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Abstract

In this article, we derive the list of the characteristic polynomials of the Frobenius endomor-
phism of simple supersingular abelian varieties of dimension 1, 2, 3, 4, 5, 6, 7 over I, where
q=7p", nodd.

1 Introduction

Supersingular abelian varieties have applications in cryptography and coding theory and related
areas. Identity based ecryption and computation of weights of some Reed Muller codes are some of
them. The important (isogeny) invariant which carries most of the information about supersingular
curves is the characteristic polynomial of the Frobenius endomorphism. Here we give a list of such
polynomials up to dimension 7 over [F, where ¢ = p", n odd. We also give the procedure, which
extends to all dimensions.

Let A be an abelian variety of dimension g over F, where ¢ = p™. For [ # p, the characteristic
polynomial of Frobenius endomorphism « is defined as,

Py(X) :=det(a — XId|V;(A)).
The above definition is independent of choice of I. The coefficients of P4(X) are in Z. In fact,
PA(X) = X29 + a1X2g—1 4+t ang 4 qag_ng—l et qg.

An abelian variety A is k-simple if it is not isogenous to a product of abelian varieties of lower
dimensions over k. In that case P4(X) is either irreducible over Z or P(X) = h(X)® where
h(X) € Z[X] is an irreducible over Z , see [14]. We have the following result from Tate [9].

Theorem 1.1. If A and B are the abelian varieties defined over Fy. Then A is Fy-isogenous to
abelian subvariety of B if and only if Po(X) divides Pp(X) over Q[X]. In particular, Po(X) =
Pg(X) if and only if A and B are F,-isogenous.

We can factor P4(X) over the complex numbers as Ps(X) = H?i (X — ;) where the «; are

algebraic integers. An algebraic integer m € C is called a Weil-g-number if for every embedding
0:Q(m) = C, o(m) = \/q. Let W(q) be the set of a Weil-g-numbers in C. Two elements 7 and T
are conjugates (m ~ 7Tl) if they have same minimal polynomial over Q. In fact we have following
one to one correspondence.
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Theorem 1.2. (Honda-Tate theorem) The map A — w4 defines a bijection

{simple abelian varieties/F,}/(isogeny) — W(q)/(conjugacy)

An elliptic curve E over Fy is supersingular if £(IF;) has no points of order p. An abelian variety
A over Fy is called supersingular if A is isogenous over F, to a product of supersingular elliptic
curves.

Theorem 1.3. (Manin-Oort) A/F, is supersingular <= w4 = \/qC, where ¢ is some root of
unity.

We call a Weil-¢ number 7, a supersingular Weil -g-number if 74 = ,/q(, where ¢ is some root
of unity.

Our approach is first we will compute all supersingular Weil -g-numbers (polynomials). Then
we will find the dimension of the corresponding abelian varieties to those polynomials.

2 Supersingular Weil Polynomial

In this section we give results and procedure for computing the supersingular Weil Polynomial. Let
P(X) be a Weil polynomial given by

P(X):X2g+a1X2g—1_|_..._|_agX9+qag_1Xg—1“'+qg‘

We have following cases.

2.1 P(X) Irreducible
Proposition 2.1. If P(X) is irreducible with ag;i+1 # 0 for some i, then a;’s satisfy

a t2g—2 a ,t2g—2i
H(t) = (t29_|_2T+...+2’T

Proof. By dividing P(X) by ¢9 we get,

a3t2g—3

1
+'~—|—1)2—§(a1t29_1+ +o+at)?=0.

P(X) X% = X%-1 X9 X291
= g U Tty gt a4+ 1=0.

Doing the transformation % — t over Q(,/q) and rearranging we get

a2t2g—2 a2it2g—2i

2 1 209—1 03t2g_3
Gt) =t + —— o et D)+ —=(art +
q Vi

+ -+ agt) =0.

T

Since ¢ = p", n odd, Gal(Q(,/q)/Q) = {1,0} where o(,/q) = —/q. Therefore

aqt29—2 ag;t29~% 1 ast29—3
H(t) = GGt = (t29+ =2 o2 +...+1)2_a(a1t2g—1+37

: +tart)? =0,
q q

O



The polynomial H(t) defined above has only even powers of t.

Proposition 2.2. Let G(t) € Q(,/q)[t] (as defined above) be reducible over Q(\/q). Then G(t) =
Fi(t)F5(t) where Fy, Iy are irreducible polynomial in Q(\/q)[t] with deg F,deg Fy = g.

Proof. Let G(t) = Fi(t)Fy(t)... Fi(t) where F; are irreducible over Q(,/q)[t]. Then G(/qt) =
Fi(y/qt) Fa(\/qt) . .. Fi.(y/qt). Let o € Gal(Q(,/q) \ Q). Then,

2
Pq(fﬁ — GVa)G(/at) = Fi(Va) Fi (i) Fa(yat) Fa(Vat)” - . Fe(V/at) Fi(\/at)"

If deg F; < g then deg Fj deg FY < 2g. But F;F7 € Q[t] This implies there is polynomial of degree
less than 2¢g over Q with «;, which contradicts the minimality of P(t). Hence deg F; = g whence
the theorem follows. O

Theorem 2.3. Assume ag;+1 # 0.

1. If G(t) is irreducible over Q(\/q) then H(t) is an irreducible cyclotomic factor of t™ — 1 of
degree 4g where ¢(m) = 4g over Q.

2. If G(t) is reducible over Q(\/q) then G(t) = Fi(t)Fy(t) where at least one of Fy, Fy €
Q(/Q[t] \ Q[t]. If F; € Q[t] then it is an irreducible cyclotomic factor of t™ — 1 of degree g
where ¢(m) = g, else F;F7 € Qlt] is an irreducible cyclotomic factor of t™ — 1 of degree 2g
where ¢(m) = 2g.

Qi

NG

Proof. 1. From the construction, the roots of H(t) are “ which are also the roots of unity. But

H(t) is irreducible, hence the assertion follows.

2. Since agiy+1 # 0, G(t) € Q(/9)[t] \ Q[t]. Therefore G = F1F; (by 2Z2)implies at least one of
them (say F1) is in Q(,/g)[t] \ Q[t], in which case I} FY is irreducible cyclotomic factor ¢ — 1
of degree 2g where ¢(m) = 2g.

U

Proposition 2.4. If as;11 =0 for all i then

1. If G(t) is irreducible over Q, it is an irreducible cyclotomic factor of t™ — 1 of degree g where
¢(m) = 2g.

2. If G(t) is reducible over Q, then G(t) = F1Fy where F; are irreducible cyclotomic factor of
t"™ — 1 of degree g where ¢p(m) = g.

Proof. The proof is similiar to the proof of the previous theorem. O

2.2 P(X) Reducible

If P(X) is reducible then P(X) = h(X)¢ which implies e|2g. Also if h(X) = > h; X’ then
h§ = ¢ = p™ which implies e[ng. But since n is odd we have e|g. Therefore PX) — (L);))e
qE
X

Doing the transformation J7 — t we get G(t) as in proposition 2.J1 The same results on G(t)



from the above section holds depending on whether G(t) is irreducible or reducible except that g
is replaced by £.

Using the above propositions we have the following procedure to derive the Weil polynomial.

2.3 Procedure
1. Suppose P(X) is irreducible.

(a) If agi41 # 0 for some i.
i. If G(t) is irreducible, then as in proposition 23] find appropriate H(t) and solve for
the a;’s.
ii. If G(t) is reducible then use proposition 23] to find appropriate H(t) = G(t)G(t)?
and solve for the a;’s .
(b) If agiy+1 = 0 for all 4.
i. If G(t) is irreducible over Q then use proposition 2.4] to find appropriate cyclotomic
factors and compare with G(¢) to solve for a;’s.
ii. If G(t) is reducible over Q then use proposition 2.4 to compute G(t) = Fy(t)F5(t)
and compare coefficients to solve for a;’s.
2. Suppose P(X) is reducible i.e; P(X) = h(X)¢ with e|g. Then for h();), doing the transforma-
qE
tion % — t, we get a new polynomial G(¢) whose roots are roots of unity, and using above
tools we can find h(X).

Often in the above procedure, solutions to the a;’s are given by the roots of some polynomials
f(z,q) over Z. We use following test to check if f(z,q) has an integer solution.

Lemma 2.5. (Mod 3,5 test) Let f(z) be a monic polynomial of degree d with coefficients in Z[q]
where ¢ = p" such that if we put

1. ¢=1,2 and f(z) mod 3 has no solutions,
2. q=—-1,1 and f(z) mod 5 has no solutions.
then f(z) has no solutions in Z for any q.

Proof. If a is an integer solution then z —a | f(z). Let ¢ be power of prime. If g =1 mod 3, ¢ =2
mod 3 then a mod 3 is a solution. If g=0 mod 3 then¢g=—1or1 mod 5 and a mod 5 is the
solution for f(z) mod 5. O

In the next section we will calculate the dimension of the corresponding abelian variety to the
supersingular Weil polynomial.



3 Dimension

Let m € Q be the Weil number and P(X) be minimal Weil polynomial, with 7 obtained by method
above .We have the following theorem to calculate the dimension.

Theorem 3.1. Let A be a simple abelian variety over k =1, ,then

1. Endi(A) ® Q is a division algebra with center Q(m4) and

2dimA = [Endy(A) ® Q : Q(m4)]2[Q(m4) : Q).

2. The division algebra Endy(A) @ Q over Q(ma) has the following splitting behaviour

(a) it splits at each divisor | of | in Q(7a), if | # p,
(b) the invariants at the divisors p of p in Q(mw4) can be evaluated with

Up(ma)

Up(Q)

(c) it does not split at the real places of Q(m4).

invy(End,(A) ® Q) = [Q(7a)p : Qp] mod Z,

The invariants of End,(A)®@Q lie in Q/Z. They can be evaluated from the minimal polynomial
P(X) of m4 as follows. The only real Weil numbers are ¢'/? and -¢/? | so there are hardly any real
places of Q(m4). We consider the polynomial P(X) in Q,[X], i.e., over the p-adic numbers. Let

P(x) = [[4:x)

be the decomposition in irreducible factors in Q,[X]. The factors f;(X) correspond uniquely to the
divisors p; of p in Q(7m4). So to get the invariants we have the factor P(X) over Q,. In fact,

invy, (End,(A) ® Q) = v (£i(0)) mod Z.

Up(Q)

We use the invariants in order to evaluate the dimension of A as follows. The number [Endy(A)®Q :

Q(TFA)]% is equal to the order of Endy(A)® Q in the Brauer group of Q(m4) see theorem 18.6, [15],
which in turn is equal to the least common multiple of the orders of all the local invariants in Q/Z
see theorem 18.5, [I5]. This along with theorem [31] gives the dimension of A.

Hence the main problem in computing dimension is the factorization the P(X) over p-adic
numbers for which we will use the following result.

Theorem 3.2. Let ®, be nth cyclotomic polynomial in Q,. Then
1. If n = p", then ®, remains irreducible in Q.

2. If (n,p) = 1, then ®, = f;... fr, with rf = ¢(n), degf; = f for each i, where f is the
multiplicative order of p mod n.

