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Abstract

In this article, we derive the list of the characteristic polynomials of the Frobenius endomor-
phism of simple supersingular abelian varieties of dimension 1, 2, 3, 4, 5, 6, 7 over Fq where
q = pn, n odd.

1 Introduction

Supersingular abelian varieties have applications in cryptography and coding theory and related
areas. Identity based ecryption and computation of weights of some Reed Muller codes are some of
them. The important (isogeny) invariant which carries most of the information about supersingular
curves is the characteristic polynomial of the Frobenius endomorphism. Here we give a list of such
polynomials up to dimension 7 over Fq where q = pn, n odd. We also give the procedure, which
extends to all dimensions.

Let A be an abelian variety of dimension g over Fq where q = pn. For l 6= p, the characteristic
polynomial of Frobenius endomorphism α is defined as,

PA(X) := det(α−XId|Vl(A)).

The above definition is independent of choice of l. The coefficients of PA(X) are in Z. In fact,

PA(X) = X2g + a1X
2g−1 + · · ·+ agX

g + qag−1X
g−1 · · ·+ qg.

An abelian variety A is k-simple if it is not isogenous to a product of abelian varieties of lower
dimensions over k. In that case PA(X) is either irreducible over Z or P (X) = h(X)e where
h(X) ∈ Z[X] is an irreducible over Z , see [14]. We have the following result from Tate [9].

Theorem 1.1. If A and B are the abelian varieties defined over Fq. Then A is Fq-isogenous to
abelian subvariety of B if and only if PA(X) divides PB(X) over Q[X]. In particular, PA(X) =
PB(X) if and only if A and B are Fq-isogenous.

We can factor PA(X) over the complex numbers as PA(X) =
∏2g

i=1(X − αi) where the αi are
algebraic integers. An algebraic integer π ∈ C is called a Weil-q-number if for every embedding
σ : Q(π) →֒ C, σ(π) =

√
q. Let W (q) be the set of a Weil-q-numbers in C. Two elements π and π

′

are conjugates (π ∼ π
′

) if they have same minimal polynomial over Q. In fact we have following
one to one correspondence.
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Theorem 1.2. (Honda-Tate theorem) The map A → πA defines a bijection

{simple abelian varieties/Fq}/(isogeny) 7→ W (q)/(conjugacy)

An elliptic curve E over Fq is supersingular if E(F̄q) has no points of order p. An abelian variety
A over Fq is called supersingular if A is isogenous over F̄q to a product of supersingular elliptic
curves.

Theorem 1.3. (Manin-Oort) A/Fq is supersingular ⇐⇒ πA =
√
qζ, where ζ is some root of

unity.

We call a Weil-q number π, a supersingular Weil -q-number if πA =
√
qζ, where ζ is some root

of unity.
Our approach is first we will compute all supersingular Weil -q-numbers (polynomials). Then

we will find the dimension of the corresponding abelian varieties to those polynomials.

2 Supersingular Weil Polynomial

In this section we give results and procedure for computing the supersingular Weil Polynomial. Let
P (X) be a Weil polynomial given by

P (X) = X2g + a1X
2g−1 + · · ·+ agX

g + qag−1X
g−1 · · ·+ qg.

We have following cases.

2.1 P (X) Irreducible

Proposition 2.1. If P (X) is irreducible with a2i+1 6= 0 for some i, then ai’s satisfy

H(t) := (t2g +
a2t

2g−2

q
+ · · ·+ a2it

2g−2i

qi
+ · · ·+ 1)2 − 1

q
(a1t

2g−1 +
a3t

2g−3

q
+ · · ·+ a1t)

2 = 0.

Proof. By dividing P (X) by qg we get,

P (X)

qg
=

X2g

qg
+ a1

X2g−1

qg
+ · · · + ag

Xg

qg
+ qa2g−1

X2g−1

qg
+ · · ·+ 1 = 0.

Doing the transformation X
√
q → t over Q(

√
q) and rearranging we get

G(t) := (t2g +
a2t

2g−2

q
+ · · ·+ a2it

2g−2i

qi
+ · · · + 1) +

1√
q
(a1t

2g−1 +
a3t

2g−3

q
+ · · ·+ a1t) = 0.

Since q = pn, n odd, Gal(Q(
√
q)/Q) = {1, σ} where σ(

√
q) = −√

q. Therefore

H(t) := G(t)G(t)σ = (t2g+
a2t

2g−2

q
+· · ·+ a2it

2g−2i

qi
+· · ·+1)2− 1

q
(a1t

2g−1+
a3t

2g−3

q
+· · ·+a1t)

2 = 0.
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The polynomial H(t) defined above has only even powers of t.

Proposition 2.2. Let G(t) ∈ Q(
√
q)[t] (as defined above) be reducible over Q(

√
q). Then G(t) =

F1(t)F2(t) where F1, F2 are irreducible polynomial in Q(
√
q)[t] with degF1,degF2 = g.

Proof. Let G(t) = F1(t)F2(t) . . . Fk(t) where Fi are irreducible over Q(
√
q)[t]. Then G(

√
qt) =

F1(
√
qt)F2(

√
qt) . . . Fk(

√
qt). Let σ ∈ Gal(Q(

√
q) \Q). Then,

P (t)2

q2g
= G(

√
qt)G(

√
qt)σ = F1(

√
qt)F1(

√
qt)σF2(

√
qt)F2(

√
qt)σ . . . Fk(

√
qt)Fk(

√
qt)σ.

If degFi < g then degFi degF
σ
i < 2g. But FiF

σ
i ∈ Q[t] This implies there is polynomial of degree

less than 2g over Q with αi, which contradicts the minimality of P (t). Hence degFi = g whence
the theorem follows.

Theorem 2.3. Assume a2i+1 6= 0.

1. If G(t) is irreducible over Q(
√
q) then H(t) is an irreducible cyclotomic factor of tm − 1 of

degree 4g where φ(m) = 4g over Q.

2. If G(t) is reducible over Q(
√
q) then G(t) = F1(t)F2(t) where at least one of F1, F2 ∈

Q(
√
q)[t] \ Q[t]. If Fi ∈ Q[t] then it is an irreducible cyclotomic factor of tm − 1 of degree g

where φ(m) = g, else FiF
σ
i ∈ Q[t] is an irreducible cyclotomic factor of tm − 1 of degree 2g

where φ(m) = 2g.

Proof. 1. From the construction, the roots of H(t) are αi
√
q which are also the roots of unity. But

H(t) is irreducible, hence the assertion follows.

2. Since a2i+1 6= 0, G(t) ∈ Q(
√
q)[t] \ Q[t]. Therefore G = F1F2 (by 2.2)implies at least one of

them (say F1) is in Q(
√
q)[t] \Q[t], in which case F1F

σ
1 is irreducible cyclotomic factor tm− 1

of degree 2g where φ(m) = 2g.

Proposition 2.4. If a2i+1 = 0 for all i then

1. If G(t) is irreducible over Q, it is an irreducible cyclotomic factor of tm− 1 of degree g where
φ(m) = 2g.

2. If G(t) is reducible over Q, then G(t) = F1F2 where Fi are irreducible cyclotomic factor of
tm − 1 of degree g where φ(m) = g.

Proof. The proof is similiar to the proof of the previous theorem.

2.2 P (X) Reducible

If P (X) is reducible then P (X) = h(X)e which implies e|2g. Also if h(X) =
∑

hiX
i then

he0 = qg = png which implies e|ng. But since n is odd we have e|g. Therefore P (X)
g = (h(X)

q
g
e
)e.

Doing the transformation X
√
q → t we get G(t) as in proposition 2.1. The same results on G(t)

3



from the above section holds depending on whether G(t) is irreducible or reducible except that g
is replaced by g

e .

Using the above propositions we have the following procedure to derive the Weil polynomial.

2.3 Procedure

1. Suppose P (X) is irreducible.

(a) If a2i+1 6= 0 for some i.

i. If G(t) is irreducible, then as in proposition 2.3 find appropriate H(t) and solve for
the ai’s.

ii. If G(t) is reducible then use proposition 2.3 to find appropriate H(t) = G(t)G(t)σ

and solve for the ai’s .

(b) If a2i+1 = 0 for all i.

i. If G(t) is irreducible over Q then use proposition 2.4 to find appropriate cyclotomic
factors and compare with G(t) to solve for ai’s.

ii. If G(t) is reducible over Q then use proposition 2.4 to compute G(t) = F1(t)F2(t)
and compare coefficients to solve for ai’s.

2. Suppose P (X) is reducible i.e; P (X) = h(X)e with e|g. Then for h(X)

q
g
e
, doing the transforma-

tion X
√
q → t, we get a new polynomial G(t) whose roots are roots of unity, and using above

tools we can find h(X).

Often in the above procedure, solutions to the ai’s are given by the roots of some polynomials
f(z, q) over Z. We use following test to check if f(z, q) has an integer solution.

Lemma 2.5. (Mod 3, 5 test) Let f(z) be a monic polynomial of degree d with coefficients in Z[q]
where q = pn such that if we put

1. q = 1, 2 and f(z) mod 3 has no solutions,

2. q = −1, 1 and f(z) mod 5 has no solutions.

then f(z) has no solutions in Z for any q.

Proof. If a is an integer solution then z−a | f(z). Let q be power of prime. If q ≡ 1 mod 3, q ≡ 2
mod 3 then a mod 3 is a solution. If q = 0 mod 3 then q = −1 or 1 mod 5 and a mod 5 is the
solution for f(z) mod 5.

In the next section we will calculate the dimension of the corresponding abelian variety to the
supersingular Weil polynomial.
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3 Dimension

Let π ∈ Q̄ be the Weil number and P (X) be minimal Weil polynomial, with π obtained by method
above .We have the following theorem to calculate the dimension.

Theorem 3.1. Let A be a simple abelian variety over k = Fq ,then

1. Endk(A)⊗Q is a division algebra with center Q(πA) and

2dimA = [Endk(A)⊗Q : Q(πA)]
1

2 [Q(πA) : Q].

2. The division algebra Endk(A)⊗Q over Q(πA) has the following splitting behaviour

(a) it splits at each divisor l of l in Q(πA), if l 6= p,

(b) the invariants at the divisors p of p in Q(πA) can be evaluated with

invp(Endk(A)⊗Q) ≡ vp(πA)

vp(q)
[Q(πA)p : Qp] mod Z,

(c) it does not split at the real places of Q(πA).

The invariants of Endk(A)⊗Q lie in Q/Z. They can be evaluated from the minimal polynomial
P (X) of πA as follows. The only real Weil numbers are q1/2 and -q1/2 , so there are hardly any real
places of Q(πA). We consider the polynomial P (X) in Qp[X], i.e., over the p-adic numbers. Let

P (X) =
∏

i

fi(X)

be the decomposition in irreducible factors in Qp[X]. The factors fi(X) correspond uniquely to the
divisors pi of p in Q(πA). So to get the invariants we have the factor P (X) over Qp. In fact,

invpi(Endk(A)⊗Q) ≡ vp(fi(0))

vp(q)
mod Z.

We use the invariants in order to evaluate the dimension of A as follows. The number [Endk(A)⊗Q :

Q(πA)]
1

2 is equal to the order of Endk(A)⊗Q in the Brauer group of Q(πA) see theorem 18.6, [15],
which in turn is equal to the least common multiple of the orders of all the local invariants in Q/Z
see theorem 18.5, [15]. This along with theorem 3.1 gives the dimension of A.

Hence the main problem in computing dimension is the factorization the P (X) over p-adic
numbers for which we will use the following result.

Theorem 3.2. Let Φn be nth cyclotomic polynomial in Qp. Then

1. If n = pn, then Φn remains irreducible in Qp.

2. If (n, p) = 1, then Φn = fi . . . fr, with rf = φ(n), deg fi = f for each i, where f is the
multiplicative order of p mod n.

Proof. See [2], chapter IV.4.
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4 Dimension 1

The characteristic polynomial of Frobenius of a dimension 1 abelian variety is given by P (X) =
X2 + a1X + q.
Case a1 = 0: If a1 = 0 then P(X)=X2 + q is Frobenius of supersingular abelian variety for all p.
Case a1 6= 0: If a1 6= 0 doing transformation x = X

√
q we get,

Case 1: If G(x) is irreducible then by proposition 2.1 H(x) := G(x)G(x)σ = x4 + 1 + (2 − a2
1

q )x
2

with x as mth root of unity where φ(m) = 4.g = 4 which implies m = {5, 8, 10, 12}.
We have,

1. x5 − 1 = (x− 1)
(

x4 + x3 + x2 + x+ 1
)

.

