1(x) be a zero root of multiplicity l, where l ≥ 1. From what
we said, it follows that (12) takes the form

∆(λ, x) = λl
l+d
∑

i=l

Si(x)λ
i−l, l + d ≤ n, (13)

where l and d is independent of x in U . Since the multiplicities of the roots
of polynomial ∆(λ, x) are constant in U , then coefficients Sl(x) and Sl+d(x)
are not equal to zero in U . In virtue of conditions the theorem, (13) is also
specified as

∆(λ, x) = Sl+d(x)λ
l

k
∏

i=1

(λ− λi(x))
pi, where

k
∑

i=1

pi = d. (14)

Together with ∆(λ, x), we consider the polynomial

∆̂(µ, λ, x) = det(µA(x) + λB(x))

with some µ being some unknown function µ = µ(x). Let us write down the
latter as

∆̂(λ, x) =

n
∑

i=0

Si(x)λ
iµn−i.

Making use of (13) and (14) we get

∆̃(λ, x) = (−1)nǫ(x)ξ l̂
(

ξ −
1

c

)l k
∏

i=1

(

ξ −
1

c− λi(x)

)pi

, (15)
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with

ǫ(x) = detA−1

1 (x)Sl+d(x)c
l

k
∏

i=1

(c− λi(x))
pi .

It is worth to remember that in the relation (15) c 6= λi(x) for all x ∈ U and
for all i = 1, n. On the other hand, we can write

∆̃(λ, x) = (−1)nξn +O(ξn−1), (16)

where O(ξn−1) stands for the sum of the terms containing degrees of ξ less,
than n. Comparing relations (15) and (16), we conclude that ǫ(x) ≡ 1. Thus,

∆̃(λ, x) = (−1)nξ l̂
(

ξ −
1

c

)l k
∏

i=1

(ξ − ξi(x))
pi with ξi(x) =

1

c− λi(x)
.

Since λi(x) 6= λj(x) for all i, j = 1, n and c 6= 0 in U , then, according to the
theorem from [15] there exists the matrix-function T (x), which satisfies all
the conditions of the definition 1 and the following relation:

T−1(x)A−1

1 (x)B(x)T (x) = diag{J1(x), J2(x), . . . , Jk(x),M(x), N(x)},

where Ji(x) for i = 1, k are nonsingular in U and square matrix-functions
with pair-wise unequal eigenvalues ξi for i = 1, n. According to the theorem
from [15], M(x) is the nonsingular in U matrix-function of order l with one
eigenvalue equal to 1/c, while N(x) is the matrix-function of order l̂ with
one eigenvalue being identically equal to zero in U .

Multiplying the pencil from (10) by the T−1(x) and T (x) on the left and
on the right, respectively, we obtain

En + (λ− c)diag{J1(x), J2(x), . . . , Jk(x),M(x), N(x)}

= diag{Ep1 − cJ1(x), Ep2 − cJ2(x), . . . , Epk − cJk(x), El− cM(x), El̂− cN(x)}

+ λ diag{J1(x), J2(x), . . . , Jk(x),M(x), N(x)}. (17)

Since, the ranks of matrix-functions B(x), J(x) and M(x) are constants
in U , then, in virtue of the known property of rank [8], the rank N(x) is
independent of x in U . Lemma 1 says, that N(x) is p-smoothly unitary
similar to some nilpotent matrix-function N̂(x). This means that there exists
the nonsingular unitary matrix-functions U(x), satisfying the relation

U−1(x)N(x)U(x) = N̂(x).
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Take the following matrix-function:

Ũ(x) = diag{Ed, El, U(x)}.

Multiplying the pencil (17) by the Ũ−1(x) and Ũ(x) on the left and on the
right, respectively, we bring this pencil to the form

diag{Ep1 − cJ1(x), Ep2 − cJ2(x), . . . , Epk − cJk(x), El − cM(x), El̂ − cN̂(x)}

+ λ diag{J1(x), J2(x), . . . , Jk(x),M(x), N̂(x)}. (18)

Let us consider now the following blocks Epi − cJi(x) for i = 1, k and the
characteristic polynomials for each of them:

det(Epi − cJi(x)− νiEpi) = (−1)picp
i

det

(

Ji(x)−
1− νi

c
Epi

)

(19)