Proof. See [2], chapter IV.4. O



4 Dimension 1

The characteristic polynomial of Frobenius of a dimension 1 abelian variety is given by P(X) =
X2+ a X +q

Case a; = 0: If a; = 0 then P(X)=X? + ¢ is Frobenius of supersingular abelian variety for all p.

Case a1 # 0: If a1 # 0 doing transformation x = % we get,

Case 1: If G(x) is irreducible then by proposition 21l H(z) := G(2)G(z)° = 2t + 1+ (2 — %)xz
with z as m* root of unity where ¢(m) = 4.g = 4 which implies m = {5, 8, 10, 12}.
We have,

Lad—1=(@z—-1) (" +2°+2>+2+1).

2. 25 —1=(z—-1)1+z)(1+2?) (a*+1).

320 —1=@-1)(1+z)(1+a*+23+22+2) (1 -2+ 2> — 2% +2%).
4.2 1= -1)1+z) (1+22+2) (1 -z+2?) (1+2?) (2* —2® +1).

Since H(z) has only even powers of = the only possibilities are H(z) = 2*+1 or H(z) = 2* — 22 +1.
Comparing the coefficients we get a; = ++/2¢ or ++/3¢ which is an integer if and only if ¢ is an
odd power of 2 and 3 respectively. Therefore a; = ++/2¢ or ++/3q.

Case 2. G(x) is reducible. Then by 221 G(z) = Fy(z).F»(x). The roots of F; are mth root of unity
where ¢(m) = 2g = 2 if F; € Q(\/q)[z] \ Q[z] else ¢(m) = g = 1. Then H(x) = F1F{ F>,F3 has no
possibility with only even degree terms.

Case P(X) is reducible: If P(X) is reducible then P(X) = (X + a)? # 0, then a = /g has no
integer solution as ¢ is a odd power of prime. Therefore we have

Theorem 4.1. The characteristic polynomial of a simple supersingular abelian variety of the di-
mension 1 over F, (g = p™, n odd) is one the following

1.p=2:X%24+/2¢X +¢q
2.p=3:X24+3¢X +¢q
3. X?+4¢q

In fact all of them appear, see [5].

5 Dimension 2

The characteristic polynomial of a supersingular abelian variety of dimension 2 is given by P(X) =
X4+ a1 X + asX? + qa; X + ¢%. We have following cases.



5.1 Case agiq #0

Let P(X) be irreducible with ag;;; # 0. On doing transformation = = <= we get

Va
H(z) = <x4 + % + 1) -1 (alx + alx) whose roots are mth roots of unity where

Case 1. f G(z) is irreducible over Q(/q)[z] then ¢(m) = 4.2 = 8, which implies m € {15, 16, 20, 24, 30}.
Collecting coefficients of x we get

x8+<2ﬂ—a—%> <2+a§ 2a%>x4+<@—a—%>x2+1.
a q @ q a q

LaP—1=@-1)(1+a*+23+22+z)(1+2?+2) (1 -2+ a2t +2°— 27+ 28)
2. 20— 1=(x-1)(1+a)(1+2%) (1+2) (1+2%

3.z 1—(95—1) (I+at+a?+22+2)(1+2) (1 -z +2® -2 +a?)
(1+:17)(x8 T +:134—x2—|—1)

4.2 1=@-1)(1+22+2)(14+2)(1-z+2?) (1+2?) (a* —22+1) (1 +2?) (¥ —2* +1)

5. 00 -1=(-1) (142 +2®+2?+2) (1+22+z)(1—a+2® -2 +2° —2" +2%) (1 +2)
(1—:1:—|—x2—x3+:174) (1—:13—|—x2) (1+$—l‘3—l‘4—$5+$7—|—l‘8)

So possibilities for H(z) are 2% +1 or 28 — 2% + 2% — 22 + 1 or 2% — 2% + 1.

1. If H(x) = 2® + 1 then E; = Fy = 0. Maple gives ay satisfies (22 — 4z + 2)q. Since 2% — 4z + 2
is irreducible by Eisentein’s ’s Criterion, as has no integers solution.

2. If H(z) = 2% — 2%+ 2* — 22 + 1 then E; = —1, Fy = 1. Maple gives ay satisfies -+ %(22 —
10z + 5)g which again has no integer roots by Eisenstein’s criteria.

3. If H(z) = 2% — 2% + 1 then E; = 0, F» = —1 which implies a; satisfies 22 — 6¢ (which has no
integer solution for any ¢) or a; ++/2¢, as = ¢ which has integer solution for p = 2. Therefore
P(X) = X*+ /pgX3 4+ q¢X? £ q/pgX + ¢? is the possibility where p = 2.

Case 2. If G(x) is reducible. Then by theorem 22, G(z) = Fi(x).F2(x). The roots of F; are
mth root of unity where ¢(m) = 2g = 4 if F; € Q(\/g)[z] \ Q[z] which case m € {5,8,10,12} else
¢(m) = g = 2 in which case m € {3,4,6}.

La°—1=(@x-1)1+a2*+23+2%+2)
2. 28 — 1= (z - 1)(1 +2)(1 +22)(1 + %)

3.0 —1=@@-1D)1+z*+23+ 22 +2)1+2)(1 — 2+ 22 — 23 + 2%)



6.
7.

2 1=@-D0+22+2)0+2)1—z+22) 1+ 2B (2 — 22 +1)

2t —1=(z—-1)(1+2)(1+2?

)

i —1=(z -1 +22+2)
(
(

2 —1=(@-1)1+22+2)(1+2)(1—z+22).

This gives following cases for H(x) as in theorem

1.

If H(x) =1+ 22* + 222 + 22% + 28 then By = 2, Ey = 2 then a; = +/2q, as = 2q which
gives P(X) = X* +/2¢X3 +2¢X? + ¢/2¢X + ¢®> = (X? + ¢)(X? £ /2¢X + q). But P(X)
was assumed to irreducible so this not a possibility.

I H(z) = 22 4+ 1+ 25 + 2% then By = 1, Ey = 0 implies a; = ++/3¢, as = 2q which gives

P(X) = X* 4+ /3¢X3 +2¢X? + ¢/3¢X + ¢® = (X? + ¢)(X? + /3¢X + q). But P(X) was
assumed to irreducible so this not a possibility.

CIf H(z) = 2® — 25+ 22% — 2% + 1 then Ey = —1, E» = 2 which implies ay satisfies 2L + 2(2% —

10z 4 5)q which has no integer roots by Eisenstein’s criteria.

CIf H(z) = 2% — 22% + 32 — 222 + 1 then E; = —2, Ey = 3 then

(a) a1 = 0, az = —q then P(X) = 2* — q2? + ¢ which is irreducible if p # 3, hence is a
possibility. If p = 3 then P(X) = X* — ¢X2 4+ ¢ = (X2 — /3¢X + ¢)(X%/3¢X + q).

(b) a1 = +2v/3¢q, az = 5q which has integer solutions if ¢ is odd power of 3, but then
P(X) = (X% £ /3¢X + q)? which is a contradiction to assumption that P(X) was
irreducible, hence not possible.

If Hiz) = 1+ 2* + 22 + 28 + 25 then By = 1, Ey = 1 then a; = ++/5¢, as = 3q or a;
satisfies 22 — ¢ which has no integer solutions as ¢ is an odd power of prime. So possibility is
P(X) = X%+ /pgX?3 + 3¢X? + q\/pgX + ¢* where p = 5.

If H(z) =1+ 22* + 2% then By = 0,|Ey = 2 then

(a) a; = 0, ag = 0 then P(X) = X* + ¢® which is irreducible if p # 2 . As P(X +1) =
(X+1D P+ ¢ =X +4X3 +6X%2+4X + 1+ ¢ and p # 2 implies 1 + ¢° is 2 mod 4,
hence by Eisentein’s criteria is irreducible and is a possibility for P(X). If p = 2 then
P(X) = X"+ ¢* = (X? — V2¢X + q)(X? + v/2¢X + q) which is reducible hence not
possible.

(b) a1 = £24/2q, as = 4q, which has integer solutions if ¢ is odd power of 2, but then
P(X) = (X% £ /2¢X + ¢)? which is a contradiction to assumption that P(X) was
irreducible, hence not possible.



5.2 Casea; =0
If a1 = 0 then G(z) = 2* + %22 + 1. We have

1. If G(z) is irreducible, the it is irreducible cyclotomic factor of 2™ — 1 of degree 4 where
#(m) = 4. But since in this case G(z) has only even degree terms we have G(z) = z* — 2% +1
in which case as = —¢ which is already dealt above.

2. If G(z) is reducible then G(z) = (1 + 2 + 22)(1 — 2 + 2?) = 1 + 2% + 2* which gives a3 = ¢
which is also gives a possibility for P(X).

Let P(X) be reducible. Then P(X) = h(X)® where h is irreducible over Z with e|g and hg = +q
ie; P(X) = (X? + aX £ ¢)°.

1. If a = 0, then P(X) = (X?—q)? or (X2+¢)?. But later is not a possible as the corresponding
abelian variety is not simple by Tate’s theorem, since 22 +¢ corresponds to dimension 1 abelian
variety.

2. If a # 0 then following theorem 21 we have G(t) = (t2 + 1) + %t. Then

(a) If constant term is 1, then from discussion on dimension 1 we get a = ++/2¢, ++/3q in
which case H(x) corresponds to an abelian variety of dimension 1 see [4.1]

(b) If constant term is -1, then from discussion of dimension 1, a has no solution.

We can conclude above the discussion as a following theorem.

Theorem 5.1. The characteristic polynomial of a simple supersingular abelian variety of dimension
2 over Fy (g =p", n odd) is one the following

1. p;'é3:X4—qX2—|—q2

2. X+ ¢X? + ¢?

3. p=2: X"+ /pgX>®+ qX? + q\/pgX + ¢*
4. p=5: X"+ /pgX>+3¢X? + q\/pgX + ¢
5. (X% —q)?

6. p#£2: X'+ ¢2

In fact all of them appear, see [13].

6 Dimension 3

The characteristic polynomial of Frobenius of a abelian variety of dimension 3 is given by

P(X) = X%+ a1 X 4+ ao X + a3X® + apqX? + a1° X + ¢°.
If P(X) is irreducible over Q(X) then we have following cases.



6.1 Case ag1 #0
Case 1 If G(x) is irreducible then

1
H(z) = G(2)G(2)° = (29 +‘;2 4+%x2—|—1)2 q(alx n qx 3 4 ayx)?

_ .12 2a 2a? 10 2a a2 2a1a; 8 —a2 2a? 2a3 6 2a a3 2a1a 4
R R e R R

22 4+ 1 whose roots are m** root of unity where ¢(m) = 4g = 12 which implies m €

2a2
(2 — 22
{13, 21, 26, 28, 36, 42}. We have following factorization for them.