2. x8 − 1 = (x− 1) (1 + x)
(

1 + x2
) (

x4 + 1
)

.

3. x10 − 1 = (x− 1) (1 + x)
(

1 + x4 + x3 + x2 + x
) (

1− x+ x2 − x3 + x4
)

.

4. x12 − 1 = (x− 1) (1 + x)
(

1 + x2 + x
) (

1− x+ x2
) (

1 + x2
) (

x4 − x2 + 1
)

.

Since H(x) has only even powers of x the only possibilities are H(x) = x4+1 or H(x) = x4−x2+1.
Comparing the coefficients we get a1 = ±√

2q or ±√
3q which is an integer if and only if q is an

odd power of 2 and 3 respectively. Therefore a1 = ±√
2q or ±√

3q.
Case 2. G(x) is reducible. Then by 2.2 G(x) = F1(x).F2(x). The roots of Fi are mth root of unity
where φ(m) = 2g = 2 if Fi ∈ Q(

√
q)[x] \Q[x] else φ(m) = g = 1. Then H(x) = F1F

σ
1 F2F

σ
2 has no

possibility with only even degree terms.
Case P (X) is reducible: If P (X) is reducible then P (X) = (X + a)2 6= 0, then a =

√
q has no

integer solution as q is a odd power of prime. Therefore we have

Theorem 4.1. The characteristic polynomial of a simple supersingular abelian variety of the di-
mension 1 over Fq (q = pn, n odd) is one the following

1. p = 2 : X2 ±√
2qX + q

2. p = 3 : X2 ±√
3qX + q

3. X2 + q

In fact all of them appear, see [5].

5 Dimension 2

The characteristic polynomial of a supersingular abelian variety of dimension 2 is given by P (X) =
X4 + a1X + a2X

2 + qa1X + q2. We have following cases.
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5.1 Case a2i+1 6= 0

Let P (X) be irreducible with a2i+1 6= 0. On doing transformation x = X
√
q we get

H(x) =
(

x4 + a2x2

q + 1
)2

− 1
q

(

a1x
3 + a1x

)2
whose roots are mth roots of unity where

Case 1. IfG(x) is irreducible over Q(
√
q)[x] then φ(m) = 4.2 = 8, which impliesm ∈ {15, 16, 20, 24, 30}.

Collecting coefficients of x we get

x8 +

(

2a2
q

− a21
q

)

x6 +

(

2 +
a22
q2

− 2a21
q

)

x4 +

(

2a2
q

− a21
q

)

x2 + 1.

Let
E1 :=

2a2
q − a2

1

q ,

E2 := 2 +
a22
q2 − 2a21

q .

1. x15 − 1 = (x− 1)
(

1 + x4 + x3 + x2 + x
) (

1 + x2 + x
) (

1− x+ x3 − x4 + x5 − x7 + x8
)

2. x16 − 1 = (x− 1) (1 + x)
(

1 + x2
) (

1 + x4
) (

1 + x8
)

3. x20 − 1 = (x− 1)
(

1 + x4 + x3 + x2 + x
)

(1 + x)
(

1− x+ x2 − x3 + x4
)

(

1 + x2
) (

x8 − x6 + x4 − x2 + 1
)

4. x24−1 = (x− 1)
(

1 + x2 + x
)

(1 + x)
(

1− x+ x2
) (

1 + x2
) (

x4 − x2 + 1
) (

1 + x4
) (

x8 − x4 + 1
)

5. x30−1 = (x− 1)
(

1 + x4 + x3 + x2 + x
) (

1 + x2 + x
) (

1− x+ x3 − x4 + x5 − x7 + x8
)

(1 + x)
(

1− x+ x2 − x3 + x4
) (

1− x+ x2
) (

1 + x− x3 − x4 − x5 + x7 + x8
)

So possibilities for H(x) are x8 + 1 or x8 − x6 + x4 − x2 + 1 or x8 − x4 + 1.

1. If H(x) = x8 +1 then E1 = E2 = 0. Maple gives a2 satisfies (z2 − 4z+2)q. Since z2 − 4z+2
is irreducible by Eisentein’s ’s Criterion, a2 has no integers solution.

2. If H(x) = x8 − x6 + x4 − x2 + 1 then E1 = −1, E2 = 1. Maple gives a2 satisfies −q
2 + 1

2(z
2 −

10z + 5)q which again has no integer roots by Eisenstein’s criteria.

3. If H(x) = x8 − x4 +1 then E1 = 0, E2 = −1 which implies a1 satisfies z2 − 6q (which has no
integer solution for any q) or a1±

√
2q, a2 = q which has integer solution for p = 2. Therefore

P (X) = X4 ±√
pqX3 + qX2 ± q

√
pqX + q2 is the possibility where p = 2.

Case 2. If G(x) is reducible. Then by theorem 2.2, G(x) = F1(x).F2(x). The roots of Fi are
mth root of unity where φ(m) = 2g = 4 if Fi ∈ Q(

√
q)[x] \ Q[x] which case m ∈ {5, 8, 10, 12} else

φ(m) = g = 2 in which case m ∈ {3, 4, 6}.

1. x5 − 1 = (x− 1)(1 + x4 + x3 + x2 + x)

2. x8 − 1 = (x− 1)(1 + x)(1 + x2)(1 + x4)

3. x10 − 1 = (x− 1)(1 + x4 + x3 + x2 + x)(1 + x)(1− x+ x2 − x3 + x4)
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4. x12 − 1 = (x− 1)(1 + x2 + x)(1 + x)(1− x+ x2)(1 + x2)(x4 − x2 + 1)

5. x3 − 1 = (x− 1)(1 + x2 + x)

6. x4 − 1 = (x− 1)(1 + x)(1 + x2)

7. x6 − 1 = (x− 1)(1 + x2 + x)(1 + x)(1 − x+ x2).

This gives following cases for H(x) as in theorem 2.2.

1. If H(x) = 1 + 2x4 + 2x2 + 2x6 + x8 then E1 = 2, E2 = 2 then a1 = ±√
2q, a2 = 2q which

gives P (X) = X4 ±√
2qX3 + 2qX2 ± q

√
2qX + q2 = (X2 + q)(X2 ±√

2qX + q). But P (X)
was assumed to irreducible so this not a possibility.

2. If H(x) = x2 + 1 + x6 + x8 then E1 = 1, E2 = 0 implies a1 = ±√
3q, a2 = 2q which gives

P (X) = X4 ± √
3qX3 + 2qX2 ± q

√
3qX + q2 = (X2 + q)(X2 ± √

3qX + q). But P (X) was
assumed to irreducible so this not a possibility.

3. If H(x) = x8−x6+2x4−x2+1 then E1 = −1, E2 = 2 which implies a2 satisfies −q
2 + 1

2(z
2−

10z + 5)q which has no integer roots by Eisenstein’s criteria.

4. If H(x) = x8 − 2x6 + 3x4 − 2x2 + 1 then E1 = −2, E2 = 3 then

(a) a1 = 0, a2 = −q then P (X) = x4 − qx2 + q2 which is irreducible if p 6= 3, hence is a
possibility. If p = 3 then P (X) = X4 − qX2 + q2 = (X2 −√

3qX + q)(X2√3qX + q).

(b) a1 = ±2
√
3q, a2 = 5q which has integer solutions if q is odd power of 3, but then

P (X) = (X2 ± √
3qX + q)2 which is a contradiction to assumption that P (X) was

irreducible, hence not possible.

5. If H(x) = 1 + x4 + x2 + x8 + x6 then E1 = 1, E2 = 1 then a1 = ±√
5q, a2 = 3q or a1

satisfies z2 − q which has no integer solutions as q is an odd power of prime. So possibility is
P (X) = X4 ±√

pqX3 + 3qX2 ± q
√
pqX + q2 where p = 5.

6. If H(x) = 1 + 2x4 + x8 then E1 = 0, |E2 = 2 then

(a) a1 = 0, a2 = 0 then P (X) = X4 + q2 which is irreducible if p 6= 2 . As P (X + 1) =
(X + 1)4 + q2 = X4 + 4X3 + 6X2 + 4X + 1 + q2 and p 6= 2 implies 1 + q2 is 2 mod 4,
hence by Eisentein’s criteria is irreducible and is a possibility for P (X). If p = 2 then
P (X) = X4 + q2 = (X2 − √

2qX + q)(X2 +
√
2qX + q) which is reducible hence not

possible.

(b) a1 = ±2
√
2q, a2 = 4q, which has integer solutions if q is odd power of 2, but then

P (X) = (X2 ± √
2qX + q)2 which is a contradiction to assumption that P (X) was

irreducible, hence not possible.
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5.2 Case a1 = 0

If a1 = 0 then G(x) = x4 + a2
2 x

2 + 1. We have

1. If G(x) is irreducible, the it is irreducible cyclotomic factor of xm − 1 of degree 4 where
φ(m) = 4. But since in this case G(x) has only even degree terms we have G(x) = x4−x2+1
in which case a2 = −q which is already dealt above.

2. If G(x) is reducible then G(x) = (1 + x + x2)(1 − x+ x2) = 1 + x2 + x4 which gives a2 = q
which is also gives a possibility for P (X).

Let P (X) be reducible. Then P (X) = h(X)e where h is irreducible over Z with e|g and h0 = ±q
ie; P (X) = (X2 + aX ± q)2.

1. If a = 0, then P (X) = (X2−q)2 or (X2+q)2. But later is not a possible as the corresponding
abelian variety is not simple by Tate’s theorem, since x2+q corresponds to dimension 1 abelian
variety.

2. If a 6= 0 then following theorem 2.1 we have G(t) = (t2 ± 1) + a
√
q t. Then

(a) If constant term is 1, then from discussion on dimension 1 we get a = ±√
2q, ±√

3q in
which case H(x) corresponds to an abelian variety of dimension 1 see 4.1.

(b) If constant term is -1, then from discussion of dimension 1, a has no solution.

We can conclude above the discussion as a following theorem.

Theorem 5.1. The characteristic polynomial of a simple supersingular abelian variety of dimension
2 over Fq (q = pn, n odd) is one the following

1. p 6= 3 : X4 − qX2 + q2

2. X4 + qX2 + q2

3. p = 2 : X4 ±√
pqX3 + qX2 ± q

√
pqX + q2

4. p = 5 : X4 ±√
pqX3 + 3qX2 ± q

√
pqX + q2

5. (X2 − q)2

6. p 6= 2 : X4 + q2

In fact all of them appear, see [13].

6 Dimension 3

The characteristic polynomial of Frobenius of a abelian variety of dimension 3 is given by

P (X) = X6 + a1X
5 + a2X

4 + a3X
3 + a2qX

2 + a1q
2X + q3.

If P (X) is irreducible over Q(X) then we have following cases.

9



6.1 Case a2i+1 6= 0

Case 1 If G(x) is irreducible then

H(x) = G(x)G(x)σ = (x6 +
a2
q
x4 +

a2
q
x2 + 1)2 − 1

q
(a1x

5 +
a3
q
x3 + a1x)

2

= x12 + (2a2q − 2a2
1

q )x10 + (2a2q +
a2
2

q2
− 2a1a3

q2
)x8 + (

−a2
3

q3
− 2a2

1

q +
2a2

2

q2
+ 2)x6 + (2a2q +

a2
2

q2
− 2a1a3

q2
)x4 +

(2a2q − 2a2
1

q )x2 + 1 whose roots are mth root of unity where φ(m) = 4g = 12 which implies m ∈
{13, 21, 26, 28, 36, 42}. We have following factorization for them.