By assumption, the function c must not coincide with any root of charac-
teristic polynomial ∆(λ, x) in U . In particular, this means that c 6= 0 in
U . Since, the roots of (19), namely, νi = −λi(x)/(c− λi(x)) are not equal
to zero in U , then the matrix-functions Epi − cJi(x) are nonsingular in U .
Multiplying the pencil (18) by the matrix-function

J̄(x) = diag{Ĵ(x), El, (El̂ − cN̂(x))−1},

on the left whith

Ĵ(x) = diag{(Ep1 − cJ1(x))
−1, (Ep2 − cJ2(x))

−1, . . . , (Epk − cJk(x))
−1},

we obtain the pencil

diag{Ed, El − cM(x), El̂}+ λ diag{J (x),M(x),N (x)}, (20)

where
J (x) = diag{J1(x),J2(x), . . . ,Jk(x)}

with blocks Ji(x) = (Epi − cJi(x))
−1Ji(x) and N (x) = (El̂ − cN̂(x))−1N̂(x).

The matrix-functionN (x) is nilpotent, since it is constructed as a product
of triangular and nilpotent matrix-functions. Each block Ji(x) in (20) is
nonsingular in U and has unique eigenvalue −1/λi(x) ∀ i. Multiplying the
pencil (20) by the M̄(x) = diag{Ed,M

−1(x), El̂} on the left, gives

diag{Ed, M̂(x), El̂}+ λ diag{J (x), El,N (x)}, (21)

10



with M̂(x) ≡ M−1(x) − cEl. Consider the block M̂(x). Its characteristic
equation takes the form

det

(

M(x) −
1

c+ ζ
El

)

= 0, ζ 6= −c ∀ x ∈ U ,

where ζ ≡ ζ(x) is some unknown function. From the latter it follows, that
all eigenvalues of M̂(x) are identically equal to zero, because all eigenvalues
of M(x) are equal to 1/c. Furthermore, the rank of A(x) is constant in U .
Taking into account the property of the rank, we conclude that the rank of
M̂(x) is independent of x ∈ U . According to the lemma 1, there exists the
nonsingular in U unitary matrix-function , satisfying the relation

Ū−1(x)M̂(x)Ū(x) = M(x),

where M(x) is some nilpotent matrix-function.
Let Û(x) ≡ diag{Ed, Ū(x), El̂}.Multiplying the pencil (21) by the matrix-

functions Û−1(x) and Û(x) on the left and on the right, respectively, we
obtain the pencil (8). Thus, we have proved the existence of the following
nonsingular matrix-functions in U :

P (x) = Û−1(x)M̄(x)J̄(x)Ũ−1(x)T−1(x)A−1

1 (x),

Q(x) = T (x)Ũ(x)Û(x),

which bring the pencil A(x)+λB(x) to the canonical form (8). The elements
of P (x) andQ(x) belong to the spase Cp(U). Therefore the theorem is proved.

In conclusion of this section, let us spend some lines to give a pair of
remarks.

Remark 1. Let us require, in circumstances of the theorem 2, the imple-
mentation of the following relations

rank B(x) = deg [det(A(x) + λB(x))] (22)

and
rank B(x) = deg [det(µA(x) +B(x))] , (23)

where µ ≡ µ(x) ∈ Cp(U) is some unknown function, then the pencil A(x) +
λB(x) is specified to be p-smoothly equivalent to the canonical form (8), in
which

N (x) ≡ Ol and M(x) ≡ Ol̂,

11



where Ol is the zero block of order l. In this case A(x) + λB(x) is called
the pencil satisfying the criterion “rank-degree”. The structure of this pencil
was investigated in [7].

Remark 2. If, in circumstances of the theorem 2 and conditions (22) and
(23), we additionally require that all the roots of the characteristic polyno-
mial det(A(x)+λB(x)) are simple, then the pencil A(x)+λB(x) is p-smoothly
equivalent to a canonical form (8), in which

N (x) ≡ Ol, M(x) ≡ Ol̂, J (x) = diag {−1/λ1(x),−1/λ2(x), . . . ,−1/λk(x)} ,

where λi(x) are roots of the characteristic polynomial det(A(x) + λB(x)).

3. Examples

The goal of this section is to show the pair of simple examples to illustrate
our theorem 2.