LaB—-1=@-1)@2+at+20+2% 28 +2"+ 20 + 2P + 2t + 23+ 22 + 2+ 1)
2. 22 —1 = (z—1)(2? 42+ 1) (28 +2® +at 423+ 22+ +1,1) (22— 2 — 284 ab — 2t -4 1)

320 1=(@-D0+22+2t +20 42 4+ 28 2"+ 2 P+t 3 22 4 2) (1 +2)(1 -

4. 28 -1=(z-1)1+a8+a5+at+23+22 + o)1+ 2)(1 —2x+ 2% — 23 + 2t — 25 +20)(1 +
2?) (21?2 — 210 4 28 — 28 + 21 — 2% + 1)

5. 20 —1=(z-1)(1+22+2)1+2°+ 231 +2)(1 —2+22)(1 — 23+ 2%) (1 +2?)(2? — 2® +
(' — 20 4+1)

6. 22 -1=(z—1)(1+2b+25+at+ 23+ 22 +2)1+22 +2)(1—z+ 23— 2+ 28 — 284 2% — 21
NA4+z)1—z+a? -3 +2t -2 +2%) (1 -2+ 2?)(1+z—23 -2t + 20 — 28 — 29 + 21 +212)

2 2
Let El 2a2 — %

2a _ 2a1a
E_ 2+ 123

2 q q2
2a 2a

E—ﬁ—— 2% 19
3 7 q 7

Comparing with H (x) with cyclotomic factor of degree 12, we have following possibilities for it.

1. H(z) = 22— 2104+ 2% — 26 4 2% — 22+ 1 in which case E; = —1, Fy = 1, F3 = —1 which gives
a1 = £+/7q, a2 = 3q, az = q £ +/7q which has integer solutions if and only if ¢ is odd power
of 7. Other solution for a; is root of 28 — 21¢2* 4+ 352%2¢® — 7¢® which has no integers roots

for p # 7 by Eisenstein’s criteria. If ¢ = 7" then f(z) = (23 — Tl 7 )(23 +
Tl 4 7371%) and each of which have no integer roots.
2. H(x) = 22 — 25 + 1 we have By = 0, E5 = 0, E3 = —1 which gives one solution as

a1 = 0, as = 0, ag = g4/3q which has integer solutions if and only if ¢ is odd power of
3. The other solution for a; is root of 25 — 6gz* + 922¢® — 3¢3 Which has no integers roots
for p # 3 by Eisenstein’s criteria. If p = 3 then if ¢ = 3" then 26 — 6¢2? + 922¢®> — 3¢°

(23 — 371z — 355 )22 =37tz + 3% ) where it is easy to check none of this factors have
integer solutions.

10



Case 2. G(x) is reducible. Then by 22 G(z) = Fi(x).F3(z). The roots of F; are mth root of unity
where ¢(m) = 29 = 6 if I; € Q(\/q)[z] \ Q[z] else ¢(m) = g = 3. Since ¢(m) = g = 3 has no
solution for m both F; € Q(\/q)[X]\ Q[z]. If ¢(m) = 6 then m € {7,9,14, 18}, which has following

expansions.
La"=1=(-1)(a®+2°+a2*+ 23+ 22 + x4+ 1).
2. 29 —1=(z—-1) (2 +2+1) (25 + 2 +1).
3oaM—1=(@-1) (@S +2°+a'+ 23+ 22+ +1) (z+1) (1 —a+2? —2® + 2" — 2° + ).
4. 28 -1=(@-1) (22 +2+1) (2°+234+1) (2 +1) (2 —2z+1) (2% — 2% +1).
Comparing with H(x) = G(z)G(x2)? = Fi(z)F1(z)? Fo(x)F3(x)? we get following possibilities.

1. Hz) = 22 + 29 + 28 + 2% + 2* + 22 + 1 then By = 1, By = 1, E3 = 1. One of the
solution of a; satisfies 22 — ¢ which has no integer solutions as ¢ is odd power of prime. The
other solution is the root f(z) = 2% — 19¢gz* + 8322¢% — ¢®. We claim that it has no integer
solutions. Suppose it has integer solution then it should be solution modulo 3. ¢ = 1 then f(z)
mod 3 = (22 + 2224+ 1)(2% — 224+ 2) , ¢ = 2 then f(2) mod 3 = 26+ 2* +222 +1,¢ = 1 then
f(2) mod 5= (23+4224+2+1)(23+22+2+4), ¢ = —1 then f(2) mod 5 = 20+424+322+1
has no solutions, hence by lemma ( mod 3 mod 5 test) it has no integer solutions.

2. If H(x) = 22+ 2541 then By =0, F> =0, E3 = 1. One of the solution of a3 satisfies 22 — ¢
which has no integer solutions as ¢ is odd power of prime. The other solution a; is the twice
the root f(z) = 25 — 6g2% — 92%¢®> — ¢®. If ¢ = 1 then f(2) mod 3 = (23 +1)(23 +2), ¢ = 2
then f(z) mod 3 = 2% +1, ¢ =1 then f(z) mod 5 = 2% + 24 + 422 + 1, ¢ = —1 then f(2)
mod 5 = 25 + 2* + 422 4 1 has no solutions, hence by lemma ( mod 3 mod 5 test) it has no
integer solutions.

6.2 Case a1 =0

If azi+1 = 0 then
Case 1 G(x) = 2% + 2224 + 222 4 1 is irreducible over Q then it has roots as mth root of unity
where ¢(m) = 6 hence m € {7, 9, 14, 18}. The possibility of such G(z) is already mention in case

2. and none of them have this form.
Case 2 If G(z) is reducible then G = F1F, such that Fj is irreducible factor of 2™ — 1 such that
¢(m) = 3, which has no solution for m.

6.3 P(X) is reducible

If P(X) is reducible then P(X) = h(X)¢, where |3 implies e = 3. Therefore h(X) = (X2 +aX +q)
and it is not possible for P(X) to correspond to a simple abelian variety as already discussed in
dimension 1 case. Hence we have,

Theorem 6.1. The characteristic polynomial of a simple supersingular abelian variety of dimension
3 over Fy (¢ =7p", n odd) is one the following
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1. p=3: X%+ q/pgX>+¢3
2. p="T7:X5% /pgX® + 3¢X* £ q/paX> + 3¢°X? £ ¢*\/pgX + ¢

In fact of them occur, see [17].

7 Dimension 4

The characteristic polynomial of Frobenius of an abelian variety of dimension 4 is given by
P(X) =X+ a1 X" 4+ ao X® + a3 X® + ay X* + a3¢X? + a2¢®’ X* + a1 > X + ¢*.

Let P(X) is irreducible then we have following cases.

7.1 Case ag1 #0

If a9;4+1 # 0 then we have following cases,
Case 1. If G(x) is irreducible as in theorem 2] we have

6 4 2 2 2
asx a4x asx 1 asx asx
H(w):<x8+ 2q + ‘;2 + -2 +1> —5<a1x7+37+ 3q —l—ala;)

2 2 2
a 2a a a aia a a asa aia
:3316—|—< 1 + 2)3314—1— <2 ;1+ 22 _9 123>$12+ (2 2 _ 3 +2 402 _9 123>$10+
q q q q q q

q ¢ ¢
a42 a12 a22 a32 8 a9 a32 apan ajas 6 ayg a22 ajas 4
<—4—2—+2+2—2—2—3>x +<2———3+2 3 —2—2>a: +<2—2+—2—2—2>x+
q q q q q q q q q q q
2
(—ai + 2%> 22+ 1
q q

whose roots are mth roots of unity where ¢ = 4g = 16 which implies m € {17, 32,34, 40,48, 60}.
Fach of which has following factorization.

—_

2. 22 —1=(x—1)(1+2)1+22)(1 +2*)(1 4+ 28)(1 + 219)

2?4+ 2)(1+2)(1—z+22 -3+ 2t -2+ 28 27+ 28 — 2% + 210 —gM 4 212 — 213 4 14 — 215 4 216)

420 - 1=@@-1)1+2*+22+ 22 +2) 1 +2)1 -2+ 2% — 23+ 2N (1 + 22)(2® — 26 + 2* -
332+1)(1+334)(:E16—:E12+:E8—334—1—1)

8 xi(ﬂf <9g—1>)<1+$2+:n><1+:v><1—x+a:2><1+x2><x4—w2+1><1+$4><w8—w4+1><1+
) (x® —a®+1

6. 20 -1=(@-DA+2r+23+22+2) Q1 +22 +2) (1 —z+2® -2t + 25 — 2"+ 28) (1 +2)(1 -

v 22—+l —z+2)Q+r -2 —2* — 25+ 27 + 281 +22) (28 — 20 + 2* — 22 +
D(xt — 22 + 1) (210 + 21 — 210 — 28 — 26 4 22 1-1)
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q q
_ 2a4 ag? 2a1a
By =5+ — =
2
B = 202 _ a3z” 2a4a2 _ 2a1a3
3 q L q
Ey =l _ 2 2

q7 q12+2+23—%2_2(;§
Comparing H (z) with degree 16 irreducible cyclotomic factor we have following possibilities for

H(x). If,

1. Hz) = 1 + 26 then By = Ey = E3 = E; = 0 then a; satisfies 2% — 3220¢ + 1602%¢® —
25622¢3 4+ 128¢* or 28 — 3225¢ + 2882%¢> — 7682%¢> + 128¢* which has no integer solutions by
mod 3 mod 5 test.

2. H(x) =2 — 22428 2% +1then By} = E3 =0, F3 = —1 and E; = 1. Maple gives following
solutions for a;.

(a) a1 = £1/2q, az = q, a3 = 0, ay = —¢? is one of the possible solution if ¢ is odd power
of 2.

(b) a1 is root of 22 — 10g which has no integer solution for any gq.
(c

) ay is root of z* — 2022¢ + 20¢? has no integer solution for any ¢ (by mod 3 mod 5 test).

3. H(z) = ' — 28 + 1 then By = Fy = E3 = 0 and E; = —1. This gives a; is root of
8q% —8Z%q+ Z* or 72¢®> —247%q+ Z* or Z® — 3225¢ 4+ 1762%¢*> — 256Z°%¢> + 64¢*. None of
these equations have integer solutions (by mod 3 mod 5 test).

4. H(z) =20 421 — 210 — 28 — 28 4 22 4 1 then By =1, By =0, B3 = —1, By = —1 then we
have following

(a) a1 = /3¢, az = 2q, a3 = qa1, a4 = ¢* which has integer solutions only if q is odd
power of 3.

(b) ay satisfies Z2 — 15q or 5¢> — 10Z22%q + Z* or Z® — 2872°%¢ +1342%¢*> — 927%¢® + ¢* which
has no integer solutions by mod 3 mod 5 test.

Case 2. If G(x) is reducible. Then by theorem 2.2] G(x) = Fy(z).Fa(x). If F; € Q(\/q)[z] \ Q[z]
then its roots are mth root of unity where ¢(m) = 2g = 8 where m € {15, 16, 20,24, 30} in which
case F;(x)F;(x)? is an irreducible cyclotomic factor of ™ — 1 of degree 8.

If F; € Q[z]| then its roots are mth root of unity where ¢(m) = g = 4 in which case m €
{5,8,10,12} and F; is an irreducible cyclotomic factor of ™ —1 of degree 4. Now H(z) = F FY F>Fy
where not both F; € Q[z] as discussed earlier. Since H(z) has only even degree terms, we look at
all possibilities Fy FY F>Fy from above, all of them are listed below. If,

1. H(z) = 1+ 22% + 26 then B} = Ey = B3 = 0 and E; = 2. Solving we get a; = ay = ag =
a4 = 0 which is one of the possibility. The other possibilities are a; is root of Z* —422¢+ 2¢>
or Z* — 872%q + 8¢*> which have no integer solutions by mod 3 mod 5 test.