1. x13 − 1 = (x− 1)(x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1)

2. x21−1 = (x−1)(x2+x+1)(x6+x5+x4+x3+x2+x+1, 1)(x12−x11+x9−x8+x6−x4+x3−x+1)

3. x26 − 1 = (x− 1)(1 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x)(1 + x)(1−
x+ x2 − x3 + x4 − x5 + x6 − x7 + x8 − x9 + x10 − x11 + x12)

4. x28 − 1 = (x− 1)(1 + x6 + x5 + x4 + x3 + x2 + x)(1 + x)(1− x+ x2 − x3 + x4 − x5 + x6)(1 +
x2)(x12 − x10 + x8 − x6 + x4 − x2 + 1)

5. x36 − 1 = (x− 1)(1 + x2 + x)(1 + x6 + x3)(1 + x)(1− x+ x2)(1− x3 + x6)(1 + x2)(x4 − x2 +
1)(x12 − x6 + 1)

6. x42−1 = (x−1)(1+x6+x5+x4+x3+x2+x)(1+x2+x)(1−x+x3−x4+x6−x8+x9−x11+
x12)(1+x)(1−x+x2−x3+x4−x5+x6)(1−x+x2)(1+x−x3−x4+x6−x8−x9+x11+x12)

Let E1 =
2a2
q − 2a2

1

q

E2 =
2a2
q +

a2
2

q2
− 2a1a3

q2

E3 =
−a2

3

q3
− 2a2

1

q +
2a2

2

q2
+ 2

Comparing with H(x) with cyclotomic factor of degree 12, we have following possibilities for it.

1. H(x) = x12−x10+x8−x6+x4−x2+1 in which case E1 = −1, E2 = 1, E3 = −1 which gives
a1 = ±√

7q, a2 = 3q, a3 = q ±√
7q which has integer solutions if and only if q is odd power

of 7. Other solution for a1 is root of z6 − 21qz4 + 35z2q2 − 7q3 which has no integers roots

for p 6= 7 by Eisenstein’s criteria. If q = 7n then f(z) = (z3 − 7
n+1

2 z2 − 7n+1z − 7
3n+1

2 )(z3 +

7
n+1

2 z2 − 7n+1z + 7
3n+1

2 ) and each of which have no integer roots.

2. H(x) = x12 − x6 + 1 we have E1 = 0, E2 = 0, E3 = −1 which gives one solution as
a1 = 0, a2 = 0, a3 = q

√
3q which has integer solutions if and only if q is odd power of

3. The other solution for a1 is root of z6 − 6qz4 + 9z2q2 − 3q3 which has no integers roots
for p 6= 3 by Eisenstein’s criteria. If p = 3 then if q = 3n then z6 − 6qz4 + 9z2q2 − 3q3 =

(z3 − 3n+1z − 3
3n+1

2 )(z3 − 3n+1z + 3
3n+1

2 ), where it is easy to check none of this factors have
integer solutions.
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Case 2. G(x) is reducible. Then by 2.2 G(x) = F1(x).F2(x). The roots of Fi are mth root of unity
where φ(m) = 2g = 6 if Fi ∈ Q(

√
q)[x] \ Q[x] else φ(m) = g = 3. Since φ(m) = g = 3 has no

solution for m both Fi ∈ Q(
√
q)[X] \Q[x]. If φ(m) = 6 then m ∈ {7, 9, 14, 18}, which has following

expansions.

1. x7 − 1 = (x− 1)
(

x6 + x5 + x4 + x3 + x2 + x+ 1
)

.

2. x9 − 1 = (x− 1)
(

x2 + x+ 1
) (

x6 + x3 + 1
)

.

3. x14 − 1 = (x− 1)
(

x6 + x5 + x4 + x3 + x2 + x+ 1
)

(x+ 1)
(

1− x+ x2 − x3 + x4 − x5 + x6
)

.

4. x18 − 1 = (x− 1)
(

x2 + x+ 1
) (

x6 + x3 + 1
)

(x+ 1)
(

x2 − x+ 1
) (

x6 − x3 + 1
)

.

Comparing with H(x) = G(x)G(x)σ = F1(x)F1(x)
σF2(x)F2(x)

σ we get following possibilities.

1. H(x) = x12 + x10 + x8 + x6 + x4 + x2 + 1 then E1 = 1, E2 = 1, E3 = 1. One of the
solution of a1 satisfies z2 − q which has no integer solutions as q is odd power of prime. The
other solution is the root f(z) = z6 − 19qz4 + 83z2q2 − q3. We claim that it has no integer
solutions. Suppose it has integer solution then it should be solution modulo 3. q = 1 then f(z)
mod 3 = (z3 + 2z2 + 1)(z3 − z2 + 2) , q = 2 then f(z) mod 3 = z6 + z4 + 2z2 + 1,q = 1 then
f(z) mod 5 = (z3+4z2+z+1)(z3+z2+z+4), q = −1 then f(z) mod 5 = z6+4z4+3z2+1
has no solutions, hence by lemma ( mod 3 mod 5 test) it has no integer solutions.

2. If H(x) = x12+x6+1 then E1 = 0, E2 = 0, E3 = 1. One of the solution of a3 satisfies z2− q
which has no integer solutions as q is odd power of prime. The other solution a1 is the twice
the root f(z) = z6 − 6qz4 − 9z2q2 − q3. If q = 1 then f(z) mod 3 = (z3 + 1)(z3 + 2), q = 2
then f(z) mod 3 = z6 + 1, q = 1 then f(z) mod 5 = z6 + z4 + 4z2 + 1, q = −1 then f(z)
mod 5 = z6 + z4 + 4z2 + 1 has no solutions, hence by lemma ( mod 3 mod 5 test) it has no
integer solutions.

6.2 Case a2i+1 = 0

If a2i+1 = 0 then
Case 1 G(x) = x6 + a2

q x
4 + a2

q x
2 + 1 is irreducible over Q then it has roots as mth root of unity

where φ(m) = 6 hence m ∈ {7, 9, 14, 18}. The possibility of such G(x) is already mention in case
2. and none of them have this form.
Case 2 If G(x) is reducible then G = F1F2 such that Fi is irreducible factor of xm − 1 such that
φ(m) = 3, which has no solution for m.

6.3 P (X) is reducible

If P (X) is reducible then P (X) = h(X)e, where e|3 implies e = 3. Therefore h(X) = (X2+aX+q)
and it is not possible for P (X) to correspond to a simple abelian variety as already discussed in
dimension 1 case. Hence we have,

Theorem 6.1. The characteristic polynomial of a simple supersingular abelian variety of dimension
3 over Fq (q = pn, n odd) is one the following
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1. p = 3 : X6 ± q
√
pqX3 + q3

2. p = 7 : X6 ±√
pqX5 + 3qX4 ± q

√
pqX3 + 3q2X2 ± q2

√
pqX + q3

In fact of them occur, see [17].

7 Dimension 4

The characteristic polynomial of Frobenius of an abelian variety of dimension 4 is given by

P (X) = X8 + a1X
7 + a2X

6 + a3X
5 + a4X

4 + a3qX
3 + a2q

2X2 + a1q
3X + q4.

Let P (X) is irreducible then we have following cases.

7.1 Case a2i+1 6= 0

If a2i+1 6= 0 then we have following cases,
Case 1. If G(x) is irreducible as in theorem 2.1, we have

H(x) =

(

x8 +
a2x

6

q
+

a4x
4

q2
+

a2x
2

q
+ 1

)2

− 1

q

(

a1x
7 +

a3x
5

q
+

a3x
3

q
+ a1x

)2

= x16 +

(

a1
2

q
+

2a2
q

)

x14 +

(

2
a4
q2

+
a2

2

q2
− 2

a1a3
q2

)

x12 +

(

2
a2
q

− a3
2

q3
+ 2

a4a2
q3

− 2
a1a3
q2

)

x10 +

(

a4
2

q4
− 2

a1
2

q
+ 2 + 2

a2
2

q2
− 2

a3
2

q3

)

x8 +

(

2
a2
q

− a3
2

q3
+ 2

a4a2
q3

− 2
a1a3
q2

)

x6 +

(

2
a4
q2

+
a2

2

q2
− 2

a1a3
q2

)

x4 +

(

−a1
2

q
+ 2

a2
q

)

x2 + 1

whose roots are mth roots of unity where φ = 4g = 16 which implies m ∈ {17, 32, 34, 40, 48, 60}.
Each of which has following factorization.

1. x17−1 = (x−1)(x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1)

2. x32 − 1 = (x− 1)(1 + x)(1 + x2)(1 + x4)(1 + x8)(1 + x16)

3. x34−1 = (x−1)(1+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+
x2+x)(1+x)(1−x+x2−x3+x4−x5+x6−x7+x8−x9+x10−x11+x12−x13+x14−x15+x16)

4. x40 − 1 = (x− 1)(1 + x4 + x3 + x2 + x)(1 + x)(1− x+ x2 − x3 + x4)(1 + x2)(x8 − x6 + x4 −
x2 + 1)(1 + x4)(x16 − x12 + x8 − x4 + 1)

5. x48 − 1 = (x− 1)(1 + x2 + x)(1 + x)(1− x+ x2)(1+ x2)(x4 − x2 +1)(1 + x4)(x8 − x4 +1)(1 +
x8)(x16 − x8 + 1)

6. x60 − 1 = (x− 1)(1 + x4 + x3 +x2 + x)(1+ x2 + x)(1− x+ x3 − x4 + x5 −x7 + x8)(1+ x)(1−
x + x2 − x3 + x4)(1 − x + x2)(1 + x − x3 − x4 − x5 + x7 + x8)(1 + x2)(x8 − x6 + x4 − x2 +
1)(x4 − x2 + 1)(x16 + x14 − x10 − x8 − x6 + x2 + 1)
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Let E1 =
a12

q + 2a2
q

E2 =
2a4
q2

+ a22

q2
− 2a1a3

q2

E3 =
2a2
q − a32

q3
+ 2a4a2

q3
− 2a1a3

q2

E4 =
a42

q4
− 2a12

q + 2 + 2a22

q2
− 2a32

q3

Comparing H(x) with degree 16 irreducible cyclotomic factor we have following possibilities for
H(x). If,

1. H(x) = 1 + x16 then E1 = E2 = E3 = E4 = 0 then a1 satisfies z8 − 32z6q + 160z4q2 −
256z2q3 +128q4 or z8 − 32z6q+288z4q2 − 768z2q3 +128q4 which has no integer solutions by
mod 3 mod 5 test.

2. H(x) = x16−x12+x8−x4+1 then E1 = E3 = 0, E2 = −1 and E4 = 1. Maple gives following
solutions for ai.

(a) a1 = ±√
2q, a2 = q, a3 = 0, a4 = −q2 is one of the possible solution if q is odd power

of 2.

(b) a1 is root of z2 − 10q which has no integer solution for any q.

(c) a1 is root of z4 − 20z2q + 20q2 has no integer solution for any q (by mod 3 mod 5 test).

3. H(x) = x16 − x8 + 1 then E1 = E2 = E3 = 0 and E4 = −1. This gives a1 is root of
8q2 − 8Z2q + Z4 or 72q2 − 24Z2q + Z4 or Z8 − 32Z6q + 176Z4q2 − 256Z2q3 + 64q4. None of
these equations have integer solutions (by mod 3 mod 5 test).

4. H(x) = x16 + x14 − x10 − x8 − x6 + x2 +1 then E1 = 1, E2 = 0, E3 = −1, E4 = −1 then we
have following

(a) a1 = ±√
3q, a2 = 2q, a3 = qa1, a4 = q2 which has integer solutions only if q is odd

power of 3.

(b) a1 satisfies Z2 − 15q or 5q2 − 10Z2q+Z4 or Z8 − 28Z6q+134Z4q2 − 92Z2q3 + q4 which
has no integer solutions by mod 3 mod 5 test.

Case 2. If G(x) is reducible. Then by theorem 2.2, G(x) = F1(x).F2(x). If Fi ∈ Q(
√
q)[x]\Q[x]

then its roots are mth root of unity where φ(m) = 2g = 8 where m ∈ {15, 16, 20, 24, 30} in which
case Fi(x)Fi(x)

σ is an irreducible cyclotomic factor of xm − 1 of degree 8.
If Fi ∈ Q[x] then its roots are mth root of unity where φ(m) = g = 4 in which case m ∈

{5, 8, 10, 12} and Fi is an irreducible cyclotomic factor of xm−1 of degree 4. NowH(x) = F1F
σ
1 F2F

σ
2

where not both Fi ∈ Q[x] as discussed earlier. Since H(x) has only even degree terms, we look at
all possibilities F1F

σ
1 F2F

σ
2 from above, all of them are listed below. If,

1. H(x) = 1 + 2x8 + x16 then E1 = E2 = E3 = 0 and E4 = 2. Solving we get a1 = a2 = a3 =
a4 = 0 which is one of the possibility. The other possibilities are a1 is root of Z4−4Z2q+2q2

or Z4 − 8Z2q + 8q2 which have no integer solutions by mod 3 mod 5 test.