Example 1. Consider the pencil

A(x) + λB(x) =





x1 + x2 0 0
0 0 0
0 0 1



+ λ





1 0 0
0 x1x2 −x2

2

0 x2
1 −x1x2,



 (24)

where x ∈ U = [a, b] × [a, b] ⊆ R
2, and a > 0. Clearly, rank A(x) =

rank B(x) = 2 for x ∈ U and elements of A(x) and B(x) are the ana-
lytic (polynomial) functions. Characteristic polynomial for the pencil (24) is
specified as

det(A(x) + λB(x)) = x1x2λ(λ+ x1 + x2). (25)

The roots of polynomial (25) are λ1 ≡ 0 and λ2(x) = −x1 −x2. They do not
coincides in U and their multiplicity are constants in this domain. Further-
more, the leading coefficient of (25) is not equal to zero in U . According to
the theorem 2, the pencil (24) in U is equivalent to





1 0 0
0 0 0
0 0 1



+ λ





1/(x1 + x2) 0 0
0 1 0
0 0 0



 .

The matrix-functions P (x) and Q(x) can be calculated step-by-step using
proof of theorem 2. To do this, it is enough to put c ≡ 1. We obtain these

12



transforming matrices in the form

P (x) =





1/(x1 + x2) 0 0
0 1/(x1x2) 0
0 −x1/x2 1



 and Q(x) =





1 0 0
0 1 x2/x1

0 0 1



 .

One sees that the matrix-functions P (x) and Q(x) are nonsingular and ana-
lytic in U .

Example 2. Consider the pencil

A(x) + λ B(x) =





0 0 γ(x)σ(x)
0 γ(x) 0
0 −γ(x)x2 γ(x)





+ λ





0 σ(x)x2 −υ(x)σ(x)
x2
1 υ(x) −υ(x) sin(x1)
0 −x1(υ(x)− 1) υ(x)(υ(x)− 1)



 , (26)

x ∈ U = [1, b]× [1, b] ⊆ R
2,

γ(x) = x1x2, σ(x) = x1 + x2, υ(x) = x2 sin(x1).

Observe, that there exists the minors of second order

A23 =

∣

∣

∣

∣

γ(x) 0
−γ(x)x2 γ(x)

∣

∣

∣

∣

6= 0 and B23 =

∣

∣

∣

∣

0 σ(x)x2

x2
1 υ(x)

∣

∣

∣

∣

6= 0 ∀ x ∈ U .

Thus, rank(A(x)) = rank(B(x)) = 2 ∀ x ∈ U . One sees that the characteris-
tic polynomial for the pencil (26), that is

det(A(x) + λB(x)) = −x4

1x
3

2(x1 + x2)λ

has single root λ ≡ 0 ∀ x ∈ U . Moreover, the leading coefficient of the
characteristic polynomial is not equal zero in U . According to our theorem 2,
the pencil (26) in U is smoothly equivalent to





0 0 0
0 1 0
0 0 1



+ λ





1 0 0
0 0 ϕ(x)
0 0 0



 . (27)

The matrix-functions P (x) and Q(x) are of the form

P (x) =
x2
1

ν(x)x2





−ρ(x)γ(x) ν(x)x2 ν(x)
(sin(x1) + x2)x

2
1 0 − sin(x1)σ(x)x

2
1

(1− υ(x))x2
1 0 −σ(x)x2

1



 ,
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Q(x) =
1

ρ(x)





ρ(x) 0 0
0 sin(x1) 1
0 1 − sin(x1)





with ν(x) = ρ(x)γ(x)σ(x) and ρ(x) = (1 + sin2(x1))
1/2. Multiplying the

pencil (26) by the matrix-functions P (x) and Q(x) on the left and on the
right, respectively, we obtain the function ϕ(x) = (1+sin2(x1))/x1. One sees
that the elements of matrices P (x) and Q(x) are analytic in U .

In conclusion, let us observe, that the blocks Ji(x) in the canonical struc-
ture (8) are nonsingular matrix-functions of orders pi, respectively. They do
not have, generally speaking, Jordan structure. To make the blocks Ji(x)
entirely coinciding with the Jordan blocks we must require additional con-
ditions on the matrix-functions A(x) and B(x). In this paper we would not
want to do this. Obtained the canonical form of the pencil (8) is quite suffi-
cient to start the study of some class of the linear partial differential-algebraic
equations and constructing numerical methods for them.
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