2. H(z) =20 — 2" 4212 2104228 — 26 4 24 — 22 4 1 then By = E3 = —1, By = 1 and By = 2
which gives a; satisfies Z'6 — 722 ¢+1836212¢% — 213362 '0¢> + 120854¢* Z® — 334008¢° Z6 +
393804¢%Z% — 1073042%¢" + 7921¢® which has no integer solutions by mod 3 mod 5 test.
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10.

11.

12.

. H(z) = 16 — 212 4228 — 2% + 1 then E; = F3 =0, By = —1 and E; = 2 which gives a;

satisfies Z8 —40Z6%¢ 4 3922%¢%> — 6082%¢> + 16¢* or Z8 —2425¢ +1362%¢> — 16022%¢> + 16¢*.
None of these have integer solutions by mod 3, mod 5 test.

. H(z) = 2102243212 42104 528 4254324 222 +1. Wehave By = —2, By =3, B3 = —4

and E4 = 5 which gives a; = a3 = 0 and as = —¢, a4 = ¢> which is a possibility. The other
solutions a; are roots of 2(Z% —102%¢+5¢?) or 2(Z* —52%¢+5¢*) none of which is an integer
by mod 3 mod 5 test.

H(x) = 2t — 2™ 4 28 — 22 4+ 1 then Fy = —1, Ey = B3 =0 and E4 = 1 in which case a; is
root of Z8 —287%¢+1742%¢> —3322%¢> +121¢* or Z® —4425q +44624¢> — 108422 ¢> + 361¢*
which has no integer solutions by mod 3 mod 5 test.

H(x) = 20 — 2212 4328 — 224 + 1 then E; = E3 =0, Fy = —2 and E; = 3. The solutions
for a;’s are

(a) a1 = az = a3 = 0 and a4 = —q? which gives P(X) = X® — ¢®2X* + ¢* which is irreducible
when p # 2. When p = 2 thenP(X) = X® —¢?X*+¢* = (X*—/2¢X3 +¢X? —q\/2¢X +
@) (X* +/2¢X3 +¢X? + q+/2¢X + ¢*) which means A is not simple by Tate’s theorem.

(b) a1 = +21/2q, as = 4q, a3z = +4q\/2q, as = 7¢* which integer solutions only if ¢ is odd
power of 2 . Then P(X) = X8 £ 2/2¢X" + 49X 4 4¢\/2¢X® + 7¢>X* £+ 4¢>\/2¢X> +
43 X2 £2¢%/2gX + ¢t = (X* £ /2¢X3 + ¢X? £ ¢\/2¢X + ¢°)? which implies A is not
simple by Tate’s theorem.

(c) The other solutions for a; are roots of Z2 — 6q or 2Z* — 4Z2q + ¢> for which there is no
integer solutions.

H(z) =26 — 2 4+ 210 — 28 4 26 — 22 4 1 then By = By = —1, E; = 0 and E3 = 1. One
of the solutions are a; = £/5¢, as = 2q, a3z = qai,as = 3¢>. The other solutions for a; are
roots of Z2 — q, 45¢> —30Z%q + Z* which has no integer roots for q, an odd power of prime p.

. H(z) = 1+ 20* + 228 + 22'2 + 26 then By = 0, Fy = E3 = E; = 2 then a; satisfies

—3270q + 64¢* + 11272%¢% — 128 2%¢3 + Z8 or —3275¢ + 1600¢* + 3042%¢> — 11522%¢> + Z8
which has no integer solutions by mod 3 mod 5 test.

. H(z) = 21022143212 22194208 226 4324 222 +-1 then By = B3 = —2, By =3, B, = 2.

This gives a1 satisfies 8¢ — 8Z2%¢ + Z* or 3136¢* — 51202%¢3 + 1136 2%¢> — 6425¢ + Z8 none
of which has integer roots.

H(x) = 216 4+ 3212 — 21 — 3210 4 428 — 320 + 32* — 22 + 1 then By = —1, Ey =3, E3 =
—3,E, = 4. Then a; is root of 5¢%> —10Z2%¢+ Z* or 121¢* —198822%¢% +65424¢*> — 5225¢+ Z8
which has no integer solutions.

H(z) = 2'% — 32" + 6212 — 8210 4 928 — 820 + 62* — 322 + 1 then By = -3, Fy =6, F3 =
—8, B4 = 9. In this case a; satisfies 5¢*> — 102%¢q + Z* or 841¢* — 581272¢> + 121474 ¢* —
68Z°%¢ + Z® which has no integer solutions.

H(z) =2 + 22 4 2* 41 then E; = F3 = E; = 0 and Ey = 1. We have following solutions
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(a) a1 = £v/2q, as = q, a3 = £q/2q, a4 = +2¢* which gives P(X) = X8+/2¢X"+¢X%+
aV24X° +2¢° X £ * V20 XP + P X £ ¢* V24X + ¢* = (X* + 20X +¢)(X* — /2¢X +
q)(X*+1/2¢X3 +qX?% £ q/2¢X +¢*) which implies corresponding abelian variety is not
simple.

(b) a1 = 3v/2q, az = 9q, a3 = +9¢\/2q, as = 14¢* in which case P(X) = X8 4+ 3,/2¢X" +
9¢X° + 9¢/2¢ X5 + 14¢2°X* £ 9¢%/2¢ X3 + 93 X? + 3¢3/2¢X + ¢* = (X* £ /2¢X3 +
X%+ qv/2¢X +¢?)(X?+/2¢X +q)? which implies corresponding abelian variety is not
simple.

(c) The other solutions to a; are root of Z2 — 6q or Z% — 2872 + 4¢* which has no integer
solution by mod 3 mod 5 test.

13. H(z) = 216 — 22 + 2212 — 28 + 22% — 222 + 1 then By = -2, Fy =2, F3 =0, By = —1.
One of the solutions are a; = +1/2¢q, as = a3 = 0, ag = ¢> which has integer solutions
only if q is odd power of 2 in which case P(X) = X8 4+ \/2¢X" + ¢*X* + ¢*\/2¢X + ¢* =
(X4 4+ /2¢X3 + ¢X? 4+ q/2¢X + ¢*)(X* £ ¢X + ¢?) which implies by Tate’s theorem that
A is not simple. The other solutions of a; are roots of Z2 — 6¢q (doesn’t has integer solution
for an odd power of p) or Z* — 3622¢ + 36¢> or 100¢> — 282%q + Z* which is not an integer
solutions by mod 3 mod 5 test.

7.2 Case ag1 =0

If agiy1 # 0, then G(z) = 2% + QQT“’”S + “‘;—264 + % + 1, with roots as mth root of unity where,

1. If G(z) is irreducible then ¢(m) = 8 which gives m € {15,16,20,24,30}. Since G(x) is
irreducible it is degree 8 irreducible factor with even power terms of 2™ — 1. Comparing we
get following

(a) If G(z) =1+ 2% we get all a; = 0 and P(X) = 2% + ¢*.
(b) If G(z) = 28 — 2% + 2* — 22 + 1 then as = —¢ and a4 = ¢? this is a possibility.
(c) If G(x) = 28 — 2* + 1 then ag = 0 and a4 = —¢?, this case is already discussed earlier.

2. If G(x) is reducible then it is product of two degree 4 irreducible factors of 2™ — 1 above. By
looking at products with only even terms and comparing with G(x) we get

(a) G(x) = 28 — 25 + 22* — 22 + 1 which gives ay = —q, a4 = 2¢®>. Therefore P(X) =
X8 — X0q+2X%¢% — ? X2 + ¢* = (X* + ¢*)(X* — ¢X? + ¢?) which is not irreducible.

xr) =x° —22° + 32~ — 227 + 1 which gives as = —2¢q, a4 = 3q°. erefore =

b) G 8 — 220 4 321 — 222 + 1 which gi 2 3¢*. Therefore P(X
X8 —2X6q +3X4% —2¢3X? + ¢* = (X* — ¢X? + ¢?)? which is not irreducible.

(c) G(z) = 2% 4+ 25 + 2* + 22 + 1 which gives as = ¢, a4 = ¢*> which gives P(X) =
X84 ¢X0+¢?2X* + X2 + ¢* which is irreducible and is a possibility when p # 5. When
p="5then P(X) = (X*—/5¢X3+3¢X?—q/5¢X+¢*) (X +/5¢X3+3¢X?*+qy/5¢X +¢?)
which is not irreducible.

(d) G(z) = 1+ 2z* + 2® which gives az = 0, a4 = 2¢? in which case P(X) = (X* + ¢?)% is
not irreducible.
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7.3 P(X) is reducible

If P(X) is irreducible then P(X) = h(X)® where e[4 therefore e = 2 or 4. If e = 4 then h(X) =
X2+ aX + ¢ and it is not possible for P(X) to correspond to a simple abelian variety as already
discussed in dimension 1 case. If e = 2 then h(X) = (X? + bX3 + ¢X? 4+ dX £ ¢*). On doing the

. 2
transformation as % — t we get G(t) = (t* + gtz +1)— %(bt?’ + gt) or H(t) =%+ (27: — %)t6 +

(;—; - 2q—l’2d + )t + (% - g—ﬁ,)ﬂ + 1. We have following cases

1. If constant term of A(X) has minus sign, then b , ¢ d have no integer solutions.

2. If constant term of h(X) has plus sign, then h(X) corresponds to characteristic polynomial
of dimension 2 supersingular abelian variety given in the list see 5.1l Since all of them occur,
by Tate’s theorem the abelian variety corresponding to P(X) is not simple.

Hence we have the following theorem.

Theorem 7.1. The characteristic polynomial of the a simple supersingular abelian variety of di-
mension 4 over Fy (¢ = p™, n odd) is one of the following

1.p=2: X8+ /2qX" +¢X® — ?X* + X%+ 3 /2¢X + ¢*
2. p=3: X84 /3¢X" +2¢X° + ¢/3¢X° + > X* + ®/3¢ X3 + 263 X% + 3\ /3qX ¢t

Cp#£5: X8+ gX0 + 22X+ BX2 4 ¢t

3
4. XS—qX6—|—q2X4—q3X2+q4
5
6.p752:X8—q2X4—|—q4

7. p=5: X8+ /5¢gX" +2¢X6 + q/5¢X° + 3¢°X* £ ¢®>V/5qX> +2¢°X? + 35X ¢!

Theorem 7.2. All of the polynomials listed above occur as characteristic polyonomial of Frobenuis
of dimension 4.

Proof. 1. If P(X) = X8 + ¢*, substitute y = ¢X2. Then we get P(X) = ¢*(y* +1). The
polynomial y* + 1 is 8th cyclotomic polynomial.
4
(a) fp=1 mod 8 then y*+1 = H(y — ;) over Q, with vy,(a;) = 0. Since n is odd we get

i=1
4

P(X) = l_I(X2 —a;q). Hence we have 4 invariants with invy, (End;(A)®Q) =0 mod Z

i=1
which shows the dim A = 4.
2
(b) If p=3,5,7 mod 8 then y* +1 = H(y2 + Biy + ;) with v,(y) = 0. Since n is odd we
i=1
get
2

P(X) = H(X4+B,~X2+aiq2). Hence we have 2 invariants with invy, (End,(A)®Q) =0

=1
mod Z which shows the dim A = 4.
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2. If P(X) = X8 — ¢®?X* + ¢*, substitute y = ¢X?. Then we get P(X) = ¢*(y* — y?> +1). The
polynomial y* — 32 + 1 is 12th cyclotomic polynomial.