2. H(x) = x16−x14+x12−x10+2x8−x6+x4−x2+1 then E1 = E3 = −1, E2 = 1 and E4 = 2
which gives a1 satisfies Z

16−72Z14q+1836Z12q2−21336Z10q3+120854q4Z8−334008q5Z6+
393804q6Z4 − 107304Z2q7 + 7921q8 which has no integer solutions by mod 3 mod 5 test.
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3. H(x) = x16 − x12 + 2x8 − x4 + 1 then E1 = E3 = 0, E2 = −1 and E4 = 2 which gives a1
satisfies Z8 − 40Z6q+392Z4q2 − 608Z2q3 +16q4 or Z8 − 24Z6q+136Z4q2 − 160Z2q3 +16q4.
None of these have integer solutions by mod 3, mod 5 test.

4. H(x) = x16−2x14+3x12−4x10+5x8−4x6+3x4−2x2+1. We have E1 = −2, E2 = 3, E3 = −4
and E4 = 5 which gives a1 = a3 = 0 and a2 = −q, a4 = q2 which is a possibility. The other
solutions a1 are roots of 2(Z

4−10Z2q+5q2) or 2(Z4−5Z2q+5q2) none of which is an integer
by mod 3 mod 5 test.

5. H(x) = x16 − x14 + x8 − x2 + 1 then E1 = −1, E2 = E3 = 0 and E4 = 1 in which case a1 is
root of Z8−28Z6q+174Z4q2−332Z2q3+121q4 or Z8−44Z6q+446Z4q2−1084Z2q3+361q4

which has no integer solutions by mod 3 mod 5 test.

6. H(x) = x16 − 2x12 + 3x8 − 2x4 + 1 then E1 = E3 = 0, E2 = −2 and E4 = 3. The solutions
for ai’s are

(a) a1 = a2 = a3 = 0 and a4 = −q2 which gives P (X) = X8− q2X4+ q4 which is irreducible
when p 6= 2. When p = 2 thenP (X) = X8−q2X4+q4 = (X4−√

2qX3+qX2−q
√
2qX+

q2)(X4 +
√
2qX3 + qX2 + q

√
2qX + q2) which means A is not simple by Tate’s theorem.

(b) a1 = ±2
√
2q, a2 = 4q, a3 = ±4q

√
2q, a4 = 7q2 which integer solutions only if q is odd

power of 2 . Then P (X) = X8 ± 2
√
2qX7 + 4qX6 ± 4q

√
2qX5 + 7q2X4 ± 4q2

√
2qX3 +

4q3X2 ± 2q2
√
2qX + q4 = (X4 ±√

2qX3 + qX2 ± q
√
2qX + q2)2 which implies A is not

simple by Tate’s theorem.

(c) The other solutions for a1 are roots of Z2 − 6q or 2Z4 − 4Z2q + q2 for which there is no
integer solutions.

7. H(x) = x16 − x14 + x10 − x8 + x6 − x2 + 1 then E1 = E4 = −1, E2 = 0 and E3 = 1. One
of the solutions are a1 = ±√

5q, a2 = 2q, a3 = qa1, a4 = 3q2. The other solutions for a1 are
roots of Z2− q, 45q2− 30Z2q+Z4 which has no integer roots for q, an odd power of prime p.

8. H(x) = 1 + 2x4 + 2x8 + 2x12 + x16 then E1 = 0, E2 = E3 = E4 = 2 then a1 satisfies
−32Z6q + 64q4 + 112Z4q2 − 128Z2q3 + Z8 or −32Z6q + 1600q4 + 304Z4q2 − 1152Z2q3 + Z8

which has no integer solutions by mod 3 mod 5 test.

9. H(x) = x16−2x14+3x12−2x10+2x8−2x6+3x4−2x2+1 then E1 = E3 = −2, E2 = 3, E4 = 2.
This gives a1 satisfies 8q2 − 8Z2q +Z4 or 3136q4 − 5120Z2q3 + 1136Z4q2 − 64Z6q +Z8 none
of which has integer roots.

10. H(x) = x16 + 3x12 − x14 − 3x10 + 4x8 − 3x6 + 3x4 − x2 + 1 then E1 = −1, E2 = 3, E3 =
−3, E4 = 4. Then a1 is root of 5q

2−10Z2q+Z4 or 121q4−1988Z2q3+654Z4q2−52Z6q+Z8

which has no integer solutions.

11. H(x) = x16 − 3x14 + 6x12 − 8x10 + 9x8 − 8x6 + 6x4 − 3x2 + 1 then E1 = −3, E2 = 6, E3 =
−8, E4 = 9. In this case a1 satisfies 5q2 − 10Z2q + Z4 or 841q4 − 5812Z2q3 + 1214Z4q2 −
68Z6q + Z8 which has no integer solutions.

12. H(x) = x16 + x12 + x4 + 1 then E1 = E3 = E4 = 0 and E2 = 1. We have following solutions
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(a) a1 = ±√
2q, a2 = q, a3 = ±q

√
2q, a4 = ±2q2 which gives P (X) = X8±√

2qX7+qX6±
q
√
2qX5 +2q2X4± q2

√
2qX3+ q3X2± q3

√
2qX + q4 = (X2 +

√
2qX + q)(X2 −√

2qX +
q)(X4±√

2qX3+ qX2± q
√
2qX+ q2) which implies corresponding abelian variety is not

simple.

(b) a1 = 3
√
2q, a2 = 9q, a3 = ±9q

√
2q, a4 = 14q2 in which case P (X) = X8 ± 3

√
2qX7 +

9qX6 ± 9q
√
2qX5 + 14q2X4 ± 9q2

√
2qX3 + 9q3X2 ± 3q3

√
2qX + q4 = (X4 ± √

2qX3 +
qX2± q

√
2qX+ q2)(X2±√

2qX+ q)2 which implies corresponding abelian variety is not
simple.

(c) The other solutions to a1 are root of Z2 − 6q or Z2 − 28Z2q + 4q2 which has no integer
solution by mod 3 mod 5 test.

13. H(x) = x16 − 2x14 + 2x12 − x8 + 2x4 − 2x2 + 1 then E1 = −2, E2 = 2, E3 = 0, E4 = −1.
One of the solutions are a1 = ±√

2q, a2 = a3 = 0, a4 = q2 which has integer solutions
only if q is odd power of 2 in which case P (X) = X8 ± √

2qX7 + q2X4 ± q3
√
2qX + q4 =

(X4 ± √
2qX3 + qX2 ± q

√
2qX + q2)(X4 ± qX + q2) which implies by Tate’s theorem that

A is not simple. The other solutions of a1 are roots of Z2 − 6q (doesn’t has integer solution
for an odd power of p) or Z4 − 36Z2q + 36q2 or 100q2 − 28Z2q + Z4 which is not an integer
solutions by mod 3 mod 5 test.

7.2 Case a2i+1 = 0

If a2i+1 6= 0, then G(x) = x8 + a2x6

q + a4x4

q2
+ a2x2

q + 1, with roots as mth root of unity where,

1. If G(x) is irreducible then φ(m) = 8 which gives m ∈ {15, 16, 20, 24, 30}. Since G(x) is
irreducible it is degree 8 irreducible factor with even power terms of xm − 1. Comparing we
get following

(a) If G(x) = 1 + x8 we get all ai = 0 and P (X) = x8 + q4.

(b) If G(x) = x8 − x6 + x4 − x2 + 1 then a2 = −q and a4 = q2 this is a possibility.

(c) If G(x) = x8 − x4 + 1 then a2 = 0 and a4 = −q2, this case is already discussed earlier.

2. If G(x) is reducible then it is product of two degree 4 irreducible factors of xm− 1 above. By
looking at products with only even terms and comparing with G(x) we get

(a) G(x) = x8 − x6 + 2x4 − x2 + 1 which gives a2 = −q, a4 = 2q2. Therefore P (X) =
X8 −X6q + 2X4q2 − q3X2 + q4 = (X4 + q2)(X4 − qX2 + q2) which is not irreducible.

(b) G(x) = x8 − 2x6 + 3x4 − 2x2 + 1 which gives a2 = −2q, a4 = 3q2. Therefore P (X) =
X8 − 2X6q + 3X4q2 − 2q3X2 + q4 = (X4 − qX2 + q2)2 which is not irreducible.

(c) G(x) = x8 + x6 + x4 + x2 + 1 which gives a2 = q, a4 = q2 which gives P (X) =
X8+qX6+q2X4+q3X2+q4 which is irreducible and is a possibility when p 6= 5. When
p = 5 then P (X) = (X4−√

5qX3+3qX2−q
√
5qX+q2)(X4+

√
5qX3+3qX2+q

√
5qX+q2)

which is not irreducible.

(d) G(x) = 1 + 2x4 + x8 which gives a2 = 0, a4 = 2q2 in which case P (X) = (X4 + q2)2 is
not irreducible.
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7.3 P (X) is reducible

If P (X) is irreducible then P (X) = h(X)e where e|4 therefore e = 2 or 4. If e = 4 then h(X) =
X2 + aX ± q and it is not possible for P (X) to correspond to a simple abelian variety as already
discussed in dimension 1 case. If e = 2 then h(X) = (X4 + bX3 + cX2 + dX ± q2). On doing the

transformation as X
√
q → t we get G(t) = (t4 + c

q t
2 ± 1)− 1

√
q (bt

3 + d
q t) or H(t) = t8 + (2cq − b2

q )t
6 +

( c
2

q2
− 2bd

q2
+ 2)t4 + (2cq − d2

q3
)t2 ± 1. We have following cases

1. If constant term of h(X) has minus sign, then b , c d have no integer solutions.

2. If constant term of h(X) has plus sign, then h(X) corresponds to characteristic polynomial
of dimension 2 supersingular abelian variety given in the list see 5.1. Since all of them occur,
by Tate’s theorem the abelian variety corresponding to P (X) is not simple.

Hence we have the following theorem.

Theorem 7.1. The characteristic polynomial of the a simple supersingular abelian variety of di-
mension 4 over Fq (q = pn, n odd) is one of the following

1. p = 2 : X8 ±√
2qX7 + qX6 − q2X4 + q3X2 ± q3

√
2qX + q4

2. p = 3 : X8 ±√
3qX7 + 2qX6 ± q

√
3qX5 + q2X4 ± q2

√
3qX3 + 2q3X2 ± q3

√
3qX+q4

3. X8 + q4

4. X8 − qX6 + q2X4 − q3X2 + q4

5. p 6= 5 : X8 + qX6 + q2X4 + q3X2 + q4

6. p 6= 2 : X8 − q2X4 + q4

7. p = 5 : X8 ±√
5qX7 + 2qX6 ± q

√
5qX5 + 3q2X4 ± q2

√
5qX3 + 2q3X2 ± q3

√
5qX+q4

Theorem 7.2. All of the polynomials listed above occur as characteristic polyonomial of Frobenuis
of dimension 4.

Proof. 1. If P (X) = X8 + q4, substitute y = qX2. Then we get P (X) = q4(y4 + 1). The
polynomial y4 + 1 is 8th cyclotomic polynomial.

(a) If p ≡ 1 mod 8 then y4+1 =
4
∏

i=1

(y−αi) over Qp with vp(αi) = 0. Since n is odd we get

P (X) =
4
∏

i=1

(X2−αiq). Hence we have 4 invariants with invpi(Endk(A)⊗Q) ≡ 0 mod Z

which shows the dimA = 4.

(b) If p ≡ 3, 5, 7 mod 8 then y4 +1 =
2
∏

i=1

(y2 + βiy+αi) with vp(αi) = 0. Since n is odd we

get

P (X) =
2
∏

i=1

(X4+βiX
2+αiq

2). Hence we have 2 invariants with invpi(Endk(A)⊗Q) ≡ 0

mod Z which shows the dimA = 4.
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2. If P (X) = X8 − q2X4 + q4, substitute y = qX2. Then we get P (X) = q4(y4 − y2 + 1). The
polynomial y4 − y2 + 1 is 12th cyclotomic polynomial.

(a) If p ≡ 1 mod 12 then y4 + 1 =
4
∏

i=1

(y − αi) over Qp with vp(αi) = 0. Since n is odd we

get

P (X) =
4
∏

i=1

(X2−αiq). Hence we have 4 invariants with invpi(Endk(A)⊗Q) ≡ 0 mod Z

which shows the dimA = 4.

(b) If p ≡ 5, 7, 11 mod 12 then y4 + 1 =

2
∏

i=1

(y2 + βi + αi) with vp(αi) = 0. Since n is odd

we get

P (X) =

2
∏

i=1

(X4+βiX
2+αiq

2). Hence we have 2 invariants with invpi(Endk(A)⊗Q) ≡ 0

mod Z which shows the dimA = 4.

3. If P (X) = X8 − qX6 + q2X4 − q3X2 + q4, substitute y = qX2. Then we get P (X) =
q4(y4 − y3 + y2 − y +1). The polynomial y4 − y3 + y2 − y +1 is 10th cyclotomic polynomial.

(a) If p ≡ 1 mod 10 then y4 − y3 + y2 − y +1 =
4
∏

i=1

(y − αi) over Qp with vp(αi) = 0. Since

n is odd we get

P (X) =
4
∏

i=1

(X2−αiq). Hence we have 4 invariants with invpi(Endk(A)⊗Q) ≡ 0 mod Z

which shows the dimA = 4.

(b) If p ≡ 3, 7 mod 10 then y4 − y3 + y2 − y + 1 is irreducible, hence there is one invariant
with invpi(Endk(A)⊗Q) ≡ 0 mod Z which shows the dimA = 4.

(c) If p ≡ 9 mod 10 then y4 +1 =
2
∏

i=1

(y2 +βiy+αi) with vp(αi) = 0. Since n is odd we get

P (X) =
2
∏

i=1

(X4+βiX
2+αiq

2). Hence we have 2 invariants with invpi(Endk(A)⊗Q) ≡ 0

mod Z which shows the dimA = 4.

4. If P (X) = X8 + qX6 + q2X4 + q3X2 + q4, substitute y = qX2. Then we get P (X) =
q4(y4y3 + y2 + y + 1). The polynomial y4 + y3 + y2 + y + 1 is 5th cyclotomic polynomial.

(a) If p ≡ 1 mod 5 then y4−y3+y2−y+1 =

4
∏

i=1

(y−αi) over Qp with vp(αi) = 0. Since n is

odd we get P (X) =

4
∏

i=1

(X2−αiq). Hence we have 4 invariants with invpi(Endk(A)⊗Q) ≡

0 mod Z which shows the dimA = 4.
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(b) If p ≡ 2, 3 mod 5 then y4 + y3 + y2 + y + 1 is irreducible, hence there is one invariant
with invpi(Endk(A)⊗Q) ≡ 0 mod Z which shows the dimA = 4.

(c) If p ≡ 4 mod 5 then y4 + 1 =
2
∏

i=1

(y2 + βiy + αi) with vp(αi) = 0. Since n is odd we get

P (X) =
2
∏

i=1

(X4+βiX
2+αiq

2). Hence we have 2 invariants with invpi(Endk(A)⊗Q) ≡ 0

mod Z which shows the dimA = 4.

5. If P (X) = X8 ± √
2qX7 + qX6 − q2X4 + q3X2 ± q3

√
2qX + q4, p = 2 is irreducible in

Z
3Z , hence irreducible over Q. P (X/

√
q) = X8 ±

√
2X7 + X6 − X4 + X2 ±

√
2X + q4 is

irreducible over Q(
√
2)[X] with one of the roots as ζ40 and splitting field Q(ζ40). We have

[Q(
√
2) : Q(ζ40)] = 8. Passing through completion and using theorem 3.2 we get,

[Q2 : Q2(
√
2)][Q2(

√
2) : Q2(ζ40)] = [Q2 : Q2(ζ40)] = 16.

Therefore [Q2(
√
2) : Q2(ζ40)] = 8. But P (X/

√
q) ∈ Q2(

√
2) has degree 8 and ζ40 as one of the

roots. This implies P (X/
√
q) and hence P (X) are irreducible over Q(

√
2) which implies P (X)

is irredicible over hence over Q2. Hence we have one invariant with invpi(Endk(A)⊗Q) ≡ 0
mod Z which shows the dimA = 4.

6. If P (X) = X8±√
3qX7+2qX6± q

√
3qX5+ q2X4± q2

√
3qX3+2q3X2± q3

√
3qX+ q4 where

p = 3, is irreducible over Z
2Z , hence over Q with splitting field, Q(ζ60). The similiar argument

above shows that P (X) corresponds to abelian variety of dimension 4.

7. If P (X) = X8 ± √
5qX7 + 2qX6 ± q

√
5qX5 + 3q2X4 ± q2

√
5qX3 + 2q3X2 ± q3

√
5qX+q4,

where p = 5 is irreducible in Z
3Z , hence irreducible over Q with splitting field Q(ζ15). But

P (X/
√
q) is reducible over Q(

√
5)[X] with P (X/

√
q) = F1(X/

√
q)F2(X/

√
q) each irreducible

over Q(
√
5)[X] with roots ζ30 and ζ15 respectively. But [Q(

√
5) : Q(ζ15)] = 4. Passing

through completion we have [Q5(
√
5) : Q5(ζ15)] = 4 with root of F1(X/

√
q) and F2(X/

√
q)

as ζ15 and −ζ15 respectively and since degFi = 4, Fi(X/
√
q) are irreducible over Q5(

√
5).

P (X) = F1(X)F2(X). But Fi have coefficients from Q5(
√
5)/Q5. Hence P (X) is irreducible

over Q5. This implies dimA = 4.

8 Dimension 5

The characteristic polynomial of Frobenius of an abelian variety of dimension 5 is given by

P (X) = X10 + a1X
9 + a2X

8 + a3X
7 + a4X

6 + a5X
5 + a4qaX

4 + a3q
2X3 + a2q

3X2 + a1q
4X + q5.

If P (X) is irreducible then we have following cases
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8.1 Case a2i+1 6= 0

If a2i+1 6= 0 then we have following cases,
case 1. If G(x) is irreducible then

H(x) = x20 +

(

−a1
2

q
+ 2

a2
q

)

x18 +

(

−2
a3a1
q2

+
a2

2

q2
+ 2

a4
q2

)

x16 +

(

−2
a5a1
q3

+ 2
a4a2
q3

+ 2
a4
q2

− a3
2

q3

)

x14 +

(

2
a2
q

+
a4

2

q4
+ 2

a4a2
q3

− 2
a3a1
q2

− 2
a5a3
q4

)

x12 +

(

−2
a1

2

q
+ 2

a4
2

q4
− 2

a3
2

q3
+ 2− a5

2

q5
+ 2

a2
2

q2

)

x10 +

(

2
a2
q

+
a4

2

q4
+ 2

a4a2
q3

− 2
a3a1
q2

− 2
a5a3
q4

)

x8

+

(

−2
a5a1
q3

+ 2
a4a2
q3

+ 2
a4
q2

− a3
2

q3

)

x6 +

(

−2
a3a1
q2

+
a2

2

q2
+ 2

a4
q2

)

x4 +

(

−a1
2

q
+ 2

a2
q

)

x2 + 1

whose roots are mth roots of unity where φ(m) = 4g = 20 which implies m ∈ {25, 33, 44, 50, 66}.
Therefore we have

1. x25 − 1 = (x− 1)(1 + x4 + x3 + x2 + x)(1 + x20 + x15 + x10 + x5)

2. x33 − 1 = (x− 1)(1 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x)(1 + x2 + x)(1 − x+
x3 − x4 + x6 − x7 + x9 − x10 + x11 − x13 + x14 − x16 + x17 − x19 + x20)

3. x44−1 = (x−1)(1+x10+x9+x8+x7+x6+x5+x4+x3+x2+x)(1+x)(1−x+x2−x3+x4−
x5+x6−x7+x8−x9+x10)(1+x2)(x20 −x18+x16−x14+x12−x10+x8−x6+x4−x2+1)

4. x50 − 1 = (x − 1)(1 + x4 + x3 + x2 + x)(1 + x20 + x15 + x10 + x5)(1 + x)(1 − x+ x2 − x3 +
x4)(1− x5 + x10 − x15 + x20)

5. x66−1 = (x−1)(1+x10+x9+x8+x7+x6+x5+x4+x3+x2+x)(1+x2+x)(1−x+x3−x4+x6−
x7+x9−x10+x11−x13+x14−x16+x17−x19+x20)(1+x)(1−x+x2−x3+x4−x5+x6−x7+x8−
x9+x10)(1−x+x2)(1+x−x3−x4+x6+x7−x9−x10−x11+x13+x14−x16−x17+x19+x20).

Let
E1 := −a12

q + 2a2
q

E2 := −2a3a1
q2

+ a22

q2
+ 2a4

q2

E3 := −2a5a1
q3

+ 2a4a2
q3

+ 2a4
q2

− a32

q3

E4 := 2a2
q + a42

q4
+ 2a4a2

q3
− 2a3a1

q2
− 2a5a3

q4

E5 = −2a12

q + 2a42

q4
− 2a32

q3
+ 2− a52

q5
+ 2a22

q2
.

Comparing H(x) with degree 20 irreducible cyclotomic factor we have only one possibility for
H(x) namely, H(x) = x20−x18+x16−x14+x12−x10+x8−x6+x4−x2+1 then E1 = −1, E2 =
1, E3 = −1, E4 = 1, E5 = −1 in which case we have following solutions for ai’s

1. a1 =
√
11q, a2 = 5q, a3 = q

√
11q, a4 = −q2, a5 = q2

√
11q which is possible solution if q is

odd power of 11.
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2. Also a1 satisfies 165Z
2q4+330Z6q2−55Z8q+Z10−11q5−462Z4q3 and 14949Z2q4+1034Z6q2−

55Z8q+Z10−11q5−7502Z4q3 and 11605Z2q4+858Z6q2−55Z8q+Z10−5819q5−5214Z4q3

which are irreducible if p 6= 11 by Eisenstein’s criteria, hence has no integer solutions. If p = 11
then p = 1 mod 5, substituting q = 1 still gives no integer solutions for these polynomials,
hence they have no integer roots.

Case 2. If G(x) is reducible. Then by 2.2, G(x) = F1(x).F2(x). If Fi ∈ Q(
√
q)[x] \ Q[x] then its

roots are mth root of unity where φ(m) = 2g = 10 where m ∈ {11, 22} in which case Fi(x)Fi(x)
σ

is a irreducible cyclotomic factor of xm − 1 of degree 10 with even powers of x. We have following
factorizations.

1. x11 − 1 = (x− 1)(1 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x)

2. x22 − 1 = (x− 1)(1 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x)(1 + x)(1 − x+ x2 −
x3 + x4 − x5 + x6 − x7 + x8 − x9 + x10)

If Fi ∈ Q[x] then its roots are mth root of unity where φ(m) = g = 5 for which there is no
solutions.

Now H(x) = F1F
σ
1 F2F

σ
2 where not both Fi ∈ Q[x] as discussed earlier. Since H(x) has only

even degree terms, we look at all possibilities F1F
σ
1 F2F

σ
2 from above and we just get one possibility

namely, H(x) = 1+x2+x4+x6+x8+x10+x12+x14+x16+x18+x20 in which case, all Ei = 1 for
1 ≤ i ≤ 5, which gives a1 satisfies z2 − q which has no integer solution as q is odd power of p. The
solutions of a1 are root of 10949Z2q4+842Z6q2− 53Z8q+Z10− 7921q5 − 4842Z4q3 or 3221Z2q4+
442Z6q2 − 37Z8q+Z10 − 529q5 − 2074Z4q3 or 565Z2q4 + 666Z6q2 − 53Z8q+Z10 − q5 − 2202Z4q3

none of which has integer solutions by mod 3 mod 5 test.

8.2 Case a2i+1 = 0

If a2i+1 = 0 then G(x) = x10+ a2x8

q + a4x6

q2 + a4x4

q2 + a2x2

q +1, with roots as mth root of unity where,

1. If G(x) is irreducible then φ(m) = 10 which gives m ∈ {11, 22} and G(x) is of degree 10 and
has only even degree terms but x11 − 1 and x22 − 1 have no irreducible factor with only even
terms of degree 10. So this is not possible.