4
(a) f p=1 mod 12 then y* + 1 = H(y — o) over Q, with v,(a;) = 0. Since n is odd we
=1
get '
4

P(X) = l_I(X2 —a;q). Hence we have 4 invariants with invy, (End,(A)®Q) =0 mod Z

i=1
which shows the dim A = 4.
2
(b) If p=5,7,11 mod 12 then y* +1 = H(y2 + i + o) with v,(a;) = 0. Since n is odd
i=1
we get
2

P(X) = H(X4+B,~X2+aiq2). Hence we have 2 invariants with invy, (End,(A)@Q) =0
i=1
mod Z which shows the dim A = 4.

3. If P(X) = X8 — ¢X% 4+ ¢?X* — ¢3X? 4 ¢*, substitute y = ¢X2. Then we get P(X) =
q¢*(y* —y3 +y? —y +1). The polynomial y* — 4>+ y? — y + 1 is 10th cyclotomic polynomial.

4
(a) If p=1 mod 10 then y* — 32+ 9% —y+1 = H(y — o) over Q, with v,(a;) = 0. Since
i=1
n is odd we get
4

P(X) = l_I(X2 —a;q). Hence we have 4 invariants with invy, (End;(A)®Q) =0 mod Z

i=1
which shows the dim A = 4.
(b) If p=3,7 mod 10 then y* — 3% + y? — y + 1 is irreducible, hence there is one invariant
with invy, (Endi(A) ® Q) =0 mod Z which shows the dim A = 4.
2
(¢c) If p=9 mod 10 then y* +1 = H(y2 + Biy + ;) with v,(a;) = 0. Since n is odd we get

i=1
2

P(X) = H(X4+B,~X2+aiq2). Hence we have 2 invariants with inv,, (End,(A)@Q) =0
i=1
mod Z which shows the dim A = 4.
4. If P(X) = X8 + ¢X% + ¢?X* + ¢3X? + ¢*, substitute y = ¢X2. Then we get P(X) =
¢ (y*y® + 9% +y +1). The polynomial y* + y + % + y + 1 is 5th cyclotomic polynomial.

4
(a) fp=1 mod 5 then y* -3 +y? —y+1 = H(y—ai) over Q, with v,(c;) = 0. Since n is

i=1
4

odd we get P(X) = H(X2—aiq). Hence we have 4 invariants with invy, (End,(A)®Q) =

i=1
0 mod Z which shows the dim A = 4.
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(b) If p=2,3 mod 5 then y* +y3 + 42 + y + 1 is irreducible, hence there is one invariant
with invy, (End,(A) ® Q) =0 mod Z which shows the dim A = 4.
2
(¢c) If p=4 mod 5 then y* +1 = H(y2 + Biy + ;) with vp(a;) = 0. Since n is odd we get

1=1
2

P(X) = H(X4+B,-X2+aiq2). Hence we have 2 invariants with invy, (Endi(A)®Q) =0
i=1
mod Z which shows the dim A = 4.

5. If P(X) = X8 + /2¢X7 + ¢X% — ¢?X* + X% + ¢*2¢X + ¢*, p = 2 is irreducible in
Z . hence irreducible over Q. P(X/,/q) = X8 £ V2X7 + X0 — X4 + X2 £ V2X + ¢* is
irreducible over Q(+/2)[X] with one of the roots as (4 and splitting field Q(C49). We have
[Q(v2) : Q(C40)] = 8. Passing through completion and using theorem 3.2 we get,

[Q2 : Q2(V2)][Q2(V2) : Q2(Cao)] = [Q2 : Q2(Ca0)] = 16.

Therefore [Q2(v/2) : Q2(Ca0)] = 8. But P(X/,/q) € Q2(v2) has degree 8 and (49 as one of the
roots. This implies P(X/,/q) and hence P(X) are irreducible over Q(v/2) which implies P(X)
is irredicible over hence over Q2. Hence we have one invariant with inv,, (End;(A) @ Q) =0
mod Z which shows the dim A = 4.

6. If P(X) = X84 /3¢X7 +2¢X6 4+ ¢/3¢X° +®?X* + ¢ /3¢X> +2¢3 X2 £ ¢*/3¢X + ¢* where
p = 3, is irreducible over %, hence over Q with splitting field, Q((go). The similiar argument
above shows that P(X) corresponds to abelian variety of dimension 4.

7. If P(X) = X84+ /5gX" + 2¢X% + ¢q/5¢X° + 3¢°X* £ ¢*\/5¢ X3 + 2¢°X? + ¢*\/5gX T ¢*,
where p = 5 is irreducible in 3%, hence irreducible over Q with splitting field Q((15). But
P(X/./q) is reducible over Q(v/5)[X] with P(X/\/q) = F1(X/\/Q)F>(X/,/q) each irreducible
over Q(v/5)[X] with roots (39 and (5 respectively. But [Q(v/5) : Q((15)] = 4. Passing
through completion we have [Q5(v/5) : Q5(C15)] = 4 with root of F1(X/,/q) and F»(X/\/q)
as (15 and —(15 respectively and since deg F; = 4, F;(X/,/q) are irreducible over Qs5(V5).
P(X) = [1(X)Fy(X). But F; have coefficients from Q5(1/5)/Qs. Hence P(X) is irreducible
over Q5. This implies dim A = 4.

]

8 Dimension 5
The characteristic polynomial of Frobenius of an abelian variety of dimension 5 is given by
P(X)=XY4+a; X%+ apX® + a3 X7 + ay X® + a5 X° + agqaX* + a3¢*° X3 + 02> X? + a1¢* X + ¢°.

If P(X) is irreducible then we have following cases
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8.1 Case agi;q #0

If a9;4+1 # 0 then we have following cases,
case 1. If G(x) is irreducible then

2 2
H(z) =2 + <—a# + 29> 28 4 (—2%31 + 2 2a—§> 210 +
q q

q q q
2 2
asa asa asa
(_2a5_§1+2a4_32+2a_§_ai3>$14+<29+ai4+2 102 a0 543>$12+
q q ? q g q q q q
a?  _as? a3’ as?  _a2?\ 1o as as®  _agay  _azayr  _asaz) g
2 42— =2 42— 2 2l (22 4 S p2 2 2 2 )y
q q q q q g q q q q

2 2 2
n <_2a5§ll +2a4(312 _1_2(1_421 _a%> 28 + (_203;11 +ai2+2a_;1> 2t <_&+2@> 2241
q q q q q q q q q

whose roots are mth roots of unity where ¢(m) = 4g = 20 which implies m € {25, 33,44, 50, 66}.
Therefore we have

La¥—1=(@-1)0+2*+22+ 224+ 2)(1 4+ 220 + 2 + 219 + 29)

2. 28 —1=(r -1 +20+2%9+ 28+ 2"+ + 2P+t + 22 + 22 + )1+ 22 + ) (1 — 2 +
oS e SR S (RS § RS E JUIS £ T RS« g C )

3. —1=(2-1D14+20+22+ 842"+ 25+ 2P+t 4 3+ 22 )1+ 2) (1 —o+ 22 — 23+ 2t —

4. 290 — 1= -1)1+2* + 22 + 22+ 2) 1+ 220 + 2B + 209+ 251+ 2)1 — 2 + 22 — 23 +
m4)(1_x5 _|_x10_x15+x20)

5. 20 -1=(2—-1)(1+2P0+2%+2¥+a"+ab+ 25+ at+ 23+ 2% +a) 1+ 2% +a) (1 -z +ad —at + 25—
o 42— 04 B3t 216 4 17T 2194 220) (14 2) (1 - 422 — 23+t — 204 20— 27428 —
2420 (1 — 2+ 22) (1 42— 25 — a4 26 427 — 2% — 10— g1l 4 184 14 _ 16 _ 17 | 419 | 120)

Let

o _a? a2
FE = (1] +2q

2
By = —2%3¢1 4 d3° 4 94
2 2 72 72

By = —29301 4 902 4 90y _ 4

.—9az | as’ | gasaz _ 9azay _ 9asas
E4-—2q‘2“q4+22q3 22q2 §q4 ,
Es = —29- + 2% — 2% +2 - % + 2%

Comparing H (z) with degree 20 irreducible cyclotomic factor we have only one possibility for
H(x) namely, H(z) = 220 — 28 + 216 — 214 4 212 510 4 28 26 4 04 22 4 1 then By = —1, By =
1, Es = -1, Ey =1, E5 = —1 in which case we have following solutions for a;’s

1. a1 = /Ilq, as = 5q, az = ¢\/11q, as = —q¢*, a5 = ¢*>\/11q which is possible solution if q is
odd power of 11.
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2. Also a; satisfies 16522¢*+33026¢% —5528¢+ 210 —11¢° —4622*¢® and 1494972 ¢* +103426¢* —
55Z8q+ 710 —11¢° — 7502Z%¢> and 1160522¢* +85826¢> — 55Z8¢ + Z10 — 5819¢° — 521424 ¢3
which are irreducible if p # 11 by Eisenstein’s criteria, hence has no integer solutions. If p = 11
then p = 1 mod 5, substituting ¢ = 1 still gives no integer solutions for these polynomials,
hence they have no integer roots.

Case 2. If G(x) is reducible. Then by 22, G(x) = Fi(x).Fy(x). If F; € Q(\/q)[z] \ Q[z] then its
roots are mth root of unity where ¢(m) = 2g = 10 where m € {11,22} in which case F;(z)F;(z)°
is a irreducible cyclotomic factor of 2™ — 1 of degree 10 with even powers of x. We have following
factorizations.

Lal—1=@-1)14+20+2%+2%+2"+ 20 + 25+ 2' + 23 + 22 + 2)

2. 22 —1=(r-DA+20+29+ 28 +2" + a8+ + 2t + 22+ 22+ )1+ 2)(1 — oz + 22 —
23+ 2t — 25 4+ 28 — 27 4 28 — 2% + 210)

If F; € Q[z] then its roots are mth root of unity where ¢(m) = g = 5 for which there is no
solutions.

Now H(z) = Fy1F{ F>F§ where not both F; € Q[z] as discussed earlier. Since H(x) has only
even degree terms, we look at all possibilities F1 FY Fo Y from above and we just get one possibility
namely, H(z) = 1+ a2+ 2 + 25+ 28 + 210 4 212 4 214 4+ 216 4 218 + 220 in which case, all E; = 1 for
1 < i < 5, which gives a1 satisfies 22 — ¢ which has no integer solution as q is odd power of p. The
solutions of a; are root of 1094972¢* 4 84275¢> — 53728¢ + Z10 — 7921¢° — 48427%¢3 or 32217%¢* +
44276¢% — 37728q 4+ Z10 — 529¢° — 207424 ¢3 or 56522%¢* + 66626¢% — 53728¢ 4+ Z10 — g5 — 220224 ¢3
none of which has integer solutions by mod 3 mod 5 test.

8.2 Case ag1 =0

If ag;+1 = 0 then G(x) = 210+ % + a‘;§6 aé"f aquQ + 1, with roots as mth root of unity where,

1. If G(x) is irreducible then ¢(m) = 10 which gives m € {11,22} and G(z) is of degree 10 and
has only even degree terms but z'' — 1 and 2?2 — 1 have no irreducible factor with only even
terms of degree 10. So this is not possible.

2. If G(x) is reducible then it is product of two degree 5 irreducible factors of ™ — 1 above.
But there are no degree 5 factors so this is not possible.

8.3 P(X) reducible

If P(X) is reducible then P(X) = h(X)¢ wheree|5, e > 150 e = 5. In that case h(X) = X?+aX +q
which by argument done for dimension 2 does not corresponds to simple abelian variety.

Theorem 8.1. The characteristic polynomial of the a simple supersingular abelian variety of di-
mension 5 over Fy (g =p", n odd) is given by

p=11: X"9+/11¢X45¢X3+q/11¢ X —? X +¢%\/11¢ X°— > X +¢3 /11 X3 +5¢* X 2 +¢*/11¢ X +¢°.
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Proof. From discussion above we have established P(X) = X0 + \/TTgX? + 5¢X® + ¢/TIgX" —
X0+ ?/T1gX® — 3X* + 3VT1g X3 + 5¢* X2 £+ ¢*/T1gX + ¢°, p = 11 is a supersingular Weil
polynomial of degree 10. Also P(X) irreducible in Z, hence irreducible over Q. P(X/\/q) is
irreducible over Q(v/11)[X] with one of the roots as (44 and splitting field Q(C44). We have
[Q(v/11) : Q((44)] = 10. Passing through completion and using theorem 3.2 we get,

(@11 : Quu(VID][Q11(V11) : Qu1(Caa)] = [Qu1 : Qu1(Caa)] = 20.
Therefore [Q11(v/11) : Q11(Caa)] = 10. But P(X/\/q) € Q11(v/11) has degree 10 and (i as one of
the roots. This implies P(X/,/q) and hence P(X) are irreducible over Q(v/11) which implies P(X)
is irredicible over Q1. Hence we have one invariant with invy, (End,(A) ® Q) = 0 mod Z which
shows the dim A = 5. O
9 Dimension 6
The characteristic polynomial of Frobenius of an abelian variety of dimension 6 is given by
P(X)= XY X M 4 ao X 04 a5 X4+ a, X34+ a5 X "+a6 X +qas X+ X 4+ P as X3+ ¢ aa X2+ P a1 X +4°.

If P(X) is irreducible then we have following cases.

9.1 Case a1 #0

If a9;4+1 # 0 then we have following cases

Case 1. If G(x) is irreducible then

gt ¢ ¢ ¢

<2a_2;+a_62+2a;{_2a_552_Qa_12+2_2a_f>x12+<2%_2as_gn_2%_a_s2+2w+2%>$m+
q q q
o)+

—
asar a2’ _as\ 4 as  a1?\ o
—222 2ot ot 4 (22 - = )2 +1
q q q ¢ q

whose roots are mth roots of unity where ¢ = 4g = 24 which implies m € {35, 39, 45,52, 56, 70, 72, 78,84,90}.
Each of which has following factorization.
La¥—1l=(@@-DA+25+25+at +3 +22 +2)Q+2* + 22 422+ 2) (1 —o+ 2 — 28 +27 —
2410 gl 12 13y g4 16 4 1T g8 | p19 p23 2y
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10.

E2 =

o —l=( DA+ 22+t 202 ¥ 2T 2l a3 2?4 a) (1 2%+

l‘)(l—£L‘+£L‘3—ZE4+$6—£L‘7+ZIT9—£L‘1O+ZE12—$14—|-£L‘15—£L‘17+$18—$20+£L‘21—£L‘23+$24)

P —l=(-1D)A+2*+ 3+ 22+ )1+ 22 )1 -+ 23—t +2° — 2" + 2 (28 + 23 +

1)(x24_x21+x15_x12+x9_x3+1)

22l =D+ 22+ 2O a8 T 2 S 2t 3 22 ) (L 2)(1 -

wta?— oot — 24 — 2T+ 2% — 2% 4210 — gl g 212)(1 4 22) (2 — 22 2?0 — 18
o6 — gt 12 10 4 8 26 4t 22 4 1)

a0 l=(r -1+t e) ()1 -+ 2 -2 ot -2 ) (1 +

.’132)(.’1312—.’1310—|—.’138—.’136+$4—$2+1)(1+$4)($24—$20+$16—$12+$8—$4+1)

201 = (z—-1)(1+25+ P42t a3+ r) (12t 3?4 a) (1 -2+ 2 — 28427 — 2B 10—

e pl2— B34 g1t 164 17184 21924 22N (14 2)(1—2+a2? — 2P +at — a5 +a0) (1—z+
22— e (1 r—25— 25— a7 — P a0 g4 124 18y A 16 _p1T_ 18 510,28 4 o1

2 —1=(x—1

YA+ 22+ ) (2 + 23+ 1)1+ 2)(1 — 2+ 22)(1 — 23 + 2 (1 + 22)(z* — 22 +
1) (212 — 2%+ 1)(1

+at)(@® — 2t + 1) (2 — 22 4+ 1)

2l = - D)A 422+ 2042 B T+ St 3 22 ) (1 2% +

2)(1—z+ad —at +ab a7 +a® 10 412 oy g5 17 4 p18 20 4 021 3y
Y14+ ) (1 —o+2? -3+t — 2P+ 28 — 2"+ 2% — 2 20 — 2V (1 -+ 2?) (1 +
g% — b ab ol g g0 p 12 g 15 | p0T | p18 20 p21 0 023y 21y

1= (z-1)1+2+25+2'+ 23+ 22+ 2) 1+ 22 +2) 1 —a+2® —at + 20 — a8+ 2% — 2t +
) (1+2)(1—z+2? -2+t -2+ (12 +2?) (1+z—2® -2t + 20 — 28 — 29+ 2 +21?) (1 +
22) (@2 — 210 4 a8 a6 12t 22y ) (et — 2?1 1) (@ 2 S 16 12 g8 61 420 )

2P —1=@@-1)1+at+22 +22+2)1+22+2) (1 —z+23 —at + 2% — 2T+ 28) (28 + 23 +
D@ —a? 42 — 22429 - B+ DA+ 2) 1 —z+22 -3 +a2) (1 -2+ 22) (1 + 2 — 2 —
ot =S 42"+ (1 — 23+ 28 (2 + 22 — 2P — 212 — 2 423 1),

¢ q ,
_9a3a1 | G2° | 904
q> + q> + q>

2
.— 9086 as asai aqa2

E4 =

2
E5 = 20,_2 _ 2[13[211 _ 2[150,3 _ a% + 20,4(312 + 2(16ll4

3

q
2
_94asas 244 246d2 __ 9as5a1 as”
q4+q2+ q* q3+q4

q q q* q q q°

2 2 2 2 2 2
— 9a2” as” a4~ _ 985~ _ 9a1” __9a3”
B :=2% + % +2% — 2% 24 4924

Comparing H (z) with degree 24 irreducible cyclotomic factor we have following possibilities for

H(z)

1.

If Hz) = 2% — 222 + 220 — 218 4+ 216 — M 4 212 — 510 4 58 26 4 21 — 22 + 1 then
Fy=-1, By =1, B3 =-1, By =1, F5 = —1, Eg =1 which gives a; satisfies
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(a) 117¢% — 262%q + Z*4
(b) 3¢° —28622¢° — 78210¢ + 712 + 1287¢* Z* + 715¢*> Z8 — 171643 Z°
(c) 13¢5 —5270222¢> — 78210¢ + Z12 + 43719¢* Z* + 1547¢> Z8 — 1253243 26
(d) 8125¢° — 6435022%¢° — 782'0q + Z'2 4+ 116519¢* Z* + 2171¢> Z8 — 2584443 Z6
e) 81133¢°% — 13839822¢° — 78710¢ + Z12 + 81991¢* Z* + 1963¢> Z® — 2002043 Z6
) 137917¢% — 24406222¢% — 78210¢ + Z12 + 126503¢* Z* 4 2171¢%> Z® — 258444 25

(

(f
none of which has an integer solution by mod 3, mod 5 test.

2. If H(z) = 2% — 220 + 216 — 212 1 2% — 2% + 1 then E; = 0, By = —1, F3 = 0, By =
1, E5 =0, Eg = —1 which gives a;’s satisfies a; = +/2q, a2 = ¢, a3 =0, ay = —¢>, a5 =
—q¢%a1, ag = —q¢>. The other solutions for a; are

) —14q + 72

) —8¢° 4 3322%¢% — 38Z%q + Z°

) —56q> +14022%¢> — 4274 + 76

(d) 64¢° — 748822%¢° — 522'0q + Z12 + 12016¢* Z* + 828¢% Z® — 5088¢> 26

) 64¢° — 172822¢° — 76210¢ + Z'2 + 10480¢* Z* 4 1212¢> Z® — 6432¢3 Z°
) 3136¢5 — 40768 22¢° — 84710¢ + Z12 + 49392¢* Z* + 2044?78 — 1814443 Z°
) 8172164¢° — 63251222%¢° — 76210 + Z'2 + 189680¢" Z* 4- 2108¢> Z8 — 2793643 Z©

none of which has integer solution by mod 3, mod 5 test.

3. If H(z) = 2% — 22 + 1 then By =0, By =0, B3 =0, By =0, E5 =0, Eg = —1 then
solutions are
(a) a1 =as = a4 = a5 = 0, a3 = £q/2q, ag = ¢> which is possible for q is odd power of 2.
(b) a3 satisfies Z2 — 6¢ which has no integer solution for any q.
(¢) The other solutions of a; are roots of polynomials
i. —8¢% +3622%¢% —122%q + Z6
ii. 2(—24¢% +362%¢* — 122%q + Z5)
iii. 2(9¢% — 10822¢° — 24710¢ + Z'2 + 333¢* Z* + 162¢> 2% — 37243 Z°)
iv. 2(Z2 —q)
v. 2(52% — 2¢9)
vi. 2(Z"2 =122 + 54¢%Z8 — 112¢° Z5 + 105¢* Z* — 362%¢° + ¢5)
none of which has integer solutions by mod 3, mod 5 test.
4. HH(x) =+ 222 — 218 — 2104 212 38 20 42241 then By =1, B, =0, B3 =1, B, =
—1, F5 =0, Eg =1 then solutions are

(a) a1 = £/3q, az = 2q, a3 = +q/3q, a4 = ¢*, a5 =0, ag = —¢> which is a possibility if
q odd power of 3.
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(b) a1 = +/7q, as = 4q, a3 = £q¢/7q, a4 = —¢*, a5 = —2q¢*a1, ag = —7¢> which is a
possibility for ¢ odd power of 7.