2. If G(x) is reducible then it is product of two degree 5 irreducible factors of xm − 1 above.
But there are no degree 5 factors so this is not possible.

8.3 P (X) reducible

If P (X) is reducible then P (X) = h(X)e where e|5 , e > 1 so e = 5. In that case h(X) = X2+aX+q
which by argument done for dimension 2 does not corresponds to simple abelian variety.

Theorem 8.1. The characteristic polynomial of the a simple supersingular abelian variety of di-
mension 5 over Fq (q = pn, n odd) is given by

p = 11 : X10±
√

11qX9+5qX8±q
√

11qX7−q2X6±q2
√

11qX5−q3X4±q3
√

11qX3+5q4X2±q4
√

11qX+q5.
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Proof. From discussion above we have established P (X) = X10 ± √
11qX9 + 5qX8 ± q

√
11qX7 −

q2X6 ± q2
√
11qX5 − q3X4 ± q3

√
11qX3 + 5q4X2 ± q4

√
11qX + q5, p = 11 is a supersingular Weil

polynomial of degree 10. Also P (X) irreducible in Z
2Z , hence irreducible over Q. P (X/

√
q) is

irreducible over Q(
√
11)[X] with one of the roots as ζ44 and splitting field Q(ζ44). We have

[Q(
√
11) : Q(ζ44)] = 10. Passing through completion and using theorem 3.2 we get,

[Q11 : Q11(
√
11)][Q11(

√
11) : Q11(ζ44)] = [Q11 : Q11(ζ44)] = 20.

Therefore [Q11(
√
11) : Q11(ζ44)] = 10. But P (X/

√
q) ∈ Q11(

√
11) has degree 10 and ζ44 as one of

the roots. This implies P (X/
√
q) and hence P (X) are irreducible over Q(

√
11) which implies P (X)

is irredicible over Q11. Hence we have one invariant with invpi(Endk(A) ⊗ Q) ≡ 0 mod Z which
shows the dimA = 5.

9 Dimension 6

The characteristic polynomial of Frobenius of an abelian variety of dimension 6 is given by

P (X) = X12+a1X
11+a2X

10+a3X
9+a4X

8+a5X
7+a6X

6+qa5X
5+q2X4+q3a3X

3+q4a2X
2+q5a1X+q6.

If P (X) is irreducible then we have following cases.

9.1 Case a2i+1 6= 0

If a2i+1 6= 0 then we have following cases

Case 1. If G(x) is irreducible then

H(x) = x24+

(

2
a2
q

− a1
2

q

)

x22+

(

−2
a3a1
q2

+
a2

2

q2
+ 2

a4
q2

)

x20+

(

2
a6
q3

− a3
2

q3
− 2

a5a1
q3

+ 2
a4a2
q3

)

x18+

(

−2
a5a3
q4

+ 2
a4
q2

+ 2
a6a2
q4

− 2
a5a1
q3

+
a4

2

q4

)

x16+

(

2
a2
q

− 2
a3a1
q2

− 2
a5a3
q4

− a5
2

q5
+ 2

a4a2
q3

+ 2
a6a4
q5

)

x14+

(

2
a2

2

q2
+

a6
2

q6
+ 2

a4
2

q4
− 2

a5
2

q5
− 2

a1
2

q
+ 2− 2

a3
2

q3

)

x12+

(

2
a2
q

− 2
a3a1
q2

− 2
a5a3
q4

− a5
2

q5
+ 2

a4a2
q3

+ 2
a6a4
q5

)

x10+

(

−2
a5a3
q4

+ 2
a4
q2

+ 2
a6a2
q4

− 2
a5a1
q3

+
a4

2

q4

)

x8 +

(

2
a6
q3

− a3
2

q3
− 2

a5a1
q3

+ 2
a4a2
q3

)

x6+

(

−2
a3a1
q2

+
a2

2

q2
+ 2

a4
q2

)

x4 +

(

2
a2
q

− a1
2

q

)

x2 + 1

whose roots are mth roots of unity where φ = 4g = 24 which impliesm ∈ {35, 39, 45, 52, 56, 70, 72, 78, 84, 90}.
Each of which has following factorization.

1. x35 − 1 = (x− 1)(1 + x6 +x5 + x4 +x3 + x2 + x)(1+ x4 + x3 + x2 + x)(1− x+ x5 − x6 + x7 −
x8 + x10 − x11 + x12 − x13 + x14 − x16 + x17 − x18 + x19 − x23 + x24)

21



2. x39 − 1 = (x− 1)(1 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x)(1 + x2 +
x)(1− x+ x3 − x4 + x6 − x7 + x9 − x10 + x12 − x14 + x15 − x17 + x18 − x20 + x21 − x23 + x24)

3. x45 − 1 = (x− 1)(1 + x4 + x3 + x2 + x)(1 + x2 + x)(1− x+ x3 − x4 + x5 − x7 + x8)(x6 + x3 +
1)(x24 − x21 + x15 − x12 + x9 − x3 + 1)

4. x52 − 1 = (x− 1)(1 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x)(1 + x)(1−
x+ x2 − x3 + x4 − x5 + x6 − x7 + x8 − x9 + x10 − x11 + x12)(1 + x2)(x24 − x22 + x20 − x18 +
x16 − x14 + x12 − x10 + x8 − x6 + x4 − x2 + 1)

5. x56 − 1 = (x− 1)(1 + x6 + x5 + x4 + x3 + x2 + x)(1 + x)(1− x+ x2 − x3 + x4 − x5 + x6)(1 +
x2)(x12 − x10 + x8 − x6 + x4 − x2 + 1)(1 + x4)(x24 − x20 + x16 − x12 + x8 − x4 + 1)

6. x70−1 = (x−1)(1+x6+x5+x4+x3+x2+x)(1+x4+x3+x2+x)(1−x+x5−x6+x7−x8+x10−
x11+x12−x13+x14−x16+x17−x18+x19−x23+x24)(1+x)(1−x+x2−x3+x4−x5+x6)(1−x+
x2−x3+x4)(1+x−x5−x6−x7−x8+x10+x11+x12+x13+x14−x16−x17−x18−x19+x23+x24)

7. x72 − 1 = (x− 1)(1 + x2 + x)(x6 + x3 + 1)(1 + x)(1− x+ x2)(1− x3 + x6)(1 + x2)(x4 − x2 +
1)(x12 − x6 + 1)(1 + x4)(x8 − x4 + 1)(x24 − x12 + 1)

8. x78 − 1 = (x− 1)(1 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x)(1 + x2 +
x)(1 − x + x3 − x4 + x6 − x7 + x9 − x10 + x12 − x14 + x15 − x17 + x18 − x20 + x21 − x23 +
x24)(1 + x)(1− x+ x2 − x3 + x4 − x5 + x6 − x7 + x8 − x9 + x10 − x11 + x12)(1− x+ x2)(1 +
x− x3 − x4 + x6 + x7 − x9 − x10 + x12 − x14 − x15 + x17 + x18 − x20 − x21 + x23 + x24)

9. x84−1 = (x−1)(1+x6+x5+x4+x3+x2+x)(1+x2+x)(1−x+x3−x4+x6−x8+x9−x11+
x12)(1+x)(1−x+x2−x3+x4−x5+x6)(1−x+x2)(1+x−x3−x4+x6−x8−x9+x11+x12)(1+
x2)(x12−x10+x8−x6+x4−x2+1)(x4−x2+1)(x24+x22−x18−x16+x12−x8−x6+x2+1)

10. x90 − 1 = (x− 1)(1 + x4 + x3 + x2 + x)(1 + x2 + x)(1− x+ x3 − x4 + x5 − x7 + x8)(x6 + x3 +
1)(x24 − x21 + x15 − x12 + x9 − x3 + 1)(1 + x)(1− x+ x2 − x3 + x4)(1− x+ x2)(1 + x− x3 −
x4 − x5 + x7 + x8)(1 − x3 + x6)(x24 + x21 − x15 − x12 − x9 + x3 + 1).

Let
E1 := 2a2

q − a12

q

E2 := −2a3a1
q2

+ a22

q2
+ 2a4

q2

E3 := 2a6
q3

− a32

q3
− 2a5a1

q3
+ 2a4a2

q3

E4 := −2a5a3
q4

+ 2a4
q2

+ 2a6a2
q4

− 2a5a1
q3

+ a42

q4

E5 := 2a2
q − 2a3a1

q2
− 2a5a3

q4
− a52

q5
+ 2a4a2

q3
+ 2a6a4

q5

E6 := 2a22

q2 + a62

q6 + 2a42

q4 − 2a52

q5 − 2a12

q + 2− 2a32

q3

Comparing H(x) with degree 24 irreducible cyclotomic factor we have following possibilities for
H(x)

1. If H(x) = x24 − x22 + x20 − x18 + x16 − x14 + x12 − x10 + x8 − x6 + x4 − x2 + 1 then
E1 = −1, E2 = 1, E3 = −1, E4 = 1, E5 = −1, E6 = 1 which gives a1 satisfies
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(a) 117q2 − 26Z2q + Z4

(b) 3q6 − 286Z2q5 − 78Z10q + Z12 + 1287q4Z4 + 715q2Z8 − 1716q3Z6

(c) 13q6 − 52702Z2q5 − 78Z10q + Z12 + 43719q4Z4 + 1547q2Z8 − 12532q3Z6

(d) 8125q6 − 64350Z2q5 − 78Z10q + Z12 + 116519q4Z4 + 2171q2Z8 − 25844q3Z6

(e) 81133q6 − 138398Z2q5 − 78Z10q + Z12 + 81991q4Z4 + 1963q2Z8 − 20020q3Z6

(f) 137917q6 − 244062Z2q5 − 78Z10q + Z12 + 126503q4Z4 + 2171q2Z8 − 25844q3Z6

none of which has an integer solution by mod 3, mod 5 test.

2. If H(x) = x24 − x20 + x16 − x12 + x8 − x4 + 1 then E1 = 0, E2 = −1, E3 = 0, E4 =
1, E5 = 0, E6 = −1 which gives ai’s satisfies a1 = ±√

2q, a2 = q, a3 = 0, a4 = −q2, a5 =
−q2a1, a6 = −q3. The other solutions for a1 are

(a) −14q + Z2

(b) −8q3 + 332Z2q2 − 38Z4q + Z6

(c) −56q3 + 140Z2q2 − 42Z4q + Z6

(d) 64q6 − 7488Z2q5 − 52Z10q + Z12 + 12016q4Z4 + 828q2Z8 − 5088q3Z6

(e) 64q6 − 1728Z2q5 − 76Z10q + Z12 + 10480q4Z4 + 1212q2Z8 − 6432q3Z6

(f) 3136q6 − 40768Z2q5 − 84Z10q + Z12 + 49392q4Z4 + 2044q2Z8 − 18144q3Z6

(g) 817216q6 − 632512Z2q5 − 76Z10q + Z12 + 189680q4Z4 + 2108q2Z8 − 27936q3Z6

none of which has integer solution by mod 3, mod 5 test.

3. If H(x) = x24 − x12 + 1 then E1 = 0, E2 = 0, E3 = 0, E4 = 0, E5 = 0, E6 = −1 then
solutions are

(a) a1 = a2 = a4 = a5 = 0, a3 = ±q
√
2q, a6 = q3 which is possible for q is odd power of 2.

(b) a3 satisfies Z2 − 6q which has no integer solution for any q.

(c) The other solutions of a1 are roots of polynomials

i. −8q3 + 36Z2q2 − 12Z4q + Z6

ii. 2(−24q3 + 36Z2q2 − 12Z4q + Z6)

iii. 2(9q6 − 108Z2q5 − 24Z10q + Z12 + 333q4Z4 + 162q2Z8 − 372q3Z6)

iv. 2(Z2 − q)

v. 2(5Z2 − 2q)

vi. 2(Z12 − 12Z10q + 54q2Z8 − 112q3Z6 + 105q4Z4 − 36Z2q5 + q6)

none of which has integer solutions by mod 3, mod 5 test.