The other solutions of a; are

) —7¢% +3522%¢> — 2172%q + 75
) —27¢% + T472%¢® — 5724 + Z6
c) ¢% —18622%¢% —58210¢ + Z12 + 1423¢* Z* + 655¢%> 2% — 1772¢3 26
) 1849¢5 — 968222¢° — 502'0q + Z12 + 11775¢* Z* + 743¢% Z8 — 4572¢3 25
) 27889¢5 — 8441022 — 58Z'0q + Z12 4 50927¢* Z* 4 1215¢* Z8 — 1162843 Z°
) 337561¢% — 707266225 — 982'10¢ + Z12 + 287679¢* Z* + 3143¢> Z® — 446044 25

none of which has integer solutions by mod 3, mod 5 test.

Case 2. If G(x) is reducible then by theorem 2.2 we get G(z) = Fi(x)Fy(z). If I; € Q(\/q)[z]\
Q[z] then its roots are mth root of unity where ¢p(m) = 2¢g = 12 where m € {13, 21, 26, 28, 36, 42}
in which case F;(x)F;(x)? is irreducible cyclotomic factor of ™ — 1 of degree 12.

If F; € Q[z] then its roots are mth root of unity where ¢(m) = g = 6 in which case m €
{7,9,14,18} and in that case F; is irreducible cyclotomic factor of z™ — 1 of degree 6. Now
H(z) = F1 FY FyF§ where not both F; € Q[x] as discussed earlier. Since H (z) has only even degree
terms, we look at all possibilities F FY F»Fg from above, all of them are listed below.

1. Hx) = 1+ 25 + 2t + 22 + 210 + 212 4+ 28 + 222 + 220 4 218 4+ 216 4+ 22 + 2™ which gives
E1 = E2 = E3 = E4 = E5 = E6 = 1 then al = :|:\/13 , a2 = 7q,a3 = :|:3q\/13 , A4 =
15¢2, a5 = +5¢%>\/13q, ag = 19¢> which is possible if ¢ is odd power of 13. The other solutions
for a; are roots of following polynomials

(a) —325¢% +29922%¢> — 392%q + Z°
(b) —625q +3392%¢% — 352%q + Z©
(c) ¢% —26222%¢° —702'09q + Z'2 +3919¢* Z* + 1487¢% Z8 — 9172¢3 25
(d) 2809¢° — 1876622%¢° — 462'0¢ + Z'2 4 16447¢* Z* + 743¢*> Z® — 528443 Z6
(e) 169¢° — 104782%¢° — 787'0q + Z'2 4 22815¢* Z* 4 1495¢> Z® — 9828¢3 Z6
(f) 10609¢° — 3520622¢° — 7020 + Z'2 4 28463¢* Z* 4 1279¢> Z® — 9172¢3 Z6
)

(8) Z° —q
which has no solutions for any ¢, odd power of prime by mod 3 mod 5 test.

2. Hiz) =14+a28 —2?2 + 22 —28 22 4 28 264 224 then By = B, = —1, By = E5 =0, E3 =
FEg = 0. Then possibilities of aq are
(a) 2% —¢
(b) —21q + 22
(c) —¢® +832%¢> —192%q + 75
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) —189¢3 + 31522¢* — 632%q + Z5
) 49¢% — 186222¢° — 70210 + Z'2 4+ 14063¢* Z* 4 1407¢> Z® — 9492¢3 26
f) 1681¢5 — 1202222¢° — 54210 + Z'2 + 20911¢* Z* 4 991¢> Z8 — 741243 Z©
) 6889¢5 — 3315022¢° — 94710¢ 4+ Z12 + 46687¢* Z* + 2263¢> Z® — 1850043 Z°
) 1194649¢5 — 138790222%¢% — 9472'0q + Z'2 4 419647¢* Z* + 3271¢> Z8 — 5344443 Z©

none of which has integer solutions.
3. Hz) =1—-425+32% - 222 — 620 + 722 + 528 - 2222 + 3220 — 428 4 5216 4 22 — 621
then £y = =2, Fy =3, E3 = —4, F4 =5, F5 = —6, Eg = 7 then solutions are

(a) CLlZO, a2 = —¢q, a3207 CL4:q2, a5:07 a6:_q3

(b) a1 = £2/7q, as = 13q, a3 = £8q¢\/7q, ay = 29¢°, a5 = +14¢*\/7q, ag = 41¢>.
In other solutions a; are

(a) —7q> +3522%¢> — 21 2% + 76
(b) —7¢> +492%¢> — 142%q + Z©

) —T¢® +2122%¢% —142%q + 76

) 2(=7¢3 +142%¢? — 124 + Z5)

none of which has integer solutions by mod 3 mod 5 test.

4. H(x) = 2?4 — 222 + 220 — 2218 4+ 2216 — 2214 4 3212 — 2210 4 228 — 226 4 2% — 22 + 1 which
gives By = —1, Fo =1, B3 = FEs = -2, E4 =2, Eg = 3 which implies a; is root of following
polynomials.

(a) 289¢° — 5231422¢° — 90219 + Z'2 4 69327¢* Z* + 2607¢> Z® — 2692443 Z°

(b) Z36 —270¢Z3* + 314494 Z3? — 2101968¢3 Z3° + 90425076¢* 2% — 26603123284 226
+55467987076224 ¢% —837266714544 222 ¢"4+-9254863738350220 ¢® —75180384842708 718 ¢+

447103601802606216 410 — 1923833859293616.24 ¢ + 5861411718291844 712 ¢'% —
12204967208661768210¢'3 4- 16400387853252084 28 ¢'* — 1290585265548001626 ¢'° +
4963241293734297 24 ¢'6 — 62038933707214222¢'7 + 7265822679361¢'8

(c) —7¢> +352%¢%> — 212%q + Z©
none of which has integer roots by mod 3 mod 5 test.

5. H(z) = 2** — 22" + 32'2 — 22% + 1 which means By = By = By = E5 =0, E3 = —2 and
FE¢ = 3 which has following solutions for a;’s

(a) a1 = as = ag = a5 = 0, a3 = £2¢/3q, ag = 5¢> which is possible if ¢ is odd power of 3.
(b) a1 = as = a3 = a4 = a5 = 0 and ag = —¢>, which is possibility.

(¢) The other solutions of a; are
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i. 2(=3¢% +97%¢*> - 624 + 29)
ii. 2(=3¢> +92%¢> —62%q + Z5)
iii. 2(—=3¢3 +92%¢> — 62% + Z5)
iv. 2(—27¢% + 812%¢> — 182%q + Z9)
v. 4(=3¢> +92%¢*> — 62%q + Z5)

none of which has an integer solution by mod 3 mod 5 test hence not possible.

9.2 Case ag11 =0

If ag; 1 = O for all i. Then G(x) = z'% + % + “‘;“;08 + “g§6 + “3—304 + ‘12(1—“’”2 + 1. We have following
cases.

1. If G(x) is irreducible over Q then it is a degree 12 irreducible cyclotomic factor of z™ — 1
where ¢(m) = 12. Since G(x) has only even degree terms we have following possibilities

(a) G(z) = 212 — 20+ 28 — 26 + 2 — 22 +1 which gives X2 — ¢ X104+ 2 X8 — 3 X0 + ¢ X* —
¢®X? + ¢% which is a possibility for P(X) for p # 7. For p = 7, P(X) is reducible hence
not possible.

(b) G(z) = 2'? — 25 4+ 1 which gives P(X) = X'2 — ¢>X5 + ¢5 which is irreducible if p # 3
hence is possibility. For p = 3 we have X2 — ¢*X0 4 ¢ = (X6 — /363X + ¢*)(XC +
\/@X 3 + ¢3) which is not irreducible hence is not a possibility.

2. If G(z) is reducible over Q then G(x) = F} Fy where F; are 6 irreducible cyclotomic factor of
2™ —1 where ¢(m) = 6. Since G(x) has only even degree terms we have following possibilities,

(a) G(z) = 212 4+ 210 + 28 + 25 + 2% + 22 + 1 which gives X2 4+ ¢X10 + 2 X% + ¢3X6 +
¢*X* + ¢°X? + ¢5 which is a possibility for P(X).
(b) G(z) = 2'2 4+ 25 + 1 which gives P(X) = X'? 4+ ¢>X° + ¢5 which is a possibility.

9.3 P(X) reducible
P(X) is reducible then P(X) = h(X)® where e|g , e > 1 and h(X) € Z[X]. So e =2, 3 or 6. Then,
1. If e = 2 then deg(h(X)) = 6 say h(X) = (X% + fX5 + aX? 4+ bX3 + cX? +dX £ ¢3). Then
we have G(t) = (t6+“7t4+cqt—§+1> —ﬁ(ft5+¥+fj—§).

(a) If constant term of A(X) has minus sign, then there is cyclotomic factor to compare with
H(t).

(b) If constant term of h(X) has plus sign, then h(X) corresponds to characteristic polyno-
mial of dimension 3 supersingular abelian variety and since all of them appear see [17],
by Tate’s theorem the abelian variety corresponding to P(X) is not simple.

2. If e = 3 then deg(h(X)) = 4 say deg(h(X)) = 4 say h(X) = (X* + bX3 + cX? + dX + g).
This case is already discussed in dimension 4, P(X) reducible case.

Hence we have,
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n

Theorem 9.1. The characteristic polynomial of a supersingular abelian variety over F, , ¢ = p™, n
odd, of dimension 6 is given by one of following polynomials.

1.

9.
10.

p=2: XL /2qX M +qX 10— X — *(2v/20) X7 — ° X — ¢} (£v20) X° — ' X'+ X &
°V24X +q°

p=2: X124 q/2¢X° + ¢>X6 + ¢*/2¢ X3 + ¢°

p=3:X124 /3gX" +2¢X" £3¢/3¢X" + > X® — X6 4+ ¢* X* £3¢* /3¢ X3 + 2¢°X? +
¢°v/3¢X +¢°

Cp=T: X2+ TqX M 449X £ q/TqX? — @ X® = 2¢* (£/TQ) X7 — T3 X5 — 243 (+/Tq) X5 —

' X+ NTXP + 4P X £ POVTaX + ¢F

p="T:X2+2/TqX"M +13¢X 0 +8¢/Tq X" +29¢*° X8+ 14¢>/Tq X" +41¢3 X0 +14¢>\/Tq X5 +
29¢* X4 4 8¢*/TqX? + 13¢° X% £ 2¢°/TqX + ¢°

p=13: X124+ /T3 X +7¢X 0 +3¢/T3¢ X" +15¢> X8 +5¢%/13¢ X +19¢> X6 £5¢3/13¢ X° +
15¢* X% £ 3¢ /T3¢ X3 + 7¢° X2 4+ ¢°/13¢X + ¢°

p?é7:X12_qX10+q2X8_q3X6+q4X4_q5X2_|_q6
p#3:X12—q3X6+q6

X12 + q3X6 + qG

Theorem 9.2. All of the polynomials listed above occur as characteristic polyonomial of Frobenuis
of abelian varieties of dimension 6.

Proof. 1. If P(X) = X2 £ /2¢X™ + ¢X'0 — ¢2X8 — ¢*(£v29) X7 — ¢*X5 — ¢®(£/2¢) X —

XA+ P X%+ ¢°/2¢X + ¢° for p = 2, then P(X) is irreducible in 3%, hence irreducible over
Q. P(X/,/q) is irreducible over Q(v/2)[X] with one of the roots as (52 and splitting field
Q(¢s2). We have [Q(v/2) : Q((s2)] = 24. Passing through completion and using theorem

we get,

[Q2 : Q2(v2)][Q2(V2) : Qa(52)] = [Q2 : Qa(Cs2)] = 24.

Therefore [Q2(v2) : Q2((52)] = 12. But P(X/,/q) € Q2(v/2) has degree 12 and (52 as one of
the roots. This implies P(X/,/q) and hence P(X) are irreducible over Q(v/2) which implies
P(X) is irredicible over hence over Q2. Hence we have one invariant with invy, (End(A) ®
Q) =0 mod Z which shows the dim A = 6.

I P(X) = X124+ ¢2¢X° + 2 X6 £ ¢*/2¢ X3 + ¢ where p = 2, is irreducible over 3%, hence

over Q with splitting field, Q((72). The similiar argument above shows that P(X) corresponds
to abelian variety of dimension 6.
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3.If P(X) = X124 /BgXM + 2¢X10 £ 3¢/3¢X? + ¢2X® — 3XC + ¢*X* £ 3¢ /3¢ X3 +
2¢° X2 4+ ¢5\/3¢X + ¢® where p = 3, or P(X) = X2+ /TgX!" +4¢X'0 + ¢/TgX® — ¢>° X8 —
2¢%(£T) X7 — 13 X6 — 243 (£/Tq) X? — ¢* X4 + ¢*/TqX? + 4¢°X? + ¢°\/TqgX + ¢° where
p = 7 are irreducible over %, hence over Q with splitting field, Q((s4). The similiar argument
above shows that these P(X) correspond to abelian variety of dimension 6.

4. P(X) = X124£2/TqgX 1 +13¢ X0 £8¢/Tqg X +29¢> X8 +14¢% /T X " +41¢3 X £ 143 \/Tq X+
29¢* X4 £ 8¢*/TqX? + 13¢°X? £ 2¢°\/TqX + ¢% where p = 7 is irreducible in %, hence
irreducible over Q with splitting field Q((ss) . But P(X/,/q) is reducible over Q(v/7)[X] with
P(X/\/q) = Fi(X/\/q9)F>(X/\/q) each irreducible over Q(v/7)[X] with both of them having
roots as Cog. But [Q(v/T7) : Q(C8)] = 4. Passing through completion we have [Q7(v/7) :
Q7(¢28)] = 6 with root of F1(X/\/q) and F5(X/,/q) as (28 and since deg I; = 6, Fi(X/,/q)
are irreducible over Q7(v/7). P(X) = Fy(X)F»(X). But F; have coefficients from Q7 (+/7)/Qs.
Hence P(X) is irreducible over Q7. This implies dim A = 6.

5. P(X) = X124 /T3¢ X1 +7¢ X0+ 3¢/T3¢ X" +15¢*> X8 £5¢% /T3¢ X " +19¢3 X6 +5¢3 /T3¢ X°+
15¢* X* £ 3¢*/13¢ X3 + 7¢° X2 + ¢°\/13¢X + ¢° where p = 13 is irreducible mod 2 hence is
irreducible over Q. Using the same argument as above with roots of F} and F5 as (13 and (o
we get dim A = 6.

6. If P(X) = X'2 4+ ¢3X0 + ¢, substitute y = ¢X2. Then we get P(X) = ¢®(y® + 4> +1). The
polynomial 5 + 3 + 1 is 9th cyclotomic polynomial.

6
(a) If p=1 mod 9 then 3% +¢3 +1 = H(y — o) over Q, with v,(c;) = 0. Since n is odd
=1
we get '
6

P(X) = l_I(X2 —a;q). Hence we have 6 invariants with invy, (End,(A)®Q) =0 mod Z
i=1
which shows the dim A = 6.
2

(b) If p=4,7 mod 9 then ¢ + 4>+ 1 = H(y3 +7iy? 4 Biy + a;) with vp(a;) = 0. Since n
i=1
is odd we get
2

P(X) = l_I(X6 + % X* 4+ B X? 4 ;). Hence we have 2 invariants with invy, (Endy,(4) ®
i=1
Q) =0 mod Z which shows the dim A = 6.
(c) If p=2,5 mod 9 then 3°+43+1 hence P(X) is irreducible over Qp, we have 1 invariant
with invy, (Endi(A) ® Q) =0 mod Z which shows the dim A = 6.
3
(d) If p=8 mod 9 then ¢+ 3+ 1 = H(y2 + Biy + ;) with v,(a;) = 0. Since n is odd we
i=1
get
3

P(X) = l_I(X4 + B8; X%+ a;), hence we have 3 invariants with invy, (Endi,(4) ® Q) = 0
i=1
mod Z which shows the dim A = 6.
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7. If P(X) = X'2 — ¢3X6 + ¢° with p # 3, substitute y = ¢X2. Then we get P(X) = ¢%(y% —
y? + 1). The polynomial 3% — y3 + 1 is 18th cyclotomic polynomial.

6
(a) If p=1 mod 18 then y% — 3 +1 = H(y — ) over Q, with v,(c;) = 0. Since n is odd
=1
we get '
6

P(X) = l_I(X2 —a;q). Hence we have 6 invariants with invy, (End;(A)®Q) =0 mod Z

i=1
which shows the dim A = 6.
2
(b) If p=7,13 mod 18 then 3® —¢% +1 = H(y3 +vy? + Biy + a;) with vp(a;) = 0. Since
i=1
n is odd we get
2

P(X) = l_I(X6 + 7 X*+ B8 X? + ;). Hence we have 2 invariants with invy, (End,(A) ®
i=1
Q) =0 mod Z which shows the dim A = 6.
(c) If p = 5,11 mod 18 then y® — y® + 1 hence P(X) is irreducible over Q,, we have 1
invariant with invy, (Endy(A) ® Q) =0 mod Z which shows the dim A = 6.
3
(d) If p=17 mod 9 then y% — 9> +1 = l_I(y2 + Biy + ;) with v, () = 0. Since n is odd
i=1
we get
3

P(X) = H(X4 + B;X? + o), hence we have 3 invariants with inv,, (Endg(A) ® Q) = 0
i=1
mod Z which shows the dim A = 6.

8. IfP(X)=X2—gXV+2 X8> X0+ X*—¢° X2+ ¢0 with p # 7, substitute y = ¢X2. Then
we get P(X) = ¢5(y® —9° +y* — 93 +9%2 —y+1). The polynomial ¢ +v° +y* —y3+y> +y+1
is 14th cyclotomic polynomial.

6
(a) If p=1 mod 14 then y8 — 9P +y* — 12 +9y2 —y+1= H(y—ai) over Q, with v,(a;) = 0.
i=1
Since n is odd we get
6

P(X) = l_I(X2 —a;q). Hence we have 6 invariants with invy, (End,(A)®Q) =0 mod Z

i=1
which shows the dim A = 6.
2
(b) If p=11,9 mod 14 then y° — y° + y* — > + > —y+1 = [[(* + 7y” + By + o) with
i=1
vp(a;) = 0. Since n is odd we get
2

P(X) = l_I(X6 +7: X%+ B;X? + ;). Hence we have 2 invariants with invy, (Endy,(4) ®
=1
Q) =0 mod Z which shows the dim A = 6.

29



(c) If p=3,5 mod 14 then y®+y3+1 hence P(X) is irreducible over Q,, we have 1 invariant
with invy, (End,(A) ® Q) =0 mod Z which shows the dim A = 6.
3
(d) If p=13 mod 14 then y® — S +9y* — 12 +y2 —y+1 = H(y2 + Biy+ a;) with v, () = 0.
i=1
Since n is odd we get
3

P(X) = H(X4 + B;X? + o), hence we have 3 invariants with inv,, (Endg(A) ® Q) = 0
i=1
mod Z which shows the dim A = 6.

9. If P(X) = X2 4+ ¢X'0 + X8 + X6 + ¢*X* 4 ¢° X2 4 ¢ , substitute y = ¢X2. Then we
get P(X) =q¢®(yS +9° +vy* +4° +9y?+y+1). The polynomial 48 +1° +y* + 3> +¢y2 +y+1

is the 7th cyclotomic polynomial. Using same arguments above, we get dim A = 6
O

10 Dimension 7

The characteristic polynomial of Frobenius of an abelian variety of dimension 7 is given by
P(X)= X"+ a1 XB + as X2 + a3 X" + as X0 4+ a5X° + a X8 + a7 X" + qagX® + ¢®as X° +
PasX* + ¢*az X3+ ¢Pas X? + Sy X + ¢
If P(X) is irreducible with ag;11 # 0 then we have following cases.
Case 1. If G(x) is irreducible as in theorem 2] then H(X) is a polynomial of even degree terms
only whose roots are mth roots of unity where ¢ = 4g = 28 which implies m € {29,58}. Each of
which has following factorization.

La?—1=(@—-1)1+z+2®+2% 425+ 2% + 22 + 2% + 222 4 2% 4220 4 219 + 218 ¢
x"—l—xlﬁ—|—x15—|—x14—|—:1713+:1312+:1311+:1710+:179+:178+x7+x6+$5+$4+x3+x2)

i o i e (U
2)(1— @+ a2 — 2T 4 g% g2 p 2 g2 22 214 020 19 4 pI8 g7 4 16 15
o — B pl2 gl 10 9 428 T 48— S 4t — 23 4 2?)

As none of these factors above of degree 28 are with only even degree terms, we see there is no
possibility of this form. Case 2. If G(x) is reducible. Then by G(z) = Fi(z).Fy(z). If
F; € Q(\/q)[x]/Q[z] then its roots are mth root of unity where ¢(m) = 29 = 14 which has no
solutions. If F; € Q[x] then its roots are mth root of unity where ¢(m) = g = 7 for which there is
no solutions. Therefore this case is not possible.

10.1 Case agy1 =0

If ag;41 = 0 then G(x) is irreducible factor of degree 14 of 2™ — 1 where ¢(m) = 2¢g = 14 which has
no solutions.

30



10.2 P(X) reducible

If P(X) is reducible then P(X) = h(X)¢ where |7 , e > 1 and h(X) € Z[X]. So e = 7, in which
case h(X) = X2 + aX =+ q, this is already discussed in dimension 2, reducible case and is not a
possibility.

Hence we have,

Theorem 10.1. There is no simple supersingular abelian variety of dimension 7.

11 Jacobians of Supersingular Curves

An important question is whether the above actually occur as the characteristic polynomial of the
Frobenius of Jacobian of a curve C'. Work is in progess on this question. For genus 1, 2 all of
the polynomials listed occur, see [5], respectively. For genus 4 the following occur as Jacobians of
hyperelliptic curves of genus 4 over F, where ¢ = 2", n odd. An example of each is given here for
q = 2° where « is a primitive root.

The procedure above can be extended to any genus.

Work is in progress for n even.

P(X) Curve
XS_\/@X7+qX6_q2X4+q3X2_q3\/EX+q4 y2+y:x9+a2w5+a25w3

X8+ ¢t v +y=2"+ 25+ o323
X2+ X+ X +° X2+ ¢ v +y=1a"+2°"+ar®
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