4. If H(x) = x24+x22−x18−x16+x12−x8−x6+x2+1 then E1 = 1, E2 = 0, E3 = −1, E4 =
−1, E5 = 0, E6 = 1 then solutions are

(a) a1 = ±√
3q, a2 = 2q, a3 = ±q

√
3q, a4 = q2, a5 = 0, a6 = −q3 which is a possibility if

q odd power of 3.
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(b) a1 = ±√
7q, a2 = 4q, a3 = ±q

√
7q, a4 = −q2, a5 = −2q2a1, a6 = −7q3 which is a

possibility for q odd power of 7.

The other solutions of a1 are

(a) −7q3 + 35Z2q2 − 21Z4q + Z6

(b) −27q3 + 747Z2q2 − 57Z4q + Z6

(c) q6 − 186Z2q5 − 58Z10q + Z12 + 1423q4Z4 + 655q2Z8 − 1772q3Z6

(d) 1849q6 − 9682Z2q5 − 50Z10q + Z12 + 11775q4Z4 + 743q2Z8 − 4572q3Z6

(e) 27889q6 − 84410Z2q5 − 58Z10q + Z12 + 50927q4Z4 + 1215q2Z8 − 11628q3Z6

(f) 337561q6 − 707266Z2q5 − 98Z10q + Z12 + 287679q4Z4 + 3143q2Z8 − 44604q3Z6

none of which has integer solutions by mod 3, mod 5 test.

Case 2. If G(x) is reducible then by theorem 2.2, we get G(x) = F1(x)F2(x). If Fi ∈ Q(
√
q)[x]\

Q[x] then its roots are mth root of unity where φ(m) = 2g = 12 where m ∈ {13, 21, 26, 28, 36, 42}
in which case Fi(x)Fi(x)

σ is irreducible cyclotomic factor of xm − 1 of degree 12.
If Fi ∈ Q[x] then its roots are mth root of unity where φ(m) = g = 6 in which case m ∈

{7, 9, 14, 18} and in that case Fi is irreducible cyclotomic factor of xm − 1 of degree 6. Now
H(x) = F1F

σ
1 F2F

σ
2 where not both Fi ∈ Q[x] as discussed earlier. Since H(x) has only even degree

terms, we look at all possibilities F1F
σ
1 F2F

σ
2 from above, all of them are listed below.

1. H(x) = 1 + x6 + x4 + x2 + x10 + x12 + x8 + x22 + x20 + x18 + x16 + x24 + x14 which gives
E1 = E2 = E3 = E4 = E5 = E6 = 1 then a1 = ±√

13q, a2 = 7q, a3 = ±3q
√
13q, a4 =

15q2, a5 = ±5q2
√
13q, a6 = 19q3 which is possible if q is odd power of 13. The other solutions

for a1 are roots of following polynomials

(a) −325q3 + 299Z2q2 − 39Z4q + Z6

(b) −625q3 + 339Z2q2 − 35Z4q + Z6

(c) q6 − 262Z2q5 − 70Z10q + Z12 + 3919q4Z4 + 1487q2Z8 − 9172q3Z6

(d) 2809q6 − 18766Z2q5 − 46Z10q + Z12 + 16447q4Z4 + 743q2Z8 − 5284q3Z6

(e) 169q6 − 10478Z2q5 − 78Z10q + Z12 + 22815q4Z4 + 1495q2Z8 − 9828q3Z6

(f) 10609q6 − 35206Z2q5 − 70Z10q + Z12 + 28463q4Z4 + 1279q2Z8 − 9172q3Z6

(g) Z2 − q

which has no solutions for any q, odd power of prime by mod 3 mod 5 test.

2. H(x) = 1+x6−x2+x12−x8−x22+x18−x16+x24 then E1 = E4 = −1, E2 = E5 = 0, E3 =
E6 = 0. Then possibilities of a1 are

(a) Z2 − q

(b) −21q + Z2

(c) −q3 + 83Z2q2 − 19Z4q + Z6
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(d) −189q3 + 315Z2q2 − 63Z4q + Z6

(e) 49q6 − 1862Z2q5 − 70Z10q + Z12 + 14063q4Z4 + 1407q2Z8 − 9492q3Z6

(f) 1681q6 − 12022Z2q5 − 54Z10q + Z12 + 20911q4Z4 + 991q2Z8 − 7412q3Z6

(g) 6889q6 − 33150Z2q5 − 94Z10q + Z12 + 46687q4Z4 + 2263q2Z8 − 18500q3Z6

(h) 1194649q6 − 1387902Z2q5 − 94Z10q + Z12 + 419647q4Z4 + 3271q2Z8 − 53444q3Z6

none of which has integer solutions.

3. H(x) = 1− 4x6 +3x4 − 2x2 − 6x10 +7x12 +5x8 − 2x22 +3x20 − 4x18 +5x16 + x24 − 6x14

then E1 = −2, E2 = 3, E3 = −4, E4 = 5, E5 = −6, E6 = 7 then solutions are

(a) a1 = 0, a2 = −q, a3 = 0, a4 = q2, a5 = 0, a6 = −q3

(b) a1 = ±2
√
7q, a2 = 13q, a3 = ±8q

√
7q, a4 = 29q2, a5 = ±14q2

√
7q, a6 = 41q3.

In other solutions a1 are

(a) −7q3 + 35Z2q2 − 21Z4q + Z6

(b) −7q3 + 49Z2q2 − 14Z4q + Z6

(c) −7q3 + 21Z2q2 − 14Z4q + Z6

(d) 2(−7q3 + 14Z2q2 − 7Z4q + Z6)

none of which has integer solutions by mod 3 mod 5 test.

4. H(x) = x24 − x22 + x20 − 2x18 + 2x16 − 2x14 + 3x12 − 2x10 + 2x8 − 2x6 + x4 − x2 + 1 which
gives E1 = −1, E2 = 1, E3 = E5 = −2, E4 = 2, E6 = 3 which implies a1 is root of following
polynomials.

(a) 289q6 − 52314Z2q5 − 90Z10q + Z12 + 69327q4Z4 + 2607q2Z8 − 26924q3Z6

(b) Z36 − 270qZ34 + 31449q2Z32 − 2101968q3Z30 + 90425076q4Z28 − 2660312328q5Z26

+55467987076Z24q6−837266714544Z22q7+9254863738350Z20q8−75180384842708Z18q9+

447103601802606Z16q10 − 1923833859293616Z14q11 + 5861411718291844Z12q12 −
12204967208661768Z10q13 + 16400387853252084Z8q14 − 12905852655480016Z6q15 +
4963241293734297Z4q16 − 620389337072142Z2q17 + 7265822679361q18

(c) −7q3 + 35Z2q2 − 21Z4q + Z6

none of which has integer roots by mod 3 mod 5 test.

5. H(x) = x24 − 2x18 + 3x12 − 2x6 + 1 which means E1 = E2 = E4 = E5 = 0, E3 = −2 and
E6 = 3 which has following solutions for ai’s

(a) a1 = a2 = a4 = a5 = 0, a3 = ±2q
√
3q, a6 = 5q3 which is possible if q is odd power of 3.

(b) a1 = a2 = a3 = a4 = a5 = 0 and a6 = −q3, which is possibility.

(c) The other solutions of a1 are
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i. 2(−3q3 + 9Z2q2 − 6Z4q + Z6)

ii. 2(−3q3 + 9Z2q2 − 6Z4q + Z6)

iii. 2(−3q3 + 9Z2q2 − 6Z4q + Z6)

iv. 2(−27q3 + 81Z2q2 − 18Z4q + Z6)

v. 4(−3q3 + 9Z2q2 − 6Z4q + Z6)

none of which has an integer solution by mod 3 mod 5 test hence not possible.

9.2 Case a2i+1 = 0

If a2i+1 = 0 for all i. Then G(x) = x12 + a2x10

q + a4x8

q2
+ a6x6

q3
+ a4x4

q2
+ a2x2

q + 1. We have following
cases.

1. If G(x) is irreducible over Q then it is a degree 12 irreducible cyclotomic factor of xm − 1
where φ(m) = 12. Since G(x) has only even degree terms we have following possibilities

(a) G(x) = x12−x10+x8−x6+x4−x2+1 which gives X12−qX10+q2X8−q3X6+q4X4−
q5X2 + q6 which is a possibility for P (X) for p 6= 7. For p = 7, P (X) is reducible hence
not possible.

(b) G(x) = x12 − x6 + 1 which gives P (X) = X12 − q3X6 + q6 which is irreducible if p 6= 3
hence is possibility. For p = 3 we have X12 − q3X6 + q6 = (X6 −

√

3q3X3 + q3)(X6 +
√

3q3X3 + q3) which is not irreducible hence is not a possibility.

2. If G(x) is reducible over Q then G(x) = F1F2 where Fi are 6 irreducible cyclotomic factor of
xm−1 where φ(m) = 6. Since G(x) has only even degree terms we have following possibilities,

(a) G(x) = x12 + x10 + x8 + x6 + x4 + x2 + 1 which gives X12 + qX10 + q2X8 + q3X6 +
q4X4 + q5X2 + q6 which is a possibility for P (X).

(b) G(x) = x12 + x6 + 1 which gives P (X) = X12 + q3X6 + q6 which is a possibility.

9.3 P (X) reducible

P (X) is reducible then P (X) = h(X)e where e|g , e > 1 and h(X) ∈ Z[X]. So e = 2, 3 or 6. Then,

1. If e = 2 then deg(h(X)) = 6 say h(X) = (X6 + fX5 + aX4 + bX3 + cX2 + dX ± q3). Then

we have G(t) =
(

t6 + at4

q + ct2

q2
+ 1

)

− 1
√
q

(

ft5 + bt3

q + dt
q2

)

.

(a) If constant term of h(X) has minus sign, then there is cyclotomic factor to compare with
H(t).

(b) If constant term of h(X) has plus sign, then h(X) corresponds to characteristic polyno-
mial of dimension 3 supersingular abelian variety and since all of them appear see [17],
by Tate’s theorem the abelian variety corresponding to P (X) is not simple.

2. If e = 3 then deg(h(X)) = 4 say deg(h(X)) = 4 say h(X) = (X4 + bX3 + cX2 + dX ± g).
This case is already discussed in dimension 4, P (X) reducible case.

Hence we have,
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Theorem 9.1. The characteristic polynomial of a supersingular abelian variety over Fq , q = pn, n
odd, of dimension 6 is given by one of following polynomials.

1. p = 2 : X12±√
2qX11+ qX10− q2X8− q2(±√

2q)X7− q3X6− q3(±√
2q)X5− q4X4+ q5X2±

q5
√
2qX + q6

2. p = 2 : X12 ± q
√
2qX9 + q3X6 ± q4

√
2qX3 + q6

3. p = 3 : X12 ±√
3qX11 + 2qX10 ± 3q

√
3qX9 + q2X8 − q3X6 + q4X4 ± 3q4

√
3qX3 + 2q5X2 ±

q5
√
3qX + q6

4. p = 7 : X12±√
7qX11+4qX10± q

√
7qX9− q2X8−2q2(±√

7q)X7−7q3X6−2q3(±√
7q)X5−

q4X4 ± q4
√
7qX3 + 4q5X2 ± q5

√
7qX + q6

5. p = 7 : X12±2
√
7qX11+13qX10±8q

√
7qX9+29q2X8±14q2

√
7qX7+41q3X6±14q3

√
7qX5+

29q4X4 ± 8q4
√
7qX3 + 13q5X2 ± 2q5

√
7qX + q6

6. p = 13 : X12±√
13qX11+7qX10±3q

√
13qX9+15q2X8±5q2

√
13qX7+19q3X6±5q3

√
13qX5+

15q4X4 ± 3q4
√
13qX3 + 7q5X2 ± q5

√
13qX + q6

7. X12 + qX10 + q2X8 + q3X6 + q4X4 + q5X2 + q6

8. p 6= 7 : X12 − qX10 + q2X8 − q3X6 + q4X4 − q5X2 + q6

9. p 6= 3 : X12 − q3X6 + q6

10. X12 + q3X6 + q6

Theorem 9.2. All of the polynomials listed above occur as characteristic polyonomial of Frobenuis
of abelian varieties of dimension 6.

Proof. 1. If P (X) = X12 ± √
2qX11 + qX10 − q2X8 − q2(±√

2q)X7 − q3X6 − q3(±√
2q)X5 −

q4X4 + q5X2 ± q5
√
2qX + q6 for p = 2, then P (X) is irreducible in Z

3Z , hence irreducible over

Q. P (X/
√
q) is irreducible over Q(

√
2)[X] with one of the roots as ζ52 and splitting field

Q(ζ52). We have [Q(
√
2) : Q(ζ52)] = 24. Passing through completion and using theorem 3.2

we get,

[Q2 : Q2(
√
2)][Q2(

√
2) : Q2(ζ52)] = [Q2 : Q2(ζ52)] = 24.

Therefore [Q2(
√
2) : Q2(ζ52)] = 12. But P (X/

√
q) ∈ Q2(

√
2) has degree 12 and ζ52 as one of

the roots. This implies P (X/
√
q) and hence P (X) are irreducible over Q(

√
2) which implies

P (X) is irredicible over hence over Q2. Hence we have one invariant with invpi(Endk(A) ⊗
Q) ≡ 0 mod Z which shows the dimA = 6.

2. If P (X) = X12 ± q
√
2qX9 + q3X6 ± q4

√
2qX3 + q6 where p = 2, is irreducible over Z

3Z , hence
over Q with splitting field, Q(ζ72). The similiar argument above shows that P (X) corresponds
to abelian variety of dimension 6.
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3. If P (X) = X12 ± √
3qX11 + 2qX10 ± 3q

√
3qX9 + q2X8 − q3X6 + q4X4 ± 3q4

√
3qX3 +

2q5X2 ± q5
√
3qX + q6 where p = 3, or P (X) = X12 ±√

7qX11 + 4qX10 ± q
√
7qX9 − q2X8 −

2q2(±√
7q)X7 − 7q3X6 − 2q3(±√

7q)X5 − q4X4 ± q4
√
7qX3 + 4q5X2 ± q5

√
7qX + q6 where

p = 7 are irreducible over Z
2Z , hence over Q with splitting field, Q(ζ84). The similiar argument

above shows that these P (X) correspond to abelian variety of dimension 6.

4. P (X) = X12±2
√
7qX11+13qX10±8q

√
7qX9+29q2X8±14q2

√
7qX7+41q3X6±14q3

√
7qX5+

29q4X4 ± 8q4
√
7qX3 + 13q5X2 ± 2q5

√
7qX + q6 where p = 7 is irreducible in Z

2Z , hence

irreducible over Q with splitting field Q(ζ28) . But P (X/
√
q) is reducible over Q(

√
7)[X] with

P (X/
√
q) = F1(X/

√
q)F2(X/

√
q) each irreducible over Q(

√
7)[X] with both of them having

roots as ζ28. But [Q(
√
7) : Q(ζ28)] = 4. Passing through completion we have [Q7(

√
7) :

Q7(ζ28)] = 6 with root of F1(X/
√
q) and F2(X/

√
q) as ζ28 and since degFi = 6, Fi(X/

√
q)

are irreducible over Q7(
√
7). P (X) = F1(X)F2(X). But Fi have coefficients from Q7(

√
7)/Q7.

Hence P (X) is irreducible over Q7. This implies dimA = 6.

5. P (X) = X12±√
13qX11+7qX10±3q

√
13qX9+15q2X8±5q2

√
13qX7+19q3X6±5q3

√
13qX5+

15q4X4 ± 3q4
√
13qX3 + 7q5X2 ± q5

√
13qX + q6 where p = 13 is irreducible mod 2 hence is

irreducible over Q. Using the same argument as above with roots of F1 and F2 as ζ13 and ζ26
we get dimA = 6.

6. If P (X) = X12 + q3X6 + q6, substitute y = qX2. Then we get P (X) = q6(y6 + y3 + 1). The
polynomial y6 + y3 + 1 is 9th cyclotomic polynomial.

(a) If p ≡ 1 mod 9 then y6 + y3 + 1 =
6
∏

i=1

(y − αi) over Qp with vp(αi) = 0. Since n is odd

we get

P (X) =
6
∏

i=1

(X2−αiq). Hence we have 6 invariants with invpi(Endk(A)⊗Q) ≡ 0 mod Z

which shows the dimA = 6.

(b) If p ≡ 4, 7 mod 9 then y6 + y3 + 1 =

2
∏

i=1

(y3 + γiy
2 + βiy + αi) with vp(αi) = 0. Since n

is odd we get

P (X) =

2
∏

i=1

(X6 + γiX
4+βiX

2 +αi). Hence we have 2 invariants with invpi(Endk(A)⊗

Q) ≡ 0 mod Z which shows the dimA = 6.

(c) If p ≡ 2, 5 mod 9 then y6+y3+1 hence P (X) is irreducible over Qp, we have 1 invariant
with invpi(Endk(A)⊗Q) ≡ 0 mod Z which shows the dimA = 6.

(d) If p ≡ 8 mod 9 then y6+ y3+1 =
3
∏

i=1

(y2 +βiy+αi) with vp(αi) = 0. Since n is odd we

get

P (X) =
3
∏

i=1

(X4 + βiX
2 + αi), hence we have 3 invariants with invpi(Endk(A)⊗Q) ≡ 0

mod Z which shows the dimA = 6.
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7. If P (X) = X12 − q3X6 + q6 with p 6= 3, substitute y = qX2. Then we get P (X) = q6(y6 −
y3 + 1). The polynomial y6 − y3 + 1 is 18th cyclotomic polynomial.

(a) If p ≡ 1 mod 18 then y6 − y3 +1 =

6
∏

i=1

(y −αi) over Qp with vp(αi) = 0. Since n is odd

we get

P (X) =
6
∏

i=1

(X2−αiq). Hence we have 6 invariants with invpi(Endk(A)⊗Q) ≡ 0 mod Z

which shows the dimA = 6.

(b) If p ≡ 7, 13 mod 18 then y6 − y3 + 1 =

2
∏

i=1

(y3 + γiy
2 + βiy + αi) with vp(αi) = 0. Since

n is odd we get

P (X) =

2
∏

i=1

(X6 + γiX
4+βiX

2 +αi). Hence we have 2 invariants with invpi(Endk(A)⊗

Q) ≡ 0 mod Z which shows the dimA = 6.

(c) If p ≡ 5, 11 mod 18 then y6 − y3 + 1 hence P (X) is irreducible over Qp, we have 1
invariant with invpi(Endk(A)⊗Q) ≡ 0 mod Z which shows the dimA = 6.

(d) If p ≡ 17 mod 9 then y6 − y3 + 1 =

3
∏

i=1

(y2 + βiy + αi) with vp(αi) = 0. Since n is odd

we get

P (X) =

3
∏

i=1

(X4 + βiX
2 + αi), hence we have 3 invariants with invpi(Endk(A)⊗Q) ≡ 0

mod Z which shows the dimA = 6.

8. If P (X) = X12−qX10+q2X8−q3X6+q4X4−q5X2+q6 with p 6= 7, substitute y = qX2. Then
we get P (X) = q6(y6−y5+y4−y3+y2−y+1). The polynomial y6+y5+y4−y3+y2+y+1
is 14th cyclotomic polynomial.

(a) If p ≡ 1 mod 14 then y6−y5+y4−y3+y2−y+1 =
6
∏

i=1

(y−αi) over Qp with vp(αi) = 0.

Since n is odd we get

P (X) =
6
∏

i=1

(X2−αiq). Hence we have 6 invariants with invpi(Endk(A)⊗Q) ≡ 0 mod Z

which shows the dimA = 6.

(b) If p ≡ 11, 9 mod 14 then y6 − y5 + y4 − y3 + y2 − y+1 =

2
∏

i=1

(y3 + γiy
2 + βiy+αi) with

vp(αi) = 0. Since n is odd we get

P (X) =

2
∏

i=1

(X6 + γiX
4+βiX

2 +αi). Hence we have 2 invariants with invpi(Endk(A)⊗

Q) ≡ 0 mod Z which shows the dimA = 6.
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(c) If p ≡ 3, 5 mod 14 then y6+y3+1 hence P (X) is irreducible over Qp, we have 1 invariant
with invpi(Endk(A)⊗Q) ≡ 0 mod Z which shows the dimA = 6.

(d) If p ≡ 13 mod 14 then y6−y5+y4−y3+y2−y+1 =
3
∏

i=1

(y2+βiy+αi) with vp(αi) = 0.

Since n is odd we get

P (X) =

3
∏

i=1

(X4 + βiX
2 + αi), hence we have 3 invariants with invpi(Endk(A)⊗Q) ≡ 0

mod Z which shows the dimA = 6.

9. If P (X) = X12 + qX10 + q2X8 + q3X6 + q4X4 + q5X2 + q6 , substitute y = qX2. Then we
get P (X) = q6(y6 + y5 + y4 + y3 + y2 + y+1). The polynomial y6 + y5 + y4 + y3 + y2 + y+1
is the 7th cyclotomic polynomial. Using same arguments above, we get dimA = 6

10 Dimension 7

The characteristic polynomial of Frobenius of an abelian variety of dimension 7 is given by
P (X) = X14 + a1X

13 + a2X
12 + a3X

11 + a4X
10 + a5X

9 + a6X
8 + a7X

7 + qa6X
6 + q2a5X

5 +
q3a4X

4 + q4a3X
3 + q5a2X

2 + q6a1X + q7.
If P (X) is irreducible with a2i+1 6= 0 then we have following cases.

Case 1. If G(x) is irreducible as in theorem 2.1 then H(X) is a polynomial of even degree terms
only whose roots are mth roots of unity where φ = 4g = 28 which implies m ∈ {29, 58}. Each of
which has following factorization.

1. x29 − 1 = (x− 1)(1 + x + x28 + x27 + x26 + x25 + x24 + x23 + x22 + x21 + x20 + x19 + x18 +
x17 + x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2)

2. x58 − 1 = (x− 1)(1 + x + x28 + x27 + x26 + x25 + x24 + x23 + x22 + x21 + x20 + x19 + x18 +
x17 + x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2)(1 +
x)(1− x+ x28 − x27 + x26 − x25 + x24 − x23 + x22 − x21 + x20 − x19 + x18 − x17 + x16 − x15 +
x14 − x13 + x12 − x11 + x10 − x9 + x8 − x7 + x6 − x5 + x4 − x3 + x2)

As none of these factors above of degree 28 are with only even degree terms, we see there is no
possibility of this form. Case 2. If G(x) is reducible. Then by 2.2 G(x) = F1(x).F2(x). If
Fi ∈ Q(

√
q)[x]/Q[x] then its roots are mth root of unity where φ(m) = 2g = 14 which has no

solutions. If Fi ∈ Q[x] then its roots are mth root of unity where φ(m) = g = 7 for which there is
no solutions. Therefore this case is not possible.

10.1 Case a2i+1 = 0

If a2i+1 = 0 then G(x) is irreducible factor of degree 14 of xm− 1 where φ(m) = 2g = 14 which has
no solutions.
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10.2 P (X) reducible

If P (X) is reducible then P (X) = h(X)e where e|7 , e > 1 and h(X) ∈ Z[X]. So e = 7, in which
case h(X) = X2 + aX ± q, this is already discussed in dimension 2, reducible case and is not a
possibility.

Hence we have,

Theorem 10.1. There is no simple supersingular abelian variety of dimension 7.

11 Jacobians of Supersingular Curves

An important question is whether the above actually occur as the characteristic polynomial of the
Frobenius of Jacobian of a curve C. Work is in progess on this question. For genus 1, 2 all of
the polynomials listed occur, see [5], respectively. For genus 4 the following occur as Jacobians of
hyperelliptic curves of genus 4 over Fq where q = 2n, n odd. An example of each is given here for
q = 25 where α is a primitive root.

The procedure above can be extended to any genus.
Work is in progress for n even.

P (X) Curve

X8 +
√
2qX7 + qX6 − q2X4 + q3X2 + q3

√
2qX + q4 y2 + y = x9 + α2x5 + α9x3

X8 −√
2qX7 + qX6 − q2X4 + q3X2 − q3

√
2qX + q4 y2 + y = x9 + α2x5 + α25x3

X8 + q4 y2 + y = x9 + x5 + α3x3

X8 + qX6 + q2X4 + q3X2 + q4 y2 + y = x9 + x5 + αx3
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